
RESEARCH Open Access

State of the art baseband DSP platforms for
Software Defined Radio: A survey
Omer Anjum1*, Tapani Ahonen1, Fabio Garzia1, Jari Nurmi1, Claudio Brunelli2 and Heikki Berg2

Abstract

Software Defined Radio (SDR) is an innovative approach which is becoming a more and more promising
technology for future mobile handsets. Several proposals in the field of embedded systems have been introduced
by different universities and industries to support SDR applications. This article presents an overview of current
platforms and analyzes the related architectural choices, the current issues in SDR, as well as potential future
trends.

Keywords: Software Defined Radio, Pipeline Processors, RISC, VLIW architectures, Array and vector processors, SIMD,
Adaptable architectures, Mobile processors, Heterogeneous systems

Introduction
Software Defined Radio (SDR) platforms and solutions
are being actively pursued by both the industry and the
academia. The purpose of SDR is to enable a program-
mable solution based on Digital Signal Processing (DSP)
software running on a set of programmable processors
and accelerators.
With the ever increasing user demands and resource

consuming applications, particularly in Telecom Indus-
try, pressure has been built up for developing not only
new standards for communication but new architectures
as well. The importance of wireless communication sys-
tems can be seen easily by the rapid increase in the
number of its subscribers. It is not limited to cellular
mobile communication like GSM, WCDMA, HSDPA or
3GPP LTE but it also includes other wireless standards
such as WiMAX, Wireless LAN, DVB-H and DVB-T.
This demand for seamless global coverage, wireless
internet connectivity with additional capabilities like
user controlled quality of service (QoS) have posed
major challenges to keep the radio hardware and soft-
ware from becoming obsolete, as new standards and
techniques are developed in the future [1]. Wireless
operators and manufacturers must respond to the

changes and come up with new innovations in technol-
ogy to upgrade or to fix any bugs discovered later.
The future trends of the evolution of standards can also

be predicted easily. 2G (GSM, IS-95, D-AMPS, and PDC)
systems opened the door for digital communication sys-
tems. Later on these systems were replaced by 3G
(WCDMA/UMTS, HSDPA, HSUPA and CDMA-2000)
technology, deployed in many parts of the world, ulti-
mately going to be evolved as 3GPP LTE with higher
data rates. The next is 4G which is further development
to 3G, coping with the technological challenges more
efficiently. As compared to 3G, data rates in 4G are
much higher reaching up to 100 Mbits/s and even more.
These higher data rates are in fact due to the use of VSF-
OFCDM (variable spreading factor orthogonal frequency
and code division multiplexing) and VSF-CDMA (vari-
able spreading factor code division multiple access) as
access schemes and also efficient concatenated (serial
and parallel) error correction codes. To answer these big
challenges of rapidly growing communication industry,
we need a piece of reusable hardware that can work with
different standards and protocols at different times to
provide service providers and users most effective solu-
tion in terms of low cost, adaptability, high spectral effi-
ciency, low latency and future needs. We need so much
flexibility because with ever growing standards always
changing the hardware causes huge costs and huge delays
in the product development as well. This is the motiva-
tion behind the ‘Software Defined Radio’ (SDR [2]).

* Correspondence: omer.anjum@tut.fi
1Department of Computer Systems, Tampere University of Technology, P. O.
Box 553, Tampere, 33101, Finland
Full list of author information is available at the end of the article

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

© 2011 Anjum et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:omer.anjum@tut.fi
http://creativecommons.org/licenses/by/2.0

One of the biggest challenges in SDR solutions consist
of achieving giga operations per second (GOPS) in the
baseband processing, while at the same time keeping the
power budget limited to a few hundreds milliwatts. In
this article, we will just discuss the baseband processing
solutions. The issues related to the digital transforma-
tion of the RF chain will not be considered.

Digital baseband technologies
Most of the very high data rate broadcast applications
today are based on multi-carrier techniques. The basic
principle relies on the fact that high data rate stream is
divided into multiple low rate data sub-streams. Each of
these sub-streams are modulated on different sub-car-
riers, which are all orthogonal to each other [3]. The
main advantage of multi-carrier transmission is its
reduced signal processing complexity by equalization in
frequency domain and efficiency in frequency selective
fading channels. Orthogonal frequency division multi-
plexing (OFDM) proposed in [4] has been widely
adopted as a very efficient multi-carrier digital modula-
tion scheme to realize such systems. In this article, we
look at some of the SDR enabling solutions proposed
today in perspective of the specifications mentioned in
Table 1. The claims need to be closely looked at in
order to identify or to suggest a new solution to enable
SDRs. One fact important to mention here is that there
is generally no agreed benchmark set in industry and
academia as far as SDR is concerned, which can be used
to evaluate and make a straight comparison for a certain
implementation by each party. One vendor implements
WCDMA turbo decoder, the other LDPC decoder, the
third LTE initial synchronization and so on. There is no
common input language for the SDR platforms, we
would need to agree on the algorithms and allow imple-
mentations with different languages and intrinsics.
The major algorithms in an OFDM receiver chain to

be processed by the baseband processor are related to
channel coding, modulation, synchronization, channel
estimation and equalization blocks. Now these tasks are
briefly discussed here in order to understand their basic
processing requirements.

Channel coding
Error correcting codes have a major role in channel
coding. These codes generate some redundant informa-
tion based on the actual message. This redundant infor-
mation is exploited by the decoder in order to recover
the actual message from the transmitted data corrupted
by the channel. Today most of the OFDM systems
deploy Convolutional Codes, Turbo Codes and LDPC
(low-density parity-check) as forward error correcting
algorithms. They imply substantially complex routing
logic, memory and latency costs and perhaps the most
computationally intensive part of the receiver baseband
processing [5]. These channel decoding algorithms are
different in nature as compared to other algorithms in a
receiver chain which are very regular in data flow such
as FFT, correlation, filtering etc. In channel decoding
algorithms instead of actual computations data-transfer
and storage schemes are the main contributors of power
consumption and thus the efficiency matrices based on
GOPs are no more valid [6].
Modulation
OFDM baseband symbol is generated by modulating N
complex data samples using IFFT with N subcarriers.
FFT/IFFT is perhaps one of the most area and power
consuming block in OFDM transceiver design [7].
Cooley-Tukey algorithm is the most widely used for cal-
culating FFT. In this particular algorithm, the total
number of complex additions and complex multiplica-
tions required for radix-2 are N*log2(N) and (N/2)*log2
(N), respectively [8], where ‘N’ is the number of points.
The primary computational unit in FFT is the butterfly
in which complex data elements are multiplied with a

set of corresponding twiddle factors ‘Wnk
N ’ the results of

which are then added and subtracted [8]. The complex-
ity of the butterfly depends strictly on the ‘radix’ of the
algorithm. Hardware solutions for FFT usually imple-
ment higher radix algorithms like radix-4 and radix-8
due to the reduced number of computations but at the
cost of increased complexity of the algorithm. Until now
several architectures have been proposed like pipelined
architecture, memory-based architecture, cache memory
and array architecture. Hardware requirements for each

Table 1 Specifications for the standards considered in this article using OFDM as modulation technique [7]

DVB-T 802.11 a/g WiMAX 3GPP-LTE E-UTRA

Carrier frequency (GHz) 0.4-0.8 2.5, 5.8 2-11 2

Bandwidth (MHz) 6, 7, 8 20 1.5-28 1.25 2.5 5 15 15 20

FFT size 8192 2048 64 256 128 256 512 1536 1536 2048

Used subcarriers 6817 1705 52 200 76 151 301 901 901 1201

FFT period (μs) 896 224 3.2 8 (2 MHz channel) 66.7

Constellation QPSK, 16QAM, 64QAM BPSK, QPSK, 16QAM, 64QAM BPSK, QPSK, 16QAM, 64QAM QPSK, 16QAM, 64QAM

Maximum data rate (bps) 31.67 M (8 MHz channel) 54 M 104.7 M (28 MHz channel) >100 M (20 MHz channel)

Power requirement Power consumption for baseband processing in a mobile handset must be within 1 W [44]

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 2 of 19

of these architectures are different in terms of memory
accesses, number of multipliers, number of adders, clock
cycles etc. It is the designer that should make a compro-
mise considering the specifications and available
resources.
Synchronization
In order to correctly demodulate the received OFDM
signal, the transmitter and receiver must be synchro-
nized in terms of carrier frequency, carrier phase, sam-
pling clock frequency and symbol timing. In case of any
mismatch in carrier and clock synchronization, the per-
formance of the system is severely deteriorated due to
the presence of ISI (inter symbol interference) and ICI
(inter channel interference). In OFDM, the designer can
choose time or frequency domain for synchronization
depending upon the system resources, performance,
application requirements etc. In OFDM symbols, there
is repetition in the received signal in the form of cyclic
prefix or preambles of identical period which is usually
exploited for synchronization. The basic kernel of the
synchronization algorithm is cross-correlation or auto-
correlation independent from the choice of algorithm.
Either it is coarse and fine symbol timing estimation or
it is carrier frequency offset estimation. IFFT can also be
used in frequency domain synchronization if long
latency is not a problem. In practice, linear-phase FIR
matched filter banks are also adopted as a choice to
implement correlation structures. In addition, fre-
quency-domain and time-domain interpolators are used
for the compensation of carrier frequency and sampling
clock offset. They are usually realized as linear phase
digital filters. In SCO (sampling clock offset) compensa-
tion, continuously updating the filter coefficients in real
time may consume more hardware resources and even
more when the number of taps required are increased
[9,10].
Channel estimation and equalization
In order to correctly demodulate the OFDM symbol, it
is very important to make a good estimate of the
response of the channel and equalize the distortions
caused to the transmitted signal. OFDM based commu-
nication systems often make use of the reference signal
named as preamble or pilot for channel estimation [10].
Depending on the channel characteristics (low/high fre-
quency-dispersive channel, low/high Doppler channel or
low/high frequency selective channel), there are different
pilot configurations to equalize each subcarrier in
OFDM based systems [11]. In block type pilot symbols,
pattern channel estimation is based on different estima-
tors like minimum mean square error (MMSE), Low-
Rank Approximation, LS (least square) estimator and
reduced-order ML (Maximum Likelihood) estimator.
MMSE and Low-Rank Approximation regard the chan-
nel as stationary random vector. Therefore, the prior

knowledge of channel like the auto-covariance matrix
and operating SNR is required which further increases
the complexity. In MMSE, matrix inversion is required
for each symbol [7]. In Comb-type pilot symbols pat-
tern, we have time-domain windowing and frequency-
domain interpolation. Time domain approaches need
additional blocks for IDFT and FFT, which further
increases the complexity of the system. Channel estima-
tion based on grid-type pilot symbols pattern involves
2D MMSE interpolation, which has a very high com-
plexity and thus avoided in practical OFDM systems [7].
In adaptive channel estimation, normalize-least-mean-
square algorithm is the simplest to be implemented in
hardware. RLS (recursive least square) and Kalman-fil-
tering approaches are computation intensive. Adaptive
filters are only suitable when normalize Doppler fre-
quency is below 0.01 [7].

Overview of existing SDR solutions
Several alternative solutions to enable SDR proposed by
industry and academia are considered in this section.
For instance, in [12] the authors suggest that there are
mainly two enabling directions for SDR that could be
followed: the first one based on reconfigurable hardware,
the second one consists of DSP-centered and accelera-
tor-assisted architectures. The second approach guaran-
tees high flexibility, but also suffers from problems
related to high power consumption. To reduce the
power consumption, such a platform should feature
multiple DSPs running at a relatively low clock fre-
quency. In the next section, we will analyze different
solutions proposed to enable SDR based on the two
approaches mentioned above (Figure 1).
Processor centered architectures
This section gives an overview of processor centered
architectures, which is further categorized into DSP
based and Many-Core platforms.
DSP-centered SDR solutions
This section provides an overview of some SDR solu-
tions based on the DSPs with extra capabilities for
exploiting the native data and instruction level paralle-
lism of radio kernels. Some of these solutions are also
assisted by accelerators. These solutions have been pro-
posed during the last few years both by the industry and
the academia.
LeoCore by CoreSonic
LeoCore [13] is an ASIP for radio baseband signal pro-
cessing. This core is claimed to target cellular phones,
laptop terminals, broadcast terminals, global positioning
systems and embedded systems. The basic philosophy
behind this architecture is first to identify the required
baseband processing operations on algorithmic level of
abstraction (such as Integer Data Filter, Correlation,
Complex data filter, Decimators, Interpolators, FFT,

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 3 of 19

DCT, Walsh Transform, Frequency domain filters,
Matrix computations in time and frequency domain, Bit
manipulations for forward error correction, Division,
Square root, Waveform generator, Look Up Table logic,
1/x), and then map them onto a suitable processing
core such as a Single Instruction Multiple Data (SIMD)
processor or an ASIC accelerator.
The abstracted information on algorithmic level for

radio baseband processing reveals the fact that 90% of
the time is consumed by the processes defined above.
The basic optimization of the core is thus done to pro-
vide acceleration to 90% of the code.
Thus, depending on the nature of computations the

LeoCore’s architecture is divided into four processors
optimized differently to handle different set of opera-
tions. These processors are categorized as: Digital Front
End, Complex Data SIMD processor, Function accelera-
tor, processor for control signals and miscellaneous
functions (Figure 2).
The instruction set architecture is strictly covering

only the required functions mentioned above and the
flexibility beyond this domain of algorithms is avoided
and it is not meant to run general purpose applications.
There is a tradeoff between efficiency and flexibility at
the instruction level. For example FFT N is a single
instruction for N-step butterfly computing and cannot
be used for other purposes. There are both accelerated
instructions (task-level and vector instructions) and
RISC instructions for simple arithmetic operations, data
moving, program flow control and hardware/software
configurations. The two main problems regarding opti-
mization are data latency and power. The proposed
solution to latency in this architecture is to use the task
parallelization, scheduling and parallel data memory
access [14]. To optimize power, they proposed to shut
down the idling circuits and memory modules.

LeoCore is provided with Coresonic developer studio
(CDS), a development platform including a cycle-true
and bit-true simulator as well as assembler and
debugger.
It is claimed that LeoCore [13] can handle all of the

standards mentioned in Table 1. However, it appears
that only DVB-T/H and WiMAX benchmarks were
published in 2008. The system measurements found in
the publications or on company’s website are shown
only for DVB-T/H [15]. It consumes 11 mm2 in 0.12
μm CMOS process including 1.5 Mb of single port
memory and 200 K gates logic. Peak power consump-
tion is 70 mW@70 MHz for highest data rate of 31.67
Mb/s.
Sandblaster by SandBridge
SandBridge Technologies has offered a multicore multi-
threaded vector processor named ‘Sandblaster’ as a solu-
tion to SDR complying with the low power requirements.
Sandblaster includes a combination of three units: instruc-
tion fetch and branch unit, an integer and load/store unit
and a SIMD vector unit. Sandblaster 1.0 was targeted at
implementing the physical layer of 3G wireless standards,
with peak data rates of up to 15 Mbps. Later they pro-
posed Sandblaster 2.0 to support 4G standards which was
just an extension of version 1.0 that kept its philosophy.
Vector registers connected to 64-bit data path were
extended from 16 to 256-bit connected to 256-bit data
path in version 2.0. In addition, the mask and accumulator
registers expanded from 4 and 40 bits to 32 and 64 bits,
respectively. In version 2.0 a SIMD operation can operate
on 16 (short) or 8 (integer) values in parallel in contrast to
4 values in version 1.0 [16] (Figure 3).
Some of the key focuses are support for high-level pro-

gramming language like C and compiler optimization for
DSP. The need for compiler design in parallel with the
DSP architecture design is particularly emphasized in their

Software Defined
Radio Architectures

Processor Centered
Architectures

ASIP/DSP (Leocore,
Sandblaster,
ConnXBBE, EVP etc.)

Many-Core
(SODA, tomahawk,
Infineon etc.)

Reconfigurable
Coarse Grained
Architectures

Montium, BUTTER,
CREMA, HERS,
ADRES etc.

Figure 1 Categorization of SDR solutions.

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 4 of 19

design cycle for the whole system. The proposed compiler
analyzes the C code and extracts the DSP operations itself.
Compiler makes use of the data level parallelism in the C
code and appropriately generates SIMD vector operation.
Another important aspect is the Sandblaster’s Token Trig-
gered Threading (T3) which features compound instruc-
tions, SIMD vector operations and greater flexibility in
scheduling threads. Instructions issued from multiple
threads are executed in parallel each cycle.
Several SDR Platforms, each using Sandblaster DSP

core, have already been developed and tested by Sand-
Bridge technologies. For instance, SB3011 has four DSP
cores running at minimum 600 MHz at 0.9 V each of

which is 8-way multithreaded and can execute 32 inde-
pendent instructions. It has already been tested for WiFi
802.11b, GPS, AM/FM radio, Analog NTSC Video TV,
Bluetooth, GSM/GPRS, UMTS WCDMA, WiMax,
CDMA and DVB-H [17]. Similarly SB3500 has three
cores, each capable to handle SIMD instructions with
four threads. This particular platform successfully tar-
geted to handle LTE category 2 baseband processing
[18]. The chip is fabricated on 65 nm and it is fully func-
tional, providing nearly 30 GMACs at 600 MHz [16].
ConnX BBE by Tensilica
Tensilica has offered ConnX baseband engine, SIMD
architecture, as a solution to SDR. It is claimed that it is

Figure 2 LeoCore Architecture [13].

Figure 3 SandBridge’s SB3500 SDR platform with three Sandblaster Cores [40].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 5 of 19

an intermediate approach that do not use power con-
suming wider data paths at higher clock rates as scaled
up conventional DSP and that has targeted only flexible
functional blocks to enable SDR. This baseband-oriented
DSP is a licensable processor core which uses Tensilica
Xtensa template processor as a foundation. Different
processor configurations according to the application
requirements are generated using tools like Xtensa Pro-
cessor Generator and Tensilica Instruction Extension.
The configuration includes the choice of memory sys-
tem, optional instructions and interfaces, custom
instructions and I/O interfaces specified by Tensilica
TIE language. There is a range of optimized instructions
provided to meet the high throughput of DSP baseband
operations like FFT, Complex multiplication, vector divi-
sion, vector reciprocal, square root etc.
One important aspect is the vectorization analysis of

an application program to efficiently exploit the inherent
parallelism in DSP operations and restructure it accord-
ingly. Developer can vectorize the program himself
using ConnX BBE’s data type and intrinsic function. In
addition Xtensa C and C++ compiler can automatically
do this vectorization with little or no human interven-
tion (Figure 4).
ConnX BBE’s SIMD processor at 400 MHz (6.4 × 109

MAC operations per second) can do sixteen 18-bit mul-
tiplications, eight 20-bit additions or four 40-bit addi-
tions in parallel and also gives 13 GB per second data
memory access bandwidth. It also accommodates three-
way VLIW instructions with the first slot for Load/Store

operation or Xtensa core instructions. The second slot
is for real and complex multiply, FFT or any vector
selected operation. The third slot uses the second Load/
Store unit or is for arithmetic and logical operations. A
wide range of instructions they have developed specializ-
ing the domain of operations particularly for SDR trans-
ceiver design.
The BBE when optimized for performance takes 1.1

mm2 (430 K gates) in the TSMC 65LP process. For
minimal area, the synthesis results in 230 K gates [19].
EVP (embedded vector processor) by NXP
NXP proposes a hardware architecture featuring a
VLIW vector processor named EVP [20] targeted to
support 3G standards. According to NXP the digital
baseband processing for SDR can be split into three fun-
damental parts: filter, modem and codec. The filter stage
should be as configurable as possible. The modem stage
is the part that is most affected by different standards
and implementations. For this reason, this stage should
be kept programmable, thus flexible. The codec stage,
instead, is made up of standard functions which remain
similar among standards and are characterized by high
processing requirements. Therefore, the codec stage
does not benefit from programmability and is instead
usually implemented in ASIC accelerators.
As mentioned in the previous chapter, data parallelism

abounds in SDR applications. For this reason, using
SIMD DSP processors appears like a natural choice.
NXP adds to the SIMD capabilities also VLIW capabil-
ities in the EVP processors, trying to provide a

Figure 4 ConnX Baseband Engine [41].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 6 of 19

comprehensive coverage of the parallelism available.
VLIW capabilities help in accelerating several kernels,
including rake receivers and FFT. VLIW parallelism is
provided on the top of vector parallelism. The hardware
supports also functionalities like zero-overhead looping,
parallel address calculations and loop control, as well as
intra-vector shuffling and arithmetic operations (very
useful in FFT and Viterbi trellis construction). The EVP
can handle 8-bit, 16-bit or even 32-bit data within the
data vectors. The supported data types are integer and
fixed point, supporting also complex numbers natively
(28 or 216 bits). The vector size is 256 bits.
EVP has its own EVP-C compiler which includes

extensions to support vector data types and intrinsics to
support vector operations. Due to the lack of efficient
vectorizing compilers available today, the compiled C
code can be executed on the programmable host micro-
processor which acts as system controller, while the
intrinsics are converted into machine instructions for
the vector processors, which act as number crunchers.
In a 90-nm CMOS process, the area of the EVP pro-

cessor core is about 2 mm2 (450 K Gates), runs at 300
MHz, and dissipates about 0.5 mW/MHz (considering
only the core) and 1 mW/MHz (when considering also
the memory system) (Figure 5).
NXP and Nokia proposed a real ‘multi-radio compu-

ter’ [21] as a result of a joint research project. Indeed,
one of the major challenges of future SDR architectures
consists of guaranteeing support for different radio pro-
tocols running concurrently. In particular, the Nokia-
NXP SDR supports HSPA, DVB-T and WLAN active
simultaneously on a shared hardware, as well as an SDR

operating system which is able to schedule and support
dynamic multi-radio operation.
Many-Core SDR Platforms
This section provides an overview of some SDR plat-
forms based on the idea of using multiple cores. The
bigger tasks are broken into smaller ones and thus
divided among the cores. Let us have a look on some of
this kind of proposed solutions.
SODA (signal-processing on-demand architecture)
SODA takes the motivation for targeting mobile hand-
sets aiming at reduction in power consumption to an
acceptable level. The basic philosophy behind SODA
architecture is based on dividing the whole processing
domain between Data Processors and Control Proces-
sor. Data Processors are meant for computing compu-
tationally intensive DSP kernels like FFT, FEC kernels,
Cell search and LPF. Control processor is meant to
perform system operations and manages data proces-
sors through remote procedure calls and DMA opera-
tions. SODA is made up of four cores, a control
processor and global scratchpad memory. These com-
ponents are connected through a shared system bus.
The cores contain dual pipelines which are able to
support scalar and 32-wide SIMD operations. The
arithmetic functional units are characterized by a 16-
bit datapath, since 32-bit arithmetic was considered
not necessary. Each core consists of a scalar unit and a
vector (SIMD) unit (Figure 6).
An important aspect of this architecture is that it does

not adopt multithreading approach, dividing the kernels
into threads. Instead protocols are pipelined into kernels
and statically assigned to one of the ultra-wide SIMD
SODA processing elements. This is due to the fact
which was observed during the design process of SODA
that the inter-kernel communication throughput is very
much lower than that of intra-kernel computational
throughput. SODA here in fact discourages to have mul-
tithreading solution for a communication baseband pro-
cessor design based on the observed fact. For inter
algorithm data communication scratch pad memories
are suggested in SODA platform. The scratchpad mem-
ories were proposed in streaming applications for multi-
media processors like Imagine [22] and IBM Cell
Processor [23] and later adopted by SODA to handle
the streaming data between the algorithms.
SODA satisfies the throughput requirements of the 2

Mbps W-CDMA protocol (and of the 24 Mbps of the
802.11a protocol) running at 400 MHz. The area occu-
pation is projected to be 6.7 mm2. Results show that in
a 180 nm technology, SODAs power consumption is 3
W, which is too much for current mobile phones con-
straints. It was also implemented on 90 and 65 nm tech-
nology, achieving power consumption of 450 and 250
mW, respectively [24].

Figure 5 NXP’s EVP architecture [42].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 7 of 19

ARM Ardbeg
Ardbeg [25] is a commercial prototype based on revisit-
ing SODA architecture (Figure 7). The main changes
present in Ardbeg when compared to SODA consist of
an optimized wide SIMD Design, its related VLIW Sup-
port, and algorithm specific hardware acceleration. Ard-
beg is a multicore architecture, with one processor for
control purposes and multiple Processing Elements for
DSP operations. Ardbeg also features some special
ASIC accelerator which is dedicated for specific algo-
rithms like Turbo encoder/decoder, as well as opera-
tions like block floating point and fused permute and
arithmetic operations. The memory hierarchy is con-
ceived so that each PE has a local scratchpad memory
and shares a global memory. Each of these memories is
explicitly managed via DMA transfers between the local
memories of the PEs, as well as to and from the global
memory.
The evolution of SODA to Ardbeg implies making

some design choices like keeping 32-lane 512-bit SIMD
datapath for the DSPs (because they claim that it is the
best SIMD design choice in 90 nm technology). More-
over, in creating Ardbeg they redesigned the internal
SIMD shuffle network used to support vector permuta-
tion operations.

Ardbeg also introduces support for VLIW operations,
enabling to issue two SIMD operations per clock cycle.
Still, Ardbeg implements only a restricted version of
VLIW operations: the aim is being able to support well
common parallel operations present in SDR algorithms,
while at the same time keeping the hardware relatively
simple and thus less expensive. The development tools
include the C-language support and even can take the
C-language model from Matlab for compilation.
The Ardbeg system runs at 350 MHz in 90 nm tech-

nology, and dissipates approximately 500 mW. Ardbeg’s
efficiency is due to several factors. In particular, to a 2-
way LIW execution of SIMD operations, together with
ASIC coprocessors and a Banyan shuffle network. Still,
according to [25], ASIC-based solutions are still much
more power efficient than current SDR solutions.
Tomahawk MPSoC
Tomahawk is a heterogeneous single chip SDR platform.
As many other solutions it also exploits instruction, data
and task level parallelism. Its distinctive feature might
be its CoreManager which is a dedicated run-time sche-
duler hardware unit (Figure 8). It consumes two Tensi-
lica RISC processors to execute OS and control
functions, Six Vector DSPs, an ASIP each for LDPC

Figure 6 SODA multi-core DSP architecture [25].

Figure 7 Ardbeg multi-core DSP architecture [25].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 8 of 19

decoder, de-blocking filter and entropy decoder. Each of
these units use data locality principle based on synchro-
nous transfer architecture [26] for low power
consumption.
Its programming model must be mentioned here as it

is the key distinguishing factor from other solutions.
The tasks are basically converted to task descriptions at
compile time. These descriptions are continuously sent
by the control unit to CoreManager with maximum
queue length of 16 tasks. The spatial and temporal map-
ping of these tasks onto the PEs is then done automati-
cally by the CoreManager. This programming model
relaxes the programmer from time taking scheduling of
the tasks thus decreasing the time of whole design cycle.
Tomahawk is claimed to have been tested for LTE and

WiMax. Fabricated on 0.13 μm CMOS process it runs at
175 MHz with peak performance of 40 GOPS and with
1.5 W power dissipation which is too high for mobile
units.
MuSIC by Infineon
One of the proposals by Infineon for SDR is the MuSIC-
1 chip. MuSIC is included in a system powered by a

programmable microprocessor few DSP processors, plus
some ASIC accelerators. The DSPs have SIMD capabil-
ities to exploit data parallelism. The SIMD cores are put
together in a cluster, where each DSP is coupled with
programmable processors for operations like filters or
channel encoding and decoding. The number of SIMD
cores can be increased or decreased according to the
processing requirement.
Each of the SIMD cores cluster consists of four pro-

cessing elements (PEs), and its working clock frequency
is 300 MHz. These cores support advanced features
such as saturating arithmetic and finite-field arithmetic.
Moreover, it supports long instruction word (LIW) fea-
tures for arithmetic operations, memory accesses and
data exchange between the PEs (Figure 9).
MuSIC-1 chip was used for complete standards like

WLAN and WCDMA, and according to [26] the related
results showed how SDR baseband solutions for mobile
phones are competitive with respect to power consump-
tion and area in 65-nm CMOS. As specified in [26],
MuSIC (multiple SIMD core) chip is Infineon’s SDR
prototype solution, originally designed in 90-nm CMOS

Figure 8 Tomahawk MPSoC architecture [43].

Figure 9 Infineon’s MuSIC-1 chip’s Baseband DSP with 4 SIMD cores [43].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 9 of 19

technology, featuring 28 million transistors, 6 Mbits of
SRAM, and six layers of wiring; its area occupation is 57
mm2.
Reconfigurable architectures for SDR platforms
There have been numerous SDR solutions based on
reconfigurable hardware. Some examples are: Montium,
ADRES, HERS, Butter and CREMA.
Montium by recore systems
Recore Systems has offered coarse grained reconfigur-
able Montium technology as a solution to enable SDR.
They define reconfigurable systems as the one in which
hardware adapts the algorithm instead of algorithm
adapts the hardware. Montium Tile Processor targets
computational intensive kernels of 16-bit DSP domain.
It can support both floating point and fixed point opera-
tions. It does not fetch instructions and resembles more
like an ASIC instead of DSP avoiding von Neumann
bottleneck. There are 10 global buses to provide the
interconnect flexibility to be changed in even every
clock cycle depending on the data flow. The other dis-
tinguishing feature of Montium is its multi-level ALU.
Each ALU has two levels, one for general purpose com-
puting and another for functions like FFT and Filtering.
These levels can be bypassed according to the needs of
the algorithm.
Montium’s configuration overhead is less than 1 kb

and takes less than 5 μs. It can be used as a single accel-
erator or as a part of heterogeneous MPSoC. It comes
with its own design tools named as Montium Sensation
Suite which has a Compiler, Simulator and Editor. Com-
piler uses its proprietary language called Montium Con-
figuration Design Language (CDL) for reconfiguration.
There are some implementations of different commu-

nication standards done by Recore Systems. A flexible
rake receiver can be implemented on a single Montium
TP. Configuration size and time are 858 bytes and 4.29
μs. At run time number of fingers can be changed from
2 to 4 in 120 ns. HyperLAN/2 can be implemented on
three Montium TPs. System can run fairly between the
clock frequencies of 25 to 75 MHz. Configuration over-
head is just 274 to 946 bytes. Viterbi decoder which can
change its rate and decision depth depending on the
application can be implemented on a single Montium
TP. The initial reconfiguration requires 1376 bytes to be
loaded in less than 7 μs at configuration clock frequency
of 100 MHz [27]. The maximum FFT size that can be
computed on one Montium TP is 1024 depending on
the size of local memories. It takes around 5140 clock
cycles or 51.4 μs at 100 MHz. In addition, the imple-
mentation of various DSP algorithms on Montium can
be found in [28].
On 0.13 μm CMOS technology Montium covers 2

mm2 with 10 kbs of SRAM. Its power consumption is
600 μW/MHz including memory access [29] (Figure 10).

BUTTER and CREMA
BUTTER is a coarse-grain reconfigurable array devel-
oped at Tampere University of Technology [30]. In this
case, the demand of flexibility is satisfied by run-time
reconfigurability, while the array structure provides the
high data throughput needed by SDR applications. Its
parametric template can gain any size of matrix but as a
popular case currently BUTTER array is composed of a
matrix of 4 × 8 processing elements, whose functionality
and interconnections can be defined at run-time. Each
processing element can perform different kind of arith-
metic operations (integer and floating-point) between 8-,
16- and 32-bit values. Reconfiguration time varies
between one clock cycle (in case that the context is
already stored in the local configuration memories) and
a few tens of cycles (if the context must be loaded from
an external memory).
The array is meant to be used as a coprocessor in

combination with a general-purpose processor core. In
our platforms, BUTTER is coupled with an open-source
processor core called COFFEE [31]. In the platform,
COFFEE is meant to be used as a global controller,
while the array performs data intensive computation.
The exploitation of the large throughput of BUTTER is
possible using two local data memories to store input
operands and results. The adoption of a ping-pong
mechanism allows the sequential processing of the data
stream using different configuration contexts and with-
out requiring additional data transfer to and from the
system memory. Cell search algorithm from W-CDMA
standard [32] as well as FFT [33] required for OFDM-
based protocols have been both successfully mapped on
the platform.
Lately, a new reconfigurable core has been designed as

an evolution of BUTTER. The new core, called CREMA,
introduces design-time adaptability that allows modeling
the architecture of each PE according to the application
requirements. This feature reduces the flexibility of a
specific instantiation of CREMA, but produces better
results in terms of operating frequency of the reconfi-
gurable array in particular for an FPGA implementation
of the IPs. Considering the synthesis on an Altera Stra-
tixII FPGA, we can see a significant difference in terms
of area utilization between BUTTER and two different
customized versions of CREMA. The two versions are
customized for matrix multiplication algorithms. The
first version supports only integer arithmetic, while the
second version provides also a context for floating-point
operations. After the synthesis, we noticed that the inte-
ger version of CREMA is 90% smaller than BUTTER.
However, the adaptability guarantees a significant
improvement also in case of floating-point computation,
because it is still 80% smaller than BUTTER. This large
difference can be explained considering the

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 10 of 19

customization of the interconnection logic in CREMA
implementation [23].
The latest research results regarding CREMA imple-

mentation show that the execution time for 64 and
1024-point FFT meets the timing constraints for 802.11
a/g (4 μs) and 3GPP-LTE (66.7 μs) using an optimized
version of the CREMA implemented on a Stratix IV
FPGA [9] (Figure 11).
HERS
HERS [34] is a Heterogeneous Reconfigurable System
aimed to serve as a platform for SDR. Its main idea is to
divide the application among the reconfigurable engines
(REs) based on the nature of computations. The RE
further consists of a processor which comprises of a
pool of homogeneous processing elements optimized to

perform a class of wireless algorithms. To provide the
inter-engine communication there is a high speed bus
available. The REs do the time-multiplexing among the
tasks associated to them. In the case of OFDM, the sys-
tem comprises two REs: Modem Engine and Channel
Coding Engine (RECFEC) [34] (Figure 12).
In a PE pool, the PEs are connected as a two-dimen-

sional array of size 8 × 8. It can be seen from Figure
12b, that the four functional units in the PEs corre-
sponding to the two engines are different in nature
depending on the algorithm requirement.
The programming model is based on partitioning

applications into sequential and parallel tasks [35]. The
control code and the serial tasks are performed by the
TinyRisc instructions and the parallel tasks are mapped

a.

b.

Figure 10 Montium Processor Tile and Montium ALU[28]. (a) Montium Processor Tile [28]. (b) Montium ALU [28].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 11 of 19

on the processing elements. In [34] is illustrated the
implementation of W-LAN and DVB-T/H on HERS
meeting the real time constraints at 250 MHz on 90 nm
TMSC technology.

ADRES by IMEC
IMEC presents a hybrid CGA-SIMD SDR processor
design based on ADRES/DRESC framework [36]. The
core of the architecture consists of a Global Control

a.

b.

Figure 11 BUTTER processing elements(a) and BUTTER & Crema Architecture [32]. (a) Architecture of a processing element in BUTTER [32].
(b) Butter and Crema Architecture.

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 12 of 19

Unit, three predicated VLIW Functional Units, a Predi-
cate Register File and a Coarse Grain Array (CGA)
module. The CGA module is made of 16 inter-con-
nected units out of which 3 are directly connected to
the predicate register files. The architecture can func-
tion as a VLIW processor or a true Coarse Grain
Reconfigurable Architecture (CGRA) machine depend-
ing on the application requirements; the machine is
able to switch on the fly at run time between those
two modalities.
The architecture is fully programmable in C-Language

compiled with DRESC framework [37]. To exploit 4-way
SIMD capabilities some intrinsic functions are added in

the C code. The DRESC framework is used to transpar-
ently compile a single C language source code to both
the VLIW and the CGRA machines.
The processor, designed in TSMC 90G process

according to a dual-VT standard-cells flow, achieves a
clock frequency of 400 MHz in worst case conditions
and consumes maximally 310 mW active and 25 mW
leakage power (typical conditions) when delivering up to
25.6 GOPS (16-bit). The mapping of a 20 MHz 2 × 2
MIMO-OFDM transmit and receive baseband function-
ality is detailed as an application case study, achieving
100 Mbps+ throughput with an average consumption of
220 mW [36] (Figure 13).

a.

–

b. c.

RECFEC Reconfigurable Engine

PEC

DB

DMA CB

PE Pool

PEC

DB

DMA CB

PE Pool

AMBA Compliant Bus

On Chip Memory TinyRisc DMA

M2 Reconfigurable Engine

Mux A Mux B
Mux

ACS ALU GF
Accelerato

LUT

Adder

Flag Reg

Mux

Mux Control Unit

Configration

Register File
R0-R15

TD D L R Reg File TD D L R Reg File

Reg File

MAC

Reg File

Mux A Mux B
Mux

MAC ALU FGB Memory
512x16

Adder

Flag Reg

Mux

Mux Control Unit

Configration

Register File
R0-R15

Row
PE DB

Col
PE

Reg
File

MAC

Row
PE DB

Col
PE

Reg
File

Figure 12 HERS model and Processing Element Architecture of RECFEC & Modem Engine [34]. (a) HERS model [34]. (b) Processing
Element architecture of RECFEC [34]. (c) Processing Element architecture of Modem Engine [34].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 13 of 19

Discussion
Based on the previous examples, we can now summarize
the state of the art in SDR solutions and try to predict
the main trends for the future without making a straight
comparison of area, power and flexibility among differ-
ent approaches because without a benchmark and based
on available public figures it is not really possible as
agreed in [38] as well. We still give some comparisons

on the basis of programmability, flexibility and power in
Tables 2, 3 and 4, respectively, at the end of the discus-
sion which can provide clearer picture of the systems
we have already seen in this article. It is apparent how
approaches based on reconfigurable hardware come at
the moment from the academic world, while proposals
from the industry remain anchored to the DSP-based
approach. This might be mainly due to the fact that

a.

b.
Figure 13 ADRES Processor Core Architecture and CGA Unit [36]. (a) ADRES Processor Core Architecture [36]. (b) CGA Unit [36].

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 14 of 19

programmers and developers worldwide are used to the
programming paradigm based on C language extended
with assembly code (or intrinsics). Conversely, reconfi-
gurable machines (due to their novelty and relatively
recent appearance on the scene) are considered by the
large public to be not that easy to program. For this rea-
son, huge efforts are being spent to make reconfigurable
hardware easier to use by third-party programmers. The
promising results achieved so far, together with the high
potential of such machines make them a very good can-
didate for the next future.
For the time being, systems are still likely to follow

this paradigm: a programmable microprocessor acts as a
system controller and is connected via a multilayer hier-
archical bus to a series of subsystems hosting either

ASIC components, ASIP processors [26] or VLIW DSP
processors with SIMD capabilities.
In the near future, it is likely that we will witness an

evolution of this paradigm consisting of adopting NoCs
to interconnect an increasing number of subsystems,
each hosting an increasing number of computation
resources (in order to face increasing requirements of
future radio applications: LTE, LTE-A and so forth). We
cannot be certain about the applications that need to be
supported in the coming future. The same chip should
be used for as many years as possible to amortize the
development costs, while standards keep evolving. If we
consider only the standards mentioned in Table 1 they
have been used for many years, and others (e.g., LTE)
are likely to be there for a long time as named.

Table 2 Programmability

Architecture SW/high
level

language

SW/ad-hoc
language

SW/
assembly

Specific optimizations Available support for high level
language

LeoCore ✓ ✓ Coresoninc developer studio

Sandblaster ✓ Auto-Vectorization, Token Triggered Threading Sandbridge’s optimized C compiler

ConnX BBE ✓ ✓ Auto-Vectorization Needs for TIE language

EVP ✓ ✓ EVP-C compiler

SODA ✓ ✓ Static compile-time scheduling and allocation,
Compiler based task assignment to PEs

C compiler generated by OptimoDE’s
Framework, Matlab C-model supported

ARM Ardbeg ✓ ✓ Static compile-time scheduling and allocation,
Compiler based task assignment to PEs

C compiler generated by OptimoDE’s
Framework, Matlab C-model supported

Tomahawk ✓ dynamic Task scheduling and allocation C compiler

Infineon ✓ MuSIC specific C compiler to support
SIMD C Extensions

Montium ✓ ✓ Montium specific C compiler

BUTTER &
CREMA

✓ ✓ FireTool to support C language Extensions

HERS ✓ ✓

ADRES ✓ ✓ DRESC Framework

Table 3 Flexibility

Architecture Support GP
applications

GP but optimized for radio
kernels

Only Radio
Kernels

Template-based
design

Easily adaptable to new/updated
radio standard

LeoCore ✓

Sandblaster ✓ ✓

ConnX BBE ✓ ✓

EVP ✓ ✓

SODA ✓ ✓

ARM Ardbeg ✓ ✓

Tomahawk ✓ ✓

Infineon ✓ ✓

Montium ✓

BUTTER &
CREMA

✓ ✓

HERS ✓

ADRES ✓ ✓

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 15 of 19

Let us consider the CoreSonic’s LeoCore. We may
assume that no extra flexibility is needed to extend the
fixed domain of functions required for radio baseband
processing. Optimizing an architecture based on 90%
code locality principle may help us to realize an SDR
covering most of the used standards. As mentioned
already no actual figures have been given for LTE test
chip so far. Its optimized domain specific instruction set
should lead to low program memory usage, low amount
of memory accesses and low control overhead when
compared to VLIW architectures. It can significantly
reduce area and power consumption.
Sandbridge’s efforts most importantly in addition to

hardware are on the compiler sides to efficiently exploit
the depth of parallelism inherent in DSP algorithms.
However, compiler leaves how much room for further
optimizations remains a question. The interesting aspect
of such an approach is that all these standards are
implemented in C language and no hardware accelera-
tors are required. This is very efficient way when dealing
with strict time constraints to launch a product in the
market. However, when we think about the constraints
for SDR such as power and area simply scaling up the
DSPs to wider data paths and multiple cores seems not
being truly a solution. Considering channel coding ker-
nels such as FECare also very complex in their imple-
mentation. Running these algorithms without the
support of any accelerators on scaled up DSPs might
pose serious challenges of area and power.
Tensilica again adopts the same philosophy of exploit-

ing data and instruction level parallelism using SIMD
and 3-way VLIW architecture, respectively. Its distinct
feature might be its multiple load/store units but most
importantly their efforts in compiler design. Any C-code
for DSP operations like FFT or filtering is restructured

and vectorized to exploit the data and instruction level
parallelism, inherent in DSP operations. This process
might be automatic or manual.
NXP also opts for going toward SIMD architecture

along with VLIW capabilities. Their division of whole
receiver functions on the basis of needed flexibility in
reconfiguration appeals to some extent. Because if
somewhere in the system flexibility is not required so
much and a less flexible hardware can be used across a
range of different standards we can save power and
area. However, as a whole architecture becomes less
flexible which might become a serious drawback when it
comes to SDR to be used over longer period of time.
SODA as well exploits the data level parallelism lever-

aging its SIMD architecture. One interesting thing they
do is to avoid splitting DSP kernels into threads and
instead schedule an entire kernel statically on a PE
according to the algorithm data flow. This avoids heavy
overhead of intra-kernel communication traffic. Another
aspect which distinguishes SODA from other processor
centered architectures is the use of scratchpad memory.
It can be seen easily that most of the above platforms
revolve around two planes: the control plane and data
plane. DSP kernels are power hungry kernels and SIMD
seems a natural choice for them. Considering error con-
trol algorithms, they do not hold the Data Level Paralle-
lism as in DSP kernels like FFT. Using SIMD capable
DSP might go for much power consumption in this
domain of algorithms. Revisiting SODA architecture and
adding a TURBO coprocessor leading to ARM Ardbeg
is a step toward accepting the above mentioned fact.
Again Tomahawk and Infineon go for same SIMD

approach assisted with some accelerators. In case of
Tomahawk, the hardware unit named as CoreManager
as mentioned earlier is its distinct feature. It can sche-
dule at runtime 16 tasks in the pipeline and this sche-
duling load can be taken off from the compiler side.
Tomahawk also realizes the different complex and com-
putationally intensive nature of channel coding algo-
rithms and deploys dedicated ASIPs instead of high
performance general DSPs.
In fact, the main obstacle in using such complex and

massively parallel DSP processors is the fact that the
compilers available today cannot fully exploit the archi-
tecture and at the same time achieve efficient code for
SDR. For this reason, today the applications running on
the vector DSPs are still coded (or at least optimized)
manually: applications can be written in C augmented
with so called intrinsic, which are processor-specific
complex instructions.
One of the biggest challenges in the future will be

finding a good way of programming such complex
machines, especially when considering a performance vs.
portability trade-off. For instance, Sandbridge has a solid

Table 4 Power

Architecture Technology Details

LeoCore 0.12 μm
CMOS

70 mW@70 MHz

Sandblaster N/A N/A

ConnX BBE N/A N/A

EVP 90 nm CMOS 1 mW/MHz

SODA 90 nm CMOS 450 mW@400 MHz

ARM Ardbeg 500 mw@350 MHz

Tomahawk UMC 130 nm 940 mW@170 MHz

Infineon 65 nm CMOS 280 mW@300 MHz (DSP with 4 SIMD
Cores)

Montium 0.13 μm
CMOS

600 μW/MHz

BUTTER &
CREMA

N/A N/A

HERS N/A 3.1 mW@250 MHz

ADRES TSMC 90G 335 mW@400 MHz

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 16 of 19

programming model based on plain ANSI C and
threads, thus offering real portability between systems
supporting this programming model. On the other
hand, C introduces artificial dependencies in the code
which are not actually present in the algorithms
described, thus such solution is not optimal under this
respect. The other approaches discussed in this article
are instead affected by lack of portability of the code
between them: the DSP-based solutions are programmed
via C extended with intrinsics, thus processor-specific
assembly instructions. The CGRAs are instead pro-
grammed by means of architecture-specific bit-streams.
Considering CGRAs over other solutions their advan-

tage can be their adaptability to algorithms with inher-
ent data and instruction level parallelism to complex
error correction algorithms. Their hardware adapts the
algorithm and thus more closer to ASICs. Principally
they must be efficient in terms of area and power. Their
flexibility depends upon their grain. Some CGRAs may
suffer from runtime reconfigurability as they are once
optimized for a certain application they cannot be chan-
ged like ADRES and CREMA. The elements in these
arrays might be basic arithmetic units or some abstrac-
tion at higher level or lower level. The programmer has
to connect these elementary units in order to implement
an algorithm like convolution, correlation, FFT or
Viterbi algorithm. And at this point he needs to put real
efforts in order to produce a final bit stream for an algo-
rithm. We thus need a new programming model, open
and shared between vendors, in order to guarantee total
portability. Moreover, it should allow extracting all the
parallelism contained in the applications, and be able to
guarantee an easy and effective mapping on massively
parallel MPSoCs. When mapping an application on such
systems with numerous cores exploiting parallelism at
all levels such as TLP (task level parallelism), ILP
(instruction level parallelism). DLP (data level paralle-
lism) and PLP (processor level parallelism) poses new
challenges and questions that what could be atomized
and what is at hands of the programmer. In order to
facilitate programming huge systems probably industry
needs to put more efforts in developing the tools and
environments and may follow some standards to make
the portability among different platforms feasible. In this
case, an interesting study has been found in [38] about
the mapping flow approaches followed by different
research groups. The suggested mapping flow starts
with inter-processor TLP toward intra-processor TLP
which is basically parallelism among threads. Then
comes the DLP and in the last it is ILP. Explorations for
all these parallelism must be done carefully either by
experienced programmer or by high level estimators
[38,39]. More details about mapping flow on some indi-
vidual platforms can be found in [38].

Multi-Processor System-on-Chip (MPSoC) seems one
very promising and more radical evolution. In such a
scenario, several clusters are connected via a NoC; such
architecture is very interesting because it enables
exploiting the application parallelism at all levels.
MPSoCs can be either homogeneous or heterogeneous
and can have centralized control or distributed control.
Homogeneous MPSoCs exhibit high regularity due to
the fact that they are obtained by replicating the same
cluster, and can be seen as a large CGRA-like architec-
ture. This approach has significant advantages from a
silicon implementation point of view, but implies higher
overhead in implementing heavy computation, thus
requiring a very high amount of clusters when com-
pared to heterogeneous MPSoCs. On the other hand,
heterogeneous MPSoCs may pose more pressure on the
interconnection network due to the necessity to move
data to specialized computation engines across the sys-
tem. When the control is centralized, a cluster acts as a
‘master’ of the system, coordinating the work of the rest
of the system. This is a robust approach, but may pose
issues from the scalability point of view. On the other
hand, distributed control poses high challenges to the
programmers about software development and verifica-
tion. Heterogeneous solutions can provide sufficient
flexibility with low-energy by mixing GP processors and
carefully selected custom accelerators.
From cache point of view, general-purpose processors

with caches are unpredictable and energy hungry due to
the massive amount of speculation involved in both
execution and data prefetching. This speculation is
unnecessary in SDR and only increases with concur-
rency. When using deterministic prefetching strategies
suitable for SDR, cache coherence is not a problem and
segmented interconnects can be more readily exploited
to achieve higher bandwidth of dataflow inside the chip.
Snooping cache coherence protocols tend to be infeasi-
ble in segmented interconnects of which NoCs are one
specific sub-group. However, this benefit of higher inter-
nal bandwidth might not be needed if the algorithm can
be mapped so that thick datastreams are not needed
between remote locations. Internal bandwith require-
ments might also be relaxed by low external data rate or
chip I/O bottleneck. Thus, the benefit of segmented
interconnects depends on the internal mapping of the
algorithm and chip I/O capabilities among others.

Conclusion
This article provided an overview about current SDR
platforms and solutions proposed by the academic
world and by the industry. The SDR baseband solutions
proposed so far represent just the first step toward a
second generation of SDR platforms. Still, the current
solutions are very important in a way that they show

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 17 of 19

SDR as viable approach, and already a reality under
some constraints. Important challenges related to the
need of huge processing power and to the need to limit
energy consumption need to be solved before SDR can
become a mainstream technology.
We can easily conclude that most of the solutions are

DSP based. General purpose DSPs can give the highest
level of flexibility but at some point they are impractical
especially for hand held devices because of their huge
area and power consumption. That is why industry rea-
lized that general purpose DSP based solutions must be
assisted with accelerators or they must be extended with
optimized instruction set. They can give enough flexibil-
ity for SDR with area and power savings. Reconfigurable
arrays on the other hand can be very useful as function
accelerators in SDRs. However, they can also serve to
develop a whole SDR platform with multiple instantia-
tions, each working differently connected to a network
on chip.
Summarizing, we foresee that the short/mid-term

future platform for SDR is a heterogeneous MPSoC
with centralized control and up to tens of clusters. The
master cluster may host an ASIP processor; some other
clusters may host VLIW DSPs, or CGRAs, while others
may host ASIC accelerators. In the mid/long-term
future, the platform for SDR might be a distributed con-
trol MPSoC, either homogeneous or heterogeneous,
with hundreds or even thousands of clusters, in order to
support dynamically a series of demanding concurrent
applications. There could be an entire set of reconfigur-
able machines ranging from fine grain custom FPGAs to
CGRAs. Very importantly the obvious memory bottle-
neck in high-performance SDR computation platforms
also needs to be tackled.

Abbreviations
CDL: Configuration Design Language; CDS: Coresonic developer studio;
CGRA: Coarse Grain Reconfigurable Architecture; DSP: Digital Signal
Processing; LIW: long instruction word; MMSE: minimum mean square error;
MPSoC: Multi-Processor System-on-Chip; OFDM: orthogonal frequency
division multiplexing; PEs: processing elements; QoS: quality of service; SDR:
Software Defined Radio; SIMD: Single Instruction Multiple Data; SODA: signal-
processing on-demand architecture.

Acknowledgements
This research was supported by Tampere University of Technology Finland &
Graduate School of Electronics, Telecommunication & Automation (GETA)
Finland.

Author details
1Department of Computer Systems, Tampere University of Technology, P. O.
Box 553, Tampere, 33101, Finland 2Nokia Research Center, Helsinki, 00180,
Finland

Competing interests
The authors declare that they have no competing interests.

Received: 24 September 2010 Accepted: 6 June 2011
Published: 6 June 2011

References
1. JH Reed, Software Defined Radio: A Modern Approach to Radio Engineering

(Prentice Hall, 2002, Upper Saddle River, New Jersey 07458)
2. J Mitola III, Software Radio Architecture: Object Oriented Approaches to

Wireless Systems Engineering (John Wiley and Sons, 2000, Third Avenue,
New York, NY 10158)

3. JAC Bingham, Multicarrier modulation for data transmission: an idea whose
time has come. IEEE Commun Mag. 28, 5–14 (1990)

4. M Alard, R Lassalle, Principles of modulation and channel coding for digital
broadcasting for mobile receivers. Eur Broadcast Union Rev. 224, 47–69
(1987)

5. F Berns, G Kreiselmaier, N Wehn, Channel decoder architecture for 3G
mobile wireless terminals. in IEEE Design, Automation and Test in Europe
Conference and Exhibition, vol. 3, 2004, pp. 192–197

6. F Kienle, N Wehn, H Meyr, On complexity, energy- and implementation-
efficiency of channel decoders. in IEEE, Transactions on Communications,
March 2010

7. T-D Chiueh, P-Y Tsai, OFDM Baseband Receiver Design for Wireless
Communications (John Wiley and Sons (Asia), 2007, Clementi Loop, #02-01,
Singapore 129809)

8. JW Cooley, JW Tukey, An algorithm for the machine computation of the
complex Fourier series. Math Comput. 19, 297–301 (1965)

9. J-S Park, B-K Kim, J-G Chung, KK Parhi, High-speed tunable fractional-delay
allpass filter structure. in Proceedings of 2003 IEEE International Symposium
Circuits and Systems (ISCAS03), vol. 4, Bangkok, Thailand, May 2003,
pp. 165–168

10. T-D Chiueh, P-Y Tsai, OFDM Baseband Receiver Design for Wireless
Communications (John Wiley and Sons, 2007, Clementi Loop, #02-01,
Singapore 129809)

11. M-H Hsieh, C-H Wei, Channel estimation for OFDM systems based on
comb-type pilot arrangement in frequency selective fading channels. in
IEEE Transactions on Consumer Electronics, vol. 44(1), pp. 217–225, February
1998

12. U Ramacher, Software-defined radio prospects for multistandard mobile
phones. IEEE Comput. 40(10), 62–69 (2007)

13. D Liu, A Nilsson, E Tell, D Wu, J Eilert, Bridging dream and reality:
programmable baseband processors for software-defined radio. IEEE
Commun Mag. 47, 134–140 (2009)

14. D Liu, Embedded DSP Processor Design, Application Specific Instruction Set
Processors (Morgan Kaufmann, 2008, Burlington, MA 01803, USA)

15. A Nilsson, E Tell, D Liu, An 11 mm2, 70 mw fully programmable baseband
processor for mobile WiMAX and DVB-T/H in 0.12 μm CMOS. Proceedings
of ISSCC, San Francisco, CA, February 2008

16. M Moudgill, J Glossner, S Agrawal, G Nacer, The Sandblaster 2.0
Architecture and SB3500 Implementation. in Proceedings of the Software
Defined Radio Technical Forum (SDR Forum ‘08), Washington, DC, October
2008

17. J Glossner, D Iancu, M Moudgill, G Nacer, S Jinturkar, M Schulte, The
sandbridge SB3011 SDR platform. in Proceedings of Joint IST Workshop
Mobile Future Symposium on Trends Communication (SympoTIC), June 2006,
pp. ii–v

18. Z Tu, M Yu, D Iancu, M Moudgill, J Glossner, On the performance of 3GPP
LTE baseband using SB3500. in System-on-Chip, 2009. SOC 2009. International
Symposium, 5–7 October 2009, pp. 138–142

19. C Rowen, P Nuth, S Fiske, A DSP architecture optimized for wireless
baseband. International Symposium on System-on-Chip, 5–7 October 2009,
pp. 151–156

20. K Van Berkel, F Heinle, PE Patrick Meuwissen, Kees Moerman, Matthias
Weiss, Vector processing as an enabler for software defined radio in
handheld devices. EURASIP J Appl Signal Process. 2005(16), 2613–2625
(2005)

21. K van Berkel, A Burchard, D van Kampen, P Kourzanov, O Moreira, A Piipponen,
K Raiskila, S Slotte, M van Splunter, T Zetterman, Multi-radio scheduling and
resource sharing on a software defined radio computing. in Proceedings of
the SDR 09 Technical Conference and Product Exposition, 2009

22. JH Ahn, WJ Dally, B Khailany, UJ Kapasi, A Das, Evaluating the imagine
stream architecture. in Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004

23. PH Hofstee, All about the cell processor. in IEEE Symposium on Low-Power
and High-Speed Chips(COOL Chips VIII), April 2005.

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 18 of 19

24. Y Lin, H Lee, M Woh, Y Harel, S Mahlke, T Mudge, C Chakrabarti, K Flautner,
Soda: a high-performance dsp architecture for software-defined radio. IEEE
Micro 27(1), 114–123 (2007)

25. M Woh Yuan Lin, S Seo, S Mahlke, T Mudge, C Chakrabarti, R Bruce, D
Kershaw, A Reid, M Wilder, K Flautner, From SODA to scotch: the evolution
of a wireless baseband processor. in Proceedings of 41st IEEE/ACM
International Symposium on Microarchitecture (MICRO-41), Lake Como, Italy,
8–12 November 2008

26. G Cichon, P Robelly, H Seidel, E Matus, M Bronzel, G Fettweis, Synchronous
transfer architecture (sta). in Proceedings of the 4th International Workshop
on Systems, Architectures, Modeling, and Simulation (SAMOS’04), Samos,
Greece, July 2004, pp. 126–130

27. GK Rauwerda, GJM Smit, CRW van Bentham, PM Heysters, Reconfigurable
turbo/viterbi channel decoder in the coarse-grained montium architecture.
in Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms (ERSA’06), Las Vegas, Nevada, USA,
June 2006

28. PM Heysters, GJM Smit, Mapping of DSP algorithms on the MONTIUM
architecture. Parallel and Distributed Processing Symposium, 2003. Proceedings
International, 22–26 April 2003

29. PM Heysters, Coarse-grained reconfigurable computing for power aware
applications. in Proceedings of the 2006 International Conference on
Engineering of Reconfigurable Systems Algorithms, Las Vegas, Nevada, USA,
June 26–29, 2006

30. C Brunelli, F Cinelli, J Nurmi, A vhdl model and implementation of a coarse-
grain reconfigurable coprocessor for a risc core. in Proceedings of the 2nd
Conference on Ph.D. Research in MicroElectronics and Electronics (PRIME), pp.
229–232, June 2006

31. J Kylliäinen, T Ahonen, J Nurmi, General-purpose embedded processor
cores—the COFFEE RISC example. in Chapter 5, Processor Design: System-on-
Chip Computing for ASICs and FPGAs, edited by Nurmi J (Kluwer Academic
Publishers/Springer Publishers, 2007), pp. 83–100

32. F Garzia, C Brunelli, C Giliberto, R Airoldi, J Nurmi, Implementation of W-
CDMA cell search on a runtime reconfigurable coarse-grain array. in
Proceedings of the International Conference of Computer as a Tool
(EUROCON ‘09), IEEE, 2009

33. F Garzia, R Airoldi, C Brunelli, C Giliberto, J Nurmi, Mapping of the FFT on a
reconfigurable architecture targeted to SDR applications. in Proceedings of
International Symposium on System-on-Chip (SOC’09), IEEE, 2009, pp. 157–160

34. A Niktash, HT Parizi, N Bagherzadeh, Application of a heterogeneous
reconfigurable architecture to OFDM wireless systems. in Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS) 2007, New
Orleans, 27–30 May 2007, pp. 2586–2589

35. HT Parizi, A Niktash, AH Kamalizad, N Bagherzadeh, A reconfigurable
architecture for wireless communication systems. in Third International
Conference on Information Technology: New Generations (ITNG 06), 2006,
pp. 250–255

36. B Bougard, B De Sutter, S Rabou, D Novo, O Allam, S Dupont, L Van der
Perre, A coarse-grained array based baseband processor for 100Mbps+
software defined radio. in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition (DATE), Munich, Germany, 10–14 March
2008, pp. 716–721

37. B Mei, S Vernalde, D Verkest, H De Man, R Lauwereins, Exploiting loop-level
parallelism on coarse-grained reconfigurable architectures using modulo
scheduling. Comput Digital Tech, IEE Proc. 150, 255–261 (2003)

38. M Palkovic, P Raghavan, M Li, A Dejonghe, L Van der Perre, F Catthoor,
Multicore embedded systems for future SDR platforms: architecture and
mapping flow overview. IEEE Signal Process Mag. 27, 22–33 (2010)

39. Multicore Association, Multicore-Programming Practices Group (2009).
http://www.multicore-association.org/workgroup/mpp.php

40. V Surducan, M Moudgill, G Nacer, E Surducan, P Balzola, J Glossner, S
Stanley, M Yu, D Iancu, The sandblaster software-defined radio platform for
mobile 4G wireless communications. Hindawi Publishing Corporation. Int J
Digital Multimedia Broadcast. 2009, Article ID 384507, 9pp

41. Tensilica: http://www.tensilica.com/uploads/pdf/connx_bbe.pdf Accessed
date on 31.12.2010 and 31.05.2011

42. Ö Paker, K van Berkel, K Moerman, Hardware and software implementations
of an MMSE equalizer for MIMO-OFDM based WLAN. in IEEE Workshop on
Signal Processing Systems Design and Implementation, November 2005,
pp. 1–6

43. T Limberg, M Winter, M Bimberg, MBS Tavares, H Ahlendorf, MG Fettweis,
H Eisenreich, G Ellguth, A heterogeneous mpsoc with hardware supported
dynamic task scheduling for software defined radio. In Design Automation
Conference 2009 (DAC’09).

44. CH van Berkel, Multi-core for mobile phones. in Proceedings of DATE ‘09.
Design, Automation. Test in Europe Conference. Exhibition, 20–24 April 2009,
pp.1260–1265

doi:10.1186/1687-1499-2011-5
Cite this article as: Anjum et al.: State of the art baseband DSP
platforms for Software Defined Radio: A survey. EURASIP Journal on
Wireless Communications and Networking 2011 2011:5.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Anjum et al. EURASIP Journal on Wireless Communications and Networking 2011, 2011:5
http://jwcn.eurasipjournals.com/content/2011/1/5

Page 19 of 19

http://www.multicore-association.org/workgroup/mpp.php
http://www.tensilica.com/uploads/pdf/connx_bbe.pdf
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	Introduction
	Digital baseband technologies
	Channel coding
	Modulation
	Synchronization
	Channel estimation and equalization

	Overview of existing SDR solutions
	Processor centered architectures
	DSP-centered SDR solutions
	LeoCore by CoreSonic
	Sandblaster by SandBridge
	ConnX BBE by Tensilica
	EVP (embedded vector processor) by NXP
	Many-Core SDR Platforms
	SODA (signal-processing on-demand architecture)
	ARM Ardbeg
	Tomahawk MPSoC
	MuSIC by Infineon
	Reconfigurable architectures for SDR platforms
	Montium by recore systems
	BUTTER and CREMA
	HERS
	ADRES by IMEC

	Discussion
	Conclusion
	Acknowledgements
	Author details
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

