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In�uene of damage on inhomogeneous deformation

behavior of amorphous glassy polymers. Modeling and

algorithmi implementation in a �nite element setting
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P.O.BOX 589, 33 101 Tampere, Finland, e-mail: Sami.Holopainen�tut.fi

Abstrat

The objetive of this work is to investigate the in�uene of damage mehanisms on

inhomogeneous deformation behavior of amorphous glassy polymers. The mehanial prop-

erties of glassy polymers are strongly in�uened by the mirostruture whih is typially

desribed by network models. In order to improve the network model preditions at large

multidimensional deformations, a distributed growth of void volume, razing and possible

disentanglement are investigated and onsidered in a part of the proposed visoelasti-plasti

model. The importane of di�erent rheologial properties employed in the model for regard-

ing mehanial behavior is investigated and the role of damage in loalized deformation is

addressed. In order to evaluate the preditions of the proposed model, algorithmi onsti-

tutive equations are derived and implemented in a �nite element program. The model is

employed to the simulation of the old drawing of dumbbell shaped test speimen.

1 Introdution

It is widely aknowledged that the marosopi mehanial behavior of amorphous glassy poly-

mers stems from three major mirostrutural harateristis: the number of entanglements and

statistial links between the entanglements, the growth of shear bands and the extent of free

volume around the hain moleules, f. e.g. [1�4℄. Moreover, amorphous glassy polymers exhibit

several damage proesses suh as razing, avitation of impurities and miro-raking within the

matrix material. Onset of the volume hanges in amorphous glassy polymers are the growth

and oalesene of existing voids in addition to the nuleation and growth of new voids. Under

ompression, amorphous polymers frequently show dutile loalized deformation, whih is due to

shear yielding with small volume hanges. In ontrast to the shear yielding mehanism, whih

involves shear band propagation and eventual frature by a hain sission in large strains, the

governing mehanism of inelasti deformation under tension is a dilatational loalization in zones

of �brillation, termed razing, f. [5, 6℄.

[7℄ onduted plane strain ompression tests both on polymethylmetharylate (PMMA) and

on polystyrene (PS) to investigate the formation of shear bands. Aording to their observations,

the growth of shear bands is the primary soure for the evolution of plasti deformation in

amorphous glassy polymers. The plane strain tension tests by [8℄ showed a remarkable drop in

the marosopi stress immediately after the development of marosopi shear bands. During

ontinued deformation, the propagation of shear bands and the development of inhomogeneous

deformation were observed whih is marosopially manifested by neking.

[9℄ investigated the in�uene of damage (razing, avitation of rubber partiles and miro-

raking within the matrix material) on the plasti deformation and stability in polyethylene

terephthalate (PET) and high-impat polystyrene (HIPS). Based on the optial mirographs,

shear bands nuleated from the tips of existing razes, rather than the razes being nuleated
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at the intersetion of �ne shear bands. They onluded that the onset of plasti deformation is

initiation of razing and the plasti stability is essentially ontrolled by damage proesses suh

as raze-widening. To trigger a transition from razing to shear yielding, some heterogeneity,

whih relieves the build-up of high hydrostati stress, is needed in the amorphous struture,

f. [10℄. In ontrast to tensile tests, where the initial hain distribution have been found to be

marosopially uniform, large-sale moleular dynamis (MD) simulations have indiated that

the hain distribution loally is heterogeneous, f. [11℄. As a result of heterogeneity, polymer

material shows loalized deformation where mirosopi shear bands in losely paked regions

develop and annihilate into marosopi shear bands. [11℄ also showed that the thikness of the

ligaments within the struture is ruial.

Despite all the ative researh arried out during the last deades, the governing miromeh-

anism that ontrols razing is still not fully understood. Experimental investigations have shown

a major importane of the entanglement density in marosopi failure through razing or shear

yielding, f. e.g. [10, 12�14℄. Initial plasti deformation through shear yielding in amorphous

glassy polymers is usually followed by razing or alternatively razing propagates on stable man-

ner, f. [9, 15℄. Examples of the polymers in the �rst group are e.g. polyarbonate (PC) and

PMMA, and polymers involving stable razing are e.g. HIPS and polyarylonitrile-butadiene-

styrene (ABS) that are frequently used in toughened polymer blends. Aording to [15℄, derease

of temperature and inrease of the strain rate result in more brittle failure in amorphous glassy

polymers, i.e. the di�erene between the time instants for raze-initiation and breakdown de-

reases. They also pointed out that the void nuleation is a preursor to razing and razes

initiate due to high mean stress onentrations around the miro-voids. As a result of the dam-

age proesses, volume strains in relation to total strains, i.e. the plasti dilatation, was found

to be signi�ant. [16℄ onduted moleular dynami MD simulations to investigate the role of

deformation-indued disentanglement to void nuleation in amorphous glassy polymers. They

onluded that disentanglement inreases under highly triaxial stress states, whih results in void

nuleation being inreased. They also pointed out that porous regions are reated at the loations

where almost all the polymer hains have slipped away exept a few that are �rmly anhored at

their ends and pulled taut.

Most of the urrent models are based on the assumption that the plasti deformation only

evolves beause of the development and propagation of shear bands without volume hanges.

Conerning void growth, many of the inelasti damage models available for amorphous glassy

polymers are based on the expliit knowledge of the yield surfae involving a large number of

material parameters to be identi�ed, f. [17�21℄. However, the damage proesses observed in

amorphous glassy polymers are omplex phenomena and their modeling seems to require suh

omplexity. The models developed for metals have initially been onsidered for that purpose,

f. e.g. [22, 23℄. Based on plane strain �nite element simulations [24℄ investigated the e�ets

of pressure sensitive yielding and plasti dilatany on void growth and void mutual interation.

They onluded that void growth is promoted by pressure resulting higher porosity and void

interation in the material during loading. A widely used dilatational plastiity model is the one

introdued by [25℄ and later modi�ed by [26℄. The Gurson model is based on the assumption

that the deformation mode of the material surrounding a void is homogenous. Aording to this

model, softening behavior in the material results from the growth of voids, i.e. the model does

not possess the intrinsi ability to predit loalized deformation by void oalesene.

The objetive of this work is to investigate the in�uene of damage mehanisms on loalized

deformation of amorphous glassy polymers. Here, damage is asribed to the distributed growth

of void volume and razing during plasti deformation. The onept of free volume is employed

to desribe the voids or the loosely paked regions in amorphous glassy polymers. In ontrast

2



to rubber-toughened polymers, the void is onsidered as oneptual with no lear physial in-

terpretation. However, sine the voids are uniformly distributed in the material, the growth of

voids is approximated by using the models whih are onventionally applied to the modeling of

void growth due to avitation of small rubber partiles or impurities present in polymer-rubber

blends, f. e.g. [19℄.

The spei� model employed in this work is based on the elebrated 8-hain version of the

[27℄ model, whih is here termed the BPA model. In this Extended BPA (EBPA) model, both

the elasti and plasti properties are onsidered as visous. In order to evaluate the model pre-

ditions for inhomogeneous deformation, old drawing experiments on PC were performed and

the model was implemented in a �nite element program. The EBPA model was alibrated to the

fore-displaement responses for inhomogeneous deformation aquired from old drawing experi-

ments on polyarbonate speimens. It was shown that the parameters whih were obtained from

alibration to homogeneous deformation annot be used to satisfatorily predit the experimental

response of inhomogeneous deformation. In order to �nd the mehanisms that are able to ex-

plain this disrepany, the number of entanglements, possible disentanglement, void growth and

razing are investigated and onsidered in a part of the EBPA model. Marosopi onstitutive

relations in the EBPA model are augmented by using a modi�ed Gurson model, whih also takes

the nuleation of new voids into aount. The role of damage mehanisms in strain loalization

is addressed and the importane of rheologial properties employed in the model for regarding

mehanial behavior is investigated.

2 Aount of state-of-the-art network models

Many of state-of-the-art network models are shown to be in good agreement with experiments

under monotoni loadings, f. e.g. [28�32℄. Moreover, most of the models inlude a moderate

number of material parameters, whih is of a great importane in pratial appliations.

2.1 Kinematis

Sine state-of-the-art models mentioned above are based on the multipliative split, the elements

of this kinematial approah are brie�y reviewed. Aording to the multipliative split, the plasti

deformation is de�ned through a loal intermediate on�guration and the deformation gradient

F is deomposed into an elasti and a plasti omponent given by

F = F eF p
(1)

where F p
and F e

de�ne the elasti and plasti ontribution, respetively, f. [33℄. Moreover, the

deformation gradient an be given in terms of the rotation tensor R and the symmetri, positive

de�nite streth tensor v as

F = vR. (2)

The split in (1) provides the relation for the spatial veloity gradient l, i.e.

l := Ḟ F−1 = le + lp (3)

where the elasti and plasti veloity gradients

le := Ḟ
e
F e−1, lp := F eL̄

p
F e−1, L̄

p
:= Ḟ

p
F p−1

(4)
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were de�ned in the spatial and intermediate on�guration, respetively. Spei�ally, the quanti-

ties in the intermediate on�guration are highlighted by the bar. In the relations (3) and (4), a

superposed dot denotes the material time derivative. In many appliations, the deomposition

of the spatial veloity gradient into it's symmetri and skew-symmetri parts is needed, i.e.

l = d+ ω (5)

where the symmetri part d := sym(l) is the rate of deformation and ω := skew(l) is the spin.
Substitution of (3) in (5) allows the symmetri and skew-symmetri part of the elasti and plasti

veloity gradients to be de�ned as

le = de + ωe, lp = dp + ωp, L̄
p
= D̄

p
+ W̄

p
(6)

where

de := sym(le), ωe := skew(le),

dp := sym(lp), ωp := skew(lp),

D̄
p
:= sym(L̄

p
), W̄

p
:= skew(L̄

p
).

(7)

For later use, the plasti deformation is given in terms of the plasti deformation tensor

C̄
p
:= F pF p,T

(8)

where the supersript, T, denotes the transpose. Based on (4) and (8) it is possible to extrat

the rate of the plasti deformation tensor

˙̄Cp
, i.e.

˙̄Cp =
˙

F pF p,T = Ḟ
p
F p,T + F pḞ

p,T
= Ḟ

p
F p−1F pF p,T + F pF p,TF p−TḞ

p,T

= L̄
p
C̄

p
+ C̄

p
L̄

p,T
.

(9)

In many of state-of-the-art network models, the elasti onstitutive desription is given in terms

of the elasti Finger tensor,

be := F eF e,T, (10)

de�ned in the spatial on�guration. Taking advantage of (4), the rate of the elasti deformation

tensor ḃ
e
takes the following form

ḃ
e
=

˙
F eF e,T = Ḟ

e
F e,T + F eḞ

e,T
= Ḟ

e
F e−1F eF e,T + F eF e,TF e−TḞ

e,T

= lebe + bele,T.
(11)

In aordane with (2), the polar deomposition of F e
allows to de�ne the orientation of the

intermediate on�guration in terms of the left elasti streth tensor

ve :=
√
be (12)

and the elasti rotation Re
, i.e.

F e = veRe. (13)

Similar to (13), use is made of the polar deomposition of the plasti deformation gradient,

F p = V̄
p
Rp, (14)

where Rp
is the plasti rotation and V̄

p
is the plasti streth de�ned in the intermediate on�g-

uration.
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Figure 1: The hain geometry aording to the 8-hain model in a) undeformed and b) deformed on-

�guration. The base vetors N̄α, α = 1, 2, 3, align with the unit eigenvetors of V̄
p
. The dimension of

the undeformed element is a0 and λ̄p
denotes the plasti hain streth whih appears in the diretion m̄.

The unit vetor m̄ is de�ned by the angles θ̄ and ϕ̄, whereas the plasti network streth λp
ec is related

to the diretion N̄ := 1/
√
3
∑

α N̄α.

2.2 Spei� onstitutive model

Even if state-of-the-art network models are shown to be preditive under monotoni loadings,

a omparison with the experimental data reveals that they fail to apture a nonlinear response

during repeated or yli loadings, f. [31, 32℄. Moreover, under long-term loadings, the models

typially predit an overestimated reovery and reep. In order to improve the model preditions

under these onditions, we have proposed an extension of the BPA model termed the EBPA

model, f. [34℄. In ontrast to referred state-of-the-art models, the EBPA model inludes both

visoelasti and visoplasti ingredients needed to ompensate for the shortomings of state-of-

the-art models.

τ

L
e(E1)η b)c)

ve
2

τ

L
e(E)

ve
1

a)

d) e)

τ̃ β

V̄
p

Figure 2: Rheologial representation of

the EBPA model involving the elements:

two elasti springs a) and b), a visoelasti

dashpot ), two visoplasti dashpots d)

and a nonlinear Langevin spring e). Dif-

ferene between the Kirhho� stress τ and

the bakstress β de�nes the driving stress

τ̃ .

As with the BPA model, the mirostruture in the

EBPA model is represented by an overall hain network

whih onsists of ubi ells, f. Fig. 1. The segments of

eight moleular hains extend from the enter point of

the ubi ell along its diagonals. In large deformations,

the hains align with the prinipal plasti strethes of

ontinuum and results in an highly anisotropi response,

f. [28℄.

Fig. 2 shows a rheologial presentation of the EBPA

model whih onsists of an elasti spring a) in series with

two Kelvin-Voigt elements. The upper Kelvin-Voigt ele-

ment involves an elasti spring b) and a visous dashpot

), both being solely a�eted by the elasti deformations.

The Kelvin-Voigt element is employed for prediting

reep and reovery, while its ombination with the elas-

ti spring a) is aimed at desribing the stress relaxation.

The seond Kelvin-Voigt-like element omprises two vis-

oplasti dashpots d) arranged parallel with a nonlinear

spring e) whih results in the evolution of anisotropy in

large strains.

To improve the auray of the linear visoelasti

models in large multi-dimensional deformations, the multipliative split of the elasti deformation
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gradient F e
into a visous and an elasti part is applied, i.e.

F e = F e
1F

e
2 (15)

where F e
1 and F e

2 de�ne the elasti strething in the spring a) and b), respetively, f. Fig. 2.

The polar deomposition of F e
1 and F e

2 allows to de�ne the orientation of the intermediate elasti

on�guration as

F e
1 = ve

1R
e
1 and F e

2 = ve
2R

e
2 (16)

where Re
1 and Re

2 are the elasti rotations and ve
1 and ve

2 are the elasti streth tensors, de�ned

in the spatial and the elasti intermediate on�guration, respetively. The split of the elasti

deformation gradient (16) is depited in Fig. 3.

Taking notie of the stress equilibrium as shown in Fig. 2, the elasti onstitutive law is given

as

τ = L
e(E) : lnve

1 = η :
d

dt
(lnve

2) +L
e(E1) : lnv

e
2 (17)

where the Young's moduli E and E1 relate to the elasti springs a) and b), respetively. Using

the shear modulus µ := E/2(1 + ν) and the bulk modulus κ := E/3(1 − 2ν), the fourth order

elastiity tensor is de�ned as

L
e := 2µ(I +

3κ− 2µ

6µ
i⊗ i) (18)

where ν is the Poisson's ratio and i and I are the spatial seond and fourth order identity tensors,

respetively. The omponents of L
e
in an orthonormal artesian oordinate system take the form

Le
ijkl := 2µ

[

1

2
(δikδjl + δilδjk) +

3κ− 2µ

6µ
δijδkl

]

. (19)

In general, the sti�ness of the visous damper η is regarded as a fourth order tensor, given as

η = η1I + η2i⊗ i

where η1 and η2 are visosities that govern elasti shear and volumetri deformation, respetively.

They may also depend on temperature and the elasti strain rate, f. [35℄. Assuming η to be a

salar, only three new material parameters h2, E1 and η enter the proposed model.

Sine the proposed model relies on the assumption of small elasti strethes in relation to the

plasti strethes, the rate of plasti deformation D̄
p
is taken to align with the spatial normalized

diretion of τ̃ dev
, i.e.

D̄
p
:=

γ̇p√
2
n, n =

τ̃ dev

τ
, τ̃ dev := τ dev − βdev, τ :=

√

1

2
τ̃ dev : τ̃ dev

(20)

where β is the bakstress and γ̇p is de�ned subsequently. The supersript, dev, denotes the

deviatori omponent. In ontrast to the BPA model, in whih the �ow rule is postulated in

terms of the Cauhy stress σ, the Kirhho� stress τ = Jeσ is applied in the EBPA model.

This hoie is motivated by the shear-type �ow rule (20) where the volumetri deformation is

suppressed. Noting that D̄
p
turns out to be deviatori, the trae of (6)3 yields

trace(L̄
p
) = trace(D̄

p
) + trace(W̄

p
) = 0, (21)

whih reveals that the plasti deformation is isohori, i.e. Jp := det(F p) = 1. It then follows

that J = Je := det(F e). In terms of a non-a�ne plasti network streth

λpec :=

√

trace(C̄
p
)/3 (22)
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1

ve

Re
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2
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Figure 3: Deformation of a solid body and the mappings between di�erent on�gurations. The polar

deomposition of the deformation gradient based on the left strethes v, V̄
p
and ve

(left). The split of

the elasti deformation gradient F e
into the elasti and visous part F e

1 and F e
2 (right). In terms of the

left strethes ve
, ve

1 and ve
2, the polar deompositions are also presented.

and the inverse Langevin funtion χ := L
−1(λpec/

√
N), the anisotropi hardening in the EBPA

model is desribed by the bakstress. In the intermediate on�guration, the prinipal omponents

are given by

B̄dev
α =

CR

3λpec

√
NL

−1(
λpec√
N
)
(

(λ̄pα)
2 − (λpec)

2
)

, α = 1, 2, 3,
(23)

where CR is a material parameter, λ̄pα are the prinipal plasti strethes and N is the number of

statistial links of length l between the physial entanglements. Aording to non-Gaussian hain

statistis, the �nite extensibility of hain is rL = Nl while the undeformed length is r0 =
√
Nl and

thus the hain loking streth is given by λL = rL/r0 =
√
N . The spatial form of the deviatori

bakstress βdev
needed in (20) is obtained by push-forwarding B̄

dev
by F e

. The inverse Langevin

funtion present in (23) results in a strong inrease in the bakstress as the streth in the hains

reahes the limit λL.

The mehanial behavior of amorphous glassy polymers is desribed by an almost elasti initial

response whih is followed by strain softening and subsequent strain hardening. This "S-shaped"

behavior in the EBPA model results from mixed isotropi and kinemati hardening. The isotropi

hardening is due to the intermoleular resistane to hain segment rotation and it is modeled by

two visoplasti dashpots, f. element d) in Fig. 2. The evolution of the plasti deformation is

governed by

γ̇p = γ̇0 exp
(

−Ass
T

(1− (
τ

Jess
)
5

6 )
)

, (24)

f. [1℄. Later, [27℄ extended a onstant athermal shear stress ss to inlude the pressure e�et by
taking ss = s+αp to evolve to the saturation value sss. In equation (24), γ̇0 is a pre-exponential
fator, A is proportional to the ativation volume, p = −trace(σ)/3 is the pressure, α is a pressure

dependene fator and T is the absolute temperature. The extra dashpot is aimed at inreasing

the isotropi hardening e�et and thereby suppress the in�uene of kinemati hardening. The

original and extra dashpot are modeled by the two internal state variables s1 and s2 giving an

additional inrease to the shear resistane, i.e.

s = s1 + s2. (25)
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Table 1: Summary of the EBPA model.

1. Kinematis: F = F eF p, F e = F e
1F

e
2 = veRe, Re

is unity, be1 := F e
1F

e,T
1 ,

ve
1 :=

√

be1, Re
1 is unity, be2 := F e

2F
e,T
2 , ve

2 :=
√

be2, C̄
p
:= F pF p,T.

2. Stress: τ := 2µ(ln ve
1)

dev + κ ln Je
1i, Je

1 = det(F e
1).

3. Miro-maro transition: λp
ec =

1√
3

√

trace(C̄
p
) ∈ (0,

√
N).

4. Flow rule: D̄
p
= γ̇pn, n :=

τ̃ dev

√
2τ

, τ̃dev := τdev − βdev, τ :=

√

1

2
τ̃dev : τ̃ dev.

5. Bakstress: B̄
dev

=
CR

3λp
ec

√
NL

−1(
λp
ec√
N

)(C̄
p
)dev push-forward → βdev

6. Isotropi hardening: γ̇p := γ̇0 exp
(

−Ass
T

(1− (
τ

Jess
)
5

6 )
)

, Je = det(F e), p = −1

3
trace(σ),

ss = s+ αp, s is given by (25) and (26), and s(0) = s0.

The internal variables s1 and s2 evolve aording to

ṡ1 = h1(1− s1/sss)γ̇p, s1(0) = s0,

ṡ2 = h2(1−H(s2 − s̄2))γ̇p, s2(0) = 0
(26)

where the parameters h1 and h2 ontrol the approah of s1 and s2 to sss and s̄2, respetively. H
is the Heaviside-funtion whih prevents an exessive hardening e.g. during yli loading. The

threshold argument s̄2 an be found experimentally.

Taking note of (24) and (26)2 reveals that ṡ2 is positive and thus, s2 is monotonially in-

reasing. It then follows that the amount of isotropi hardening in relation to the amount of

kinemati hardening inreases and as a result the evolution of the bakstress suppresses in the

EBPA model. A redued evolution of the bakstress is of major importane at a low-stress

level, where the plasti evolution is partiularly governed by the bakstress. The EBPA model

is summarized in Table 1.

2.3 Calibration of the EBPA model to homogeneous deformation

In order to evaluate the apability of the EBPA model, uniaxial ompression tests involving

omplex loading situations were simulated. The parameters employed in the simulations are

listed in Table 2. Fig. 4 shows apability of both the original BPA model and the EBPA model

to predit the true stress vs strain response under repeated unloadings. Even if the EBPA model

overpredits reovery during the �rst yle, it is superior to the BPA model during subsequent

yles. Sine the EBPA model has been shown to well apture the experimental response during

omplex loading situations, f. also [34℄, the subsequent onsiderations will be based on this

model.
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Figure 4: Uniaxial ompression response for bisphenol A polyarbonate aording to a) the BPA model

and b) the EBPA model. The repeated unloadings are performed to progressively inreasing strain levels

ǫ = 0.05, 0.13, 0.27, 0.45 and 0.59 and then the stress level σ = 1.2 MPa is kept �xed for a dwell time

12,000 s. Experimental data is taken from [31℄.

3 Investigation of neking of dumbbell shaped speimen

To evaluate the apability of the EBPA model and its numerial implementation to predit

inhomogeneous deformation behavior, old drawing experiments on PC-speimen were onduted.

Cold drawing, whih typially results in nek propagation on a amorphous glassy polymers, is

frequently used method for the prodution of anisotropy in polymers. The tests were performed

by using the Instron

©
5967 tension/ompression eletromehanial testing mahine ontrolled by

Blue Hill 3 software. A layout of the testing arrangement is shown in Fig. 5.

The test speimen under onsideration is dumbbell-shaped and it is fabriated from Lexan

r

223R PC-polymer. During drawing, the applied load f and the elongation u were monitored. To

prevent an inrease in temperature due to the dissipative heating, a slow ross head speed u̇ = 2
mm/min was applied. Moreover, the elongation of the speimen was restrited to u = 0.3L ≈ 40
mm to avoid loalized deformation at the interfae of the gauge setion and the grips. A more

detailed aount for the test program involving repeated loading yles is found from [34℄.

Snapshots of the dumbbell shaped test speimen during drawing are depited in Fig. 6. The

seleted stages of deformation show the initiation, stabilization and propagation of nek. The

Table 2: Constitutive parameters of the BPA and EBPA model for bisphenol A polyarbonate (BPA-PC)

and PC. Moreover, E1 = 0.3E in the EBPA model. The parameters for BPA-PC are obtained from the

alibration to uniaxial ompression tests performed at room temperature under monotoni loading, f.

[31℄. The alibration of the EBPA model on PC is based on the uniaxial and plane strain ompression

experiments given in [28℄. The BPA model parameters for PC are taken from [36℄.

E η s0 sss h1 h2 γ̇0 A CR N α

BPA-PC MPa MPas MPa MPa MPa MPa s−1
MPa

−1K MPa

BPA 2300 99 73.0 370 2 · 1015 241 14.0 1.85 0.08

EBPA 3700 5.0 · 104 100 56.5 205 40 5.6 · 1015 241 14.0 2.20 0.08

PC MPa MPa MPa MPa MPa s−1
MPa

−1K MPa

BPA 2300 97 76.6 500 2.0 · 1015 240 12.8 2.15 0.08

EBPA 3300 6.0 · 104 96 61.0 170 10 5.4 · 1015 240 17.8 2.42 0.08
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Figure 5: The illustration of the testing arrangement. The displaement at y = 0 is �xed by a grip

and the elongation u at the other end y = L is presribed. The geometry of the dumbbell-shaped test

speimen is given by H/L ≈ 0.90, w/L ≈ 0.17, w2/L ≈ 0.09 and t/L ≈ 0.035 where t is the speimen's

thikness. The details of the speimen's geometry are spei�ed in ISO 527-2. The shown �nite element

disretization is of a mesh with 4-node plane elements.

nek in the test speimen is rather di�use, i.e. the loalized zone extends and reahes rapidly the

end of the gauge setion.

The EBPA model was alibrated to the fore-displaement responses aquired from the old

drawing experiments on polyarbonate speimens. To trigger the loalization in the simulation

of the test, a small initial imperfetion was introdued

∆w2 = w2ξ0, (27)

i.e. the width of the gauge setion at y = ȳ is w2−∆w2, f. Fig. 5. During the experiment, nek

was observed to initiate near the enter of the speimen, i.e. ȳ = L/2. In alibration, the plane

strain mode, espeially in the gauge setion, was assumed to be aurate enough.

Due to the symmetry of the geometry and boundary onditions, only a quarter of the speimen

was onsidered in the numerial analysis. The �nite element disretization employed is of a mesh

Table 3: The values of the EBPA and the BPA model parameters. Moreover, E1 = 0.3E in the EBPA

model. Calibration of the models is based on the old drawing experiments of the dumbbell-shaped

PC-speimen. The intensity of the initial imperfetion in (27) is set to ξ0 = 0.002.

E η s0 sss h1 h2 γ̇0 A CR N α

MPa MPas MPa MPa MPa MPa s−1
MPa

−1K MPa

EBPA 2550 1.5 · 105 96 76 720 40 5.6 · 1015 241 14 2.2 0.08

BPA 2300 99 73 370 2 · 1015 241 14.0 1.85 0.08

10



Figure 6: Snapshots of a dumbbell shaped test speimen during elongation: u = 10 mm, u = 20 mm,

u = 30 mm and at the end of the loading u = 40 mm. Based on the EBPA model the deformed shapes

are visualized by the plasti streth λ̄p
ec at three di�erent phases: u = 10 mm, u = 20 mm and at the

end of the loading. The �nite element disretization employed is of a mesh with 4-node plane elements.

with 196 4-node plane elements. The numerial treatment of the model is disussed in Appendix

A. The alibrated parameters are given in Table 3. For later purposes, also the BPA model

parameters, whih were obtained from the alibration to the same data, are presented in Table

3.

The numerial investigations indiated that the original BPA model is relative-well able to

predit the inhomogeneous deformation behavior by using the material parameters obtained from

the alibration to a homogeneous deformation mode. As far as the EBPA model is onerned,

omparison of Tables 2 and 3 reveals that the parameters whih were obtained from alibration

for homogeneous deformation annot be used to satisfatorily predit the experimental response

of inhomogeneous deformation. Even if the material of the speimen slightly di�ering from the

PC-polymer employed in the tests for homogeneous deformation, this disrepany annot entirely

be explained either by the loalization phenomena or boundary e�ets.

To investigate the in�uene of negleted volume hanges (geometri softening) on the nek

propagation, the EBPA model was also implemented in a three-dimensional �nite-element ode.

The �nite element disretization onsists of a mesh with 8-node linear hybrid brik elements with

onstant pressure. Based on the two and three dimensional �nite element analyses, Figs. 6 and 7

show the deformed shapes of the speimen during drawing. As the strains below the maro yield

point are yet small, the material behavior is visoelasti and the streth �eld is uniform. During

ontinued deformation, loalized zone develops in the the enter of the speimen and starts to

extend towards the grips.

Even if the disretization of the mesh with the plane elements fails to present the deformed

shape in the thikness diretion, omparison of the EBPA model results in Figs. 6 and 7 indiates

that the deformation mode has not marked in�uene either on the nek propagation or on the

intensity of plasti strething. The thikness redution ratio t/t0 in the middle of the speimen is

also presented in Fig. 7. Early on neking u/H = 0.15, the observed and EBPA model results are

virtually indistinguishable. One the elongation of u/H = 0.15 is passed, the thikness redution
ratio tends asymptotially to the limit t/t0 = 0.85.

In onlusion, the di�erene between the model alibrations for homogeneous and inhomoge-

neous deformation is not a result of the loalization phenomena or volume hanges shown in Fig.

11
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Figure 7: Based on a three-dimensional �nite-element ode of the EBPA model, the deformed shapes

of the speimen during the stabilized nek, u = 15 mm, u = 20 mm and u = 35 mm, are visualized

by λ̄p
ec. The thikness-redution ratio t/t0 at x = 0 and y = (L + u)/2 (right). The markers • and +

denote the thikness ratio aording to the model and the experiment, respetively. The �nite element

disretization is of a mesh with 8-node linear hybrid brik elements.

7. Instead, the disrepany is due to the EBPA model's ability to apture the time dependent

(visous) deformation behavior. The time dependent behavior is one onsequene of the maro-

moleular harater of polymers, i.e. the polymer hains need a relaxation time to attain their

equilibrium state after deformation. In order to �nd the mehanisms that are able to explain

the disrepany in more detail, several fators, suh as the number of entanglements, possible

disentanglement, void growth and razing, are investigated and they are onsidered in a part of

the EBPA model.

4 Investigation of the damage behavior

The objetive of this setion is to investigate the in�uene of damage on loalized deformation

behavior. In subsequent onsiderations, damage is asribed to the distributed growth of void

volume and razing during plasti deformation. Here, the onept of free volume is employed

to desribe the voids or the loosely paked regions in the PC under onsideration. In ontrast

to rubber-toughened polymers, the void is onsidered as oneptual with no lear physial in-

terpretation. However, sine the voids are uniformly distributed in the material, the growth of

voids is approximated by using the models whih are onventionally applied to the modeling

of void growth due to avitation of small rubber partiles (seond-phase partiles) or impurities

present in polymer-rubber blends. An example of these polymer blends is PC inorporating small

polyarylonitrile-butadiene-styrene (ABS) partiles, f. e.g. [19℄.

Due to the existene of voids around the hain moleules, the yield behavior of amorphous

glassy polymers depends on hydrostati pressure. The damage mehanism is shematially illus-

trated in Fig. 8. During nuleation and initial growth of voids, the deformation is onsidered

as homogeneous. One the voids have grown and the oalesene of voids is initialized, the

transformation to the loalized deformation phase takes plae.

12



a) b) ) d)

Figure 8: A shemati representation of the dilatational damage mehanism: a) nuleation of voids, b)

void growth, ) initialization of void oalesene and d) the oalesed voids.

A widely used dilatational plastiity model is the one introdued by [25℄ and later modi�ed by

[26℄. The Gurson model is based on the assumption that the deformation mode of the material

surrounding a void is homogenous. Aording to this model, softening behavior in the material

results from the growth of voids, i.e. the model does not possess the intrinsi ability to predit

loalized deformation by void oalesene. Due to a low initial void volume, the voids are assumed

to beome oalesed in very large strains, i.e. void growth is only asribed to the nuleation of

new voids instead of void oalesene.

4.1 Modeling of void growth

In order to investigate the damage behavior aused by void growth, marosopi onstitutive

relations in the EBPA model are modi�ed by using an augmented Gurson model, whih also

takes the nuleation of new voids into aount.

Sine the voids are assumed to be spherial in shape and uniformly distributed, the damage

evolution is assumed to be isotropi and it is represented by a single salar termed a void volume

fration fv = dVv/dV having the initial value 0 ≤ fv0 ≤ fv < 1. The in�nitesimal volume dVv
represents the volume hange oupied by the voids and dV is the total volume hange of the

representative volume element (RVE). As with the Jaobian J , whih is de�ned as the ratio of the
urrent volume hange dV and the initial volume hange dV0 as J := dV/dV0, the void volume

fration an be represented as Jv := dV/dVm, where dVm = dV − dVv is the volume hange

oupied by the matrix material.

Sine the inelasti Gurson potential Φp
ats as both a yield funtion and a potential for plasti

�ow, the theory is onsidered as assoiative. To better predit the instability in the material due

to the interation of voids, [26℄ proposed a modi�ed Gurson damage model in whih the inelasti

potential is given by

Φp(τ, fv, τm, τe) = τ 2 + 2fvq1τ
2
e cosh(

3

2
q2
τm
τe

)− τ 2e (1 + q21f
2
v ) (28)

where τm := 1/3trace(τ ) is the marosopi mean stress. In aordane with the previous

approahes by [26, 37℄, the mirosopi e�etive stress of the solid ligaments τe is introdued sep-

arately from the marosopi e�etive stress τ . The mirosopi e�etive stress τe is determined

from the ondition Φp = 0. Sine the volumetri deformation is suppressed in the �ow rule (20),

it is generally inappropriate for modeling damage. Based on the potential (28), the rate of plasti

deformation is governed by the modi�ed normality rule

dp = Λ̇p∂Φ
p

∂τ
(29)
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whih allows dilative plasti �ow to be evolved in the material. The salar valued parameter Λ̇p

is de�ned below. The kinemati hardening e�et is inluded in the model via the marosopi

e�etive stress τ(τ̃ ), whih was de�ned by (20). As with the BPA model, the intrinsi softening

is modeled via the athermal shear strength s1, whih is taken to evolve aording to (26)1. The

isotropi hardening e�et is enfored by the internal variable s2 given by (26)2.

In ontrast to the original Gurson spherial model for inompressible, rigid-plasti material,

[26℄ suggested that the values q1 = q2 = 1 in (28) need to be replaed by q1 = 1.5 and q2 = 1.0 to
better apture bifuration away from the nominally homogeneous deformation. For amorphous

glassy polymers, however, the onstant values of q1 and q2 annot satisfatorily predit either

void growth or the hange of the void shape during deformation. To apture the expeted

harateristis of void growth, [20℄ suggested that q1 and q2 should be onsidered as internal

variables given by the following empirial power laws:

q1 = q10(1 + cpv)
Nv , q2 = q20(1 + cpv)

Nv
(30)

where q10, q20, c and Nv are positive onstitutive parameters and pv denotes an internal variable

de�ned subsequently. The low values of q10 and q20 indiate weak interations between the voids

while softening in the material dereases, f. [20℄. In the �ow rule (29), a salar parameter Λ̇p

was introdued. This an be determined from equivalene between the plasti power whih is

dissipated into the porous media and into the orresponding solid ligaments between the voids,

i.e.

τ̃ : dp = (1− fv)
√
2τeṗv. (31)

In the equation (31), ṗv denotes the e�etive plasti strain rate, whih is hosen to be equal to

the plasti shear strain rate γ̇p given in (24). Sine γ̇p is positive, γp is monotonially inreasing

and as a result the variables q1 and q2 given by (30) inrease during deformation. It then follows

from (29) and (31) that

Λ̇p =
√
2(1− fv)τeγ̇p(τ̃ :

∂Φp

∂τ
)−1.

Based on the normality rule (29), the rate of plasti deformation takes the following form

dp =
√
2(1− fv)γ̇pτe(2τ 2 + Ξtrace(τ̃ ))−1(τ̃ dev + Ξi),

Ξ := q1q2fvτe sinh
(3

2
q2
τm
τe

)

.
(32)

It should be notied that the ondition Φ = 0 yields τe = τ if q10 = q20 = 0, i.e. no interation

between the voids exists. Under this ondition, a realisti assumption is that damage does not

evolve, i.e. ḟv = 0 and the normality rule (32) is equal with (20) for the plasti deformation

through shear yielding.

The damage proess due to the presene of voids an be separated into the two phases, f.

Fig. 8(a-b) and (-d). First, the homogenous deformation takes plae with void nuleation and

initial growth, whih is followed by the loalized deformation due to ontinued void growth and

void oalesene. Sine void oalesene is negleted here, the evolution law for these two phases

an additively be deomposed as

ḟv = ḟg + ḟn, fv(0) = fv0 (33)

where ḟg and fn desribe the growth of existing voids and the nuleation of new voids, respetively.

To de�ne their evolution laws, let us �rst onsider the void volume fration only due to growth

of existing voids de�ned as fg = dVg/dV . The initial value ranges between 0 ≤ fg0 ≤ fg < 1.
As with the volume fration Jv

, the void volume fration due to growth of existing voids an be

14



represented as Jg := dV/dVmg, where dVmg = dV − dVg is the volume hange oupied by the

matrix material due to growth of existing voids. The relation between Jg
and fg beomes

fg = 1− 1

Jg
. (34)

Taking note of (34), lead us to the following evolution equation

˙ln Jg =
J̇g

Jg
=

ḟg
1− fg

. (35)

Assuming also that void growth takes plae only due to the plasti deformation, i.e. Jg = Jp
in

(35), and applying Liouville's theorem to F p
yield

ḟg = 3(1− fg)Dp

h. (36)

In the evolution equation (36), Dp

h := 1/3trace(dp) is the plasti volumetri strain rate, f. [25℄.

In many amorphous glassy polymers, the nuleation of new voids is also assumed to be sig-

ni�ant but the proess is not well understood yet. It is a material intrinsi property being

dependent on the strength of the polymeri material as well as on the size and shape of existing

voids. Large voids usually nuleate new voids earlier than small voids, and inlusions with di�er-

ent length sales may also lead to di�erent nuleation riteria, f. [38℄. To apture the aelerated

damage due to the nuleation of new voids, [39℄ proposed the following strain-ontrolled law for

the nuleation rate

ḟn =
fN

sv
√
2π

exp
(

−1
2

(γp − εN
sv

)2)

γ̇p (37)

where fN is a material parameter. The mean value εN of the normal distribution desribes the

ritial strain beyond whih the �rst new voids appear. Sine not all the inlusions or partiles

will nuleate new voids, the parameters fN, εN and the standard deviation sv are averagely

determined from alibration to the material's marosopi response.

One important aspet is the ability of the proposed model to aount for the real deformation

behavior as well as quantitative damage predition. For the numerial evaluation of the model,

it is implemented in a �nite element program and the onstitutive equations (17) and (26) are

ompleted by the integration of the void volume fration rates given by (36) and (37). It should

be notied that the plasti shear γp, whih is needed in (37), is available from the solution of

the hardening variable s2, f. (26). Moreover, the rate of plasti deformation is governed by the

normality rule (32). The numerial treatment of the model is disussed in Appendix A.

Thermodynamis

Based on the multipliative splits (1) and (15) and the existene of the �eld variable Jv
thermo-

dynamial treatment of the proposed model is presented, f. [34, 40℄. Without loss of generality,

the onsiderations are presented in the spatial on�guration. Assuming isothermal onditions

to prevail, thermomehanial potential ϕ, also alled Helmholz' free energy per unit volume, is

given by

ϕ = ϕ̂(be1, C̄
p
, Jv, ψ) = ϕe(be1, J

v) + ϕp(C̄
p
) + ψ(be2) (38)

where ϕe
and ϕp

are the elasti and the plasti part of the free energy, respetively, and the

potential ψ is de�ned subsequently. The plasti deformation tensor C̄
p
was de�ned by (8),

be2 := F e
2F

e,T
2 = (ve

2)
2

and be1 := F e
1F

e,T
1 = (ve

1)
2

(39)
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is the elasti deformation tensor. To derive the onstitutive relations for the stresses, advantage

are taken of the developments by [41, 42℄. Taking the symmetri part of (3) and onsidering the

produt deomposition (15) yields

d = de + dp = de
1 + de

2 + dp
(40)

where

de
1 := sym(Ḟ

e

1F
e−1
1 ), de

2 := sym(F e
1l̄

e

2F
e−1
1 )

and

l̄
e

2 := Ḟ
e

2F
e−1
2 . (41)

In terms of the internal power W
int

and the rate of the free energy ϕ̇, the dissipation per unit

volume in the spatial on�guration is governed by

D = W
int − ϕ̇ := τ : de

1 + τ : de
2 + τ p : dp +

1

3
trace(τ v) ˙ln Jv − ϕ̇ ≥ 0 (42)

where trace(τ v) and τ p
represent the internal mirostresses work onjugate to

˙ln Jv
and dp

,

respetively. Spei�ally, trace(τ v) is the mean stress needed to reah the volume hange due to

void growth, i.e. it di�ers from the mirosopi e�etive stress τ e of the solid ligaments between

the voids. The rate of the free energy ϕ̇ in (42) beomes

−ϕ̇(be1, C̄
p
, Jv, ψ) = −∂ϕ

e(be1)

∂be1
: ḃ

e

1 −
∂ϕp(C̄

p
)

∂C̄
p : ˙̄Cp − Jv∂ϕ

e(Jv)

∂Jv

˙ln Jv − ψ̇ (43)

where ψ̇ := τ 2 : d
e
2. Taking advantage of (11) and noting the free energy being isotropi tensor

funtion of be1 lead us to the following expression

∂ϕe

∂be1
: ḃ

e

1 = 2
∂ϕe

∂be1
be1 : d

e
1, (44)

f. e.g. [43℄. Applying (9) and assuming that the plasti part of the free energy is an isotropi

funtion of C̄
p
gives

∂ϕp

∂C̄
p : ˙̄Cp = 2sym(

∂ϕp

∂C̄
p C̄

p
) : D̄

p
=: B̄ : D̄

p
(45)

where the prinipal omponents of the bakstress B̄ in the intermediate on�guration are de�ned

as

B̄α :=
CR

3λpec

√
NL

−1(
λpec√
N
)(λ̄pα)

2, α = 1, 2, 3,
(46)

f. (23). The plasti part of the free energy ϕp
and a detailed aount to obtain the bakstress,

whih equals with equation (46), an be found e.g. from [36℄. In the present models, the

bakstress represents the non-dissipative stress, i.e. a part of the plasti work whih is stored in

the material during deformations. Substituting (44) and (45) into the dissipation inequality (42)

yields

D :=

(

τ−2∂ϕ
e

∂be1
be1

)

: de
1+(τ−τ 2) : d

e
2+(τ p−β) : dp+(

1

3
trace(τ v)−Jv ∂ϕ

e(Jv)

∂Jv
) ˙ln Jv ≥ 0 (47)

where β is the bakstress expressed in the spatial on�guration. Using the arguments by [44℄

turns out the following expressions

τ = 2
∂ϕe

∂be1
be1 (48)

16



and

trace(τ v) = 3Jv∂ϕ
e(Jv)

∂Jv
(49)

for the stress and the mirostress, respetively. Consistent with the internal power W
int
, de

2

appears linearly in (47) and thus τ 2 = τ . Taking advantage of (48), the loal dissipation (47)

redues to

D := τ̃ : dp ≥ 0, τ̃ := τ p − β
(50)

where τ̃ is the thermodynami driving stress.

Assuming the hoie τ p := τ satis�es the ondition (50). Sine γ̇p is positive, also the

mirostress of the ligaments τe must be positive in (31). However, this ondition must be handled
with are, sine it is not generally satis�ed by the solution of Φp = 0, f. (28).

Sine the polymer hains in the EBPA model are assumed to be randomly oriented in spae,

use is made of an isotropi strain energy,

ϕ =
1

2
κ(Ie1)

2 + 2µJe
2 , (51)

where κ and µ are the bulk and shear modulus, respetively. The logarithmi invariants needed

in Eq. (51) are de�ned as

Ie1 := trace(lnve
1) = ln Je

1 and Je
2 := 1/2(lnve

1)
dev : (lnve

1)
dev.

Using the spei� strain energy (51) in (48), the Kirhho� stress takes the following form

τ = 2µ(lnve
1)

dev + κ lnJe
1i =: Le : lnve

1 (52)

where L
e
was de�ned in (18). Similar to (34), a relation between the void volume fration fv and

Jv
an be derived. In analogy with (35), the evolution equation for d(lnJv)/dt in terms of ḟv an

be expressed, i.e. both void growth and shrinkage are allowed without the thermodynamis being

violated. Also, the dependene of the strain energy (51) on Jv
through the elasti onstitutive

parameters κ and µ an be de�ned. Several possible models an be found for the dependene of

κ and µ on fv, f. e.g. [45, 46℄.

4.2 Calibration and evaluation of the augmented EBPA model for void

growth

The augmented Gurson model in onjuntion with the EBPA model is alibrated to data obtained

from the old drawing experiment. In the alibration, the �nite element disretization is of a

mesh with 196 4-node plane elements, i.e. the same element mesh as before is employed. It

an be assumed that the void volume fration has only a small in�uene on the elasti material

properties in porous media, f. [46℄, and thus the elasti onstitutive parameters are onsidered

as onstant. Conerning damage, the alibration is initialized using the parameters for rubber-

toughened PMMA (RTPMMA) taken from [20℄. Both the alibrated and the parameters for

RTPMMA are listed in Table 4. In the subsequent simulations, the loalization is triggered

aording to (27) using ξ0 = 0.002. Calibration also indiated that

- the growth of void volume suppresses the isotropi softening e�et,

- the hange in the initial void volume fration from fv0 = 0 to fv0 = 0.05 only has a small

e�et on the marosopi f − u response,
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Figure 9: a) In�uene of the parameter h1 on void growth, whih is represented by the norm of void

volume fration ‖fv‖ :=
√

∑

i(fv,i · fv,i) where fv,i are the extrapolated values of void volume fration

at the nodes of the mesh. b) f − u responses aording to the test and the model. The deformed shapes

at u = 20 mm and at the end of loading are visualized by void volume fration fv. The highest porosity
fv is highlighted in white.

- the values c > 0, whih in�uene damage evolution via (30), redue void growth.

Sine the PC polymer under study is not interspersed by small rubber partiles, and the

in�uene of a low initial void volume fration on the marosopi response is negligible, we set

fv0 = 0.

Fig. 9 presents the total growth of void volume and the in�uene of the hardening slope h1
on the void growth. The values ranging between 385 − 560 MPa are seen to have only a minor

e�et on void growth and thus the minimum value will be used in further onsiderations. Fig.

9 shows also the fore vs elongation response aording to both the test and the EBPA model.

Even if the responses deviate during the softening phase, the model is well able to apture the

initiation and stabilization of nek. Comparison of Figs. 9(a-b) reveals that the void nuleation is

Table 4: Constitutive parameters of the damage model for RTPMMA and PC. Calibration of the pro-

posed model is performed to data obtained from the old drawing experiment on PC. The RTPMMA

parameters are taken from [20℄.

η h1 sss εN sv fN q10 q20  Nv

MPas MPa MPa

RTPMMA 0.03 0.15 0.15 0.9 1.2 0.2 1.5

EBPA for PC 1.5 · 105 385 61 0.03 0.15 0.05 1.5 1.0 0.2 1.5
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Figure 10: Distribution of the plasti streth λ̄p
ec at the end of loading (u = 40 mm) aording to the

BPA model (on the left), the EBPA model and the EBPA model in onjuntion with the damage model

(on the right). The simulation based on the damage model is performed using the alibrated material

parameters given in Table 4.

prohibited until the elongation u ≈ 6 mm is reahed. This threshold orresponds approximately

to the elongation prior to the yield drop. One the yield point in the stress response is passed,

void growth develops and inreases the porosity in the loalized zone. During stabilized nek,

voids grow rapidly in the material. Similar to the plasti strething, the highest values appear

in a region whih gradually expands from the enter of the speimen towards the grips during

elongation. At the end of loading, the porous region overs the gauge setion entirely, and the

highest porosity ours in the two separate regions beyond the mid-plane, y = (L+ u)/2.
Having less intrinsi softening due to void growth allows the softening slope h1 and the

intensity sss/s0 to be redued to a level whih agrees more losely with the values obtained

from the alibration for homogeneous deformation, f. Table 2. As a onsequene, the intensity

sss/s0 = 0.80, whih appears in Table 3 and was previously employed in the EBPA model, is

redued to 0.65. Moreover, the value h1 = 385 MPa is virtually two times lower ompared to its

preeding value in Table 3. It an be onluded that the di�erene between the alibrations for

homogeneous and inhomogeneous deformation is strongly a�eted by void growth in the material.

Based on the model simulations the plasti streth distributions are highlighted in Fig. 10. It

an be observed that damage redues the intensity of the plasti strething, while the loalized

deformation expands more rapidly along the speimen. A glane at Fig. 6 reveals that the neked

region, whih is predited by the ombined EBPA and the damage model, reahes the end of the

gauge setion simultaneously with the experiment. Assuming the loalization of plasti strething

is representative for the evolution of shear banding, the kinemati hardening, whih is enfored

by void growth, is seen to promote loalization through widening of shear bands.

As has been shown, the EBPA model, along with the augmented Gurson model for void

growth, is able to predit the transformation from the homogeneous deformation phase to the

loalized deformation phase well. Applying this model, the di�erene between the model param-

eters, whih result from the alibration for homogeneous and inhomogeneous deformation, also

dereased onsiderably. A shortoming of the model is that the fore-elongation response during
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nek shows a premature hardening while the void volume fration grows and attains values too

high for unvoided polymers.

4.3 Modeling of razing

Under ompression, amorphous polymers show dutile loalized deformation behavior, whih is

due to shear yielding without marked volume hanges. In ontrast to the shear yielding meha-

nism, whih eventually leads to frature by a hain sission, the governing mehanism of inelasti

deformation under tension is razing, f. [5, 6℄. More preisely, razing is assumed to result from

disentanglement in highly onentrated regions of maximum prinipal stress. Disentanglement

nuleates new miro-voids whih grow and oalese to form initial razes and ause strething

and eventually failure of the thin �brils between the two faes of the initial razes, f. [14, 47℄. As

a result of the breakdown of the �brils, razes widen leading to loal brittle failure while material

behavior at the marosopi level still shows a little dutility. In all, the nominally brittle failure

an be separated into the three di�erent phases: raze-initiation, widening and raze-breakdown.

In reent years, ohesive-surfae models have been widely applied to the numerial simula-

tion of raze-initiation, growth and breakdown with the �nite element method, f. e.g. [13, 19℄.

In a �nite element setting, however, ohesive interfae approahes allow for the nuleation and

growth of the rak only along the element boundaries. In order to avoid mesh dependene and

priori assumptions onerning the orientation of interfae elements for razing, an alternative,

ontinuum-based model is proposed here. Based on the work by [5℄, a simple raze-initiation

riterion is introdued and the transition from shear-�ow to raze-�ow is arried out by a hange

of the �ow rule, where the inelasti deformation is taken to our in the diretion of the lo-

al maximum prinipal stress. One the loal ritial plasti strain is reahed, razes rapidly

widen whih eventually leads to loal frature or hain-breakdown under ompression or tension,

respetively.

The raze-initiation an be governed by strain- or stress-based riteria. [48℄ onduted tension-

torsion stress-ontrolled experiments on thin-walled tubular speimens, whih indiated that

there is a time delay between the appliation of stress and the �rst appearane of razing. At

the stress levels, where the equivalent stress τ and the mean normal stress τm exeed 0.4 - 0.5

of the yield stress, the delay time onsiderable dereases and as a result raze-initiation an be

onsidered as instantaneous event. Sine the razing proess in the present drawing experiments

ours in stress levels higher than 0.4 - 0.5 of the yield stress, the inubation time for raze-

initiation an be assumed negligible and a time-independent riterion an be applied in the

proposed model.

In general, the development of razing may be expeted to have diretional properties. Based

on the assumption that the razes grow in the diretion of the maximum prinipal tensile stress,

[5℄ proposed that razing initiates when the mean stress is positive τm > 0, and the highest

prinipal stress τ1 reahes a τm-dependent ritial value τ1 = τ cr(τm) > 0. They estimated the

ritial value τ cr from the tension experiments on a smooth-bar, nothed-bar and a ompat

tension speimen. They observed that the urve for raze-initiation just prior to the yield-peak

load is reasonably-well aptured by the funtion

τ cr = c1 +
c2
τm

(53)

where c1 and c2 are positive parameters. In general, stress-based riteria may be di�ult to

de�ne with preision from experiments due to inauraies in ontrolling loal stress states and

the sites of raze-initiation, f. [48℄. For this reason, a orresponding strain-based riterion needs

to be determined. It an be assumed that the razes are initiated if the following two onditions

are satis�ed:
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[1. ℄ The highest prinipal tensile stress and the mean normal stress are positive, i.e. τ1 > 0
and τm > 0,

[2. ℄ the raze-strain ζp, whih evolves in the diretion of the highest prinipal tensile stress,

reahes a ritial value ζp :=
∫

ζ̇pdt = ζpcr > 0. Correspondingly, τ1 = τ cr > 0.

One razing has been initiated, the transition from shear-�ow to raze-�ow takes plae while

the plasti �ow aligns with the diretion of the maximum prinipal stress τ1, and the inelasti

deformation begins to evolve through widening of the razes.

ζ̇p

ζ̇p

δ̇

Lo

Figure 11: Widening of razes at an average spaing

L0. The marosopi tensile raze strain rate ζ̇p is

determined by the thikening rate δ̇ of razes.

Instead of attempting to represent a de-

tailed sheme for raze-widening, f. [12, 13℄,

a ontinuum-based model, whih de�nes the

inelasti deformation as an average over a mi-

rostrutural representative volume element, is

proposed. It is assumed that the material ele-

ment ontains enough plate-like raze regions

that allow for marosopially smooth raze-

widening proess prior to failure. The magni-

tude of the raze-�ow is given by the maro-

sopi tensile raze-strain rate ζ̇p and it evolves
as long as τ1 is positive. Following [49℄, ζ̇p is

assumed to be aounted for by the thiken-

ing rate δ̇ of the ative planar razes whih are

separated by an average spaing L0, f. Fig.

11. Thus the average tensile raze-strain rate

beomes ζ̇p = δ̇/L0. In terms of the eigenve-

tors n1 assoiated with the highest prinipal stress, the transition from shear-�ow to raze-�ow

is given by

dp =

{

ζ̇pn1 ⊗ n1 if the onditions [1℄-[2℄ are satis�ed,

Λ̇p(τ̃ dev + Ξi) otherwise

(54)

where Λ̇p :=
√
2(1−fv)γ̇pτe(2τ 2+Ξtrace(τ̃ ))−1

and Ξ := q1q2fvτe sinh
(

3/2q2τm/τe
)

, f. (32). The

magnitude of the rate of plasti deformation ζ̇p = |dp| is determined suh that some ontinuity

during the transition from shear-�ow to raze-�ow is ensured.

The equality between the plasti work rate in the porous material per unit volume and the

dissipation in the matrix material is governed by

τ̃ : dp = (1− fv)
√
2τeγ̇

p∗(
τ1
τ ∗1

)m (55)

where the quantities with the supersript (∗) are determined at the instant when the hange in

the �ow rule is triggered. It then follows from (37) that nuleation of new voids is governed by

the onstant rate γ̇p∗ during razing. Sine the experiments show an inreased raze widening

veloity with the applied stress intensity, f. e.g. [13℄, the plasti work rate is reformulated in

terms of the stress ratio τ1/τ
∗
1 . The parameter m in (55) is found from the alibration to the

experimental data. During shear �ow, the stress ratio τ1/τ
∗
1 remains unity and the plasti shear

strain rate γ̇p evolves aording to (24), i.e. (55) equals with (31). It follows from (54) and (55)

that the magnitude ζ̇p = |dp| is given by

ζ̇p =
√
2(1− fv)τeγ̇p∗(

τ1
τ ∗1

)m(τ̃ : n1 ⊗ n1)
−1. (56)
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The mirosopi e�etive stress τe of ligaments is determined from the potential Φp = 0, whih
for the raze-�ow is modi�ed suh that the �ow beomes oriented in the diretion of the highest

prinipal stress, i.e.

Φp(τ1, fv, τe) =
τ 21
2

+ 2fvq1τ
2
e cosh(

q2
2

τ1
τe
)− τ 2e (1 + q21f

2
v ). (57)
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Figure 12: The potentials (28) and (57) in τ−τm and

τ1 − τe spae, respetively. The in�uene of the two
di�erent values fv = 0.02, fv = 0.2 and q1 = 1.0,
q1 = 1.5 are investigated.

Alternatively, employing the funtion (57)

in the �ow rule (29) (replaing Λ̇p
by ζ̇p) and

taking advantage of ∂τ1/∂τ = n1 ⊗ n1 also

results in the raze-�ow rule (54), where ζ̇p is

given by (56). Fig. 12 presents the poten-

tials in (28) and (57) for di�erent values of fv
and q1. The stress trajetories in τ1 − τe spae
show proportionality between the marosopi

prinipal stressing and the mirosopi stress

in ligaments between the voids.

Sine the �nal raze-breakdown an be on-

sidered as a physially unlear proess, f.

[12, 13℄, a simple riterion for raze-breakdown

and frature are proposed as a �rst attempt.

Following [5℄, the raze-breakdown under on-

dition τ1 > 0 ours when the loal raze-strain
ζp reahes a threshold value ζpt > ζpcr > 0. The

threshold ζpt in relation to the raze-initiation riteria ζp = ζpcr de�nes the length of the razing

proess. In the situations where τ1 ≤ 0, dutile frature by moleular hain-sission is initialized

as the plasti streth λ̄pec reahes a threshold λ̄
p
t .

4.4 Calibration and evaluation of the augmented EBPA model for void

growth and razing

Based on the simulations of the old drawing experiment the in�uene of razing on the overall

load-elongation response and loalized deformation behavior is evaluated. In the simulations, the

same element mesh as before is employed. Sine the strething in relation to the limiting streth√
N in a representative volume element an be regarded as small during the entire old drawing

proess, raze-breakdown barely initiates and will be negleted in the subsequent numerial

simulations. Due to neking, the stress ratio τ1/τ
∗
1 in (56) remains almost unaltered (near unity)

during elongation and thus the parameter m is hosen to vanish.

Based on the disussion above, f. also [9℄, the plasti deformation in large strains evolves

primarily due to razing and typially shows an inreased rate of evolution one razing has been

initialized in the material. Sine the stress level dereases during the razing proess, the plasti

work rate in the porous material and the dissipation in the matrix material derease, and as a

result, the void volume fration tends to inrease, f. (55). This e�et is shown in Fig. 13. To

exlude the integration of ζp, the orresponding stress riterion τ cr = 62 MPa for raze-initiation

an be employed in the simulations. This threshold as well as the values λ̄pec = 1.05 − 1.12 in

Fig. 13 for raze-initiation are reasonable-well aptured by using the parameters c1 = 36 MPa

and c2 = 650 MPa

2
in (53).
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Figure 13: a) True stress vs true strain and b) void volume fration for uniaxial tension of BPA-PC

aording to the model. Craze-initiation is presribed by the plasti streth at λ̄p
ec = 1.04, λ̄p

ec = 1.05,
λ̄p
ec = 1.08, λ̄p

ec = 1.12, λ̄p
ec = 1.15 and λ̄p

ec = 1.20. In b), the urve involving a plateau represents

void nuleation (fg = 0) being virtually independent on raze-initiation. The simulation overs the time

period of 750 s at ǫ̇ = 0.001 1/s.
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Figure 14: In�uene of razing on void growth, whih is represented by the norm of void volume fration

‖fv‖ :=
√
∑

i(fv,i · fv,i) where fv,i are the extrapolated values of void volume fration at the nodes of

the mesh. In�uene of void growth and razing on the overall f − u response. The marker � indiates

the position at �rst raze-initiation. Using fN = 0.02, the deformed shapes at u = 20 mm and at u = 30
mm are visualized by the void volume fration fv. The white olor indiates the highest porosity.

The in�uene of razing on void growth during loalized deformation is shown in Fig. 14. A

omparison with the responses of purely porous material reveals that razing, whih initiates one

the yield point is passed, inreases signi�antly void growth during the nek. Similar e�et was

also observed in amorphous entanglement network through MD simulations, f. [16℄. Reduing

void nuleation setting fN = 0.02 in (37) ompensates for the growth whih in turn, as already

touhed upon, suppresses the initiation of new razes. The di�erene an be further illustrated

by a omparison of the void volume frations given in Figs. 9 and 14. Due to razing, loalized
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region (in terms of λ̄pec) in the gauge setion shows more pronouned intensity of porosity, whereas

the area and shape of the porous region remain virtually unaltered during razing.

To prevent an exessive void growth during razing, the amount of existing voids as well

as their growth need to be limited in the model. Consequenes of this restrition are that

razing promotes void nuleation while the dissipation alters primarily due to the stress τe in the

ligaments between the voids. An exessive void growth during neking is suppressed by hoosing

the ritial strain for raze-initiation to be ζpcr = 0.42, whih value approximately orresponds to

the elongation u = 21 mm and to the plasti streth λ̄pec = 1.055 in the early-stage of hardening.

Moreover, razing is assumed to result from disentanglement in highly onentrated regions of

maximum prinipal stress, whih nuleates new miro-voids and allows their oalese to form

initial razes rather than larger voids. Thus, use is made of an assumption that the growth of

existing voids is inhibited by razing, i.e.

ḟg =

{

0 during razing,

3(1− fg)Dp

h otherwise.
(58)
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Figure 15: The deformed meshes at a) u = 20 mm

and b) u = 33 mm are visualized by the plasti

streth λ̄p
ec, mean stress τm and by the raze-strain

ζp. The void fration parameter in (37) is fN = 0.02
and the rest of the parameters is given in Table 4.

Sine razing in a �nite element set-

ting evaluates through the integration points,

the in�uene of the mesh does need atten-

tion. Simulations with onsiderably �ner

mesh, however, indiated only a small mesh-

sensitivity on both the f − u response and lo-

alization phenomenon. In Fig. 14, both the

porous and the razed response is depited. It

is found that the void volume fration, albeit

it is low in small deformations, has the ef-

fet of making the desending portion in the

fore-elongation urve more gradual. Craz-

ing, however, is seen to ompensate this ef-

fet. Owing to razing, premature harden-

ing whih appears in the augmented EBPA

model preditions for purely porous material

is substantially redued in the model predi-

tions for razed material. This is in better

agreement with the experimental response that

shows very stable nek.

Fig. 15 shows the deformed meshes visual-

ized by the plasti streth λ̄pec, the mean stress

τm and the raze-strain ζp. The seleted stages over the elongation just prior to razing and

u = 33 mm. A glane at the preeding results in Fig. 10 reveals that razing has no notable

in�uene on the loalization of plasti deformation, i.e. the intensity and the rate of expansion

remain virtually unaltered. It appears from Fig. 15 that the distribution of λ̄pec is similar to the

ζp-distribution whih ontrols raze-initiation. The raze-strain ζp in its loalized region ranges

between ζp = 0.40 − 0.50, whih values with together the low intensity of the plasti strething

imply that the threshold ζpt for raze-breakdown should be signi�antly greater than 0.50. In

ontrast to the expansion of loalized deformation, the region of pronouned mean stress rapidly

propagates over the gauge setion and reahes relatively stable values ranging between 27 − 32
MPa. Sine these values are higher than 0.4− 0.5 times the yield stress for PC, raze-initiation,

as has previously been pointed out, an be onsidered as an instantaneous proess.
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In�uene of disentanglement

Based on the idea that entanglements represent topologial onstraints and on the observation

that the topology does not evolve onsiderably in glassy state, the network density n in state-

of-the-art models is taken to be onstant during deformation. However, the present numerial

results expliitly suggest that a redution of n should be onsidered in the models. Sine the

moleular weight of the polymer remains unhangeable, the total number of statistial links NA in

the material element is onstant. In pursuane of the hain density evolves (redues) with time,

N alters (inreases) aording to the relation nN = NA. By the de�nition CR := nkT employed,

the reduing strain hardening modulus is attributed to disentanglement. Disentanglement is

modeled by assuming that the network density n evolves with time t as

∂n

∂t
= −np0

τv
(59)

where τv denotes a time interval, needed that a partiular entangled point vanishes, and

p0 = exp
(

−U0 − β∆beq
kT

)

(60)

is the probability that a partiular hain slips through an entangled point. In the above equation,

U0 is the ativation energy, β is the ativation volume and

∆beq =

√

trace
(1

2
(βdev)2

)

represents the di�erene in network stress between the two strands of a hain onneted to a

ommon entangled point, f. [14℄ for a more detailed aount.
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Figure 16: In�uene of the redution of network den-

sity n on f − u response (solid line). The dashed

line represents the response with a onstant net-

work density. The parameters used in (59) are taken

from [14℄. The deformed shapes at u = 28 mm and

u = 36 mm are highlighted by the network den-

sity ratio n/n0. Using the EBPA model parameters,

n0 = 3.4 · 1027 m

−3
.

When (59) is employed, disentanglement

evolves already during softening and numeri-

al simulations indiate a signi�ant inrease

in void growth during nek. In terms of mi-

rostrutural harateristis, the free volume

between the hains dereases pressure, and

onsequently the Brownian motion of hains

eases and visosity dereases. Assuming raz-

ing evolves due to disentanglement and a rit-

ial amount of porosity for the nuleation of

razes is reahed at the end of the softening

phase, use is made of an assumption that the

growth of existing voids is attenuated during

neking, i.e. the transition (58) is employed.

The simulated f − u response in Fig. 16

shows stabilizing e�et due to disentangle-

ment, i.e. no obvious tensile limit of stable

nek an be observed during elongation up to

u = 35 mm. Loss of the network density 15%

is reahed at u ≈ 20 mm, whih value remains

almost onstant during further elongation. A-

ording to the numerial simulations, similar e�ets annot be observed if the network density

alters without volume hanges, i.e. the models for both void growth and razing need to be

applied. It an be onluded that the network density is of a great importane in determining

the marosopi failure through razing.
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5 Conlusions

The apability of state-of-the-art network models to predit inhomogeneous deformation behavior

of amorphous glassy polymers was investigated. The two models termed the BPA and the EBPA

model, respetively, were implemented in a �nite element program and an impliit integration

algorithm was derived. Sine the polymer network density is onsidered onstant and the volu-

metri plasti deformation is suppressed in the present models, they are generally inappropriate

for modeling damage. The models were alibrated to the fore-elongation responses for inho-

mogeneous deformation aquired from old drawing experiments on polyarbonate speimens.

It was shown that the parameters whih were obtained from the alibration to homogeneous

deformation annot be used to satisfatorily predit the experimental response of inhomogeneous

deformation. In order to �nd the mehanisms that are able to explain this disrepany, the

models for void growth, razing and disentanglement were implemented in a part of the EBPA

model.

The simulations showed that the initiation of shear bands promotes and void growth redues

the intrinsi softening in the material, whereas the kinemati hardening is seen to be a driving

fore for widening of shear bands. It was shown that the EBPA model, in onjuntion with the

modi�ed Gurson model for void growth, predits inreased porosity and interation between the

voids and less intrinsi softening. As a result, the di�erene between the alibrated parameters

for homogeneous and inhomogeneous deformation onsiderably dereased.

In order to suppress an exessive void growth during loalized deformation and a premature

hardening present in the simulations of the old drawing experiment, the model was augmented

also by taking razing into onsideration. In general, however, the strain hardening annot be

solely governed by the strething of the hain network, but the hardening tends to derease

with the hain density of the polymer network. In the proposed model, razing is assumed to

result from disentanglement in highly onentrated regions of maximum prinipal stress, whih

nuleates new miro-voids. However, these voids do not grow, but oalese to form initial razes

that widen and eventually ause loal failure in the material. The numerial results indiated that

the plasti stability is essentially ontrolled by razing, whereas void growth governs the rate of

nek propagation and the amount of intrinsi softening during loalized deformation. It was also

onluded that the network density plays a pivotal role in determining the type of marosopi

failure through either shear yielding or razing. The EBPA model augmented by the models

for both void growth and razing was able to predit inhomogeneous deformation behavior well.

However, further researh is needed to �nd and model the loalization mehanisms also under

variable loadings and at di�erent length-sales.
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Appendix A. Algorithmi setting of the augmented EBPA model

The EBPA model is implemented in a �nite element program for the simulations of inhomogeneous

deformation. Sine long-term periods are investigated, a fully impliit bakward Euler method, whih

allows large time steps, is applied. To simplify the notation, the subsript n+ 1 for the updated state is

omitted and the quantities solely at the known state tn are indiated by the subsript n. The exponential
update is applied to the plasti part of the deformation gradient F p

, i.e.

F p = exp(∆tL̄
p
)F p

n, (A.1)

f. [50℄. The tensor exponent in (A.1) is alulated by using the Pade approximation, f. [51℄. Substi-

tution of (A.1) in (1) yields

F e = FF p−1 = FF p−1
n exp(−∆tL̄

p
). (A.2)

As with the BPA model, the elasti deformation in the EBPA model is hosen to be irrotational and

onsequently the elasti rotation Re
is unity and the plasti spin W̄

p
is nonzero. The plasti spin is

numerially solved by introduing an algorithmi plasti spin W̃
p
. Due to the imposed symmetry of F e

,

algorithmi plasti spin W̃
p
is skew-symmetri at the end of the integration interval. Moreover, to speify

the orientation of the elasti intermediate on�guration, the �rst omponent F e
1 in the deomposition

(15) is hosen to be symmetri.

Based on the stress equilibrium (17), the elasti strething evolves aording to

d

dt

(

ln ve
2

)

=
1

η
(Le(E) : ln ve

1 −L
e(E1) : ln v

e
2). (A.3)

The non-linear system of equations are ompleted by the integration of the internal rate variables and

the void volume fration rates de�ned by (26), (37) and (58), respetively, i.e.

R1 : = F e − FF p−1
n exp

(

−∆t(D̄
p
+ W̃

p
)
)

,

R2 : = F e,T − F e,

R3 : = W̃
p,T

+ W̃
p
,

R4 : = F
e,T
1 − F e

1,

R5 : =
(

(I +
∆t

η
L

e(E1)) : ln v
e
2 −

∆t

η
L

e(E) : ln ve
1 − ln ve

2,n

)

/sss,

R6 : = (s1 − s1,n − ṡ1∆t)/sss,

R7 : = (s2 − s2,n − ṡ2∆t)/sss,

R8 : = (fn − fn,n − ḟn∆t),

R9 : = (fg − fg,n − ḟg∆t)

(A.4)

where the parameter sss was de�ned in (26)1. During razing, the rate of plasti deformation D̄
p
is

de�ned by (54), otherwise it evolves aording to the �ow rule (32). It should be mentioned that the

residuals R2 and R4 onsist of three and the residuals R3 and R5 of six linearly independent equations.

To solve the nonlinear system (A.4) by using the Newton-Raphson method, the state variables are given

in the vetorized form, i.e. Y := [F e W̃
p
F e

1 s1 s2 fn fg]. The solution is given by Y i+1 = Y i + ∆Y

where the inrement of the internal variables is given by

∆Y = −J−1R, and J :=
∂R

∂Y
(A.5)

is the Jaobian. The vetorized form R := [R1 R2 R3 R4 R5 R6 R7 R8 R9] onsists of the residuals.
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Table 5: Algorithmi update of internal variables based on the multipliative deomposition of the

deformation gradient into an elasti and a plasti part. The elasti part is further deomposed into a

purely elasti and a visous part.

1. Load data: F , Y n := [F e
n W̃

p

n F e
1,n s1,n s2,n fn,n fg,n].

2. Set k = 0 and initialize F p|k=0 = F e−1
n F , F e

2|k=0 = F e−1
1,n F e

n.

3. Impliit update of the internal variables:

WHILE ‖R‖ > tol

(i) Compute γ̇p by (24), β by (46), τ by (17) and τ̃ := τ − β.

(ii) Compute ṡ1, ṡ2 by (26) and ḟn by (37).

IF τm > 0 and τ1 = τ cr > 0 THEN (razing)

(iii) Update τ e from (57).

(iv) Compute dp
by (54).

(v) Compute ḟg by (58).

ELSE

(iii) Update τ e from (28).

(iv) Compute dp
by (32).

(v) Compute ḟg by (36).

END IF

(vi) Compute the residuals R aording to (A.4).

(vii) Compute the Jaobian J := ∂R/∂Y .

(viii) Update internal variables, Y ← Y n +∆Y by (A.5) and set k← k + 1.

END WHILE LOOP

4. Store updated variables Y := [F e W̃
p
F e

1 s1 s2 fn fg] and proeed to the equilibrium

iteration for F .

The linearization of the stress-strain relation, whih is needed in an impliit �nite element solution

proess, is disussed in [32℄. The steps of the numerial integration algorithm for updating the internal

variables are summarized in Table 5.
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