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algorithmic implementation in a finite element setting
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Abstract

The objective of this work is to investigate the influence of damage mechanisms on
inhomogeneous deformation behavior of amorphous glassy polymers. The mechanical prop-
erties of glassy polymers are strongly influenced by the microstructure which is typically
described by network models. In order to improve the network model predictions at large
multidimensional deformations, a distributed growth of void volume, crazing and possible
disentanglement are investigated and considered in a part of the proposed viscoelastic-plastic
model. The importance of different rheological properties employed in the model for regard-
ing mechanical behavior is investigated and the role of damage in localized deformation is
addressed. In order to evaluate the predictions of the proposed model, algorithmic consti-
tutive equations are derived and implemented in a finite element program. The model is
employed to the simulation of the cold drawing of dumbbell shaped test specimen.

1 Introduction

It is widely acknowledged that the macroscopic mechanical behavior of amorphous glassy poly-
mers stems from three major microstructural characteristics: the number of entanglements and
statistical links between the entanglements, the growth of shear bands and the extent of free
volume around the chain molecules, cf. e.g. [1-4]. Moreover, amorphous glassy polymers exhibit
several damage processes such as crazing, cavitation of impurities and micro-cracking within the
matrix material. Onset of the volume changes in amorphous glassy polymers are the growth
and coalescence of existing voids in addition to the nucleation and growth of new voids. Under
compression, amorphous polymers frequently show ductile localized deformation, which is due to
shear yielding with small volume changes. In contrast to the shear yielding mechanism, which
involves shear band propagation and eventual fracture by a chain scission in large strains, the
governing mechanism of inelastic deformation under tension is a dilatational localization in zones
of fibrillation, termed crazing, cf. |5, 6].

[7] conducted plane strain compression tests both on polymethylmethacrylate (PMMA) and
on polystyrene (PS) to investigate the formation of shear bands. According to their observations,
the growth of shear bands is the primary source for the evolution of plastic deformation in
amorphous glassy polymers. The plane strain tension tests by [8] showed a remarkable drop in
the macroscopic stress immediately after the development of macroscopic shear bands. During
continued deformation, the propagation of shear bands and the development of inhomogeneous
deformation were observed which is macroscopically manifested by necking.

[9] investigated the influence of damage (crazing, cavitation of rubber particles and micro-
cracking within the matrix material) on the plastic deformation and stability in polyethylene
terephthalate (PET) and high-impact polystyrene (HIPS). Based on the optical micrographs,
shear bands nucleated from the tips of existing crazes, rather than the crazes being nucleated



at the intersection of fine shear bands. They concluded that the onset of plastic deformation is
initiation of crazing and the plastic stability is essentially controlled by damage processes such
as craze-widening. To trigger a transition from crazing to shear yielding, some heterogeneity,
which relieves the build-up of high hydrostatic stress, is needed in the amorphous structure,
cf. [10]. In contrast to tensile tests, where the initial chain distribution have been found to be
macroscopically uniform, large-scale molecular dynamics (MD) simulations have indicated that
the chain distribution locally is heterogeneous, cf. [11]. As a result of heterogeneity, polymer
material shows localized deformation where microscopic shear bands in closely packed regions
develop and annihilate into macroscopic shear bands. [11] also showed that the thickness of the
ligaments within the structure is crucial.

Despite all the active research carried out during the last decades, the governing micromech-
anism that controls crazing is still not fully understood. Experimental investigations have shown
a major importance of the entanglement density in macroscopic failure through crazing or shear
yielding, cf. e.g. [10, 12-14]. Initial plastic deformation through shear yielding in amorphous
glassy polymers is usually followed by crazing or alternatively crazing propagates on stable man-
ner, cf. |9, 15]. Examples of the polymers in the first group are e.g. polycarbonate (PC) and
PMMA, and polymers involving stable crazing are e.g. HIPS and polyacrylonitrile-butadiene-
styrene (ABS) that are frequently used in toughened polymer blends. According to [15], decrease
of temperature and increase of the strain rate result in more brittle failure in amorphous glassy
polymers, i.e. the difference between the time instants for craze-initiation and breakdown de-
creases. They also pointed out that the void nucleation is a precursor to crazing and crazes
initiate due to high mean stress concentrations around the micro-voids. As a result of the dam-
age processes, volume strains in relation to total strains, i.e. the plastic dilatation, was found
to be significant. [16] conducted molecular dynamic MD simulations to investigate the role of
deformation-induced disentanglement to void nucleation in amorphous glassy polymers. They
concluded that disentanglement increases under highly triaxial stress states, which results in void
nucleation being increased. They also pointed out that porous regions are created at the locations
where almost all the polymer chains have slipped away except a few that are firmly anchored at
their ends and pulled taut.

Most of the current models are based on the assumption that the plastic deformation only
evolves because of the development and propagation of shear bands without volume changes.
Concerning void growth, many of the inelastic damage models available for amorphous glassy
polymers are based on the explicit knowledge of the yield surface involving a large number of
material parameters to be identified, cf. [17-21]. However, the damage processes observed in
amorphous glassy polymers are complex phenomena and their modeling seems to require such
complexity. The models developed for metals have initially been considered for that purpose,
cf. e.g. [22, 23]. Based on plane strain finite element simulations [24] investigated the effects
of pressure sensitive yielding and plastic dilatancy on void growth and void mutual interaction.
They concluded that void growth is promoted by pressure resulting higher porosity and void
interaction in the material during loading. A widely used dilatational plasticity model is the one
introduced by [25] and later modified by [26]. The Gurson model is based on the assumption
that the deformation mode of the material surrounding a void is homogenous. According to this
model, softening behavior in the material results from the growth of voids, i.e. the model does
not possess the intrinsic ability to predict localized deformation by void coalescence.

The objective of this work is to investigate the influence of damage mechanisms on localized
deformation of amorphous glassy polymers. Here, damage is ascribed to the distributed growth
of void volume and crazing during plastic deformation. The concept of free volume is employed
to describe the voids or the loosely packed regions in amorphous glassy polymers. In contrast



to rubber-toughened polymers, the void is considered as conceptual with no clear physical in-
terpretation. However, since the voids are uniformly distributed in the material, the growth of
voids is approximated by using the models which are conventionally applied to the modeling of
void growth due to cavitation of small rubber particles or impurities present in polymer-rubber
blends, cf. e.g. [19].

The specific model employed in this work is based on the celebrated 8-chain version of the
[27] model, which is here termed the BPA model. In this Extended BPA (EBPA) model, both
the elastic and plastic properties are considered as viscous. In order to evaluate the model pre-
dictions for inhomogeneous deformation, cold drawing experiments on PC were performed and
the model was implemented in a finite element program. The EBPA model was calibrated to the
force-displacement responses for inhomogeneous deformation acquired from cold drawing experi-
ments on polycarbonate specimens. It was shown that the parameters which were obtained from
calibration to homogeneous deformation cannot be used to satisfactorily predict the experimental
response of inhomogeneous deformation. In order to find the mechanisms that are able to ex-
plain this discrepancy, the number of entanglements, possible disentanglement, void growth and
crazing are investigated and considered in a part of the EBPA model. Macroscopic constitutive
relations in the EBPA model are augmented by using a modified Gurson model, which also takes
the nucleation of new voids into account. The role of damage mechanisms in strain localization
is addressed and the importance of rheological properties employed in the model for regarding
mechanical behavior is investigated.

2 Account of state-of-the-art network models

Many of state-of-the-art network models are shown to be in good agreement with experiments
under monotonic loadings, cf. e.g. [28-32]. Moreover, most of the models include a moderate
number of material parameters, which is of a great importance in practical applications.

2.1 Kinematics

Since state-of-the-art models mentioned above are based on the multiplicative split, the elements
of this kinematical approach are briefly reviewed. According to the multiplicative split, the plastic
deformation is defined through a local intermediate configuration and the deformation gradient
F' is decomposed into an elastic and a plastic component given by

F = F°FP (1)

where F* and F* define the elastic and plastic contribution, respectively, cf. [33]. Moreover, the
deformation gradient can be given in terms of the rotation tensor R and the symmetric, positive
definite stretch tensor v as

F =vR. (2)

The split in (1) provides the relation for the spatial velocity gradient [, i.e.
l=FF'=1°4P (3)
where the elastic and plastic velocity gradients

I°:=FF' ©P:=FLF' L’ =FF" (4)



were defined in the spatial and intermediate configuration, respectively. Specifically, the quanti-
ties in the intermediate configuration are highlighted by the bar. In the relations (3) and (4), a
superposed dot denotes the material time derivative. In many applications, the decomposition
of the spatial velocity gradient into it’s symmetric and skew-symmetric parts is needed, i.e.

l=d+w (5)

where the symmetric part d := sym(l) is the rate of deformation and w := skew(l) is the spin.
Substitution of (3) in (5) allows the symmetric and skew-symmetric part of the elastic and plastic
velocity gradients to be defined as

IF=d°+w’, IP=d’+w’, L°=D"+W" (6)
where
d® :=sym(l°), w®:=skew(l°),
d’ :=sym(l’), w® :=skew(I"), (7)
D’ :=sym(L"), W" .= skew(L").
For later use, the plastic deformation is given in terms of the plastic deformation tensor

C®:= FPF™" (8)

where the superscript, T, denotes the transpose. Based on (4) and (8) it is possible to extract
the rate of the plastic deformation tensor CP, i.e.

Er — FPRPT — FPReT | prERT — P e prpeT . pe et et
_ L[PG+ ML o

In many of state-of-the-art network models, the elastic constitutive description is given in terms
of the elastic Finger tensor,
b = F°Fo", (10)
defined in the spatial configuration. Taking advantage of (4), the rate of the elastic deformation
> €

tensor b takes the following form

be — FeFe,T — FeFe,T + FeFe’T — FeFeleeFe,T + FeFe,TFefTFe’T (11)
= I°b° 4+ b°1*".

In accordance with (2), the polar decomposition of F*° allows to define the orientation of the
intermediate configuration in terms of the left elastic stretch tensor

v = Vb° (12)

and the elastic rotation R®, i.e.
F°=v"R". (13)

Similar to (13), use is made of the polar decomposition of the plastic deformation gradient,
F* =V’ RP (14)

where RP is the plastic rotation and V" is the plastic stretch defined in the intermediate config-
uration.
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Figure 1: The chain geometry according to the 8-chain model in a) undeformed and b) deformed con-
figuration. The base vectors N, o = 1,2, 3, align with the unit eigenvectors of V*. The dimension of
the undeformed element is ag and A? denotes the plastic chain stretch which appears in the direction .
The unit vector m is defined by the angles # and @, whereas the plastic network stretch A, is related
to the direction N :=1/v/3%", N,.

2.2 Specific constitutive model

Even if state-of-the-art network models are shown to be predictive under monotonic loadings,
a comparison with the experimental data reveals that they fail to capture a nonlinear response
during repeated or cyclic loadings, cf. [31, 32]. Moreover, under long-term loadings, the models
typically predict an overestimated recovery and creep. In order to improve the model predictions
under these conditions, we have proposed an extension of the BPA model termed the EBPA
model, cf. [34]. In contrast to referred state-of-the-art models, the EBPA model includes both
viscoelastic and viscoplastic ingredients needed to compensate for the shortcomings of state-of-
the-art models.

As with the BPA model, the microstructure in the
EBPA model is represented by an overall chain network v
which consists of cubic cells, cf. Fig. 1. The segments of ? T_ )n b) £(Ey)
eight molecular chains extend from the center point of
the cubic cell along its diagonals. In large deformations,
the chains align with the principal plastic stretches of
continuum and results in an highly anisotropic response,

of. [28]. vy 1

Fig. 2 shows a rheological presentation of the EBPA d) ﬁ_l_ﬁ" L %e)
model which consists of an elastic spring a) in series with M
two Kelvin-Voigt elements. The upper Kelvin-Voigt ele- T B

ment involves an elastic spring b) and a viscous dashpot
c), both being solely affected by the elastic deformations.
The Kelvin-Voigt element is employed for predicting
creep and recovery, while its combination with the elas- dashpot ), two viscoplastic dashpots d)
tic spring a) is aimed at describing the stress relaxation. 4 4 nonlinear Langevin spring e). Dif-
The second Kelvin-Voigt-like element comprises two vis-  farence between the Kirchhoff stress 7 and
coplastic dashpots d) arranged parallel with a nonlinear the hackstress 3 defines the driving stress
spring e) which results in the evolution of anisotropy in #.

large strains.

Figure 2: Rheological representation of
the EBPA model involving the elements:
two elastic springs a) and b), a viscoelastic

To improve the accuracy of the linear viscoelastic
models in large multi-dimensional deformations, the multiplicative split of the elastic deformation



gradient F° into a viscous and an elastic part is applied, i.e.
F° = F{F5 (15)

where F'{ and F'5 define the elastic stretching in the spring a) and b), respectively, cf. Fig. 2.
The polar decomposition of F'] and F% allows to define the orientation of the intermediate elastic
configuration as
F{=v{R] and F3=v5R; (16)

where R and R are the elastic rotations and v{ and v$ are the elastic stretch tensors, defined
in the spatial and the elastic intermediate configuration, respectively. The split of the elastic
deformation gradient (16) is depicted in Fig. 3.

Taking notice of the stress equilibrium as shown in Fig. 2, the elastic constitutive law is given
as

d
=n: ﬁ(ln v5) + L(EL) @ Invj (17)

where the Young’s moduli £ and E; relate to the elastic springs a) and b), respectively. Using
the shear modulus p := E/2(1 + v) and the bulk modulus x := E/3(1 — 2v), the fourth order
elasticity tensor is defined as

T=L(E):Inv]

3k —21. .
£o=2(T+ 2 Fiwi) (18)
61t
where v is the Poisson’s ratio and ¢ and Z are the spatial second and fourth order identity tensors,
respectively. The components of £° in an orthonormal cartesian coordinate system take the form

1 3Kk — 2
Eeijkl = 2:“’ Y (6ik6jl + 5i15jk) + 7#/(%'61(1 . (19)
2 6u
In general, the stiffness of the viscous damper 7 is regarded as a fourth order tensor, given as

n=mZ+mi®1

where 1, and 7, are viscosities that govern elastic shear and volumetric deformation, respectively.
They may also depend on temperature and the elastic strain rate, cf. [35]. Assuming 1 to be a
scalar, only three new material parameters ho, I/; and n enter the proposed model.

Since the proposed model relies on the assumption of small elastic stretches in relation to the
plastic stretches, the rate of plastic deformation D" is taken to align with the spatial normalized

direction of 79, i.e.

P ,-'yp ~dev dev dev 1 ~dev . ~dev
D =—n, n=—— 7% :=7% 0%, 71:= ST T (20)

where 3 is the backstress and AP is defined subsequently. The superscript, dev, denotes the
deviatoric component. In contrast to the BPA model, in which the flow rule is postulated in
terms of the Cauchy stress o, the Kirchhoff stress 7 = J°o is applied in the EBPA model.
This choice is motivated by the shear-type flow rule (20) where the volumetric deformation is
suppressed. Noting that D turns out to be deviatoric, the trace of (6)3 yields

trace(L") = trace(D") + trace(W") = 0, (21)

which reveals that the plastic deformation is isochoric, i.e. JP := det(F®) = 1. It then follows
that J = J¢ := det(F*). In terms of a non-affine plastic network stretch

AP = 1/trace(C")/3 (22)

6
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Figure 3: Deformation of a solid body and the mappings between different configurations. The polar
decomposition of the deformation gradient based on the left stretches v, V¥ and v¢ (left). The split of
the elastic deformation gradient F° into the elastic and viscous part F'{ and F§ (right). In terms of the
left stretches v°®, v§{ and v§, the polar decompositions are also presented.

and the inverse Langevin function x := £71(A2,/+/N), the anisotropic hardening in the EBPA
model is described by the backstress. In the intermediate configuration, the principal components
are given by

_ C AP -

Bl = S VN SN0 ~ (L)), =123 (23)
where Cg is a material parameter, AP are the principal plastic stretches and N is the number of
statistical links of length [ between the physical entanglements. According to non-Gaussian chain
statistics, the finite extensibility of chain is 7, = NI while the undeformed length is r; = v/ NI and
thus the chain locking stretch is given by A\p, = rp,/ro = V/N. The spatial form of the deviatoric
backstress 8% needed in (20) is obtained by push-forwarding B by F*°. The inverse Langevin
function present in (23) results in a strong increase in the backstress as the stretch in the chains
reaches the limit Ap,.

The mechanical behavior of amorphous glassy polymers is described by an almost elastic initial
response which is followed by strain softening and subsequent strain hardening. This "S-shaped"
behavior in the EBPA model results from mixed isotropic and kinematic hardening. The isotropic
hardening is due to the intermolecular resistance to chain segment rotation and it is modeled by
two viscoplastic dashpots, cf. element d) in Fig. 2. The evolution of the plastic deformation is
governed by N
S T 5
7 = doexp (=21 = (52)9)), (24)
cf. [1]. Later, [27] extended a constant athermal shear stress sg to include the pressure effect by
taking ss = s+ ap to evolve to the saturation value sg. In equation (24), 4 is a pre-exponential
factor, A is proportional to the activation volume, p = —trace(o)/3 is the pressure, « is a pressure
dependence factor and 7' is the absolute temperature. The extra dashpot is aimed at increasing
the isotropic hardening effect and thereby suppress the influence of kinematic hardening. The
original and extra dashpot are modeled by the two internal state variables s; and sy giving an
additional increase to the shear resistance, i.e.

s = 81 + so. (25)




Table 1: Summary of the EBPA model.

1. Kinematics: F = F°FP, F°®=FF5=v°R°, R°isunity, b§:=FSF",
v§ = /b5, RS isunity, bS:=FSFY", v§:= /b, CP:=FPFPT
2. Stress: T :=2u(Inv$) + kInJ%, J¢ = det(FS).

1 _
3. Micro-macro transition: AP, = —1/trace(C") € (0, VN).

V3

~dev
- : T N /1. N
4. Flow rule: DP =4Pn, n:= Jor gdev .= qdev _ gdev 7. §Tde" s dev,
T

Hdev CR -1 )‘EC ~P\dev dev
5. Backstress: B~ = VNEH(EE)(CP)® push-forward — B

et VN
A 1
6. TIsotropic hardening: 4P := 4gexp(— ;S (1- (JZ )%)), J¢ =det(F°), p= —gtrace(a),
Ss

Ss = s+ ap, s is given by (25) and (26), and s(0) = sq.

The internal variables s; and sy evolve according to

él = hl(]_ - Sl/SSS)’ﬁ/p, 81(0) = Sp, (26)

32 = hg(l — 7‘[(82 - 52));}/1), SQ(O) =0
where the parameters h; and hy control the approach of s; and s, to s and 3, respectively. H
is the Heaviside-function which prevents an excessive hardening e.g. during cyclic loading. The
threshold argument s, can be found experimentally.

Taking note of (24) and (26), reveals that $, is positive and thus, s, is monotonically in-
creasing. It then follows that the amount of isotropic hardening in relation to the amount of
kinematic hardening increases and as a result the evolution of the backstress suppresses in the
EBPA model. A reduced evolution of the backstress is of major importance at a low-stress
level, where the plastic evolution is particularly governed by the backstress. The EBPA model
is summarized in Table 1.

2.3 Calibration of the EBPA model to homogeneous deformation

In order to evaluate the capability of the EBPA model, uniaxial compression tests involving
complex loading situations were simulated. The parameters employed in the simulations are
listed in Table 2. Fig. 4 shows capability of both the original BPA model and the EBPA model
to predict the true stress vs strain response under repeated unloadings. Even if the EBPA model
overpredicts recovery during the first cycle, it is superior to the BPA model during subsequent
cycles. Since the EBPA model has been shown to well capture the experimental response during
complex loading situations, cf. also [34], the subsequent considerations will be based on this
model.



a
) o b) 120
+--- Experimental data
100 . BPA modd 1000 ° EBPA model
¢---- Experimental data
80t
£ 4l
6o |l =i
=
S| /;’
20*’/[
0 L i e ¢ : . - . . & )
0 0.1 0.2 0.3 0.4 0.5 0.6 . . X . 05 0.6

€
€
Figure 4: Uniaxial compression response for bisphenol A polycarbonate according to a) the BPA model
and b) the EBPA model. The repeated unloadings are performed to progressively increasing strain levels
e = 0.05, 0.13, 0.27, 0.45 and 0.59 and then the stress level o = 1.2 MPa is kept fixed for a dwell time

12,000 s. Experimental data is taken from [31].

3 Investigation of necking of dumbbell shaped specimen

To evaluate the capability of the EBPA model and its numerical implementation to predict
inhomogeneous deformation behavior, cold drawing experiments on PC-specimen were conducted.
Cold drawing, which typically results in neck propagation on a amorphous glassy polymers, is
frequently used method for the production of anisotropy in polymers. The tests were performed
by using the Instron© 5967 tension/compression electromechanical testing machine controlled by
Blue Hill 3 software. A layout of the testing arrangement is shown in Fig. 5.

The test specimen under consideration is dumbbell-shaped and it is fabricated from Lexan®
223R PC-polymer. During drawing, the applied load f and the elongation v were monitored. To
prevent an increase in temperature due to the dissipative heating, a slow cross head speed @ = 2
mm /min was applied. Moreover, the elongation of the specimen was restricted to v = 0.3L ~ 40
mm to avoid localized deformation at the interface of the gauge section and the grips. A more
detailed account for the test program involving repeated loading cycles is found from [34].

Snapshots of the dumbbell shaped test specimen during drawing are depicted in Fig. 6. The
selected stages of deformation show the initiation, stabilization and propagation of neck. The

Table 2: Constitutive parameters of the BPA and EBPA model for bisphenol A polycarbonate (BPA-PC)
and PC. Moreover, F; = 0.3F in the EBPA model. The parameters for BPA-PC are obtained from the
calibration to uniaxial compression tests performed at room temperature under monotonic loading, cf.
[31]. The calibration of the EBPA model on PC is based on the uniaxial and plane strain compression
experiments given in |28]. The BPA model parameters for PC are taken from [36].

E n S0 Sss h1 ho o A CR N «
BPA-PC MPa  MPas MPa MPa MPa MPa 571 MPa—'K MPa
BPA 2300 99 73.0 370 2.10'5 241 14.0 1.85 0.08
EBPA 3700 5.0-10* 100 56.5 205 40  5.6-101° 241 14.0 2.20 0.08
PC MPa MPa MPa MPa MPa s ! MPa 'K MPa
BPA 2300 97 76.6 500 2.0-10'° 240 12.8 2.15 0.08

EBPA 3300 6.0-10* 96 61.0 170 10 5.4-1015 240 17.8 2.42 0.08




Figure 5: The illustration of the testing arrangement. The displacement at y = 0 is fixed by a grip
and the elongation v at the other end y = L is prescribed. The geometry of the dumbbell-shaped test
specimen is given by H/L ~ 0.90, w/L ~ 0.17, we/L ~ 0.09 and ¢/L ~ 0.035 where t is the specimen’s
thickness. The details of the specimen’s geometry are specified in ISO 527-2. The shown finite element
discretization is of a mesh with 4-node plane elements.

neck in the test specimen is rather diffuse, i.e. the localized zone extends and reaches rapidly the
end of the gauge section.

The EBPA model was calibrated to the force-displacement responses acquired from the cold
drawing experiments on polycarbonate specimens. To trigger the localization in the simulation
of the test, a small initial imperfection was introduced

AwZ — w2€07 (27)

i.e. the width of the gauge section at y = ¢ is wo — Awsy, cf. Fig. 5. During the experiment, neck
was observed to initiate near the center of the specimen, i.e. ¥ = L/2. In calibration, the plane
strain mode, especially in the gauge section, was assumed to be accurate enough.

Due to the symmetry of the geometry and boundary conditions, only a quarter of the specimen
was considered in the numerical analysis. The finite element discretization employed is of a mesh

Table 3: The values of the EBPA and the BPA model parameters. Moreover, 1 = 0.3F in the EBPA
model. Calibration of the models is based on the cold drawing experiments of the dumbbell-shaped
PC-specimen. The intensity of the initial imperfection in (27) is set to £ = 0.002.

E n So Sss h1 hg ’.)/0 A CR N o
MPa MPas MPa MPa MPa MPa st MPa—'K MPa
EBPA 2550 1.5-10° 96 76 720 40 5.6 -101° 241 14 2.2 0.08
BPA 2300 99 73 370 2.10% 241 14.0 1.85 0.08
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Figure 6: Snapshots of a dumbbell shaped test specimen during elongation: v = 10 mm, v = 20 mm,
u = 30 mm and at the end of the loading v = 40 mm. Based on the EBPA model the deformed shapes
are visualized by the plastic stretch A5 at three different phases: u = 10 mm, u = 20 mm and at the
end of the loading. The finite element discretization employed is of a mesh with 4-node plane elements.

with 196 4-node plane elements. The numerical treatment of the model is discussed in Appendix
A. The calibrated parameters are given in Table 3. For later purposes, also the BPA model
parameters, which were obtained from the calibration to the same data, are presented in Table
3.

The numerical investigations indicated that the original BPA model is relative-well able to
predict the inhomogeneous deformation behavior by using the material parameters obtained from
the calibration to a homogeneous deformation mode. As far as the EBPA model is concerned,
comparison of Tables 2 and 3 reveals that the parameters which were obtained from calibration
for homogeneous deformation cannot be used to satisfactorily predict the experimental response
of inhomogeneous deformation. Even if the material of the specimen slightly differing from the
PC-polymer employed in the tests for homogeneous deformation, this discrepancy cannot entirely
be explained either by the localization phenomena or boundary effects.

To investigate the influence of neglected volume changes (geometric softening) on the neck
propagation, the EBPA model was also implemented in a three-dimensional finite-element code.
The finite element discretization consists of a mesh with 8-node linear hybrid brick elements with
constant pressure. Based on the two and three dimensional finite element analyses, Figs. 6 and 7
show the deformed shapes of the specimen during drawing. As the strains below the macro yield
point are yet small, the material behavior is viscoelastic and the stretch field is uniform. During
continued deformation, localized zone develops in the the center of the specimen and starts to
extend towards the grips.

Even if the discretization of the mesh with the plane elements fails to present the deformed
shape in the thickness direction, comparison of the EBPA model results in Figs. 6 and 7 indicates
that the deformation mode has not marked influence either on the neck propagation or on the
intensity of plastic stretching. The thickness reduction ratio ¢/ty in the middle of the specimen is
also presented in Fig. 7. Early on necking u/H = 0.15, the observed and EBPA model results are
virtually indistinguishable. Once the elongation of u/H = 0.15 is passed, the thickness reduction
ratio tends asymptotically to the limit ¢/t = 0.85.

In conclusion, the difference between the model calibrations for homogeneous and inhomoge-
neous deformation is not a result of the localization phenomena or volume changes shown in Fig.

11
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Figure 7: Based on a three-dimensional finite-element code of the EBPA model, the deformed shapes
of the specimen during the stabilized neck, v = 15 mm, v = 20 mm and v = 35 mm, are visualized
by Ak. The thickness-reduction ratio t/ty at z = 0 and y = (L + u)/2 (right). The markers e and +
denote the thickness ratio according to the model and the experiment, respectively. The finite element
discretization is of a mesh with 8-node linear hybrid brick elements.

7. Instead, the discrepancy is due to the EBPA model’s ability to capture the time dependent
(viscous) deformation behavior. The time dependent behavior is one consequence of the macro-
molecular character of polymers, i.e. the polymer chains need a relaxation time to attain their
equilibrium state after deformation. In order to find the mechanisms that are able to explain
the discrepancy in more detail, several factors, such as the number of entanglements, possible
disentanglement, void growth and crazing, are investigated and they are considered in a part of
the EBPA model.

4 Investigation of the damage behavior

The objective of this section is to investigate the influence of damage on localized deformation
behavior. In subsequent considerations, damage is ascribed to the distributed growth of void
volume and crazing during plastic deformation. Here, the concept of free volume is employed
to describe the voids or the loosely packed regions in the PC under consideration. In contrast
to rubber-toughened polymers, the void is considered as conceptual with no clear physical in-
terpretation. However, since the voids are uniformly distributed in the material, the growth of
voids is approximated by using the models which are conventionally applied to the modeling
of void growth due to cavitation of small rubber particles (second-phase particles) or impurities
present in polymer-rubber blends. An example of these polymer blends is PC incorporating small
polyacrylonitrile-butadiene-styrene (ABS) particles, cf. e.g. [19].

Due to the existence of voids around the chain molecules, the yield behavior of amorphous
glassy polymers depends on hydrostatic pressure. The damage mechanism is schematically illus-
trated in Fig. 8. During nucleation and initial growth of voids, the deformation is considered
as homogeneous. Once the voids have grown and the coalescence of voids is initialized, the
transformation to the localized deformation phase takes place.
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Figure 8: A schematic representation of the dilatational damage mechanism: a) nucleation of voids, b)
void growth, c¢) initialization of void coalescence and d) the coalesced voids.

A widely used dilatational plasticity model is the one introduced by [25] and later modified by
[26]. The Gurson model is based on the assumption that the deformation mode of the material
surrounding a void is homogenous. According to this model, softening behavior in the material
results from the growth of voids, i.e. the model does not possess the intrinsic ability to predict
localized deformation by void coalescence. Due to a low initial void volume, the voids are assumed
to become coalesced in very large strains, i.e. void growth is only ascribed to the nucleation of
new voids instead of void coalescence.

4.1 Modeling of void growth

In order to investigate the damage behavior caused by void growth, macroscopic constitutive
relations in the EBPA model are modified by using an augmented Gurson model, which also
takes the nucleation of new voids into account.

Since the voids are assumed to be spherical in shape and uniformly distributed, the damage
evolution is assumed to be isotropic and it is represented by a single scalar termed a void volume
fraction f, = dV,/dV having the initial value 0 < f,o < f, < 1. The infinitesimal volume dV,
represents the volume change occupied by the voids and dV is the total volume change of the
representative volume element (RVE). As with the Jacobian J, which is defined as the ratio of the
current volume change dV' and the initial volume change dVj as J := dV/dVj, the void volume
fraction can be represented as JY := dV/dVj,, where dV, = dV — dV, is the volume change
occupied by the matrix material.

Since the inelastic Gurson potential ®P acts as both a yield function and a potential for plastic
flow, the theory is considered as associative. To better predict the instability in the material due
to the interaction of voids, [26] proposed a modified Gurson damage model in which the inelastic
potential is given by

3 Tm
CI)p(T’ fv> Tm, Te) = 7—2 + QfVere2 COSh(§QQT7__) - Te2(1 + Q%f\?) (28)

where 7, := 1/3trace(r) is the macroscopic mean stress. In accordance with the previous
approaches by |26, 37|, the microscopic effective stress of the solid ligaments 7, is introduced sep-
arately from the macroscopic effective stress 7. The microscopic effective stress 7, is determined
from the condition ®P = 0. Since the volumetric deformation is suppressed in the flow rule (20),
it is generally inappropriate for modeling damage. Based on the potential (28), the rate of plastic

deformation is governed by the modified normality rule
oPr

dr = AP=— 2
or (29)
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which allows dilative plastic flow to be evolved in the material. The scalar valued parameter AP
is defined below. The kinematic hardening effect is included in the model via the macroscopic
effective stress 7(7), which was defined by (20). As with the BPA model, the intrinsic softening
is modeled via the athermal shear strength s;, which is taken to evolve according to (26);. The
isotropic hardening effect is enforced by the internal variable sy given by (26),.

In contrast to the original Gurson spherical model for incompressible, rigid-plastic material,
[26] suggested that the values ¢g; = g2 = 1 in (28) need to be replaced by ¢; = 1.5 and ¢, = 1.0 to
better capture bifurcation away from the nominally homogeneous deformation. For amorphous
glassy polymers, however, the constant values of ¢; and ¢, cannot satisfactorily predict either
void growth or the change of the void shape during deformation. To capture the expected
characteristics of void growth, [20] suggested that ¢; and ¢, should be considered as internal
variables given by the following empirical power laws:

@ = qo(l+ CPV)NV, G = qo(1+ va)NV (30)

where ¢,9, g20, ¢ and N, are positive constitutive parameters and p, denotes an internal variable
defined subsequently. The low values of g1 and ¢ indicate weak interactions between the voids
while softening in the material decreases, cf. [20]. In the flow rule (29), a scalar parameter AP
was introduced. This can be determined from equivalence between the plastic power which is
dissipated into the porous media and into the corresponding solid ligaments between the voids,
i.e.

T:d" = (1 - fv)\/iTepv' (31)
In the equation (31), p, denotes the effective plastic strain rate, which is chosen to be equal to
the plastic shear strain rate 4P given in (24). Since 4P is positive, 7P is monotonically increasing
and as a result the variables ¢; and ¢y given by (30) increase during deformation. It then follows

from (29) and (31) that
- . OPP
AP = \/5(1 — fo) 1A (T 3—) )
T
Based on the normality rule (29), the rate of plastic deformation takes the following form
d® = vV2(1 — f,)4P7e(27 + Etrace(F)) " (79 + =),
- 3 Tw (32)
== q1q2fv7—e Slnh(§Q27) .

It should be noticed that the condition & = 0 yields 7, = 7 if 10 = ¢290 = 0, i.e. no interaction
between the voids exists. Under this condition, a realistic assumption is that damage does not
evolve, i.e. f, = 0 and the normality rule (32) is equal with (20) for the plastic deformation
through shear yielding.

The damage process due to the presence of voids can be separated into the two phases, cf.
Fig. 8(a-b) and (c-d). First, the homogenous deformation takes place with void nucleation and
initial growth, which is followed by the localized deformation due to continued void growth and
void coalescence. Since void coalescence is neglected here, the evolution law for these two phases
can additively be decomposed as

fo=Ffo+ fu, £u(0) = fuo (33)
where fg and f, describe the growth of existing voids and the nucleation of new voids, respectively.
To define their evolution laws, let us first consider the void volume fraction only due to growth

of existing voids defined as f, = dV,/dV. The initial value ranges between 0 < fy < f, < 1.
As with the volume fraction JV, the void volume fraction due to growth of existing voids can be
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represented as J& := dV/dV,,e, where dV;,, = dV — dV} is the volume change occupied by the
matrix material due to growth of existing voids. The relation between J® and f, becomes

1
fo=1- . (34)
Taking note of (34), lead us to the following evolution equation
InJje="r=_“8_, 35
nTE = = T (35)

Assuming also that void growth takes place only due to the plastic deformation, i.e. J& = JP in
(35), and applying Liouville’s theorem to F® yield

fg:?’(l_fg)DE- (36)

In the evolution equation (36), D} := 1/3trace(dP) is the plastic volumetric strain rate, cf. [25].

In many amorphous glassy polymers, the nucleation of new voids is also assumed to be sig-
nificant but the process is not well understood yet. It is a material intrinsic property being
dependent on the strength of the polymeric material as well as on the size and shape of existing
voids. Large voids usually nucleate new voids earlier than small voids, and inclusions with differ-
ent length scales may also lead to different nucleation criteria, cf. [38]. To capture the accelerated
damage due to the nucleation of new voids, [39] proposed the following strain-controlled law for

1

the nucleation rate It P enes
_ - P

Vo S (37)

where fy is a material parameter. The mean value ey of the normal distribution describes the

critical strain beyond which the first new voids appear. Since not all the inclusions or particles

will nucleate new voids, the parameters fy, ex and the standard deviation s, are averagely

determined from calibration to the material’s macroscopic response.

One important aspect is the ability of the proposed model to account for the real deformation
behavior as well as quantitative damage prediction. For the numerical evaluation of the model,
it is implemented in a finite element program and the constitutive equations (17) and (26) are
completed by the integration of the void volume fraction rates given by (36) and (37). It should
be noticed that the plastic shear 4?, which is needed in (37), is available from the solution of
the hardening variable s, cf. (26). Moreover, the rate of plastic deformation is governed by the
normality rule (32). The numerical treatment of the model is discussed in Appendix A.

fn:

Thermodynamics

Based on the multiplicative splits (1) and (15) and the existence of the field variable J¥ thermo-
dynamical treatment of the proposed model is presented, cf. |34, 40]. Without loss of generality,
the considerations are presented in the spatial configuration. Assuming isothermal conditions
to prevail, thermomechanical potential ¢, also called Helmholz’ free energy per unit volume, is
given by

p = @by, C", J' ) = ¢ (b, J¥) + ¢P(C”) + (b)) (38)
where ° and ¢P are the elastic and the plastic part of the free energy, respectively, and the
potential 1 is defined subsequently. The plastic deformation tensor C* was defined by (8),

by = F5F5T = (v9)" and b] = FiF}T = (vf) (39)
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is the elastic deformation tensor. To derive the constitutive relations for the stresses, advantage
are taken of the developments by [41, 42|. Taking the symmetric part of (3) and considering the
product decomposition (15) yields

d=d°+d°=dj+d5+d° (40)
where . B
di == sym(F\F™"), d5:=sym(F5I,F{)

and B '
5= FyFS. (41)

In terms of the internal power 20 and the rate of the free energy ¢, the dissipation per unit
volume in the spatial configuration is governed by

D=0W™"—¢:=7:d]+71:d5+7°:d"+ gtrace(TV)ln JV—9p>0 (42)

where trace(T¥) and 7P represent the internal microstresses work conjugate to InJv and dP,

respectively. Specifically, trace(7") is the mean stress needed to reach the volume change due to

void growth, i.e. it differs from the microscopic effective stress 7¢ of the solid ligaments between

the voids. The rate of the free energy ¢ in (42) becomes

Op°(bS) e O0pP(CP) - e (JY
Pe(by) e 09P(CT) ey 09T

JV

: : InJv —q 4
obS L™ acr Qv T =i (43)

—QO(b(i, Cpa JV7 ¢) - -

where ¢ == 75 : d;. Taking advantage of (11) and noting the free energy being isotropic tensor
function of b] lead us to the following expression
8@6 ;e

&p
. e e 44
ObS b= abe abc 01 A (44)

cf. e.g. |43]. Applylng (9) and assuming that the plastic part of the free energy is an isotropic
function of C* gives
opP
oC”
where the principal components of the backstress B in the intermediate configuration are defined
as

. CP — 0P ~p P _ P
:C —QSym(aC C’:D°*=B:D (45)

. CR
Bo =g VNE (m

cf. (23). The plastic part of the free energy ¢P and a detailed account to obtain the backstress,
which equals with equation (46), can be found e.g. from [36]. In the present models, the
backstress represents the non-dissipative stress, i.e. a part of the plastic work which is stored in
the material during deformations. Substituting (44) and (45) into the dissipation inequality (42)
yields

YOP2 o =1,2,3, (46)

8 1 0 (JY)
— e . de o - de p__ - dP - vy __ TV V>
D (T 8beb ) di+(t—72) : dy+ (P —0) : d —|—(3trace(7' )—J 5 )In Jv T >0 (47)

where 3 is the backstress expressed in the spatial configuration. Using the arguments by [44]
turns out the following expressions

0¢°
28be bl (48)
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and Do ()
SDG v
t V) =3J"————= 49
race(T") 57 (49)
for the stress and the microstress, respectively. Consistent with the internal power 20, d5
appears linearly in (47) and thus 7o = 7. Taking advantage of (48), the local dissipation (47)
reduces to

Di=F:d">0, 7:=1"-0 (50)

where 7 is the thermodynamic driving stress.

Assuming the choice 7P := 7 satisfies the condition (50). Since 4® is positive, also the
microstress of the ligaments 7, must be positive in (31). However, this condition must be handled
with care, since it is not generally satisfied by the solution of ®? = 0, cf. (28).

Since the polymer chains in the EBPA model are assumed to be randomly oriented in space,
use is made of an isotropic strain energy,

1
o= 5%(116)2 +2pJ5, (51)

where x and p are the bulk and shear modulus, respectively. The logarithmic invariants needed
in Eq. (51) are defined as

I = trace(lnv$) = InJ{ and J§ := 1/2(Inv$)% : (Inv§)%.
Using the specific strain energy (51) in (48), the Kirchhoff stress takes the following form
T =2u(Inv)* + kIn Jfi =: L°: Inv (52)

where £° was defined in (18). Similar to (34), a relation between the void volume fraction f, and
J¥ can be derived. In analogy with (35), the evolution equation for d(In.J¥)/dt in terms of f, can
be expressed, i.e. both void growth and shrinkage are allowed without the thermodynamics being
violated. Also, the dependence of the strain energy (51) on JV through the elastic constitutive
parameters x and p can be defined. Several possible models can be found for the dependence of
k and pon fy, cf. e.g. [45, 46].

4.2 Calibration and evaluation of the augmented EBPA model for void
growth

The augmented Gurson model in conjunction with the EBPA model is calibrated to data obtained
from the cold drawing experiment. In the calibration, the finite element discretization is of a
mesh with 196 4-node plane elements, i.e. the same element mesh as before is employed. It
can be assumed that the void volume fraction has only a small influence on the elastic material
properties in porous media, cf. [46], and thus the elastic constitutive parameters are considered
as constant. Concerning damage, the calibration is initialized using the parameters for rubber-
toughened PMMA (RTPMMA) taken from [20]. Both the calibrated and the parameters for
RTPMMA are listed in Table 4. In the subsequent simulations, the localization is triggered
according to (27) using & = 0.002. Calibration also indicated that

- the growth of void volume suppresses the isotropic softening effect,
- the change in the initial void volume fraction from f,g = 0 to f,o = 0.05 only has a small
effect on the macroscopic f — u response,
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Figure 9: a) Influence of the parameter hy on void growth, which is represented by the norm of void
volume fraction || fv|| := /> ;(fv,i - fv.i) where f,; are the extrapolated values of void volume fraction
at the nodes of the mesh. b) f — u responses according to the test and the model. The deformed shapes
at v = 20 mm and at the end of loading are visualized by void volume fraction f,. The highest porosity
fv is highlighted in white.

- the values ¢ > 0, which influence damage evolution via (30), reduce void growth.

Since the PC polymer under study is not interspersed by small rubber particles, and the
influence of a low initial void volume fraction on the macroscopic response is negligible, we set

fvo=0.

Fig. 9 presents the total growth of void volume and the influence of the hardening slope h;
on the void growth. The values ranging between 385 — 560 MPa are seen to have only a minor
effect on void growth and thus the minimum value will be used in further considerations. Fig.
9 shows also the force vs elongation response according to both the test and the EBPA model.
Even if the responses deviate during the softening phase, the model is well able to capture the
initiation and stabilization of neck. Comparison of Figs. 9(a-b) reveals that the void nucleation is

Table 4: Constitutive parameters of the damage model for RTPMMA and PC. Calibration of the pro-
posed model is performed to data obtained from the cold drawing experiment on PC. The RTPMMA
parameters are taken from [20].

n h1 Sss EN Sy JN qo qo ¢ N,

MPas MPa MPa
RTPMMA 0.03 0.15 0.15 09 1.2 0.2 1.5
EBPA for PC  1.5-10° 385 61 0.03 0.15 005 15 1.0 0.2 1.5
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Figure 10: Distribution of the plastic stretch Ak at the end of loading (u = 40 mm) according to the
BPA model (on the left), the EBPA model and the EBPA model in conjunction with the damage model
(on the right). The simulation based on the damage model is performed using the calibrated material
parameters given in Table 4.

prohibited until the elongation u ~ 6 mm is reached. This threshold corresponds approximately
to the elongation prior to the yield drop. Once the yield point in the stress response is passed,
void growth develops and increases the porosity in the localized zone. During stabilized neck,
voids grow rapidly in the material. Similar to the plastic stretching, the highest values appear
in a region which gradually expands from the center of the specimen towards the grips during
elongation. At the end of loading, the porous region covers the gauge section entirely, and the
highest porosity occurs in the two separate regions beyond the mid-plane, y = (L 4 u)/2.

Having less intrinsic softening due to void growth allows the softening slope h; and the
intensity ss/So to be reduced to a level which agrees more closely with the values obtained
from the calibration for homogeneous deformation, cf. Table 2. As a consequence, the intensity
Sss/S0 = 0.80, which appears in Table 3 and was previously employed in the EBPA model, is
reduced to 0.65. Moreover, the value h; = 385 MPa is virtually two times lower compared to its
preceding value in Table 3. It can be concluded that the difference between the calibrations for
homogeneous and inhomogeneous deformation is strongly affected by void growth in the material.

Based on the model simulations the plastic stretch distributions are highlighted in Fig. 10. It
can be observed that damage reduces the intensity of the plastic stretching, while the localized
deformation expands more rapidly along the specimen. A glance at Fig. 6 reveals that the necked
region, which is predicted by the combined EBPA and the damage model, reaches the end of the
gauge section simultaneously with the experiment. Assuming the localization of plastic stretching
is representative for the evolution of shear banding, the kinematic hardening, which is enforced
by void growth, is seen to promote localization through widening of shear bands.

As has been shown, the EBPA model, along with the augmented Gurson model for void
growth, is able to predict the transformation from the homogeneous deformation phase to the
localized deformation phase well. Applying this model, the difference between the model param-
eters, which result from the calibration for homogeneous and inhomogeneous deformation, also
decreased considerably. A shortcoming of the model is that the force-elongation response during
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neck shows a premature hardening while the void volume fraction grows and attains values too
high for unvoided polymers.

4.3 Modeling of crazing

Under compression, amorphous polymers show ductile localized deformation behavior, which is
due to shear yielding without marked volume changes. In contrast to the shear yielding mecha-
nism, which eventually leads to fracture by a chain scission, the governing mechanism of inelastic
deformation under tension is crazing, cf. |5, 6]. More precisely, crazing is assumed to result from
disentanglement in highly concentrated regions of maximum principal stress. Disentanglement
nucleates new micro-voids which grow and coalesce to form initial crazes and cause stretching
and eventually failure of the thin fibrils between the two faces of the initial crazes, cf. [14, 47]. As
a result of the breakdown of the fibrils, crazes widen leading to local brittle failure while material
behavior at the macroscopic level still shows a little ductility. In all, the nominally brittle failure
can be separated into the three different phases: craze-initiation, widening and craze-breakdown.

In recent years, cohesive-surface models have been widely applied to the numerical simula-
tion of craze-initiation, growth and breakdown with the finite element method, cf. e.g. [13, 19].
In a finite element setting, however, cohesive interface approaches allow for the nucleation and
growth of the crack only along the element boundaries. In order to avoid mesh dependence and
priori assumptions concerning the orientation of interface elements for crazing, an alternative,
continuum-based model is proposed here. Based on the work by [5], a simple craze-initiation
criterion is introduced and the transition from shear-flow to craze-flow is carried out by a change
of the flow rule, where the inelastic deformation is taken to occur in the direction of the lo-
cal maximum principal stress. Once the local critical plastic strain is reached, crazes rapidly
widen which eventually leads to local fracture or chain-breakdown under compression or tension,
respectively.

The craze-initiation can be governed by strain- or stress-based criteria. [48] conducted tension-
torsion stress-controlled experiments on thin-walled tubular specimens, which indicated that
there is a time delay between the application of stress and the first appearance of crazing. At
the stress levels, where the equivalent stress 7 and the mean normal stress 7, exceed 0.4 - 0.5
of the yield stress, the delay time considerable decreases and as a result craze-initiation can be
considered as instantaneous event. Since the crazing process in the present drawing experiments
occurs in stress levels higher than 0.4 - 0.5 of the yield stress, the incubation time for craze-
initiation can be assumed negligible and a time-independent criterion can be applied in the
proposed model.

In general, the development of crazing may be expected to have directional properties. Based
on the assumption that the crazes grow in the direction of the maximum principal tensile stress,
[5] proposed that crazing initiates when the mean stress is positive 7, > 0, and the highest
principal stress 7 reaches a 7,-dependent critical value 7 = 7%(7,) > 0. They estimated the
critical value 7 from the tension experiments on a smooth-bar, notched-bar and a compact
tension specimen. They observed that the curve for craze-initiation just prior to the yield-peak
load is reasonably-well captured by the function

=+ 2 (53)
Tm
where ¢; and ¢y are positive parameters. In general, stress-based criteria may be difficult to
define with precision from experiments due to inaccuracies in controlling local stress states and
the sites of craze-initiation, cf. [48]. For this reason, a corresponding strain-based criterion needs
to be determined. It can be assumed that the crazes are initiated if the following two conditions
are satisfied:
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[1.] The highest principal tensile stress and the mean normal stress are positive, i.e. 73 > 0
and 7, > 0,

[2.] the craze-strain (P, which evolves in the direction of the highest principal tensile stress,
reaches a critical value (P := fépdt = (P > 0. Correspondingly, 7 = 7" > 0.

Once crazing has been initiated, the transition from shear-flow to craze-flow takes place while
the plastic flow aligns with the direction of the maximum principal stress 7;, and the inelastic
deformation begins to evolve through widening of the crazes.

Instead of attempting to represent a de-
tailed scheme for craze-widening, cf. [12, 13|,
a continuum-based model, which defines the
inelastic deformation as an average over a mi-
crostructural representative volume element, is
proposed. It is assumed that the material ele-
ment contains enough plate-like craze regions
that allow for macroscopically smooth craze-
widening process prior to failure. The magni-
tude of the craze-flow is given by the macro-
scopic tensile craze-strain rate C P and it evolves
as long as 71 is positive. Following [49], (P is
assumed to be accounted for by the thicken-
ing rate J of the active planar crazes which are Figure 11: Widening of crazes at an average spacing
separated by an average spacing Lo, cf. Fig. Lj. The macroscopic tensile craze strain rate (P is
11. Thus the average tensile craze-strain rate determined by the thickening rate & of crazes.
becomes (P = 5/L0. In terms of the eigenvec-
tors m; associated with the highest principal stress, the transition from shear-flow to craze-flow
is given by

.p . .o . _ .
d — { (Pn; @ ng if the conditions [1]-[2] are satisfied, (54)

AP(79¢Y 4 Z4)  otherwise
where AP := \/2(1— f,)3P7. (272 +Etrace(F ) ! and Z == q1qo foTe sinh (3/2¢oTim /7e), ¢f. (32). The
magnitude of the rate of plastic deformation (P = |d®| is determined such that some continuity
during the transition from shear-flow to craze-flow is ensured.

The equality between the plastic work rate in the porous material per unit volume and the
dissipation in the matrix material is governed by
-
Fodl = (1— f)V2rAP ()" (55)
1
where the quantities with the superscript (*) are determined at the instant when the change in
the flow rule is triggered. It then follows from (37) that nucleation of new voids is governed by
the constant rate 4** during crazing. Since the experiments show an increased craze widening
velocity with the applied stress intensity, cf. e.g. [13|, the plastic work rate is reformulated in
terms of the stress ratio 7 /7. The parameter m in (55) is found from the calibration to the
experimental data. During shear flow, the stress ratio 71 /7 remains unity and the plastic shear
strain rate 4 evolves according to (24), i.e. (55) equals with (31). It follows from (54) and (55)
that the magnitude (P = |dP| is given by
: cosys T1 ~ _
P =V2(1 — f)mAP (F)m(T ‘n;®ng) (56)

1
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The microscopic effective stress 7. of ligaments is determined from the potential & = 0, which
for the craze-flow is modified such that the flow becomes oriented in the direction of the highest
principal stress, i.e.

2

T qa2 71
OP (11, fu, Te) = ?1 +2foq T’ cosh(E?) —72(L+ 4 f2). (57)

e
Yommmimmmmsininiiizn o Alternatively, employing the function (57)
T in the flow rule (29) (replacing AP by (?) and
0.8f---- e, T taking advantage of 071/0T = n; ® n; also
= 06l : results in the craze-flow rule (54), where (P is
e . 102,715,710 given by (56). Fig. 12 presents the poten-
Eoa L R I:jgjj';;jj{;‘;fm tials in (28) and (57) for different values of f,
s |77 1,2002,.6,70,510 and q;. The stress trajectories in 7, — 7, space
0.2l show proportionality between the macroscopic
% ; principal stressing and the microscopic stress

5 05 T 15 5 in ligaments between the voids.

T/ Tey Te/ S0 Since the final craze-breakdown can be con-
sidered as a physically unclear process, cf.
[12, 13], a simple criterion for craze-breakdown
and fracture are proposed as a first attempt.
Following [5], the craze-breakdown under con-
dition 73 > 0 occurs when the local craze-strain
(P reaches a threshold value ¢ > (2 > 0. The
threshold ¢{ in relation to the craze-initiation criteria (* = (. defines the length of the crazing
process. In the situations where 7, < 0, ductile fracture by molecular chain-scission is initialized
as the plastic stretch AP, reaches a threshold AP

Figure 12: The potentials (28) and (57) in 7—7y, and
T| — Te Space, respectively. The influence of the two
different values f, = 0.02, f, = 0.2 and ¢; = 1.0,
q1 = 1.5 are investigated.

4.4 Calibration and evaluation of the augmented EBPA model for void
growth and crazing

Based on the simulations of the cold drawing experiment the influence of crazing on the overall
load-elongation response and localized deformation behavior is evaluated. In the simulations, the
same element mesh as before is employed. Since the stretching in relation to the limiting stretch
VN in a representative volume element can be regarded as small during the entire cold drawing
process, craze-breakdown barely initiates and will be neglected in the subsequent numerical
simulations. Due to necking, the stress ratio 71 /7; in (56) remains almost unaltered (near unity)
during elongation and thus the parameter m is chosen to vanish.

Based on the discussion above, cf. also [9], the plastic deformation in large strains evolves
primarily due to crazing and typically shows an increased rate of evolution once crazing has been
initialized in the material. Since the stress level decreases during the crazing process, the plastic
work rate in the porous material and the dissipation in the matrix material decrease, and as a
result, the void volume fraction tends to increase, cf. (55). This effect is shown in Fig. 13. To
exclude the integration of (P, the corresponding stress criterion 7" = 62 MPa for craze-initiation
can be employed in the simulations. This threshold as well as the values AP, = 1.05 — 1.12 in
Fig. 13 for craze-initiation are reasonable-well captured by using the parameters ¢; = 36 MPa
and c; = 650 MPa? in (53).
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Figure 13: a) True stress vs true strain and b) void volume fraction for uniaxial tension of BPA-PC
according to the model. Craze-initiation is prescribed by the plastic stretch at AP = 1.04, AP = 1.05,
Aoe = 1.08, M\ = 1.12, A& = 1.15 and A% = 1.20. In b), the curve involving a plateau represents
void nucleation (fgy = 0) being virtually independent on craze-initiation. The simulation covers the time
period of 750 s at € = 0.001 1/s.
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Figure 14: Influence of crazing on void growth, which is represented by the norm of void volume fraction
| foll == \/>_;(fvi- fv,i) where f; are the extrapolated values of void volume fraction at the nodes of
the mesh. Influence of void growth and crazing on the overall f — u response. The marker B indicates
the position at first craze-initiation. Using fn = 0.02, the deformed shapes at © = 20 mm and at v = 30
mm are visualized by the void volume fraction f,. The white color indicates the highest porosity.

The influence of crazing on void growth during localized deformation is shown in Fig. 14. A
comparison with the responses of purely porous material reveals that crazing, which initiates once
the yield point is passed, increases significantly void growth during the neck. Similar effect was
also observed in amorphous entanglement network through MD simulations, cf. [16]. Reducing
void nucleation setting fx = 0.02 in (37) compensates for the growth which in turn, as already
touched upon, suppresses the initiation of new crazes. The difference can be further illustrated
by a comparison of the void volume fractions given in Figs. 9 and 14. Due to crazing, localized

23



region (in terms of E\EC) in the gauge section shows more pronounced intensity of porosity, whereas
the area and shape of the porous region remain virtually unaltered during crazing.

To prevent an excessive void growth during crazing, the amount of existing voids as well
as their growth need to be limited in the model. Consequences of this restriction are that
crazing promotes void nucleation while the dissipation alters primarily due to the stress 7, in the
ligaments between the voids. An excessive void growth during necking is suppressed by choosing
the critical strain for craze-initiation to be (? = 0.42, which value approximately corresponds to
the elongation u = 21 mm and to the plastic stretch AP, = 1.055 in the early-stage of hardening.
Moreover, crazing is assumed to result from disentanglement in highly concentrated regions of
maximum principal stress, which nucleates new micro-voids and allows their coalesce to form
initial crazes rather than larger voids. Thus, use is made of an assumption that the growth of
existing voids is inhibited by crazing, i.e.

: 0 during crazing
= , ’ 58
s { 3(1 — fy)Dy otherwise. (58)
Since crazing in a finite element set- a)
ting evaluates through the integration points, ek 04
the influence of the mesh does need atten- - 1o -
5

tion.  Simulations with considerably finer !

mesh, however, indicated only a small mesh-

sensitivity on both the f — u response and lo-

calization phenomenon. In Fig. 14, both the

porous and the crazed response is depicted. It

is found that the void volume fraction, albeit b) L06
it is low in small deformations, has the ef- e
fect of making the descending portion in the
force-elongation curve more gradual. Craz-
ing, however, is seen to compensate this ef-
fect. Owing to crazing, premature harden-
ing which appears in the augmented EBPA
model predictions for purely porous material
is substantially reduced in the model predic-
tions for crazed material. This is in better Figure 15: The deformed meshes at a) v = 20 mm

agreement with the experimental response that and b) u = 33 mm are visualized by the plastic
shows very stable neck. stretch AL, mean stress 7, and by the craze-strain

Fig. 15 shows the deformed meshes visual- ¢P. The void fraction parameter in (37) is fx = 0.02
ized by the plastic stretch AP the mean stress and the rest of the parameters is given in Table 4.

ec’

Tm and the craze-strain (P. The selected stages cover the elongation just prior to crazing and
u = 33 mm. A glance at the preceding results in Fig. 10 reveals that crazing has no notable
influence on the localization of plastic deformation, i.e. the intensity and the rate of expansion
remain virtually unaltered. It appears from Fig. 15 that the distribution of AP, is similar to the
(P-distribution which controls craze-initiation. The craze-strain (P in its localized region ranges
between (P = 0.40 — 0.50, which values with together the low intensity of the plastic stretching
imply that the threshold ¢ for craze-breakdown should be significantly greater than 0.50. In
contrast to the expansion of localized deformation, the region of pronounced mean stress rapidly
propagates over the gauge section and reaches relatively stable values ranging between 27 — 32
MPa. Since these values are higher than 0.4 — 0.5 times the yield stress for PC, craze-initiation,
as has previously been pointed out, can be considered as an instantaneous process.

1.02
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0.4
20 03
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Influence of disentanglement

Based on the idea that entanglements represent topological constraints and on the observation
that the topology does not evolve considerably in glassy state, the network density n in state-
of-the-art models is taken to be constant during deformation. However, the present numerical
results explicitly suggest that a reduction of n should be considered in the models. Since the
molecular weight of the polymer remains unchangeable, the total number of statistical links V4 in
the material element is constant. In pursuance of the chain density evolves (reduces) with time,
N alters (increases) according to the relation nN = N4. By the definition Cg := nkT employed,
the reducing strain hardening modulus is attributed to disentanglement. Disentanglement is
modeled by assuming that the network density n evolves with time ¢ as

on Po
- 2 59
ot nTU (59)
where 7, denotes a time interval, needed that a particular entangled point vanishes, and
Up — BAbeq
_ _ - 60
po = exp( T ) (60)

is the probability that a particular chain slips through an entangled point. In the above equation,
Uy is the activation energy, 3 is the activation volume and

Abeq = \/trace(%(ﬁdev)Q)

represents the difference in network stress between the two strands of a chain connected to a
common entangled point, cf. [14] for a more detailed account.
When (59) is employed, disentanglement

eases and viscosity decreases. Assuming craz-
ing evolves due to disentanglement and a crit-
ical amount of porosity for the nucleation of
crazes is reached at the end of the softening
phase, use is made of an assumption that the
growth of existing voids is attenuated during
necking, i.e. the transition (58) is employed.

5005,

25007 evolves already during softening and numeri-

2000 cal simulations indicate a significant increase

] in void growth during neck. In terms of mi-

—1500. ‘ 1 crostructural characteristics, the free volume

= : :n-v between the chains decreases pressure, and

H“1000, consequently the Brownian motion of chains
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Figure 16: Influence of the reduction of network den-
sity n on f — u response (solid line). The dashed } i .
line represents the response with a constant net- The simulated f —wu response in Fig. 16
work density. The parameters used in (59) are taken shows stabilizing effect due to disentangle-
from [14]. The deformed shapes at u = 28 mm and Mment, i.e. no obvious tensile limit of stable
uw = 36 mm are highlighted by the network den- neck can be observed during elongation up to
sity ratio n/ng. Using the EBPA model parameters, % = 35 mm. Loss of the network density 15%
ny = 3.4 -10%" m~3, is reached at u ~ 20 mm, which value remains

almost constant during further elongation. Ac-
cording to the numerical simulations, similar effects cannot be observed if the network density
alters without volume changes, i.e. the models for both void growth and crazing need to be
applied. It can be concluded that the network density is of a great importance in determining
the macroscopic failure through crazing.
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5 Conclusions

The capability of state-of-the-art network models to predict inhomogeneous deformation behavior
of amorphous glassy polymers was investigated. The two models termed the BPA and the EBPA
model, respectively, were implemented in a finite element program and an implicit integration
algorithm was derived. Since the polymer network density is considered constant and the volu-
metric plastic deformation is suppressed in the present models, they are generally inappropriate
for modeling damage. The models were calibrated to the force-elongation responses for inho-
mogeneous deformation acquired from cold drawing experiments on polycarbonate specimens.
It was shown that the parameters which were obtained from the calibration to homogeneous
deformation cannot be used to satisfactorily predict the experimental response of inhomogeneous
deformation. In order to find the mechanisms that are able to explain this discrepancy, the
models for void growth, crazing and disentanglement were implemented in a part of the EBPA
model.

The simulations showed that the initiation of shear bands promotes and void growth reduces
the intrinsic softening in the material, whereas the kinematic hardening is seen to be a driving
force for widening of shear bands. It was shown that the EBPA model, in conjunction with the
modified Gurson model for void growth, predicts increased porosity and interaction between the
voids and less intrinsic softening. As a result, the difference between the calibrated parameters
for homogeneous and inhomogeneous deformation considerably decreased.

In order to suppress an excessive void growth during localized deformation and a premature
hardening present in the simulations of the cold drawing experiment, the model was augmented
also by taking crazing into consideration. In general, however, the strain hardening cannot be
solely governed by the stretching of the chain network, but the hardening tends to decrease
with the chain density of the polymer network. In the proposed model, crazing is assumed to
result from disentanglement in highly concentrated regions of maximum principal stress, which
nucleates new micro-voids. However, these voids do not grow, but coalesce to form initial crazes
that widen and eventually cause local failure in the material. The numerical results indicated that
the plastic stability is essentially controlled by crazing, whereas void growth governs the rate of
neck propagation and the amount of intrinsic softening during localized deformation. It was also
concluded that the network density plays a pivotal role in determining the type of macroscopic
failure through either shear yielding or crazing. The EBPA model augmented by the models
for both void growth and crazing was able to predict inhomogeneous deformation behavior well.
However, further research is needed to find and model the localization mechanisms also under
variable loadings and at different length-scales.
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Appendix A. Algorithmic setting of the augmented EBPA model

The EBPA model is implemented in a finite element program for the simulations of inhomogeneous
deformation. Since long-term periods are investigated, a fully implicit backward FEuler method, which
allows large time steps, is applied. To simplify the notation, the subscript n 4 1 for the updated state is
omitted and the quantities solely at the known state ¢, are indicated by the subscript n. The exponential
update is applied to the plastic part of the deformation gradient FP, i.e.

FP = exp(AtLP)F?, (A.1)

cf. [50]. The tensor exponent in (A.1) is calculated by using the Pade approximation, cf. [51]. Substi-
tution of (A.1) in (1) yields

F¢ = FFP ! = FFP texp(—AtLP). (A.2)
As with the BPA model, the elastic deformation in the EBPA model is chosen to be irrotational and
consequently the elastic rotation R® is unity and the plastic spin WP is nonzero. The plastic spin is
numerically solved by introducing an algorithmic plastic spin WP, Due to the imposed symmetry of F°,
algorithmic plastic spin w?is skew-symmetric at the end of the integration interval. Moreover, to specify
the orientation of the elastic intermediate configuration, the first component F{ in the decomposition
(15) is chosen to be symmetric.

Based on the stress equilibrium (17), the elastic stretching evolves according to

2 (nwg) =

- (L°(E) : Inv — L£°(Ey) : Invg). (A.3)

1
n
The non-linear system of equations are completed by the integration of the internal rate variables and
the void volume fraction rates defined by (26), (37) and (58), respectively, i.e.

R, :=F°— FF" lexp (—At(Dp + Wp)>,
Ry: = F°T _ F°,

Ry:= W™ + W,

R,:=F;" — F%,

A A
Ry = (T+ 2 co(B) : g — 2LLe(B) : nv§ — Inws,) /se. (A4)
n n ’

Re: = (
Ry = (
Rs:= (fa— fan — fuAAt),
Ry : = (fz = fon — JgAl)

51— S1n — $1At)/Sss,

89 — Son — $2At)/Sss,

where the parameter sg was defined in (26);. During crazing, the rate of plastic deformation D" is
defined by (54), otherwise it evolves according to the flow rule (32). It should be mentioned that the
residuals Ry and Ry consist of three and the residuals R3 and Rs of six linearly independent equations.
To solve the nonlinear system (A.4) by using the Newton-Raphson method, the state variables are given
in the vectorized form, i.e. Y := [F*° wP FS s sy fu fg]. The solution is given by Yt =yl AY
where the increment of the internal variables is given by

OR

AY = —J 'R, and J:= oY (A.5)

is the Jacobian. The vectorized form R := [R; Ry R3 Ry R5 R R7 Rg Ry| consists of the residuals.
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Table 5: Algorithmic update of internal variables based on the multiplicative decomposition of the
deformation gradient into an elastic and a plastic part. The elastic part is further decomposed into a
purely elastic and a viscous part.

1. Load data: F,Y, :=[FS Wy, F{, s som fan fen)-
2. Set k = 0 and initialize FPl—g = F§'F, F§li—o = F§ ' F%.
3. Implicit update of the internal variables:
WHILE ||R|| > tol
(i) Compute * by (24), B by (46), 7 by (17) and 7 := 7 — 3.
(#7) Compute $1, o by (26) and f,, by (37).
IF 7y > 0 and 7 = 7% > 0 THEN (crazing)
(731) Update 7°¢ from (57).
(iv) Compute dP by (54).
(v) Compute f, by (58).
ELSE
(73i) Update 7° from (28).
(iv) Compute dP by (32).
(v) Compute f, by (36).
END IF
(vi) Compute the residuals R according to (A.4).
(vii) Compute the Jacobian J := 0R/0Y .
(viit) Update internal variables, Y <= Y, + AY by (A.5) and set k < k + 1.
END WHILE LOOP
4. Store updated variables Y := [F* wP FS s1 sy fn fs] and proceed to the equilibrium

iteration for F'.

The linearization of the stress-strain relation, which is needed in an implicit finite element solution
process, is discussed in [32]. The steps of the numerical integration algorithm for updating the internal
variables are summarized in Table 5.
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