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Abstract

Many systemic, complex technologies have been suggested to exhibit increasing returns to adoption,
whereby the initial increase in adoption leads to increasing experience with the technology, which drives
technological improvements and use, subsequently leading to further adoption. In addition, in the systemic
context, mimetic behavior may lend support to increasing returns as technology adoption is witnessed
among other agents in the systemic context. Finally, inter-dependencies in the systemic context also
sensitize the adoption behavior to fundamental changes in technology provisioning, and this may lend
support for the increasing returns type of dynamics in adoption. Our empirical study examines the
dynamics of organizational technology adoption when technology is provisioned by organizations in
another sub-system in a systemic context. We hypothesize that innovation, imitation, and technological
change effects are present in creating increasing returns in the systemic context. Our empirical setting
considers 24 technologies represented by 2282 data points in the computer industry. Our results provide
support for our prediction that imitation effects are present in creating increasing returns to adoption. We
further discuss the managerial and research implications of our results.

This paper has been published in Technological Forecasting and Social Change (TFSC)
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1. Introduction

This paper explores the dynamics of technological innovation adoption at the firm level and subsequent
resource allocation under increasing returns conditions. Namely, we study firms’ adoption of technologies
that displays increasing returns and hypothesize the more the technologies are adopted the more they will
be adopted due to the accumulating experiences and positive feedback loops (following [1]), learning by
using [2], learning by imitating [3], and influence by demand-side increasing returns [4]. Specifically, we
study the dynamics of technology provisioning and adoption of these technologies in a systemic, high-
technology context.

1.1 Adoption of innovations and increasing returns

Technological innovation adoption has been applied to thousands of empirical studies concerning an
individual’s innovation adoption and organizations’ innovation adoption [see e.g. 5, 6, 7, 8, 9, 10]. These
studies have found that resource allocation and technology adoption at the firm level are influenced by a
number of factors, for example, ease of use, performance in relation to other technological alternatives,
and end-users’ market preferences. Subsequently, many firms lending support and using a technology lead
to customers being encouraged to buy that technology, and this behavior leads more firms to adopt and
use the technology in question [11]. This positive feedback loop creates an increasing returns type of
dynamics between the firm’s adoption and the end-user’s use.

At the same time, competition takes place not only between companies producing technologies, or
adopting these technologies, but also at the level of technologies competing for end-users’ attention and
adoption [12]. Competition between technologies is determined, at least partially, with a group of products
that follow the same technological paradigm [13] following a compatible design path. Further, this
competition is also determined by the organizational support this design gains as it is adopted, which is
influenced by the positive feedback loops from the demand side (the organizations using the design and
the end-users who prefer it). Competition between technologies is due to the existence of multiple
organizations using and supporting compatible products that suggest to the market a possible industry
standard [11], at least for a brief duration. This support further gives customers confidence that future
products will be based on this technology, and therefore increases the likelihood of customers adopting the
technology in question.

1.2 Technological systems

Technological systems are complex by nature, consisting of various nested levels [14] and comprising
various technical and social components [15]. In the PC (personal computer) technological system, for
example, we identify technical elements such as hard disks, processors, monitor screens, application
software, and operating system programs [16, 12, 17, 18]. In turn, the social components of this system
constitute the organizations that nurture the aforementioned artifacts, the employees and managers in
these organizations, as well as government, institutional, and legal bodies that directly or indirectly guide
technological development. In this manner, we view the technological system as a socio-technical system
[e.g., 15, 19, 20].

The literature studying technological systems identifies different types of socio-technical systems, including
complex product systems (CoPS), large technical systems (LTS), systems of innovation, and modular
systems. As technological systems, all of these systems exhibit a common set of properties [21, 22]. First,
technological systems have a hierarchically nested structure, whereby a given system is seen as a



composition of smaller sub-systems that are themselves systems comprising further sub-systems [e.g., 23,
14]. In this system structure, some organizations specialize in producing particular sub-systems, while other
organizations specialize in integrating sub-systems into holistic technical systems [24, 25]. Second, technical
sub-systems, which are specialized in delivering particular functions, are interdependent within the same as
well as across different levels of the system hierarchy [e.g., 23]. This fundamental property of all
technological systems also links organizations whereby the performance of any systemic organization
depends on the performance of other organizations. And, third, technological systems are goal-seeking
[e.g., 15, 19, 26] at the sub-system and holistic system levels. Driven by objective orientation, holistic
technological systems evolve over time to attain higher performance levels.

Within the hierarchical structure, this system-level evolution depends on the reciprocated and
interdependent cause-and-effect processes taking place among all technical and social sub-systems [15]. In
this light, this paper focuses on the decisions made by organizations (i.e., social actors) to adopt
technological innovations made available by other organizations within the same evolving system.
Specifically, as one organization delivers a higher level of performance in a technical sub-system, the
organization creates the potential for organizations producing interdependent sub-systems to adopt and
use this performance in their own offering [27, 28]. The rate and pattern of adoption of these new
technological innovations, within the systemic context, are therefore important to study, because they
affect the evolution of the socio-technical system, in which organizations are embedded.

1.3 Adoption of innovations in technological systems

In the systemic context, positive feedback loops emerge, ranging from technology development to
adoption of the technology and use of its potential, and finally to the end-user’s preference for the
technology due to the initial support for the technology through organizational adoption. This leads us to
consider the adoption process at the firm level within a systemic context, namely, the diffusion of
innovations in socio-technical systems.

Following Bass [29], the adoption of innovations can be formally modeled with the diffusion model as

d
d_I; t) = (p + qF(t))(l — F(t));

where F(t) is the installed base fraction. Following established definitions, p is the coefficient of innovation,
and g is the coefficient of imitation. The closed-form solution is [see 29]
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where time t>0.

Adoption of technological innovations by organizations in socio-technical systems may be viewed as
technological learning at multiple levels [3], and the learning can take place as learning by doing and



learning by studying and developing (i.e., R&D), as well as learning by imitating. The imitation process has
been found in empirical studies on adoption of technological innovation in firms [30], especially when firms
have information on the behavior of their counterparts and the firms are able to imitate their counterparts’
behavior [31]. In particular, the interconnectivity and standardized nature of technologies and
infrastructure motivate information dissemination since experiences are relatively fast and transparent,
leading to increasing returns [32]. Naturally, as companies face new technologies, the organizations are
burdened by ambiguous and risky decision-making situations with a limited amount of information
concerning the output and performance implications of innovative behavior and, as a result, prefer
imitative behavior that poses a risk-reducing alternative.

Therefore, following the above discussion, organizational adoption of technological innovations, namely,
the final population of adopting entities, m, in a systemic context would be influenced by both coefficients
of innovation adoption, p and g, and by the technological leap taking place between successive technology
launches. In this paper, we build hypotheses that establish relationships between these parameters since
we maintain the post-hoc setting of our research. Additionally, we follow recent calls for increasing our
understanding of the various aspects of organizational technology and innovation adoption, use and
integration of theories of technology, and market evolution [e.g., 42] by extending the Bass model to the
technology adoption context.

The positive feedback loops and time pressures in the industry to use a winning technology as fast as
possible encourage companies to imitate as fast as possible, and subsequently follow innovations. In
addition, later adoptions use technology that has already been successful, since the learning has been
accumulating, thereby increasing adoption. At the same time, to anticipate the influence of the positive
feedback loops we may hypothesize that p and g are related to the final population adopting the
technological innovation. However, p (the innovation coefficient) and g (the imitation coefficient) represent
different mechanisms of increasing returns leading to an increased number of companies adopting a
particular technology. The imitation factor relates directly to observation and learning by imitating type-
increasing returns. On the other hand, the coefficient of innovation is indirect in the sense that the
company needs to come up with the use scenarios and utilitarian adoption decisions based on external
market and technological information, and this leads to learning by using. Therefore, learning by using is
expected to be influenced by increasing returns in that the more companies use the technology the more
adoption we witness in the marketplace. Additionally, technological change inevitably forces companies to
face uncertainties in adoption decisions. Technological changes present companies with the need for new
or revised sets of technical skills [e.g., 17]. Similarly, the speed of technological change influences
companies’ decisions to adopt technologies. Therefore, positive feedback loops and the resulting increasing
returns would be expected to result in the following hypotheses.

First, we hypothesize that learning by using influences the increasing returns in technology adoption in the
sense that the more companies use technology, the higher the final population of companies adopting the
technology will be. Therefore, we arrive at



Hypothesis 1 (H1):
When m is high, the innovation coefficient, p, dominates; i.e., p is high.

Second, we hypothesize that learning by imitation influences increasing returns in technology adoption as
the more companies witness other companies adopt a certain technology and the imitation process
proceeds fast, the lower the final population of companies adopting the technology will be as imitation
rapidly consumes its momentum given the constant innovation process. Additionally, with short life cycles
successive technology launches from the provisioning side become options for adopting innovator firms
starting the innovation-imitation cycle again. Therefore, we arrive at

Hypothesis 2 (H2):
When m is low, the imitation coefficient, g, dominates; i.e., q is high.

Third, as new technologies require new sets of skills or upgraded existing ones, we may expect that if
successive technologies vary greatly in their technological performance, companies will face increasing
difficulties in using the new technology, and therefore, adoption of the new technology will decrease.
Therefore, we arrive at

Hypothesis 3 (H3):
The lower the performance disparity between successive technology adoptions, the higher the m.

Finally, as the speed of technological changes increases, companies have less time to adopt successive
technologies, whether the companies attempt to learn by using or imitating, and therefore, we hypothesize
that

Hypothesis 4 (H4):
The higher the speed of technological change in adoption, the lower the m.

2. Data and methodology

This paper reports the results of a study on a PC technological system, specifically focusing on the function
of the PC system as a computer gaming platform. The PC system forms an ideal context for our empirical
study because of the recognized and documented systemic nature of PCs [33, 34, 35], and the highly
dynamic nature of the PC and its sub-systems [36, 37]. Nevertheless, the PC is a large and hierarchically
complex system, which hinders its entire analysis. Thus, we have limited our empirical analysis by
concentrating on only two technical sub-systems, which are crucial to the gaming performance delivered by
the PC as a gaming platform. We analyzed PC game software as one of the technical sub-systems, focusing
on its co-evolution with an important and interdependent hardware sub-system: the CPU (central
processing unit). The co-evolutionary relationship between these technical sub-systems is marked by CPU
manufacturers (e.g., Intel and AMD) providing successively higher levels of processor performance over
time, which PC game developers and publishers (e.g., EA Games and Activision) adopt and implement in
their software products.

To study the technology provisioning and adoption dynamics in our PC system context, we selected and
analyzed the technological performance indicators that are among those highly relevant for computer



gaming. For the CPU sub-system, we selected the performance indicator of processing speed, measured in
Hertz (Hz), which indicates the CPU’s speed of operation, governing the computational performance of the
PC through its interaction with software programs such as PC games. Higher speeds mean faster data
manipulation and increased computer performance. For the PC game sub-system, we considered the
software is designed to use a certain level of hardware performance such that the intended game qualities
can materialize through the PC. Therefore, software developers stipulate a set of minimum hardware
performance requirements with which the software will function as designed. Hence, in our study we used
the minimum processor speed requirements stipulated by the PC game software as its technological
performance indicator [following 27]. In this manner, we deemed that a higher level of technological
performance is embedded in the software when it stipulates a higher minimum processor speed
requirement, and therefore carries more capacity to deliver a higher level of functional performance.

To collect data on technology provisioning in the CPU industry, we first gathered launch specifications and
dates for CPUs commercialized by the two most influential manufacturers, namely, Intel and AMD, in PCs
starting from 1996 and ending in 2008 from the companies’ corporate websites. Second, we collected game
specifications stipulating the minimum requirements and launch dates from GameSpot.com and publishers’
websites between 1996 and 2008. From this data, we included in our analysis only those games that
specified as minimum requirements the type of CPU and the required speed in MHz, leaving us initially with
77 different technologies in the computer industry. We also considered only Intel processors since AMD
processors were mentioned only in recent years as minimum requirements. If we did not find both
specifications (CPU type and speed) unambiguously stated on the publishers’ websites, we discarded the
game from our consideration. With these procedures, we arrived at an initial sample of 3064 games that
stipulate specific minimum technology specifications. Therefore, our data reveals the adoption time series
considering the number of game launches based on using a certain technology. For each technology, we
fitted the Bass diffusion curve and estimated the diffusion parameters p, g, and m. To estimate the
diffusion parameter, we considered only time series that had more than 10 data points in certain
technologies [following suggestions e.g. from 38, 39, 40].

We also calculated the disparity of technological performance between successive CPU technology
launches, that is, the difference between successive technological processor speed performance
parameters as measured with MHz (dMHz) and the speed of technological change (the time lag between
successive technology adoption data points as measured in months [dMHzmnth]). These reflected the
amount of technological leap and the speed of technology change in adoption, respectively. In calculating
the dMHzmnth, if subsequent technology adoption dates were the same for two or more technologies, we
calculated the dMHzmnth values compared to the earlier technology adoption date. We also removed from
our data set all the adoption time series that had negative dMHz, that is, the previous adoption time series
had higher clockspeed than the earlier one. Therefore, our study concentrated only on the forefront of
technology adoption at the frontier of technology evolution [13]. Therefore, after these controls, our final
data set included 24 time series with 2282 data points composed in detail of 4 time series with 425 data
points at the technology family level (Pentium generations) and 20 time series with 1857 data points at the
technology level (variations in type of CPU and clockspeeds).



However, in the present study we did not consider repeat adoption, that is, a certain company launching
multiple products based on the same technology.! The data is therefore biased to the upper side of the
adoption. We obtained the diffusion parameters by fitting the diffusion model with a nonlinear least-
squares (NLS) fitting procedure in MATLAB to the adoption data. In particular, we denote the observed
total number purchased up to time t; > 0 as Y(t;), and apply NLS to

Y(t;) = mF(t;p,q) +u(t;)

where m is the total number of adopters and u is an additive error term with variance o°. Nonlinear least-
squares estimation chooses parameter values that minimize the sum of the squared residuals, S;(u(t;))>. The
NLS approach has been widely used in innovation diffusions [e.g., in 41].

Our methodology for testing the hypotheses is rather straightforward. Namely, we used multiple regression
with OLS (ordinary least-squares) fitting looking at whether p, g, dMHz, and/or dMHzmnth predict the
behavior of m. We emphasize that the main goal here is to explore statistical dependencies between the
parameters, search for linear function with optimal solution, and as a result, explore the post hoc
relationships between parameters.
3. Revealed dynamics of adoption

Table 1 presents the summary of our fitting of the diffusion model parameters.

Table 1. Summary of the study’s fitting results.

p q m R2 n dMHz dMHZmnth
min 0,000 0,057 14 0,896 25 10 3
max 0,027 0,256 1093 0,998 153 700 550

Therefore, we conclude the fitting results represent the dynamics of technology adoption well, since the
explanatory power, R?, is at 90% or well above. This lends confidence to the next phases of the study in
which we conducted regression analysis based on these fitting results.

Figure 1 presents an example of our fitting procedure results.

! We assume, following most of the existing literature, that each adopter launches only one unit.
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Figure 1. Example of our fitting results with residuals.

Table 2 outlines the correlation details of the time series used in our study to shed light on the variables.

Table 2. Correlation table of variables used in our analysis.

p q m dMHz  dMHZmnth
p 1
q -0,22 1
m -0,23 -0,52%** 1
dMHz -0,43* -0,10 0,33 1
dMHZmnth  -0,12 -0,19 0,01 0,52** 1

*  significantatthe 0.10 level (2-tailed)
** significantatthe 0.05 level (2-tailed)
*** significant at the 0.01 level (2-tailed)

In Table 2, dMHz and p have a statistically significant negative correlation; in other words, the higher the p,
the lower the dMHz. Similarly, the relationship between g and m is significant and negative. Finally, there is
a significant positive correlation between dMHz and dMHzmnth.

We present the results of our hypotheses testing with regression analysis in Table 3.



Table 3. Regression results for testing our hypotheses (unstandardized coefficients presented and their
standard errors in parentheses).

Hypotheses H1 H2 H3 H4
Dependent m m m m m
Predictor
-8806,22 -8751,09
P (7923,12) (7819,92)
-2757,40%** -2567,56**
a (956,42) (1036,04)
dMHz 0,324 0,309
(0,219) (0,260)
dMHZmnth 0,012 -0,577
(0,461) (0,468)
R? 0,053 0,274*** 0,108 0 0,396*
F 1,235 8,312 2,187 0,001 2,461

*  significantatthe 0.10 level (2-tailed)
** significantat the 0.05 level (2-tailed)
*** significantat the 0.01 level (2-tailed)

Hypotheses H1, H3, and H4 received no support, whether all the independent variables were included or
not. However, for hypothesis 2, namely, the final adopting organizational population is low and the
imitation coefficient g dominates and is high, we found strong support. Thus, according to the Bass
diffusion parameter estimations, companies imitate the behavior of other organizations in adopting
technology rather than innovating and learning by using.

4. Conclusions

Our results lend support to imitation effects in creating increasing returns to adoption in a systemic
context. This finding might be due to the fast-paced, transparent nature of the systemic context. CPU
manufacturers introduce new technologies frequently, and these introductions are expected by PC game
developers and publishers. At the same time, increasing returns to adoption on the game developers’
supply side mostly makes sense when large numbers of competing game developers adopt the technology
as a minimum requirement. Therefore, beneficial behavior involves imitating rather than innovating and
being early in adopting technology in the minimum requirements. In addition, the transparency of the
industry may lend support to mimetic effects as the PC gaming industry launches products and new
technologies frequently, competitive moves can be monitored, and imitative behavior can be sustained.

Theoretically, these exploratory results suggest that innovating and learning by using are not significant
drivers of increasing returns to adoption. This finding further suggests it may not be beneficial to a
company be among the first movers when considering raising the bar in minimum requirements. The
companies may see minimum requirements as risky, as being among the first to impose increased
performance requirements on end-users is economically less beneficial than sticking with the lower,
already established performance levels. However, since first movers adopt higher minimum requirements,



the more competitors do so, the more others have propensities to follow suit; that is, positive bandwagon
effects are created through imitation. These results call for further theoretical validation.

Managerially, these preliminary results raise concerns about technology use and managerial practices in
launching technologies that present substantial improvements to existing technological base. Especially in
systemic contexts, companies using these technologies with large performance improvements need
supporting activities, educating use in operations to lower the risks associated with learning by doing a type
of increasing returns, i.e., lowering their production costs and risk. However, at the same time the market
side (end-users) needs support for the installed base to be increased rapidly. This starts the positive
feedback loop that increases adoption of the technology among companies, creating learning by imitation
and further enhancing end-user adoption due to increases in the supply of products based on the new
technology. This way companies may be able to instill the seeds of the increasing returns type of dynamics
in the process of adopting technologically superior technology that substantially increases performance
delivery.

There are a number of reasons why we did not find support for these hypotheses, which, at least partially,
may be due to the limitations of our study. First, our data selection procedure filtered a number of
launches in the timeframe of our study. Especially, our stringent data selection procedure of including only
games that have explicitly stated minimum requirements specifications on publishers’ websites limited our
data set. Thus, our data set may not be representative of the whole population of PC games in the
considered timeframe. However, this limitation increases the replicability of the research and enhances the
reliability of the data with a price on the coverage of our sample. This may have skewed and biased our
results, and future studies may want to extend the data set to minimize the possibility of non-
representativeness and replicate the analysis. In addition, we assumed that each adopter launches only one
product (no “repeat purchase”). There may be multiple launches by the same company in our data set, and
this presents a fruitful avenue for future research to examine the influence of first vs. repeat adoptions on
the results. Our hypothesis testing procedure also ignored the pure time dummy and temporal variables
such as seasonality, and these variables may be significant in representing the industrial dynamics and the
temporal changes that the industry as a whole has gone through during the last fifteen years. Finally, a
number of different products, namely, different genres of games, may differ from one another in significant
ways. This issue may also be included in the analysis of the time series data and may improve the results
substantially. Therefore, the results of our study should be treated as initial and exploratory. These
limitations, therefore, leave ample avenues for future research in studying the prediction of increasing
returns to adoption. Namely, increasing the data coverage of the industry would be the obvious, logical
next step. Additionally, including company-level analysis and studying individual organizations’ adoption
decisions would add significantly to our understanding of the dynamics of increasing returns to adoption.
Finally, considering other independent and control variables would significantly increase our understanding
of the technology adoption dynamics.
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