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ABSTRACT

The goal of this paper is to study a proactive condition
monitoring system for fluid power systems where the
Self-Organizing Maps (SOM) with unsupervised learning
is used to classify and interpret high-dimensional data
measurements. If all the damages are not assumed to
be known before diagnostics, an ordinary neural network
with supervised learning for their detection can not be
used. Operation of the proactive condition monitoring
system is tested in a test system where two fault types
are used. The test system is run in normal and two
different fault situations. Measurement results are used
for training and testing the SOM. In this paper these
measurement results and also the quality of state
recognition are shown.

INTRODUCTION

Neural network research has been very active for
several years and there has also been interest in neural
network applications to fault diagnosis problems. A
neural network is one possible method which is suitable
for detecting changes in the state of the fluid power
system. [8, 9, 12, 13, 15]

In fluid power, the systems are very non-linear and the
behavior is often highly dynamic. The amount of
measurement data from these systems can be quite
large and the relationships of the measurement
variables can become complex. The Self-Organizing
Maps (SOM) is a neural network method which can
represent any functional relationship between inputs and
outputs. Therefore the SOM can be used with fluid
power systems very effectively and by using it, it is
possible to determine the state of the system. In this
paper, term state is used to distinguish different system
status (normal / fault). [4, 14]

The SOM converts complex, nonlinear statistical
relationships between high-dimensional data items into
simple geometric relationships on a low-dimensional
display. So it compresses data while preserving the
most important topological and metric relationships of
the original data. It consists of neurons organized on a

regular low-dimensional grid. These neurons are
organized so that similar neurons are near and different
ones far away each other. [4, 14]

The SOM algorithm is used here to classify and interpret
data measurements. Usually when neural networks are
used for fault detection, supervised training is used.
Supervised training means that desired outputs (state of
the system, normal / fault) are used in training. But
often the real case is that fault situations are not known
before and an ordinary neural network with supervised
learning for fault detection can not be used. Therefore
unsupervised learning is used although here the fault
situations are known before.

In unsupervised learning, the network is not trained
towards specified outputs. Networks that are trained
without outputs learn by evaluating the similarity
between the input patterns presented to the network.
They make use of the statistical properties of the input
data as frequently occurring patterns will have a greater
influence than infrequent ones. So the weights are
modified in response to network inputs only. Most of
algorithms, which use unsupervised learning, perform
some kind of clustering operation where they categorize
the input patterns into a finite number of classes [3].
Unsupervised learning makes use of the redundancy
present in the input data in order to produce a more
compact representation.

The operation of the neural networks is completely
based on the measurement data which it inputs to the
network. The selected data must contain enough
information from the system that it is possible to detect
any abnormal deviation in the system. If the deviation,
caused by some fault, do not show in the measurement
data, then it is impossible to detect this fault with neural
network. Because of this measurement variables should
be selected so that they describe the behavior of the
system well enough so that fault situations can be
detected.

Usually in the literature, when neural network classifiers
have been used to detect and diagnose fault situations,
studied systems are not in their normal use but systems
are diagnosed afterwards. Here studied system is in



normal use and dynamic sequence measurements from
the system are used to train and test the neural network.

When neural network is used for classification and it is
trained using measurement data from the system,
operating point changes can become a problem. Normal
situations can be classified as a fault although only the
operating point has been changed. If different kind of
operating points can be separated and trained to the
network then it is not a problem.

The training algorithm which is used in this study is
simple, robust to missing values, and perhaps most
importantly, it is easy to visualize the map. These
properties make SOM a prominent tool in data mining
[16].

Sometimes the performance of the network can be
decreased if high measurement frequency and/or large
number of measurements variables are used. Therefore
principal component analysis (PCA) is used for
visualization of the measurements and to reduce the
number of measurement variables. PCA simplifies the
problem by replacing a group of variables with (a single)
new variable(s).

PROACTIVE CONDITION MONITORING SYSTEM

The studied proactive condition monitoring system for
fluid power systems consists of five different parts which
are data acquisition, (wireless) data transfer, database,
neural network and user interface. Operation of the
proactive condition monitoring system is described more
detailed in [6]. Figure 1 shows the system structure of
the proactive condition monitoring system.

Proportional Valve /
Analog Sensors

CAN 1/O module
- PWM 4 x 2
- Analog input 4 x 2

f CAN Meast(llrs:)ent ul
(4

Hybrid controller
19200 (IHA)
bit/s

Control room

Server
— (Database, WWW-
Server)

Neural Network

(SOM) WWW browser

Fig. 1: System structure of the proactive condition monitoring system [6].

In this paper term proactive condition monitoring is used
for condition monitoring which monitors abnormal
deviation in measurement variables and also controls
the state of the system and the components according
to the feedback information. State of the system is
controlled by tuning the control parameters or driving
the system down. It is also possible to continue using
the system at a lower utilization rate. This way it is
possible to know the information about the conditions of
the fluid power components all the time and the risk of
failures can be minimized. [5, 6]

SELF-ORGANIZING MAPS

The Self-Organizing Map (SOM) converts complex,
nonlinear statistical relationships between high-
dimensional data items into simple geometric
relationships on a low-dimensional display. So it
compresses data while preserving the most important
topological and metric relationships of the original data.
[4, 14]

The SOM consists of neurons organized on a regular
low-dimensional grid. These neurons are organized so
that similar neurons are near and different ones far
away each other. The SOM learns to recognize groups
of similar input vectors in such a way that neurons
physically near each other in the neuron layer respond
to similar input vectors [11]. Similar system states
(normal / fault) have similar variable values and
therefore it is possible to separate different system
states. Each neuron is presented by a d-dimensional
weight vector m = [my,..., mg], where d is equal to the
dimension of the input vectors, and they are connected
to adjacent neurons. In the SOM training algorithm the
best-matching weight vector and also its topological
neighbors on the map are updated. This is shown in the
Fig. 2. [4, 14]

BMU

s

Fig. 2: Updating the best matching unit and its neighbors [14].

The SOM Toolbox, implementation of the SOM and it's
visualization in the Matlab computing environment, is
used to create and use the neural network. There are



two variants of the SOM training algorithm in the
Toolbox. In the traditional sequential training data
samples are presented to the SOM one at a time and
the algorithm gradually moves the weight vectors
towards them. In the batch training the data is presented
to the SOM as a whole and the new weight vectors are
weighted averages of the data vectors. [14]

In the sequential training the SOM is trained iteratively.
In each training step, one sample vector x from the
input data set is chosen randomly and the distances
between it and all the weight vectors of the SOM are
calculated using distance measure, typically Euclidian
distance. [4, 14]

Here the neuron whose weight vector is closest to the
input vector x is called the Best-Matching Unit (BMU),
denoted by c [4, 14].

fc=my|=min{]x—m[; (1)

In the Toolbox the distance computation is performed
slightly differently, where K is the set of known (not
missing) variables of sample vector x, x, and my are K"
components of the sample and weight vectors and wk is
the k™ mask value [14].

x=m[* = > w (x —m, )’ @)
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When the BMU has been found, the weight vectors of
the SOM are updated so that the BMU and its neighbors
are moved closer to the input vector in the input space,
see Fig. 2. After this the SOM update rule for the weight
vector of unit i goes according Eq.3, where t is time. The
X(t) is an input vector randomly chosen from the input
data set, hg(t) is the neighborhood kernel around the
winner unit ¢ and a(t) is the learning rate. [4, 14]

m;(t+1)=m; (t)+a(h; O)xH)-m O] @)

Both learning rate and neighborhood kernel radius
decrease monotonically with time. The used
neighborhood kernel hg(t) is gaussian. The kernel gets
its biggest value for the map unit, decreases
monotonically with increasing distance on the map grid
[Irc — ri]]. The used neighborhood kernel is shown in Eq.
4, where r. and r; are positions of neurons ¢ and i in the
output space, and o is the neighbourhood radius. [14,
16]
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The training is usually performed in two phases. In the
first phase relatively large learning rate and
neighborhood radius is used. In the second phase they
are small right from the beginning. So first is the tuning

of the SOM approximately to the same space as the
input data and then fine-tuning the map. [4, 14]

An alternative for traditional sequential training
algorithm is the batch training algorithm, where all the
data points are presented to the map before making any
changes to the map. The new weight vectors are
calculated according Eq.5, where c is the index BMU of
data sample x;, hci(t) is the neighborhood function (the
weighting factor), and n is the number of sample
vectors. [14]

Z”_l hy (t) X
Y0

Alternatively one can first calculate the sum of the
vectors in each Voronoi set according Eq.6, where ny; is
the number of samples in the Voronoi set of unit i [14].

m,(t+1)= (5)

Si(t):ixj (6)

After this the new values of the weight vectors can be
calculated according Eq.7, where m is the number of
map units. This allows a much more efficient matrix-
based implementation than using Eqg. 5. This way the
batch algorithm has been implemented in the Toolbox.
[14, 16]

(7)

The number of map units is selected according Eq.8,
where M is the number of map units and n is the number
of data samples [16].

M =5n 8)

It has been proved that the SOM algorithms can be
initialized using random values for the codebook
(weight) vectors and still these vectors will be ordered in
the long run. But this is not the best or fastest way. In
this study linear initialization has been used. [4]

Both of the SOM algorithms classified the state of the
system almost as well if the criteria is the correct state
of the system. In this paper the batch algorithm is used
because it is much faster, especially with Matlab
functions. The main reason why the SOM neural
network method is used here for the classification is that
this type of network could be used in situations where
the class information is not available. In this study the
fault situations are known before but they are not used
in training in any way. If clustering of input data is
completely or partially ascertained, semantic labels may



be attached to certain units of the topological map. After
classification a certain threshold is set. This determines
the greatest distance on which recognition occurs. If the
map units are labeled and thresholds are determined
properly, the network may be used as a detector of new
events. [7]

TEST SYSTEM

Operation of the proactive condition monitoring system
is tested in a test system where two fault types are used.
The test system is run in normal and two fault situations.
The effect of the fault situations in the performance of
the proportional valve and the cylinder has been
examined. The hydraulic components which are studied
here are used for example in the cranes of the
forwarders. The simplified hydraulic circuit of the test
system is shown in Fig. 3. More details of the hydraulic
circuit is presented in [6, 10].

| Load

/\‘ mass

(M=

Fig. 3: Simplified hydraulic circuit of the test system [6, 10].
FAULT TYPES USED IN THE TEST SYSTEM

Fault types of interest are worn spools of pilot operated
proportional valves and worn/damaged cylinders which
both give increased leakage and worn spool also
changes the pressure characteristics of the valve. Both
of the fault types studied here are artificial faults. Used
fault types are described and the impact of these
modifications is shown in [6, 10].

The spool of the valve has been mechanically modified
so that the control edge (P-A) from one half and the
spool land from other half of the spool has been worn.
These madifications try to simulate erosive and abrasive
wear of the valves. They change the pressure

characteristics of the valve and give extra leakage due
to the increased clearance between the spool and the
spool housing. The leakage between the annulus and
piston sides of the cylinder is created by opening a
bleed valve. The accuracy of these faults is here a
secondary thing because the main issue is to
demonstrate that presented neural network method,
Self-Organizing Map (SOM), is suitable for detecting
changes in the state of the fluid power system. [6, 10]

TRAINING AND TESTING DATA

The test system is run in normal and two fault situations.
Measured variables are pressures A and B from the
actuator ports and control signal of the proportional
(valve current). These variables are then used in
training and testing the SOM. The measurements are
filtered before using them in training or testing. The
measured pressures contain measurement noise, which
make the classification made by neural network, more
difficult. The filter used here is Chebyshev Type Il
lowpass filter. The filtering improved the result of the
classification a little. On the other hand the effect of
filtering to the total result was marginal. It was not
possible to recognize right 100% of the states because
the training and the testing data contains situations
where the normal and fault state measurements are
very close to each other and therefore some of the
classified states are wrong. [10, 11]

The same sequence is measured five times. This is
done because this way it is possible to improve the
generalization of the network when new data is
presented to the network.

In Fig. 4-7 are shown an example of the measurements.
From the figures it can be seen how some of the normal
and faulty measurement points are very close to each
other. This causes errors in classification. In Fig. 4 is
shown the control signals of the sequence
measurements (control signals are one upon the other in
the figure).
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Fig. 4: Control signal from the sequence measurements [6].



In Fig. 5-6 are presented pressures that are used in
classification. From the figures can be seen the
differences between the normal and fault state
measurements. Fault 1 (spool) measurement differs
more clearly from the normal situation than fault 2
(cylinder). Difference between fault 2 and normal
situation is quite small most of the time. From these
figures can also see that both pressures tend to change
in a same way.

Pressure A
30 T T
Normal ",
————— Fault (spool) aad
1Y s ettt IR LI Fault (cylinder)

20 I‘I ‘\'"1 h“!h#“

M'H‘M“

p/bar
=
(4]

10

0 100 200 300 400 500 600 700 800
Number of measurement points

Fig. 5: Pressure A from the sequence measurements [6].
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Fig. 6: Pressure B from the sequence measurements [6].

DIMENSION REDUCTION

Sometimes the performance of the network can be
decreased if high measurement frequency and/or large
number of measurements variables are used. But the
problem dimension can be reduced and still maintain
sufficient performance of the classification [7].

When there are data sets with many variables, groups of
variables often move together. One reason for this is
that more than one variable might be measuring the
same driving principle governing the behavior of the
system. In many systems there are only a few such
driving forces. Situation like this, when there is

redundant information, it is possible to simplify the
problem by replacing a group of variables with (a single)
new variable(s). [11]

The problem dimension is not a problem here because
there are only three inputs and therefore the principal
component analysis (PCA) is wused mainly for
visualization of the measurements. Now it is possible to
study the properties of the measurement data in a 2-
dimensional space. When there are more than three
variables, it is usually very difficult to visualize their
relationships.

PCA is also tested here to reduce the number of
measurement variables and therefore problem
dimension. The classification results are showed only for
situations where PCA is not used because PCA change
the final classification result only a little. PCA has been
used also in [12, 16] to visualize and/or reduce the
problem dimension before training the SOM. PCA
generates a new set of variables which are called
principal components. Each principal component is a
linear combination of the original variables. There is no
redundant information because all the principal
components are orthogonal to each other. [11]

The first principal component is a single axis in space.
When each observation is projected on that axis, the
resulting values form a new variable. The second
principal component is another axis in space,
perpendicular to the first. Projecting the observations on
this axis generates another new variable. [11]

2

2nd Principal Component
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+  Faultl
. +  Fault2 |-
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Fig. 7: The first and second principal components of the sequence
measurements (Control signal, Pressure A, Pressure B).

In Fig. 7 is shown the first and second principal
components of the sequence measurements which
explain about 98% of the total variance of measurement
data. In Fig. 7 is the original data mapped into the new
coordinate system defined by the principal components.
In this case pressure signals A and B and control signal
were replaces with two new variables (first and second
principal component). The sequence measurements are
from normal and two fault situations. From Fig. 7 can be
seen that fault 1 which is worn spool differs more from



the normal situation than fault 2 which is worn /
damaged cylinder. It is obvious from the figure that fault
1 is then easier to detect than fault 2. This overlapping
of measurements complicates the classification process.

CLASSIFICATION RESULTS

The classification problem is approached here from two
different viewpoints. The SOM is trained and tested with
two different methods. In both cases unsupervised
training is used.

In the first case the fault situations are known before
and the network is trained with normal and fault situation
data. Because fault situations are known before training,
semantic labels can be attached to certain units of the
topological map after training the map.

In the second case the fault situations are not known
and only data from the normal situation is used to train
the network. The map units which are hit during the
training are labeled after the training as a normal
situation. In this paper, term hit means that neuron in
the map has been chosen (at least one time) as a BMU
in the training phase. After this a certain threshold is set.
This determines the greatest distance on which
recognition occurs. If the map units are labeled and
thresholds are determined properly, the network may be
used as a detector of new events. [7]

FAULT SITUATIONS ARE KNOWN

Training the network was performed in two parts. In the
first phase 4 and in the second phase 15 iteration
rounds were used, when final quantization error (FQE)
value was 0.0100 and topographic error 0.0945 when
both fault situation are used in training.

The quantization error is the distance of an input vector
from the closest codebook (weight) vector in the input
space. The quantization error over all available input
data is a sensitive measure of the mapping accuracy. If
the configuration of the models has not yet reached the
stable state in the learning process, or if there are
unwanted “twists” in the map, the quantization error
remains significantly higher than at the ordered
optimum. It is a quite another question theoretically and
also from the practical point of view whether the
guantization error alone describes the topological order
of the maps. The topologic error is described in The
SOM Toolbox with value, which is the proportion of all
the data vectors for which first and second BMUs are
not adjacent units. [4, 14]

In the first case three different situations were trained to
the SOM. The first one is the normal situation and spool
fault, the second one is the normal situation and cylinder
fault and the last one is the normal situation and both
fault situations. The number of map units in these
different maps are 24 x 16, 29 x 13 and 29 x 16. Table 1
shows the number of used data points, the number of
wrong states and the quality of state recognition (in %).

Table 1: Quality of state recognition with map trained with data from the
normal and fault situations.

Used Quality of state Training Testing Testing
faults recognition data data 1 data 2
Data points 5496 1875 1892
Normal +
Spool fault Wrong states 117 58 60
Correct state % 97,9 96,9 96,8
Normal + Data points 5491 1883 1893
Cylinder Wrong states 425 140 193
fault Correctstate % | 92,3 92,6 89,8
Data points 7872 2676 2687
Normal +
Both faults Wrong states 582 217 244
Correct state % 92,6 91,9 90,9

From the Table 1 can be seen that the used neural
network method was able to recognize over 90% of the
states correct for the training and testing data when both
fault states were used. If only the data from the normal
and spool fault measurements were used for the training
the recognition percent was over 96%, for both training
and testing data, which could be considered a very good
result. So the worn spool of the pilot operated
proportional valve was easier to recognize than the worn
cylinder.

In [6] classification results were little better when
supervised training was used for training the network.
But here the size of the maps is determined differently
and they are smaller which affects to the final result of
the classification.
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Fig. 8: Normal and two fault situations. U-matrix on the left and the
distribution of neurons according to the state on the right.

Figure 8 shows the distribution of neurons in 2d-surface
into clear clusters when normal and two fault states are
used in training. On the left is shown the U-matrix which
computes unified distance matrix and shows the
clustering structure of the SOM. Also hits during the
training are marked on the U-matrix. On the right is
shown the distribution of neurons according to the state.
This shows how the neurons are organized so that
similar neurons are near and different ones far away
each other, as was said in the earlier chapter [1, 4].



FAULT SITUATIONS ARE NOT KNOWN

In this case the basic presumption is that only the
normal situation is known and the fault situations are not
known. This is usually the case in real life.

Also here the training of the network was performed in
two parts. In the first phase 4 and in the second phase
15 iteration rounds were used, when final quantization
error (FQE) value was 0.0069 and topographic error
0.0960.

Here the training data consist of measurements from the
normal situation. The map units which are hit during the
training are labeled after training as a normal situation.
After this a certain threshold is set. When the network is
tested the distances between sample vectors from the
testing data and all the codebook (weight) vectors of the
SOM are calculated using Euclidian distance. If the
minimum distance is bigger than beforehand set
threshold value then this sample vector is treated as a
fault state measurement.

After fault state has been found out the network can be
trained again and use also this fault and normal
situations or train a completely new network using only
data from the new fault situation.

Three different testing data sets and also the training
data are presented to the network after the training.
Every one of these testing data sets includes two
sequences of the measurements. The first one consists
of the measurements from the normal situations but
these are not used in training. The second one is the
measurements from the fault 1 situation and the last one
is the measurements from the fault 2 situation.

Table 2: Quality of state recognition with map trained with data from the
normal situation.

Quality Of _state Training Normal Fault 1 Fault 2
recognition data
Data points 3115 2180 1587 1590
Wrong states 158 90 1504 729
Correct state % 94,9 95,9 52 54,2

Figure 9 shows the distribution of neurons in 2d-surface
when only data from the normal situation is used in the
training. On the left is shown the U-matrix which
computes the unified distance matrix and shows the
clustering structure of the SOM. Also the hits during the
training are marked on the U-matrix. On the right is
shown the distribution of neurons according to the state.

In Fig. 10-13 are shown the calculated minimum
distances between the sample vectors of the testing
data and all the codebook vectors of the SOM.

From Fig. 10-11 can be seen that the trained network
recognizes data from the normal situation very well.
Only few spikes can be noticed from the figure and the
guality of the recognition is close to 95% in both cases.
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Fig. 9: Normal situation. U-matrix on the left and the distribution of
neurons according to the state on the right.
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The network is trained to detect normal situation and all
other situations are fault situation. From Fig. 12-13 can
be seen that the network detects fault situations from
the testing data which is from the fault situation. With
the fault 1 this is more obvious but also fault 2 can be
detected. With fault 1 only 5.2% of the measurements



are classified as a normal state and with fault 2 54.2%.
So fault 2 is much harder to detect than fault 1.
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CONCLUSION

The main goal of this research was to study a proactive
condition monitoring system for fluid power systems
where the neural network is used for fault detection. The
faults used in this paper were the worn spool of the pilot
operated proportional valve and the worn cylinder.

The classification problem was approached from two
different viewpoints. The SOM was trained and tested
with two different methods. In the first case the network
is trained with data from the normal and fault situations.
In the second case only normal situation data is used to
train the network. This type of network could be used in
situations where class information is not available as a
detector of new events. In both cases the unsupervised
training was used.

In the first case the SOM was able to recognize over
90% of the states correct, if both faults situations were
used for the training and testing. If only the spool fault
were used for the training the recognition percent was

over 96%, which could be considered a very good
result.

In the second case the network was tested with three
different testing data sets and also with the training data
after the training. The network classified 95% of the data
as a normal state with the training data and the testing
data set 1, which is from normal situation. With fault 1
only 5.2% and with fault 2 54.2% of the measurements
are classified as a normal state.

The second fault (cylinder leakage) was in general
harder to detect. The classification result of the second
fault could be perhaps improved with different sensor
selection and the location of the sensors. Both of these
neural network training methods detected the presented
the fault situations well although in the first case quality
of the state recognition was much better with fault 2. But
usually there is no fault situation data in the beginning of
the training so the second case is closer to the real case
when designing condition monitoring system.

Both of the classification cases included classification
errors which have to take into account in the condition
monitoring system, where the system do not react until
the number of the fault states in certain time period
exceeds beforehand set threshold value. The
performance of the network is finally determined by how
well it works with data that have not been trained to it. It
does not bring any extra value to the condition
monitoring system, if network works fine in a single
trained situation. More important is the generalization
capability of the network. In this study it was
demonstrated that neural network method, Self-
Organizing Maps (SOM), is suitable for detecting
changes in the state of the fluid power system.

Using this kind of system it is possible to detect fault
situations and control the state of the system through
feedback information from the condition monitoring
system. All the necessary maintenance and repairing
work can be done before any major damage or even
continue using the system at a lower utilization rate.
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DEFINITIONS

a(t) Learning rate at time t

o Neighbourhood radius

c Best-Matching Unit (BMU)

c(j) BMU of sample vector x;

d Dimension of the input vectors

hi(t)  Neighborhood kernel around the winner unit at
time t

I Control current of the proportional valve [A]

K Set of known (not missing) variables of sample
vector x

M Weight vector

M Number of map units

my K" component of the weight vector

n Number of sample vectors

Ny Number of samples in the Voronoi set of unit i

Pressure [bar]

Q Flow [I/min]

re Position of neuron ¢

S Sum of the vectors in each Voronoi set
t Time

T Temperature [°C]

Wi K™ mask value

X Input vector

Xk kth component of the sample vector



