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In�uen
e of damage on inhomogeneous deformation

behavior of amorphous glassy polymers. Modeling and

algorithmi
 implementation in a �nite element setting

Sami Holopainen

Tampere University of Te
hnology, Department of Engineering Design

P.O.BOX 589, 33 101 Tampere, Finland, e-mail: Sami.Holopainen�tut.fi

Abstra
t

The obje
tive of this work is to investigate the in�uen
e of damage me
hanisms on

inhomogeneous deformation behavior of amorphous glassy polymers. The me
hani
al prop-

erties of glassy polymers are strongly in�uen
ed by the mi
rostru
ture whi
h is typi
ally

des
ribed by network models. In order to improve the network model predi
tions at large

multidimensional deformations, a distributed growth of void volume, 
razing and possible

disentanglement are investigated and 
onsidered in a part of the proposed vis
oelasti
-plasti


model. The importan
e of di�erent rheologi
al properties employed in the model for regard-

ing me
hani
al behavior is investigated and the role of damage in lo
alized deformation is

addressed. In order to evaluate the predi
tions of the proposed model, algorithmi
 
onsti-

tutive equations are derived and implemented in a �nite element program. The model is

employed to the simulation of the 
old drawing of dumbbell shaped test spe
imen.

1 Introdu
tion

It is widely a
knowledged that the ma
ros
opi
 me
hani
al behavior of amorphous glassy poly-

mers stems from three major mi
rostru
tural 
hara
teristi
s: the number of entanglements and

statisti
al links between the entanglements, the growth of shear bands and the extent of free

volume around the 
hain mole
ules, 
f. e.g. [1�4℄. Moreover, amorphous glassy polymers exhibit

several damage pro
esses su
h as 
razing, 
avitation of impurities and mi
ro-
ra
king within the

matrix material. Onset of the volume 
hanges in amorphous glassy polymers are the growth

and 
oales
en
e of existing voids in addition to the nu
leation and growth of new voids. Under


ompression, amorphous polymers frequently show du
tile lo
alized deformation, whi
h is due to

shear yielding with small volume 
hanges. In 
ontrast to the shear yielding me
hanism, whi
h

involves shear band propagation and eventual fra
ture by a 
hain s
ission in large strains, the

governing me
hanism of inelasti
 deformation under tension is a dilatational lo
alization in zones

of �brillation, termed 
razing, 
f. [5, 6℄.

[7℄ 
ondu
ted plane strain 
ompression tests both on polymethylmetha
rylate (PMMA) and

on polystyrene (PS) to investigate the formation of shear bands. A

ording to their observations,

the growth of shear bands is the primary sour
e for the evolution of plasti
 deformation in

amorphous glassy polymers. The plane strain tension tests by [8℄ showed a remarkable drop in

the ma
ros
opi
 stress immediately after the development of ma
ros
opi
 shear bands. During


ontinued deformation, the propagation of shear bands and the development of inhomogeneous

deformation were observed whi
h is ma
ros
opi
ally manifested by ne
king.

[9℄ investigated the in�uen
e of damage (
razing, 
avitation of rubber parti
les and mi
ro-


ra
king within the matrix material) on the plasti
 deformation and stability in polyethylene

terephthalate (PET) and high-impa
t polystyrene (HIPS). Based on the opti
al mi
rographs,

shear bands nu
leated from the tips of existing 
razes, rather than the 
razes being nu
leated
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at the interse
tion of �ne shear bands. They 
on
luded that the onset of plasti
 deformation is

initiation of 
razing and the plasti
 stability is essentially 
ontrolled by damage pro
esses su
h

as 
raze-widening. To trigger a transition from 
razing to shear yielding, some heterogeneity,

whi
h relieves the build-up of high hydrostati
 stress, is needed in the amorphous stru
ture,


f. [10℄. In 
ontrast to tensile tests, where the initial 
hain distribution have been found to be

ma
ros
opi
ally uniform, large-s
ale mole
ular dynami
s (MD) simulations have indi
ated that

the 
hain distribution lo
ally is heterogeneous, 
f. [11℄. As a result of heterogeneity, polymer

material shows lo
alized deformation where mi
ros
opi
 shear bands in 
losely pa
ked regions

develop and annihilate into ma
ros
opi
 shear bands. [11℄ also showed that the thi
kness of the

ligaments within the stru
ture is 
ru
ial.

Despite all the a
tive resear
h 
arried out during the last de
ades, the governing mi
rome
h-

anism that 
ontrols 
razing is still not fully understood. Experimental investigations have shown

a major importan
e of the entanglement density in ma
ros
opi
 failure through 
razing or shear

yielding, 
f. e.g. [10, 12�14℄. Initial plasti
 deformation through shear yielding in amorphous

glassy polymers is usually followed by 
razing or alternatively 
razing propagates on stable man-

ner, 
f. [9, 15℄. Examples of the polymers in the �rst group are e.g. poly
arbonate (PC) and

PMMA, and polymers involving stable 
razing are e.g. HIPS and polya
rylonitrile-butadiene-

styrene (ABS) that are frequently used in toughened polymer blends. A

ording to [15℄, de
rease

of temperature and in
rease of the strain rate result in more brittle failure in amorphous glassy

polymers, i.e. the di�eren
e between the time instants for 
raze-initiation and breakdown de-


reases. They also pointed out that the void nu
leation is a pre
ursor to 
razing and 
razes

initiate due to high mean stress 
on
entrations around the mi
ro-voids. As a result of the dam-

age pro
esses, volume strains in relation to total strains, i.e. the plasti
 dilatation, was found

to be signi�
ant. [16℄ 
ondu
ted mole
ular dynami
 MD simulations to investigate the role of

deformation-indu
ed disentanglement to void nu
leation in amorphous glassy polymers. They


on
luded that disentanglement in
reases under highly triaxial stress states, whi
h results in void

nu
leation being in
reased. They also pointed out that porous regions are 
reated at the lo
ations

where almost all the polymer 
hains have slipped away ex
ept a few that are �rmly an
hored at

their ends and pulled taut.

Most of the 
urrent models are based on the assumption that the plasti
 deformation only

evolves be
ause of the development and propagation of shear bands without volume 
hanges.

Con
erning void growth, many of the inelasti
 damage models available for amorphous glassy

polymers are based on the expli
it knowledge of the yield surfa
e involving a large number of

material parameters to be identi�ed, 
f. [17�21℄. However, the damage pro
esses observed in

amorphous glassy polymers are 
omplex phenomena and their modeling seems to require su
h


omplexity. The models developed for metals have initially been 
onsidered for that purpose,


f. e.g. [22, 23℄. Based on plane strain �nite element simulations [24℄ investigated the e�e
ts

of pressure sensitive yielding and plasti
 dilatan
y on void growth and void mutual intera
tion.

They 
on
luded that void growth is promoted by pressure resulting higher porosity and void

intera
tion in the material during loading. A widely used dilatational plasti
ity model is the one

introdu
ed by [25℄ and later modi�ed by [26℄. The Gurson model is based on the assumption

that the deformation mode of the material surrounding a void is homogenous. A

ording to this

model, softening behavior in the material results from the growth of voids, i.e. the model does

not possess the intrinsi
 ability to predi
t lo
alized deformation by void 
oales
en
e.

The obje
tive of this work is to investigate the in�uen
e of damage me
hanisms on lo
alized

deformation of amorphous glassy polymers. Here, damage is as
ribed to the distributed growth

of void volume and 
razing during plasti
 deformation. The 
on
ept of free volume is employed

to des
ribe the voids or the loosely pa
ked regions in amorphous glassy polymers. In 
ontrast
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to rubber-toughened polymers, the void is 
onsidered as 
on
eptual with no 
lear physi
al in-

terpretation. However, sin
e the voids are uniformly distributed in the material, the growth of

voids is approximated by using the models whi
h are 
onventionally applied to the modeling of

void growth due to 
avitation of small rubber parti
les or impurities present in polymer-rubber

blends, 
f. e.g. [19℄.

The spe
i�
 model employed in this work is based on the 
elebrated 8-
hain version of the

[27℄ model, whi
h is here termed the BPA model. In this Extended BPA (EBPA) model, both

the elasti
 and plasti
 properties are 
onsidered as vis
ous. In order to evaluate the model pre-

di
tions for inhomogeneous deformation, 
old drawing experiments on PC were performed and

the model was implemented in a �nite element program. The EBPA model was 
alibrated to the

for
e-displa
ement responses for inhomogeneous deformation a
quired from 
old drawing experi-

ments on poly
arbonate spe
imens. It was shown that the parameters whi
h were obtained from


alibration to homogeneous deformation 
annot be used to satisfa
torily predi
t the experimental

response of inhomogeneous deformation. In order to �nd the me
hanisms that are able to ex-

plain this dis
repan
y, the number of entanglements, possible disentanglement, void growth and


razing are investigated and 
onsidered in a part of the EBPA model. Ma
ros
opi
 
onstitutive

relations in the EBPA model are augmented by using a modi�ed Gurson model, whi
h also takes

the nu
leation of new voids into a

ount. The role of damage me
hanisms in strain lo
alization

is addressed and the importan
e of rheologi
al properties employed in the model for regarding

me
hani
al behavior is investigated.

2 A

ount of state-of-the-art network models

Many of state-of-the-art network models are shown to be in good agreement with experiments

under monotoni
 loadings, 
f. e.g. [28�32℄. Moreover, most of the models in
lude a moderate

number of material parameters, whi
h is of a great importan
e in pra
ti
al appli
ations.

2.1 Kinemati
s

Sin
e state-of-the-art models mentioned above are based on the multipli
ative split, the elements

of this kinemati
al approa
h are brie�y reviewed. A

ording to the multipli
ative split, the plasti


deformation is de�ned through a lo
al intermediate 
on�guration and the deformation gradient

F is de
omposed into an elasti
 and a plasti
 
omponent given by

F = F eF p
(1)

where F p
and F e

de�ne the elasti
 and plasti
 
ontribution, respe
tively, 
f. [33℄. Moreover, the

deformation gradient 
an be given in terms of the rotation tensor R and the symmetri
, positive

de�nite stret
h tensor v as

F = vR. (2)

The split in (1) provides the relation for the spatial velo
ity gradient l, i.e.

l := Ḟ F−1 = le + lp (3)

where the elasti
 and plasti
 velo
ity gradients

le := Ḟ
e
F e−1, lp := F eL̄

p
F e−1, L̄

p
:= Ḟ

p
F p−1

(4)
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were de�ned in the spatial and intermediate 
on�guration, respe
tively. Spe
i�
ally, the quanti-

ties in the intermediate 
on�guration are highlighted by the bar. In the relations (3) and (4), a

superposed dot denotes the material time derivative. In many appli
ations, the de
omposition

of the spatial velo
ity gradient into it's symmetri
 and skew-symmetri
 parts is needed, i.e.

l = d+ ω (5)

where the symmetri
 part d := sym(l) is the rate of deformation and ω := skew(l) is the spin.
Substitution of (3) in (5) allows the symmetri
 and skew-symmetri
 part of the elasti
 and plasti


velo
ity gradients to be de�ned as

le = de + ωe, lp = dp + ωp, L̄
p
= D̄

p
+ W̄

p
(6)

where

de := sym(le), ωe := skew(le),

dp := sym(lp), ωp := skew(lp),

D̄
p
:= sym(L̄

p
), W̄

p
:= skew(L̄

p
).

(7)

For later use, the plasti
 deformation is given in terms of the plasti
 deformation tensor

C̄
p
:= F pF p,T

(8)

where the supers
ript, T, denotes the transpose. Based on (4) and (8) it is possible to extra
t

the rate of the plasti
 deformation tensor

˙̄Cp
, i.e.

˙̄Cp =
˙

F pF p,T = Ḟ
p
F p,T + F pḞ

p,T
= Ḟ

p
F p−1F pF p,T + F pF p,TF p−TḞ

p,T

= L̄
p
C̄

p
+ C̄

p
L̄

p,T
.

(9)

In many of state-of-the-art network models, the elasti
 
onstitutive des
ription is given in terms

of the elasti
 Finger tensor,

be := F eF e,T, (10)

de�ned in the spatial 
on�guration. Taking advantage of (4), the rate of the elasti
 deformation

tensor ḃ
e
takes the following form

ḃ
e
=

˙
F eF e,T = Ḟ

e
F e,T + F eḞ

e,T
= Ḟ

e
F e−1F eF e,T + F eF e,TF e−TḞ

e,T

= lebe + bele,T.
(11)

In a

ordan
e with (2), the polar de
omposition of F e
allows to de�ne the orientation of the

intermediate 
on�guration in terms of the left elasti
 stret
h tensor

ve :=
√
be (12)

and the elasti
 rotation Re
, i.e.

F e = veRe. (13)

Similar to (13), use is made of the polar de
omposition of the plasti
 deformation gradient,

F p = V̄
p
Rp, (14)

where Rp
is the plasti
 rotation and V̄

p
is the plasti
 stret
h de�ned in the intermediate 
on�g-

uration.
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√
3
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m̄

ϕ̄

θ̄

Figure 1: The 
hain geometry a

ording to the 8-
hain model in a) undeformed and b) deformed 
on-

�guration. The base ve
tors N̄α, α = 1, 2, 3, align with the unit eigenve
tors of V̄
p
. The dimension of

the undeformed element is a0 and λ̄p
denotes the plasti
 
hain stret
h whi
h appears in the dire
tion m̄.

The unit ve
tor m̄ is de�ned by the angles θ̄ and ϕ̄, whereas the plasti
 network stret
h λp
ec is related

to the dire
tion N̄ := 1/
√
3
∑

α N̄α.

2.2 Spe
i�
 
onstitutive model

Even if state-of-the-art network models are shown to be predi
tive under monotoni
 loadings,

a 
omparison with the experimental data reveals that they fail to 
apture a nonlinear response

during repeated or 
y
li
 loadings, 
f. [31, 32℄. Moreover, under long-term loadings, the models

typi
ally predi
t an overestimated re
overy and 
reep. In order to improve the model predi
tions

under these 
onditions, we have proposed an extension of the BPA model termed the EBPA

model, 
f. [34℄. In 
ontrast to referred state-of-the-art models, the EBPA model in
ludes both

vis
oelasti
 and vis
oplasti
 ingredients needed to 
ompensate for the short
omings of state-of-

the-art models.

τ

L
e(E1)η b)c)

ve
2

τ

L
e(E)

ve
1

a)

d) e)

τ̃ β

V̄
p

Figure 2: Rheologi
al representation of

the EBPA model involving the elements:

two elasti
 springs a) and b), a vis
oelasti


dashpot 
), two vis
oplasti
 dashpots d)

and a nonlinear Langevin spring e). Dif-

feren
e between the Kir
hho� stress τ and

the ba
kstress β de�nes the driving stress

τ̃ .

As with the BPA model, the mi
rostru
ture in the

EBPA model is represented by an overall 
hain network

whi
h 
onsists of 
ubi
 
ells, 
f. Fig. 1. The segments of

eight mole
ular 
hains extend from the 
enter point of

the 
ubi
 
ell along its diagonals. In large deformations,

the 
hains align with the prin
ipal plasti
 stret
hes of


ontinuum and results in an highly anisotropi
 response,


f. [28℄.

Fig. 2 shows a rheologi
al presentation of the EBPA

model whi
h 
onsists of an elasti
 spring a) in series with

two Kelvin-Voigt elements. The upper Kelvin-Voigt ele-

ment involves an elasti
 spring b) and a vis
ous dashpot


), both being solely a�e
ted by the elasti
 deformations.

The Kelvin-Voigt element is employed for predi
ting


reep and re
overy, while its 
ombination with the elas-

ti
 spring a) is aimed at des
ribing the stress relaxation.

The se
ond Kelvin-Voigt-like element 
omprises two vis-


oplasti
 dashpots d) arranged parallel with a nonlinear

spring e) whi
h results in the evolution of anisotropy in

large strains.

To improve the a

ura
y of the linear vis
oelasti


models in large multi-dimensional deformations, the multipli
ative split of the elasti
 deformation
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gradient F e
into a vis
ous and an elasti
 part is applied, i.e.

F e = F e
1F

e
2 (15)

where F e
1 and F e

2 de�ne the elasti
 stret
hing in the spring a) and b), respe
tively, 
f. Fig. 2.

The polar de
omposition of F e
1 and F e

2 allows to de�ne the orientation of the intermediate elasti



on�guration as

F e
1 = ve

1R
e
1 and F e

2 = ve
2R

e
2 (16)

where Re
1 and Re

2 are the elasti
 rotations and ve
1 and ve

2 are the elasti
 stret
h tensors, de�ned

in the spatial and the elasti
 intermediate 
on�guration, respe
tively. The split of the elasti


deformation gradient (16) is depi
ted in Fig. 3.

Taking noti
e of the stress equilibrium as shown in Fig. 2, the elasti
 
onstitutive law is given

as

τ = L
e(E) : lnve

1 = η :
d

dt
(lnve

2) +L
e(E1) : lnv

e
2 (17)

where the Young's moduli E and E1 relate to the elasti
 springs a) and b), respe
tively. Using

the shear modulus µ := E/2(1 + ν) and the bulk modulus κ := E/3(1 − 2ν), the fourth order

elasti
ity tensor is de�ned as

L
e := 2µ(I +

3κ− 2µ

6µ
i⊗ i) (18)

where ν is the Poisson's ratio and i and I are the spatial se
ond and fourth order identity tensors,

respe
tively. The 
omponents of L
e
in an orthonormal 
artesian 
oordinate system take the form

Le
ijkl := 2µ

[

1

2
(δikδjl + δilδjk) +

3κ− 2µ

6µ
δijδkl

]

. (19)

In general, the sti�ness of the vis
ous damper η is regarded as a fourth order tensor, given as

η = η1I + η2i⊗ i

where η1 and η2 are vis
osities that govern elasti
 shear and volumetri
 deformation, respe
tively.

They may also depend on temperature and the elasti
 strain rate, 
f. [35℄. Assuming η to be a

s
alar, only three new material parameters h2, E1 and η enter the proposed model.

Sin
e the proposed model relies on the assumption of small elasti
 stret
hes in relation to the

plasti
 stret
hes, the rate of plasti
 deformation D̄
p
is taken to align with the spatial normalized

dire
tion of τ̃ dev
, i.e.

D̄
p
:=

γ̇p√
2
n, n =

τ̃ dev

τ
, τ̃ dev := τ dev − βdev, τ :=

√

1

2
τ̃ dev : τ̃ dev

(20)

where β is the ba
kstress and γ̇p is de�ned subsequently. The supers
ript, dev, denotes the

deviatori
 
omponent. In 
ontrast to the BPA model, in whi
h the �ow rule is postulated in

terms of the Cau
hy stress σ, the Kir
hho� stress τ = Jeσ is applied in the EBPA model.

This 
hoi
e is motivated by the shear-type �ow rule (20) where the volumetri
 deformation is

suppressed. Noting that D̄
p
turns out to be deviatori
, the tra
e of (6)3 yields

trace(L̄
p
) = trace(D̄

p
) + trace(W̄

p
) = 0, (21)

whi
h reveals that the plasti
 deformation is iso
hori
, i.e. Jp := det(F p) = 1. It then follows

that J = Je := det(F e). In terms of a non-a�ne plasti
 network stret
h

λpec :=

√

trace(C̄
p
)/3 (22)
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X

N̄
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dX̄
p

N e

dxe
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dxR

Rp
V̄

p

Re

ve

R

v

N̄

dX̄

N e
1

dxe
1

x

dx

N eR
2

dxeR
2

N eR
1

dxeR
1

N e

dxe

Re
1

Re
2

ve
2

ve
1

ve

Re

F e
2

F e
1

F e

Figure 3: Deformation of a solid body and the mappings between di�erent 
on�gurations. The polar

de
omposition of the deformation gradient based on the left stret
hes v, V̄
p
and ve

(left). The split of

the elasti
 deformation gradient F e
into the elasti
 and vis
ous part F e

1 and F e
2 (right). In terms of the

left stret
hes ve
, ve

1 and ve
2, the polar de
ompositions are also presented.

and the inverse Langevin fun
tion χ := L
−1(λpec/

√
N), the anisotropi
 hardening in the EBPA

model is des
ribed by the ba
kstress. In the intermediate 
on�guration, the prin
ipal 
omponents

are given by

B̄dev
α =

CR

3λpec

√
NL

−1(
λpec√
N
)
(

(λ̄pα)
2 − (λpec)

2
)

, α = 1, 2, 3,
(23)

where CR is a material parameter, λ̄pα are the prin
ipal plasti
 stret
hes and N is the number of

statisti
al links of length l between the physi
al entanglements. A

ording to non-Gaussian 
hain

statisti
s, the �nite extensibility of 
hain is rL = Nl while the undeformed length is r0 =
√
Nl and

thus the 
hain lo
king stret
h is given by λL = rL/r0 =
√
N . The spatial form of the deviatori


ba
kstress βdev
needed in (20) is obtained by push-forwarding B̄

dev
by F e

. The inverse Langevin

fun
tion present in (23) results in a strong in
rease in the ba
kstress as the stret
h in the 
hains

rea
hes the limit λL.

The me
hani
al behavior of amorphous glassy polymers is des
ribed by an almost elasti
 initial

response whi
h is followed by strain softening and subsequent strain hardening. This "S-shaped"

behavior in the EBPA model results from mixed isotropi
 and kinemati
 hardening. The isotropi


hardening is due to the intermole
ular resistan
e to 
hain segment rotation and it is modeled by

two vis
oplasti
 dashpots, 
f. element d) in Fig. 2. The evolution of the plasti
 deformation is

governed by

γ̇p = γ̇0 exp
(

−Ass
T

(1− (
τ

Jess
)
5

6 )
)

, (24)


f. [1℄. Later, [27℄ extended a 
onstant athermal shear stress ss to in
lude the pressure e�e
t by
taking ss = s+αp to evolve to the saturation value sss. In equation (24), γ̇0 is a pre-exponential
fa
tor, A is proportional to the a
tivation volume, p = −trace(σ)/3 is the pressure, α is a pressure

dependen
e fa
tor and T is the absolute temperature. The extra dashpot is aimed at in
reasing

the isotropi
 hardening e�e
t and thereby suppress the in�uen
e of kinemati
 hardening. The

original and extra dashpot are modeled by the two internal state variables s1 and s2 giving an

additional in
rease to the shear resistan
e, i.e.

s = s1 + s2. (25)
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Table 1: Summary of the EBPA model.

1. Kinemati
s: F = F eF p, F e = F e
1F

e
2 = veRe, Re

is unity, be1 := F e
1F

e,T
1 ,

ve
1 :=

√

be1, Re
1 is unity, be2 := F e

2F
e,T
2 , ve

2 :=
√

be2, C̄
p
:= F pF p,T.

2. Stress: τ := 2µ(ln ve
1)

dev + κ ln Je
1i, Je

1 = det(F e
1).

3. Mi
ro-ma
ro transition: λp
ec =

1√
3

√

trace(C̄
p
) ∈ (0,

√
N).

4. Flow rule: D̄
p
= γ̇pn, n :=

τ̃ dev

√
2τ

, τ̃dev := τdev − βdev, τ :=

√

1

2
τ̃dev : τ̃ dev.

5. Ba
kstress: B̄
dev

=
CR

3λp
ec

√
NL

−1(
λp
ec√
N

)(C̄
p
)dev push-forward → βdev

6. Isotropi
 hardening: γ̇p := γ̇0 exp
(

−Ass
T

(1− (
τ

Jess
)
5

6 )
)

, Je = det(F e), p = −1

3
trace(σ),

ss = s+ αp, s is given by (25) and (26), and s(0) = s0.

The internal variables s1 and s2 evolve a

ording to

ṡ1 = h1(1− s1/sss)γ̇p, s1(0) = s0,

ṡ2 = h2(1−H(s2 − s̄2))γ̇p, s2(0) = 0
(26)

where the parameters h1 and h2 
ontrol the approa
h of s1 and s2 to sss and s̄2, respe
tively. H
is the Heaviside-fun
tion whi
h prevents an ex
essive hardening e.g. during 
y
li
 loading. The

threshold argument s̄2 
an be found experimentally.

Taking note of (24) and (26)2 reveals that ṡ2 is positive and thus, s2 is monotoni
ally in-


reasing. It then follows that the amount of isotropi
 hardening in relation to the amount of

kinemati
 hardening in
reases and as a result the evolution of the ba
kstress suppresses in the

EBPA model. A redu
ed evolution of the ba
kstress is of major importan
e at a low-stress

level, where the plasti
 evolution is parti
ularly governed by the ba
kstress. The EBPA model

is summarized in Table 1.

2.3 Calibration of the EBPA model to homogeneous deformation

In order to evaluate the 
apability of the EBPA model, uniaxial 
ompression tests involving


omplex loading situations were simulated. The parameters employed in the simulations are

listed in Table 2. Fig. 4 shows 
apability of both the original BPA model and the EBPA model

to predi
t the true stress vs strain response under repeated unloadings. Even if the EBPA model

overpredi
ts re
overy during the �rst 
y
le, it is superior to the BPA model during subsequent


y
les. Sin
e the EBPA model has been shown to well 
apture the experimental response during


omplex loading situations, 
f. also [34℄, the subsequent 
onsiderations will be based on this

model.
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Figure 4: Uniaxial 
ompression response for bisphenol A poly
arbonate a

ording to a) the BPA model

and b) the EBPA model. The repeated unloadings are performed to progressively in
reasing strain levels

ǫ = 0.05, 0.13, 0.27, 0.45 and 0.59 and then the stress level σ = 1.2 MPa is kept �xed for a dwell time

12,000 s. Experimental data is taken from [31℄.

3 Investigation of ne
king of dumbbell shaped spe
imen

To evaluate the 
apability of the EBPA model and its numeri
al implementation to predi
t

inhomogeneous deformation behavior, 
old drawing experiments on PC-spe
imen were 
ondu
ted.

Cold drawing, whi
h typi
ally results in ne
k propagation on a amorphous glassy polymers, is

frequently used method for the produ
tion of anisotropy in polymers. The tests were performed

by using the Instron


©
5967 tension/
ompression ele
trome
hani
al testing ma
hine 
ontrolled by

Blue Hill 3 software. A layout of the testing arrangement is shown in Fig. 5.

The test spe
imen under 
onsideration is dumbbell-shaped and it is fabri
ated from Lexan

r

223R PC-polymer. During drawing, the applied load f and the elongation u were monitored. To

prevent an in
rease in temperature due to the dissipative heating, a slow 
ross head speed u̇ = 2
mm/min was applied. Moreover, the elongation of the spe
imen was restri
ted to u = 0.3L ≈ 40
mm to avoid lo
alized deformation at the interfa
e of the gauge se
tion and the grips. A more

detailed a

ount for the test program involving repeated loading 
y
les is found from [34℄.

Snapshots of the dumbbell shaped test spe
imen during drawing are depi
ted in Fig. 6. The

sele
ted stages of deformation show the initiation, stabilization and propagation of ne
k. The

Table 2: Constitutive parameters of the BPA and EBPA model for bisphenol A poly
arbonate (BPA-PC)

and PC. Moreover, E1 = 0.3E in the EBPA model. The parameters for BPA-PC are obtained from the


alibration to uniaxial 
ompression tests performed at room temperature under monotoni
 loading, 
f.

[31℄. The 
alibration of the EBPA model on PC is based on the uniaxial and plane strain 
ompression

experiments given in [28℄. The BPA model parameters for PC are taken from [36℄.

E η s0 sss h1 h2 γ̇0 A CR N α

BPA-PC MPa MPas MPa MPa MPa MPa s−1
MPa

−1K MPa

BPA 2300 99 73.0 370 2 · 1015 241 14.0 1.85 0.08

EBPA 3700 5.0 · 104 100 56.5 205 40 5.6 · 1015 241 14.0 2.20 0.08

PC MPa MPa MPa MPa MPa s−1
MPa

−1K MPa

BPA 2300 97 76.6 500 2.0 · 1015 240 12.8 2.15 0.08

EBPA 3300 6.0 · 104 96 61.0 170 10 5.4 · 1015 240 17.8 2.42 0.08
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Figure 5: The illustration of the testing arrangement. The displa
ement at y = 0 is �xed by a grip

and the elongation u at the other end y = L is pres
ribed. The geometry of the dumbbell-shaped test

spe
imen is given by H/L ≈ 0.90, w/L ≈ 0.17, w2/L ≈ 0.09 and t/L ≈ 0.035 where t is the spe
imen's

thi
kness. The details of the spe
imen's geometry are spe
i�ed in ISO 527-2. The shown �nite element

dis
retization is of a mesh with 4-node plane elements.

ne
k in the test spe
imen is rather di�use, i.e. the lo
alized zone extends and rea
hes rapidly the

end of the gauge se
tion.

The EBPA model was 
alibrated to the for
e-displa
ement responses a
quired from the 
old

drawing experiments on poly
arbonate spe
imens. To trigger the lo
alization in the simulation

of the test, a small initial imperfe
tion was introdu
ed

∆w2 = w2ξ0, (27)

i.e. the width of the gauge se
tion at y = ȳ is w2−∆w2, 
f. Fig. 5. During the experiment, ne
k

was observed to initiate near the 
enter of the spe
imen, i.e. ȳ = L/2. In 
alibration, the plane

strain mode, espe
ially in the gauge se
tion, was assumed to be a

urate enough.

Due to the symmetry of the geometry and boundary 
onditions, only a quarter of the spe
imen

was 
onsidered in the numeri
al analysis. The �nite element dis
retization employed is of a mesh

Table 3: The values of the EBPA and the BPA model parameters. Moreover, E1 = 0.3E in the EBPA

model. Calibration of the models is based on the 
old drawing experiments of the dumbbell-shaped

PC-spe
imen. The intensity of the initial imperfe
tion in (27) is set to ξ0 = 0.002.

E η s0 sss h1 h2 γ̇0 A CR N α

MPa MPas MPa MPa MPa MPa s−1
MPa

−1K MPa

EBPA 2550 1.5 · 105 96 76 720 40 5.6 · 1015 241 14 2.2 0.08

BPA 2300 99 73 370 2 · 1015 241 14.0 1.85 0.08
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Figure 6: Snapshots of a dumbbell shaped test spe
imen during elongation: u = 10 mm, u = 20 mm,

u = 30 mm and at the end of the loading u = 40 mm. Based on the EBPA model the deformed shapes

are visualized by the plasti
 stret
h λ̄p
ec at three di�erent phases: u = 10 mm, u = 20 mm and at the

end of the loading. The �nite element dis
retization employed is of a mesh with 4-node plane elements.

with 196 4-node plane elements. The numeri
al treatment of the model is dis
ussed in Appendix

A. The 
alibrated parameters are given in Table 3. For later purposes, also the BPA model

parameters, whi
h were obtained from the 
alibration to the same data, are presented in Table

3.

The numeri
al investigations indi
ated that the original BPA model is relative-well able to

predi
t the inhomogeneous deformation behavior by using the material parameters obtained from

the 
alibration to a homogeneous deformation mode. As far as the EBPA model is 
on
erned,


omparison of Tables 2 and 3 reveals that the parameters whi
h were obtained from 
alibration

for homogeneous deformation 
annot be used to satisfa
torily predi
t the experimental response

of inhomogeneous deformation. Even if the material of the spe
imen slightly di�ering from the

PC-polymer employed in the tests for homogeneous deformation, this dis
repan
y 
annot entirely

be explained either by the lo
alization phenomena or boundary e�e
ts.

To investigate the in�uen
e of negle
ted volume 
hanges (geometri
 softening) on the ne
k

propagation, the EBPA model was also implemented in a three-dimensional �nite-element 
ode.

The �nite element dis
retization 
onsists of a mesh with 8-node linear hybrid bri
k elements with


onstant pressure. Based on the two and three dimensional �nite element analyses, Figs. 6 and 7

show the deformed shapes of the spe
imen during drawing. As the strains below the ma
ro yield

point are yet small, the material behavior is vis
oelasti
 and the stret
h �eld is uniform. During


ontinued deformation, lo
alized zone develops in the the 
enter of the spe
imen and starts to

extend towards the grips.

Even if the dis
retization of the mesh with the plane elements fails to present the deformed

shape in the thi
kness dire
tion, 
omparison of the EBPA model results in Figs. 6 and 7 indi
ates

that the deformation mode has not marked in�uen
e either on the ne
k propagation or on the

intensity of plasti
 stret
hing. The thi
kness redu
tion ratio t/t0 in the middle of the spe
imen is

also presented in Fig. 7. Early on ne
king u/H = 0.15, the observed and EBPA model results are

virtually indistinguishable. On
e the elongation of u/H = 0.15 is passed, the thi
kness redu
tion
ratio tends asymptoti
ally to the limit t/t0 = 0.85.

In 
on
lusion, the di�eren
e between the model 
alibrations for homogeneous and inhomoge-

neous deformation is not a result of the lo
alization phenomena or volume 
hanges shown in Fig.

11



0 0.05 0.1 0.15
0.85

0.9

0.95

1

PSfrag repla
ements

u/H

t/
t 0

+

•

Figure 7: Based on a three-dimensional �nite-element 
ode of the EBPA model, the deformed shapes

of the spe
imen during the stabilized ne
k, u = 15 mm, u = 20 mm and u = 35 mm, are visualized

by λ̄p
ec. The thi
kness-redu
tion ratio t/t0 at x = 0 and y = (L + u)/2 (right). The markers • and +

denote the thi
kness ratio a

ording to the model and the experiment, respe
tively. The �nite element

dis
retization is of a mesh with 8-node linear hybrid bri
k elements.

7. Instead, the dis
repan
y is due to the EBPA model's ability to 
apture the time dependent

(vis
ous) deformation behavior. The time dependent behavior is one 
onsequen
e of the ma
ro-

mole
ular 
hara
ter of polymers, i.e. the polymer 
hains need a relaxation time to attain their

equilibrium state after deformation. In order to �nd the me
hanisms that are able to explain

the dis
repan
y in more detail, several fa
tors, su
h as the number of entanglements, possible

disentanglement, void growth and 
razing, are investigated and they are 
onsidered in a part of

the EBPA model.

4 Investigation of the damage behavior

The obje
tive of this se
tion is to investigate the in�uen
e of damage on lo
alized deformation

behavior. In subsequent 
onsiderations, damage is as
ribed to the distributed growth of void

volume and 
razing during plasti
 deformation. Here, the 
on
ept of free volume is employed

to des
ribe the voids or the loosely pa
ked regions in the PC under 
onsideration. In 
ontrast

to rubber-toughened polymers, the void is 
onsidered as 
on
eptual with no 
lear physi
al in-

terpretation. However, sin
e the voids are uniformly distributed in the material, the growth of

voids is approximated by using the models whi
h are 
onventionally applied to the modeling

of void growth due to 
avitation of small rubber parti
les (se
ond-phase parti
les) or impurities

present in polymer-rubber blends. An example of these polymer blends is PC in
orporating small

polya
rylonitrile-butadiene-styrene (ABS) parti
les, 
f. e.g. [19℄.

Due to the existen
e of voids around the 
hain mole
ules, the yield behavior of amorphous

glassy polymers depends on hydrostati
 pressure. The damage me
hanism is s
hemati
ally illus-

trated in Fig. 8. During nu
leation and initial growth of voids, the deformation is 
onsidered

as homogeneous. On
e the voids have grown and the 
oales
en
e of voids is initialized, the

transformation to the lo
alized deformation phase takes pla
e.

12



a) b) 
) d)

Figure 8: A s
hemati
 representation of the dilatational damage me
hanism: a) nu
leation of voids, b)

void growth, 
) initialization of void 
oales
en
e and d) the 
oales
ed voids.

A widely used dilatational plasti
ity model is the one introdu
ed by [25℄ and later modi�ed by

[26℄. The Gurson model is based on the assumption that the deformation mode of the material

surrounding a void is homogenous. A

ording to this model, softening behavior in the material

results from the growth of voids, i.e. the model does not possess the intrinsi
 ability to predi
t

lo
alized deformation by void 
oales
en
e. Due to a low initial void volume, the voids are assumed

to be
ome 
oales
ed in very large strains, i.e. void growth is only as
ribed to the nu
leation of

new voids instead of void 
oales
en
e.

4.1 Modeling of void growth

In order to investigate the damage behavior 
aused by void growth, ma
ros
opi
 
onstitutive

relations in the EBPA model are modi�ed by using an augmented Gurson model, whi
h also

takes the nu
leation of new voids into a

ount.

Sin
e the voids are assumed to be spheri
al in shape and uniformly distributed, the damage

evolution is assumed to be isotropi
 and it is represented by a single s
alar termed a void volume

fra
tion fv = dVv/dV having the initial value 0 ≤ fv0 ≤ fv < 1. The in�nitesimal volume dVv
represents the volume 
hange o

upied by the voids and dV is the total volume 
hange of the

representative volume element (RVE). As with the Ja
obian J , whi
h is de�ned as the ratio of the

urrent volume 
hange dV and the initial volume 
hange dV0 as J := dV/dV0, the void volume

fra
tion 
an be represented as Jv := dV/dVm, where dVm = dV − dVv is the volume 
hange

o

upied by the matrix material.

Sin
e the inelasti
 Gurson potential Φp
a
ts as both a yield fun
tion and a potential for plasti


�ow, the theory is 
onsidered as asso
iative. To better predi
t the instability in the material due

to the intera
tion of voids, [26℄ proposed a modi�ed Gurson damage model in whi
h the inelasti


potential is given by

Φp(τ, fv, τm, τe) = τ 2 + 2fvq1τ
2
e cosh(

3

2
q2
τm
τe

)− τ 2e (1 + q21f
2
v ) (28)

where τm := 1/3trace(τ ) is the ma
ros
opi
 mean stress. In a

ordan
e with the previous

approa
hes by [26, 37℄, the mi
ros
opi
 e�e
tive stress of the solid ligaments τe is introdu
ed sep-

arately from the ma
ros
opi
 e�e
tive stress τ . The mi
ros
opi
 e�e
tive stress τe is determined

from the 
ondition Φp = 0. Sin
e the volumetri
 deformation is suppressed in the �ow rule (20),

it is generally inappropriate for modeling damage. Based on the potential (28), the rate of plasti


deformation is governed by the modi�ed normality rule

dp = Λ̇p∂Φ
p

∂τ
(29)
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whi
h allows dilative plasti
 �ow to be evolved in the material. The s
alar valued parameter Λ̇p

is de�ned below. The kinemati
 hardening e�e
t is in
luded in the model via the ma
ros
opi


e�e
tive stress τ(τ̃ ), whi
h was de�ned by (20). As with the BPA model, the intrinsi
 softening

is modeled via the athermal shear strength s1, whi
h is taken to evolve a

ording to (26)1. The

isotropi
 hardening e�e
t is enfor
ed by the internal variable s2 given by (26)2.

In 
ontrast to the original Gurson spheri
al model for in
ompressible, rigid-plasti
 material,

[26℄ suggested that the values q1 = q2 = 1 in (28) need to be repla
ed by q1 = 1.5 and q2 = 1.0 to
better 
apture bifur
ation away from the nominally homogeneous deformation. For amorphous

glassy polymers, however, the 
onstant values of q1 and q2 
annot satisfa
torily predi
t either

void growth or the 
hange of the void shape during deformation. To 
apture the expe
ted


hara
teristi
s of void growth, [20℄ suggested that q1 and q2 should be 
onsidered as internal

variables given by the following empiri
al power laws:

q1 = q10(1 + cpv)
Nv , q2 = q20(1 + cpv)

Nv
(30)

where q10, q20, c and Nv are positive 
onstitutive parameters and pv denotes an internal variable

de�ned subsequently. The low values of q10 and q20 indi
ate weak intera
tions between the voids

while softening in the material de
reases, 
f. [20℄. In the �ow rule (29), a s
alar parameter Λ̇p

was introdu
ed. This 
an be determined from equivalen
e between the plasti
 power whi
h is

dissipated into the porous media and into the 
orresponding solid ligaments between the voids,

i.e.

τ̃ : dp = (1− fv)
√
2τeṗv. (31)

In the equation (31), ṗv denotes the e�e
tive plasti
 strain rate, whi
h is 
hosen to be equal to

the plasti
 shear strain rate γ̇p given in (24). Sin
e γ̇p is positive, γp is monotoni
ally in
reasing

and as a result the variables q1 and q2 given by (30) in
rease during deformation. It then follows

from (29) and (31) that

Λ̇p =
√
2(1− fv)τeγ̇p(τ̃ :

∂Φp

∂τ
)−1.

Based on the normality rule (29), the rate of plasti
 deformation takes the following form

dp =
√
2(1− fv)γ̇pτe(2τ 2 + Ξtrace(τ̃ ))−1(τ̃ dev + Ξi),

Ξ := q1q2fvτe sinh
(3

2
q2
τm
τe

)

.
(32)

It should be noti
ed that the 
ondition Φ = 0 yields τe = τ if q10 = q20 = 0, i.e. no intera
tion

between the voids exists. Under this 
ondition, a realisti
 assumption is that damage does not

evolve, i.e. ḟv = 0 and the normality rule (32) is equal with (20) for the plasti
 deformation

through shear yielding.

The damage pro
ess due to the presen
e of voids 
an be separated into the two phases, 
f.

Fig. 8(a-b) and (
-d). First, the homogenous deformation takes pla
e with void nu
leation and

initial growth, whi
h is followed by the lo
alized deformation due to 
ontinued void growth and

void 
oales
en
e. Sin
e void 
oales
en
e is negle
ted here, the evolution law for these two phases


an additively be de
omposed as

ḟv = ḟg + ḟn, fv(0) = fv0 (33)

where ḟg and fn des
ribe the growth of existing voids and the nu
leation of new voids, respe
tively.

To de�ne their evolution laws, let us �rst 
onsider the void volume fra
tion only due to growth

of existing voids de�ned as fg = dVg/dV . The initial value ranges between 0 ≤ fg0 ≤ fg < 1.
As with the volume fra
tion Jv

, the void volume fra
tion due to growth of existing voids 
an be
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represented as Jg := dV/dVmg, where dVmg = dV − dVg is the volume 
hange o

upied by the

matrix material due to growth of existing voids. The relation between Jg
and fg be
omes

fg = 1− 1

Jg
. (34)

Taking note of (34), lead us to the following evolution equation

˙ln Jg =
J̇g

Jg
=

ḟg
1− fg

. (35)

Assuming also that void growth takes pla
e only due to the plasti
 deformation, i.e. Jg = Jp
in

(35), and applying Liouville's theorem to F p
yield

ḟg = 3(1− fg)Dp

h. (36)

In the evolution equation (36), Dp

h := 1/3trace(dp) is the plasti
 volumetri
 strain rate, 
f. [25℄.

In many amorphous glassy polymers, the nu
leation of new voids is also assumed to be sig-

ni�
ant but the pro
ess is not well understood yet. It is a material intrinsi
 property being

dependent on the strength of the polymeri
 material as well as on the size and shape of existing

voids. Large voids usually nu
leate new voids earlier than small voids, and in
lusions with di�er-

ent length s
ales may also lead to di�erent nu
leation 
riteria, 
f. [38℄. To 
apture the a

elerated

damage due to the nu
leation of new voids, [39℄ proposed the following strain-
ontrolled law for

the nu
leation rate

ḟn =
fN

sv
√
2π

exp
(

−1
2

(γp − εN
sv

)2)

γ̇p (37)

where fN is a material parameter. The mean value εN of the normal distribution des
ribes the


riti
al strain beyond whi
h the �rst new voids appear. Sin
e not all the in
lusions or parti
les

will nu
leate new voids, the parameters fN, εN and the standard deviation sv are averagely

determined from 
alibration to the material's ma
ros
opi
 response.

One important aspe
t is the ability of the proposed model to a

ount for the real deformation

behavior as well as quantitative damage predi
tion. For the numeri
al evaluation of the model,

it is implemented in a �nite element program and the 
onstitutive equations (17) and (26) are


ompleted by the integration of the void volume fra
tion rates given by (36) and (37). It should

be noti
ed that the plasti
 shear γp, whi
h is needed in (37), is available from the solution of

the hardening variable s2, 
f. (26). Moreover, the rate of plasti
 deformation is governed by the

normality rule (32). The numeri
al treatment of the model is dis
ussed in Appendix A.

Thermodynami
s

Based on the multipli
ative splits (1) and (15) and the existen
e of the �eld variable Jv
thermo-

dynami
al treatment of the proposed model is presented, 
f. [34, 40℄. Without loss of generality,

the 
onsiderations are presented in the spatial 
on�guration. Assuming isothermal 
onditions

to prevail, thermome
hani
al potential ϕ, also 
alled Helmholz' free energy per unit volume, is

given by

ϕ = ϕ̂(be1, C̄
p
, Jv, ψ) = ϕe(be1, J

v) + ϕp(C̄
p
) + ψ(be2) (38)

where ϕe
and ϕp

are the elasti
 and the plasti
 part of the free energy, respe
tively, and the

potential ψ is de�ned subsequently. The plasti
 deformation tensor C̄
p
was de�ned by (8),

be2 := F e
2F

e,T
2 = (ve

2)
2

and be1 := F e
1F

e,T
1 = (ve

1)
2

(39)
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is the elasti
 deformation tensor. To derive the 
onstitutive relations for the stresses, advantage

are taken of the developments by [41, 42℄. Taking the symmetri
 part of (3) and 
onsidering the

produ
t de
omposition (15) yields

d = de + dp = de
1 + de

2 + dp
(40)

where

de
1 := sym(Ḟ

e

1F
e−1
1 ), de

2 := sym(F e
1l̄

e

2F
e−1
1 )

and

l̄
e

2 := Ḟ
e

2F
e−1
2 . (41)

In terms of the internal power W
int

and the rate of the free energy ϕ̇, the dissipation per unit

volume in the spatial 
on�guration is governed by

D = W
int − ϕ̇ := τ : de

1 + τ : de
2 + τ p : dp +

1

3
trace(τ v) ˙ln Jv − ϕ̇ ≥ 0 (42)

where trace(τ v) and τ p
represent the internal mi
rostresses work 
onjugate to

˙ln Jv
and dp

,

respe
tively. Spe
i�
ally, trace(τ v) is the mean stress needed to rea
h the volume 
hange due to

void growth, i.e. it di�ers from the mi
ros
opi
 e�e
tive stress τ e of the solid ligaments between

the voids. The rate of the free energy ϕ̇ in (42) be
omes

−ϕ̇(be1, C̄
p
, Jv, ψ) = −∂ϕ

e(be1)

∂be1
: ḃ

e

1 −
∂ϕp(C̄

p
)

∂C̄
p : ˙̄Cp − Jv∂ϕ

e(Jv)

∂Jv

˙ln Jv − ψ̇ (43)

where ψ̇ := τ 2 : d
e
2. Taking advantage of (11) and noting the free energy being isotropi
 tensor

fun
tion of be1 lead us to the following expression

∂ϕe

∂be1
: ḃ

e

1 = 2
∂ϕe

∂be1
be1 : d

e
1, (44)


f. e.g. [43℄. Applying (9) and assuming that the plasti
 part of the free energy is an isotropi


fun
tion of C̄
p
gives

∂ϕp

∂C̄
p : ˙̄Cp = 2sym(

∂ϕp

∂C̄
p C̄

p
) : D̄

p
=: B̄ : D̄

p
(45)

where the prin
ipal 
omponents of the ba
kstress B̄ in the intermediate 
on�guration are de�ned

as

B̄α :=
CR

3λpec

√
NL

−1(
λpec√
N
)(λ̄pα)

2, α = 1, 2, 3,
(46)


f. (23). The plasti
 part of the free energy ϕp
and a detailed a

ount to obtain the ba
kstress,

whi
h equals with equation (46), 
an be found e.g. from [36℄. In the present models, the

ba
kstress represents the non-dissipative stress, i.e. a part of the plasti
 work whi
h is stored in

the material during deformations. Substituting (44) and (45) into the dissipation inequality (42)

yields

D :=

(

τ−2∂ϕ
e

∂be1
be1

)

: de
1+(τ−τ 2) : d

e
2+(τ p−β) : dp+(

1

3
trace(τ v)−Jv ∂ϕ

e(Jv)

∂Jv
) ˙ln Jv ≥ 0 (47)

where β is the ba
kstress expressed in the spatial 
on�guration. Using the arguments by [44℄

turns out the following expressions

τ = 2
∂ϕe

∂be1
be1 (48)
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and

trace(τ v) = 3Jv∂ϕ
e(Jv)

∂Jv
(49)

for the stress and the mi
rostress, respe
tively. Consistent with the internal power W
int
, de

2

appears linearly in (47) and thus τ 2 = τ . Taking advantage of (48), the lo
al dissipation (47)

redu
es to

D := τ̃ : dp ≥ 0, τ̃ := τ p − β
(50)

where τ̃ is the thermodynami
 driving stress.

Assuming the 
hoi
e τ p := τ satis�es the 
ondition (50). Sin
e γ̇p is positive, also the

mi
rostress of the ligaments τe must be positive in (31). However, this 
ondition must be handled
with 
are, sin
e it is not generally satis�ed by the solution of Φp = 0, 
f. (28).

Sin
e the polymer 
hains in the EBPA model are assumed to be randomly oriented in spa
e,

use is made of an isotropi
 strain energy,

ϕ =
1

2
κ(Ie1)

2 + 2µJe
2 , (51)

where κ and µ are the bulk and shear modulus, respe
tively. The logarithmi
 invariants needed

in Eq. (51) are de�ned as

Ie1 := trace(lnve
1) = ln Je

1 and Je
2 := 1/2(lnve

1)
dev : (lnve

1)
dev.

Using the spe
i�
 strain energy (51) in (48), the Kir
hho� stress takes the following form

τ = 2µ(lnve
1)

dev + κ lnJe
1i =: Le : lnve

1 (52)

where L
e
was de�ned in (18). Similar to (34), a relation between the void volume fra
tion fv and

Jv

an be derived. In analogy with (35), the evolution equation for d(lnJv)/dt in terms of ḟv 
an

be expressed, i.e. both void growth and shrinkage are allowed without the thermodynami
s being

violated. Also, the dependen
e of the strain energy (51) on Jv
through the elasti
 
onstitutive

parameters κ and µ 
an be de�ned. Several possible models 
an be found for the dependen
e of

κ and µ on fv, 
f. e.g. [45, 46℄.

4.2 Calibration and evaluation of the augmented EBPA model for void

growth

The augmented Gurson model in 
onjun
tion with the EBPA model is 
alibrated to data obtained

from the 
old drawing experiment. In the 
alibration, the �nite element dis
retization is of a

mesh with 196 4-node plane elements, i.e. the same element mesh as before is employed. It


an be assumed that the void volume fra
tion has only a small in�uen
e on the elasti
 material

properties in porous media, 
f. [46℄, and thus the elasti
 
onstitutive parameters are 
onsidered

as 
onstant. Con
erning damage, the 
alibration is initialized using the parameters for rubber-

toughened PMMA (RTPMMA) taken from [20℄. Both the 
alibrated and the parameters for

RTPMMA are listed in Table 4. In the subsequent simulations, the lo
alization is triggered

a

ording to (27) using ξ0 = 0.002. Calibration also indi
ated that

- the growth of void volume suppresses the isotropi
 softening e�e
t,

- the 
hange in the initial void volume fra
tion from fv0 = 0 to fv0 = 0.05 only has a small

e�e
t on the ma
ros
opi
 f − u response,
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Figure 9: a) In�uen
e of the parameter h1 on void growth, whi
h is represented by the norm of void

volume fra
tion ‖fv‖ :=
√

∑

i(fv,i · fv,i) where fv,i are the extrapolated values of void volume fra
tion

at the nodes of the mesh. b) f − u responses a

ording to the test and the model. The deformed shapes

at u = 20 mm and at the end of loading are visualized by void volume fra
tion fv. The highest porosity
fv is highlighted in white.

- the values c > 0, whi
h in�uen
e damage evolution via (30), redu
e void growth.

Sin
e the PC polymer under study is not interspersed by small rubber parti
les, and the

in�uen
e of a low initial void volume fra
tion on the ma
ros
opi
 response is negligible, we set

fv0 = 0.

Fig. 9 presents the total growth of void volume and the in�uen
e of the hardening slope h1
on the void growth. The values ranging between 385 − 560 MPa are seen to have only a minor

e�e
t on void growth and thus the minimum value will be used in further 
onsiderations. Fig.

9 shows also the for
e vs elongation response a

ording to both the test and the EBPA model.

Even if the responses deviate during the softening phase, the model is well able to 
apture the

initiation and stabilization of ne
k. Comparison of Figs. 9(a-b) reveals that the void nu
leation is

Table 4: Constitutive parameters of the damage model for RTPMMA and PC. Calibration of the pro-

posed model is performed to data obtained from the 
old drawing experiment on PC. The RTPMMA

parameters are taken from [20℄.

η h1 sss εN sv fN q10 q20 
 Nv

MPas MPa MPa

RTPMMA 0.03 0.15 0.15 0.9 1.2 0.2 1.5

EBPA for PC 1.5 · 105 385 61 0.03 0.15 0.05 1.5 1.0 0.2 1.5
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Figure 10: Distribution of the plasti
 stret
h λ̄p
ec at the end of loading (u = 40 mm) a

ording to the

BPA model (on the left), the EBPA model and the EBPA model in 
onjun
tion with the damage model

(on the right). The simulation based on the damage model is performed using the 
alibrated material

parameters given in Table 4.

prohibited until the elongation u ≈ 6 mm is rea
hed. This threshold 
orresponds approximately

to the elongation prior to the yield drop. On
e the yield point in the stress response is passed,

void growth develops and in
reases the porosity in the lo
alized zone. During stabilized ne
k,

voids grow rapidly in the material. Similar to the plasti
 stret
hing, the highest values appear

in a region whi
h gradually expands from the 
enter of the spe
imen towards the grips during

elongation. At the end of loading, the porous region 
overs the gauge se
tion entirely, and the

highest porosity o

urs in the two separate regions beyond the mid-plane, y = (L+ u)/2.
Having less intrinsi
 softening due to void growth allows the softening slope h1 and the

intensity sss/s0 to be redu
ed to a level whi
h agrees more 
losely with the values obtained

from the 
alibration for homogeneous deformation, 
f. Table 2. As a 
onsequen
e, the intensity

sss/s0 = 0.80, whi
h appears in Table 3 and was previously employed in the EBPA model, is

redu
ed to 0.65. Moreover, the value h1 = 385 MPa is virtually two times lower 
ompared to its

pre
eding value in Table 3. It 
an be 
on
luded that the di�eren
e between the 
alibrations for

homogeneous and inhomogeneous deformation is strongly a�e
ted by void growth in the material.

Based on the model simulations the plasti
 stret
h distributions are highlighted in Fig. 10. It


an be observed that damage redu
es the intensity of the plasti
 stret
hing, while the lo
alized

deformation expands more rapidly along the spe
imen. A glan
e at Fig. 6 reveals that the ne
ked

region, whi
h is predi
ted by the 
ombined EBPA and the damage model, rea
hes the end of the

gauge se
tion simultaneously with the experiment. Assuming the lo
alization of plasti
 stret
hing

is representative for the evolution of shear banding, the kinemati
 hardening, whi
h is enfor
ed

by void growth, is seen to promote lo
alization through widening of shear bands.

As has been shown, the EBPA model, along with the augmented Gurson model for void

growth, is able to predi
t the transformation from the homogeneous deformation phase to the

lo
alized deformation phase well. Applying this model, the di�eren
e between the model param-

eters, whi
h result from the 
alibration for homogeneous and inhomogeneous deformation, also

de
reased 
onsiderably. A short
oming of the model is that the for
e-elongation response during
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ne
k shows a premature hardening while the void volume fra
tion grows and attains values too

high for unvoided polymers.

4.3 Modeling of 
razing

Under 
ompression, amorphous polymers show du
tile lo
alized deformation behavior, whi
h is

due to shear yielding without marked volume 
hanges. In 
ontrast to the shear yielding me
ha-

nism, whi
h eventually leads to fra
ture by a 
hain s
ission, the governing me
hanism of inelasti


deformation under tension is 
razing, 
f. [5, 6℄. More pre
isely, 
razing is assumed to result from

disentanglement in highly 
on
entrated regions of maximum prin
ipal stress. Disentanglement

nu
leates new mi
ro-voids whi
h grow and 
oales
e to form initial 
razes and 
ause stret
hing

and eventually failure of the thin �brils between the two fa
es of the initial 
razes, 
f. [14, 47℄. As

a result of the breakdown of the �brils, 
razes widen leading to lo
al brittle failure while material

behavior at the ma
ros
opi
 level still shows a little du
tility. In all, the nominally brittle failure


an be separated into the three di�erent phases: 
raze-initiation, widening and 
raze-breakdown.

In re
ent years, 
ohesive-surfa
e models have been widely applied to the numeri
al simula-

tion of 
raze-initiation, growth and breakdown with the �nite element method, 
f. e.g. [13, 19℄.

In a �nite element setting, however, 
ohesive interfa
e approa
hes allow for the nu
leation and

growth of the 
ra
k only along the element boundaries. In order to avoid mesh dependen
e and

priori assumptions 
on
erning the orientation of interfa
e elements for 
razing, an alternative,


ontinuum-based model is proposed here. Based on the work by [5℄, a simple 
raze-initiation


riterion is introdu
ed and the transition from shear-�ow to 
raze-�ow is 
arried out by a 
hange

of the �ow rule, where the inelasti
 deformation is taken to o

ur in the dire
tion of the lo-


al maximum prin
ipal stress. On
e the lo
al 
riti
al plasti
 strain is rea
hed, 
razes rapidly

widen whi
h eventually leads to lo
al fra
ture or 
hain-breakdown under 
ompression or tension,

respe
tively.

The 
raze-initiation 
an be governed by strain- or stress-based 
riteria. [48℄ 
ondu
ted tension-

torsion stress-
ontrolled experiments on thin-walled tubular spe
imens, whi
h indi
ated that

there is a time delay between the appli
ation of stress and the �rst appearan
e of 
razing. At

the stress levels, where the equivalent stress τ and the mean normal stress τm ex
eed 0.4 - 0.5

of the yield stress, the delay time 
onsiderable de
reases and as a result 
raze-initiation 
an be


onsidered as instantaneous event. Sin
e the 
razing pro
ess in the present drawing experiments

o

urs in stress levels higher than 0.4 - 0.5 of the yield stress, the in
ubation time for 
raze-

initiation 
an be assumed negligible and a time-independent 
riterion 
an be applied in the

proposed model.

In general, the development of 
razing may be expe
ted to have dire
tional properties. Based

on the assumption that the 
razes grow in the dire
tion of the maximum prin
ipal tensile stress,

[5℄ proposed that 
razing initiates when the mean stress is positive τm > 0, and the highest

prin
ipal stress τ1 rea
hes a τm-dependent 
riti
al value τ1 = τ cr(τm) > 0. They estimated the


riti
al value τ cr from the tension experiments on a smooth-bar, not
hed-bar and a 
ompa
t

tension spe
imen. They observed that the 
urve for 
raze-initiation just prior to the yield-peak

load is reasonably-well 
aptured by the fun
tion

τ cr = c1 +
c2
τm

(53)

where c1 and c2 are positive parameters. In general, stress-based 
riteria may be di�
ult to

de�ne with pre
ision from experiments due to ina

ura
ies in 
ontrolling lo
al stress states and

the sites of 
raze-initiation, 
f. [48℄. For this reason, a 
orresponding strain-based 
riterion needs

to be determined. It 
an be assumed that the 
razes are initiated if the following two 
onditions

are satis�ed:
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[1. ℄ The highest prin
ipal tensile stress and the mean normal stress are positive, i.e. τ1 > 0
and τm > 0,

[2. ℄ the 
raze-strain ζp, whi
h evolves in the dire
tion of the highest prin
ipal tensile stress,

rea
hes a 
riti
al value ζp :=
∫

ζ̇pdt = ζpcr > 0. Correspondingly, τ1 = τ cr > 0.

On
e 
razing has been initiated, the transition from shear-�ow to 
raze-�ow takes pla
e while

the plasti
 �ow aligns with the dire
tion of the maximum prin
ipal stress τ1, and the inelasti


deformation begins to evolve through widening of the 
razes.

ζ̇p

ζ̇p

δ̇

Lo

Figure 11: Widening of 
razes at an average spa
ing

L0. The ma
ros
opi
 tensile 
raze strain rate ζ̇p is

determined by the thi
kening rate δ̇ of 
razes.

Instead of attempting to represent a de-

tailed s
heme for 
raze-widening, 
f. [12, 13℄,

a 
ontinuum-based model, whi
h de�nes the

inelasti
 deformation as an average over a mi-


rostru
tural representative volume element, is

proposed. It is assumed that the material ele-

ment 
ontains enough plate-like 
raze regions

that allow for ma
ros
opi
ally smooth 
raze-

widening pro
ess prior to failure. The magni-

tude of the 
raze-�ow is given by the ma
ro-

s
opi
 tensile 
raze-strain rate ζ̇p and it evolves
as long as τ1 is positive. Following [49℄, ζ̇p is

assumed to be a

ounted for by the thi
ken-

ing rate δ̇ of the a
tive planar 
razes whi
h are

separated by an average spa
ing L0, 
f. Fig.

11. Thus the average tensile 
raze-strain rate

be
omes ζ̇p = δ̇/L0. In terms of the eigenve
-

tors n1 asso
iated with the highest prin
ipal stress, the transition from shear-�ow to 
raze-�ow

is given by

dp =

{

ζ̇pn1 ⊗ n1 if the 
onditions [1℄-[2℄ are satis�ed,

Λ̇p(τ̃ dev + Ξi) otherwise

(54)

where Λ̇p :=
√
2(1−fv)γ̇pτe(2τ 2+Ξtrace(τ̃ ))−1

and Ξ := q1q2fvτe sinh
(

3/2q2τm/τe
)

, 
f. (32). The

magnitude of the rate of plasti
 deformation ζ̇p = |dp| is determined su
h that some 
ontinuity

during the transition from shear-�ow to 
raze-�ow is ensured.

The equality between the plasti
 work rate in the porous material per unit volume and the

dissipation in the matrix material is governed by

τ̃ : dp = (1− fv)
√
2τeγ̇

p∗(
τ1
τ ∗1

)m (55)

where the quantities with the supers
ript (∗) are determined at the instant when the 
hange in

the �ow rule is triggered. It then follows from (37) that nu
leation of new voids is governed by

the 
onstant rate γ̇p∗ during 
razing. Sin
e the experiments show an in
reased 
raze widening

velo
ity with the applied stress intensity, 
f. e.g. [13℄, the plasti
 work rate is reformulated in

terms of the stress ratio τ1/τ
∗
1 . The parameter m in (55) is found from the 
alibration to the

experimental data. During shear �ow, the stress ratio τ1/τ
∗
1 remains unity and the plasti
 shear

strain rate γ̇p evolves a

ording to (24), i.e. (55) equals with (31). It follows from (54) and (55)

that the magnitude ζ̇p = |dp| is given by

ζ̇p =
√
2(1− fv)τeγ̇p∗(

τ1
τ ∗1

)m(τ̃ : n1 ⊗ n1)
−1. (56)
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The mi
ros
opi
 e�e
tive stress τe of ligaments is determined from the potential Φp = 0, whi
h
for the 
raze-�ow is modi�ed su
h that the �ow be
omes oriented in the dire
tion of the highest

prin
ipal stress, i.e.

Φp(τ1, fv, τe) =
τ 21
2

+ 2fvq1τ
2
e cosh(

q2
2

τ1
τe
)− τ 2e (1 + q21f

2
v ). (57)
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Figure 12: The potentials (28) and (57) in τ−τm and

τ1 − τe spa
e, respe
tively. The in�uen
e of the two
di�erent values fv = 0.02, fv = 0.2 and q1 = 1.0,
q1 = 1.5 are investigated.

Alternatively, employing the fun
tion (57)

in the �ow rule (29) (repla
ing Λ̇p
by ζ̇p) and

taking advantage of ∂τ1/∂τ = n1 ⊗ n1 also

results in the 
raze-�ow rule (54), where ζ̇p is

given by (56). Fig. 12 presents the poten-

tials in (28) and (57) for di�erent values of fv
and q1. The stress traje
tories in τ1 − τe spa
e
show proportionality between the ma
ros
opi


prin
ipal stressing and the mi
ros
opi
 stress

in ligaments between the voids.

Sin
e the �nal 
raze-breakdown 
an be 
on-

sidered as a physi
ally un
lear pro
ess, 
f.

[12, 13℄, a simple 
riterion for 
raze-breakdown

and fra
ture are proposed as a �rst attempt.

Following [5℄, the 
raze-breakdown under 
on-

dition τ1 > 0 o

urs when the lo
al 
raze-strain
ζp rea
hes a threshold value ζpt > ζpcr > 0. The

threshold ζpt in relation to the 
raze-initiation 
riteria ζp = ζpcr de�nes the length of the 
razing

pro
ess. In the situations where τ1 ≤ 0, du
tile fra
ture by mole
ular 
hain-s
ission is initialized

as the plasti
 stret
h λ̄pec rea
hes a threshold λ̄
p
t .

4.4 Calibration and evaluation of the augmented EBPA model for void

growth and 
razing

Based on the simulations of the 
old drawing experiment the in�uen
e of 
razing on the overall

load-elongation response and lo
alized deformation behavior is evaluated. In the simulations, the

same element mesh as before is employed. Sin
e the stret
hing in relation to the limiting stret
h√
N in a representative volume element 
an be regarded as small during the entire 
old drawing

pro
ess, 
raze-breakdown barely initiates and will be negle
ted in the subsequent numeri
al

simulations. Due to ne
king, the stress ratio τ1/τ
∗
1 in (56) remains almost unaltered (near unity)

during elongation and thus the parameter m is 
hosen to vanish.

Based on the dis
ussion above, 
f. also [9℄, the plasti
 deformation in large strains evolves

primarily due to 
razing and typi
ally shows an in
reased rate of evolution on
e 
razing has been

initialized in the material. Sin
e the stress level de
reases during the 
razing pro
ess, the plasti


work rate in the porous material and the dissipation in the matrix material de
rease, and as a

result, the void volume fra
tion tends to in
rease, 
f. (55). This e�e
t is shown in Fig. 13. To

ex
lude the integration of ζp, the 
orresponding stress 
riterion τ cr = 62 MPa for 
raze-initiation


an be employed in the simulations. This threshold as well as the values λ̄pec = 1.05 − 1.12 in

Fig. 13 for 
raze-initiation are reasonable-well 
aptured by using the parameters c1 = 36 MPa

and c2 = 650 MPa

2
in (53).
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Figure 13: a) True stress vs true strain and b) void volume fra
tion for uniaxial tension of BPA-PC

a

ording to the model. Craze-initiation is pres
ribed by the plasti
 stret
h at λ̄p
ec = 1.04, λ̄p

ec = 1.05,
λ̄p
ec = 1.08, λ̄p

ec = 1.12, λ̄p
ec = 1.15 and λ̄p

ec = 1.20. In b), the 
urve involving a plateau represents

void nu
leation (fg = 0) being virtually independent on 
raze-initiation. The simulation 
overs the time

period of 750 s at ǫ̇ = 0.001 1/s.
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Figure 14: In�uen
e of 
razing on void growth, whi
h is represented by the norm of void volume fra
tion

‖fv‖ :=
√
∑

i(fv,i · fv,i) where fv,i are the extrapolated values of void volume fra
tion at the nodes of

the mesh. In�uen
e of void growth and 
razing on the overall f − u response. The marker � indi
ates

the position at �rst 
raze-initiation. Using fN = 0.02, the deformed shapes at u = 20 mm and at u = 30
mm are visualized by the void volume fra
tion fv. The white 
olor indi
ates the highest porosity.

The in�uen
e of 
razing on void growth during lo
alized deformation is shown in Fig. 14. A


omparison with the responses of purely porous material reveals that 
razing, whi
h initiates on
e

the yield point is passed, in
reases signi�
antly void growth during the ne
k. Similar e�e
t was

also observed in amorphous entanglement network through MD simulations, 
f. [16℄. Redu
ing

void nu
leation setting fN = 0.02 in (37) 
ompensates for the growth whi
h in turn, as already

tou
hed upon, suppresses the initiation of new 
razes. The di�eren
e 
an be further illustrated

by a 
omparison of the void volume fra
tions given in Figs. 9 and 14. Due to 
razing, lo
alized

23



region (in terms of λ̄pec) in the gauge se
tion shows more pronoun
ed intensity of porosity, whereas

the area and shape of the porous region remain virtually unaltered during 
razing.

To prevent an ex
essive void growth during 
razing, the amount of existing voids as well

as their growth need to be limited in the model. Consequen
es of this restri
tion are that


razing promotes void nu
leation while the dissipation alters primarily due to the stress τe in the

ligaments between the voids. An ex
essive void growth during ne
king is suppressed by 
hoosing

the 
riti
al strain for 
raze-initiation to be ζpcr = 0.42, whi
h value approximately 
orresponds to

the elongation u = 21 mm and to the plasti
 stret
h λ̄pec = 1.055 in the early-stage of hardening.

Moreover, 
razing is assumed to result from disentanglement in highly 
on
entrated regions of

maximum prin
ipal stress, whi
h nu
leates new mi
ro-voids and allows their 
oales
e to form

initial 
razes rather than larger voids. Thus, use is made of an assumption that the growth of

existing voids is inhibited by 
razing, i.e.

ḟg =

{

0 during 
razing,

3(1− fg)Dp

h otherwise.
(58)
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Figure 15: The deformed meshes at a) u = 20 mm

and b) u = 33 mm are visualized by the plasti


stret
h λ̄p
ec, mean stress τm and by the 
raze-strain

ζp. The void fra
tion parameter in (37) is fN = 0.02
and the rest of the parameters is given in Table 4.

Sin
e 
razing in a �nite element set-

ting evaluates through the integration points,

the in�uen
e of the mesh does need atten-

tion. Simulations with 
onsiderably �ner

mesh, however, indi
ated only a small mesh-

sensitivity on both the f − u response and lo-


alization phenomenon. In Fig. 14, both the

porous and the 
razed response is depi
ted. It

is found that the void volume fra
tion, albeit

it is low in small deformations, has the ef-

fe
t of making the des
ending portion in the

for
e-elongation 
urve more gradual. Craz-

ing, however, is seen to 
ompensate this ef-

fe
t. Owing to 
razing, premature harden-

ing whi
h appears in the augmented EBPA

model predi
tions for purely porous material

is substantially redu
ed in the model predi
-

tions for 
razed material. This is in better

agreement with the experimental response that

shows very stable ne
k.

Fig. 15 shows the deformed meshes visual-

ized by the plasti
 stret
h λ̄pec, the mean stress

τm and the 
raze-strain ζp. The sele
ted stages 
over the elongation just prior to 
razing and

u = 33 mm. A glan
e at the pre
eding results in Fig. 10 reveals that 
razing has no notable

in�uen
e on the lo
alization of plasti
 deformation, i.e. the intensity and the rate of expansion

remain virtually unaltered. It appears from Fig. 15 that the distribution of λ̄pec is similar to the

ζp-distribution whi
h 
ontrols 
raze-initiation. The 
raze-strain ζp in its lo
alized region ranges

between ζp = 0.40 − 0.50, whi
h values with together the low intensity of the plasti
 stret
hing

imply that the threshold ζpt for 
raze-breakdown should be signi�
antly greater than 0.50. In


ontrast to the expansion of lo
alized deformation, the region of pronoun
ed mean stress rapidly

propagates over the gauge se
tion and rea
hes relatively stable values ranging between 27 − 32
MPa. Sin
e these values are higher than 0.4− 0.5 times the yield stress for PC, 
raze-initiation,

as has previously been pointed out, 
an be 
onsidered as an instantaneous pro
ess.
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In�uen
e of disentanglement

Based on the idea that entanglements represent topologi
al 
onstraints and on the observation

that the topology does not evolve 
onsiderably in glassy state, the network density n in state-

of-the-art models is taken to be 
onstant during deformation. However, the present numeri
al

results expli
itly suggest that a redu
tion of n should be 
onsidered in the models. Sin
e the

mole
ular weight of the polymer remains un
hangeable, the total number of statisti
al links NA in

the material element is 
onstant. In pursuan
e of the 
hain density evolves (redu
es) with time,

N alters (in
reases) a

ording to the relation nN = NA. By the de�nition CR := nkT employed,

the redu
ing strain hardening modulus is attributed to disentanglement. Disentanglement is

modeled by assuming that the network density n evolves with time t as

∂n

∂t
= −np0

τv
(59)

where τv denotes a time interval, needed that a parti
ular entangled point vanishes, and

p0 = exp
(

−U0 − β∆beq
kT

)

(60)

is the probability that a parti
ular 
hain slips through an entangled point. In the above equation,

U0 is the a
tivation energy, β is the a
tivation volume and

∆beq =

√

trace
(1

2
(βdev)2

)

represents the di�eren
e in network stress between the two strands of a 
hain 
onne
ted to a


ommon entangled point, 
f. [14℄ for a more detailed a

ount.
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Figure 16: In�uen
e of the redu
tion of network den-

sity n on f − u response (solid line). The dashed

line represents the response with a 
onstant net-

work density. The parameters used in (59) are taken

from [14℄. The deformed shapes at u = 28 mm and

u = 36 mm are highlighted by the network den-

sity ratio n/n0. Using the EBPA model parameters,

n0 = 3.4 · 1027 m

−3
.

When (59) is employed, disentanglement

evolves already during softening and numeri-


al simulations indi
ate a signi�
ant in
rease

in void growth during ne
k. In terms of mi-


rostru
tural 
hara
teristi
s, the free volume

between the 
hains de
reases pressure, and


onsequently the Brownian motion of 
hains

eases and vis
osity de
reases. Assuming 
raz-

ing evolves due to disentanglement and a 
rit-

i
al amount of porosity for the nu
leation of


razes is rea
hed at the end of the softening

phase, use is made of an assumption that the

growth of existing voids is attenuated during

ne
king, i.e. the transition (58) is employed.

The simulated f − u response in Fig. 16

shows stabilizing e�e
t due to disentangle-

ment, i.e. no obvious tensile limit of stable

ne
k 
an be observed during elongation up to

u = 35 mm. Loss of the network density 15%

is rea
hed at u ≈ 20 mm, whi
h value remains

almost 
onstant during further elongation. A
-


ording to the numeri
al simulations, similar e�e
ts 
annot be observed if the network density

alters without volume 
hanges, i.e. the models for both void growth and 
razing need to be

applied. It 
an be 
on
luded that the network density is of a great importan
e in determining

the ma
ros
opi
 failure through 
razing.
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5 Con
lusions

The 
apability of state-of-the-art network models to predi
t inhomogeneous deformation behavior

of amorphous glassy polymers was investigated. The two models termed the BPA and the EBPA

model, respe
tively, were implemented in a �nite element program and an impli
it integration

algorithm was derived. Sin
e the polymer network density is 
onsidered 
onstant and the volu-

metri
 plasti
 deformation is suppressed in the present models, they are generally inappropriate

for modeling damage. The models were 
alibrated to the for
e-elongation responses for inho-

mogeneous deformation a
quired from 
old drawing experiments on poly
arbonate spe
imens.

It was shown that the parameters whi
h were obtained from the 
alibration to homogeneous

deformation 
annot be used to satisfa
torily predi
t the experimental response of inhomogeneous

deformation. In order to �nd the me
hanisms that are able to explain this dis
repan
y, the

models for void growth, 
razing and disentanglement were implemented in a part of the EBPA

model.

The simulations showed that the initiation of shear bands promotes and void growth redu
es

the intrinsi
 softening in the material, whereas the kinemati
 hardening is seen to be a driving

for
e for widening of shear bands. It was shown that the EBPA model, in 
onjun
tion with the

modi�ed Gurson model for void growth, predi
ts in
reased porosity and intera
tion between the

voids and less intrinsi
 softening. As a result, the di�eren
e between the 
alibrated parameters

for homogeneous and inhomogeneous deformation 
onsiderably de
reased.

In order to suppress an ex
essive void growth during lo
alized deformation and a premature

hardening present in the simulations of the 
old drawing experiment, the model was augmented

also by taking 
razing into 
onsideration. In general, however, the strain hardening 
annot be

solely governed by the stret
hing of the 
hain network, but the hardening tends to de
rease

with the 
hain density of the polymer network. In the proposed model, 
razing is assumed to

result from disentanglement in highly 
on
entrated regions of maximum prin
ipal stress, whi
h

nu
leates new mi
ro-voids. However, these voids do not grow, but 
oales
e to form initial 
razes

that widen and eventually 
ause lo
al failure in the material. The numeri
al results indi
ated that

the plasti
 stability is essentially 
ontrolled by 
razing, whereas void growth governs the rate of

ne
k propagation and the amount of intrinsi
 softening during lo
alized deformation. It was also


on
luded that the network density plays a pivotal role in determining the type of ma
ros
opi


failure through either shear yielding or 
razing. The EBPA model augmented by the models

for both void growth and 
razing was able to predi
t inhomogeneous deformation behavior well.

However, further resear
h is needed to �nd and model the lo
alization me
hanisms also under

variable loadings and at di�erent length-s
ales.
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Appendix A. Algorithmi
 setting of the augmented EBPA model

The EBPA model is implemented in a �nite element program for the simulations of inhomogeneous

deformation. Sin
e long-term periods are investigated, a fully impli
it ba
kward Euler method, whi
h

allows large time steps, is applied. To simplify the notation, the subs
ript n+ 1 for the updated state is

omitted and the quantities solely at the known state tn are indi
ated by the subs
ript n. The exponential
update is applied to the plasti
 part of the deformation gradient F p

, i.e.

F p = exp(∆tL̄
p
)F p

n, (A.1)


f. [50℄. The tensor exponent in (A.1) is 
al
ulated by using the Pade approximation, 
f. [51℄. Substi-

tution of (A.1) in (1) yields

F e = FF p−1 = FF p−1
n exp(−∆tL̄

p
). (A.2)

As with the BPA model, the elasti
 deformation in the EBPA model is 
hosen to be irrotational and


onsequently the elasti
 rotation Re
is unity and the plasti
 spin W̄

p
is nonzero. The plasti
 spin is

numeri
ally solved by introdu
ing an algorithmi
 plasti
 spin W̃
p
. Due to the imposed symmetry of F e

,

algorithmi
 plasti
 spin W̃
p
is skew-symmetri
 at the end of the integration interval. Moreover, to spe
ify

the orientation of the elasti
 intermediate 
on�guration, the �rst 
omponent F e
1 in the de
omposition

(15) is 
hosen to be symmetri
.

Based on the stress equilibrium (17), the elasti
 stret
hing evolves a

ording to

d

dt

(

ln ve
2

)

=
1

η
(Le(E) : ln ve

1 −L
e(E1) : ln v

e
2). (A.3)

The non-linear system of equations are 
ompleted by the integration of the internal rate variables and

the void volume fra
tion rates de�ned by (26), (37) and (58), respe
tively, i.e.

R1 : = F e − FF p−1
n exp

(

−∆t(D̄
p
+ W̃

p
)
)

,

R2 : = F e,T − F e,

R3 : = W̃
p,T

+ W̃
p
,

R4 : = F
e,T
1 − F e

1,

R5 : =
(

(I +
∆t

η
L

e(E1)) : ln v
e
2 −

∆t

η
L

e(E) : ln ve
1 − ln ve

2,n

)

/sss,

R6 : = (s1 − s1,n − ṡ1∆t)/sss,

R7 : = (s2 − s2,n − ṡ2∆t)/sss,

R8 : = (fn − fn,n − ḟn∆t),

R9 : = (fg − fg,n − ḟg∆t)

(A.4)

where the parameter sss was de�ned in (26)1. During 
razing, the rate of plasti
 deformation D̄
p
is

de�ned by (54), otherwise it evolves a

ording to the �ow rule (32). It should be mentioned that the

residuals R2 and R4 
onsist of three and the residuals R3 and R5 of six linearly independent equations.

To solve the nonlinear system (A.4) by using the Newton-Raphson method, the state variables are given

in the ve
torized form, i.e. Y := [F e W̃
p
F e

1 s1 s2 fn fg]. The solution is given by Y i+1 = Y i + ∆Y

where the in
rement of the internal variables is given by

∆Y = −J−1R, and J :=
∂R

∂Y
(A.5)

is the Ja
obian. The ve
torized form R := [R1 R2 R3 R4 R5 R6 R7 R8 R9] 
onsists of the residuals.

30



Table 5: Algorithmi
 update of internal variables based on the multipli
ative de
omposition of the

deformation gradient into an elasti
 and a plasti
 part. The elasti
 part is further de
omposed into a

purely elasti
 and a vis
ous part.

1. Load data: F , Y n := [F e
n W̃

p

n F e
1,n s1,n s2,n fn,n fg,n].

2. Set k = 0 and initialize F p|k=0 = F e−1
n F , F e

2|k=0 = F e−1
1,n F e

n.

3. Impli
it update of the internal variables:

WHILE ‖R‖ > tol

(i) Compute γ̇p by (24), β by (46), τ by (17) and τ̃ := τ − β.

(ii) Compute ṡ1, ṡ2 by (26) and ḟn by (37).

IF τm > 0 and τ1 = τ cr > 0 THEN (
razing)

(iii) Update τ e from (57).

(iv) Compute dp
by (54).

(v) Compute ḟg by (58).

ELSE

(iii) Update τ e from (28).

(iv) Compute dp
by (32).

(v) Compute ḟg by (36).

END IF

(vi) Compute the residuals R a

ording to (A.4).

(vii) Compute the Ja
obian J := ∂R/∂Y .

(viii) Update internal variables, Y ← Y n +∆Y by (A.5) and set k← k + 1.

END WHILE LOOP

4. Store updated variables Y := [F e W̃
p
F e

1 s1 s2 fn fg] and pro
eed to the equilibrium

iteration for F .

The linearization of the stress-strain relation, whi
h is needed in an impli
it �nite element solution

pro
ess, is dis
ussed in [32℄. The steps of the numeri
al integration algorithm for updating the internal

variables are summarized in Table 5.
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