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Abstract

Monte Carlo option pricing algorithms are well suited to distributed
computing because simulations can be run on different computational
units with no need for communication between these tasks. In this paper
we investigate and compare the use of two distributed computing environ-
ments for such computation: a PC grid that exploits the spare computing
capacity of up to 470 computing cores in 300 office and teaching lab PCs
scattered on a university campus, and a scientific computing cluster of
120 computing cores in 32 rack-mounted servers. We outline the process
of adapting a Monte Carlo algorithm for computing prices for a set of
100 arithmetic Asian options with stochastic volatility to run on these
environments, and investigate the performance for different distributing
strategies.1 The paper closes with a discussion of the opportunities and
challenges of distributed computing in computational finance.

Keywords: distributed computing; cluster computing; grid computing;
Monte Carlo methods; Asian option pricing;

JEL Classification Numbers: C15; C63; G13

1 Introduction

Monte Carlo simulation is well established as an effective and easy to use tool for
pricing complicated path-dependent europan-style contracts, and can even eas-
ily accommodate models with stochastic volatility. For example, Monte Carlo
methods can be used to price arithmetic-average asian options with stochastic
volatility, which do not have closed-form solutions (Fouque and Han 2003).2

Monte Carlo methods can be succinctly coded in any high-level computer lan-
guage, and a single price of a vanilla European option can typically be computed
to reasonable accuracy on a modern desktop PC in at most a few minutes.

∗The draft is accepted for presentation at 5th Int. Conference on Computational Manage-
ment Science, 26–28 March 2008, Imperial College London. All comments are welcomed.

†Institute of Industrial Management, juho.kanniainen@tut.fi
‡Institute of Mathematics, robert.piche@tut.fi
§Institute of Software Systems tommi.mikkonen@tut.fi
1Asian option pricing is a preliminary benchmarking problem. Other problems are also

considered for the final version of this paper, such as exotic cliquets, CDO’s, and Bermundan
options.

2 Partial differential equation approaches can also be used, see (Vecer 2001, Vecer 2002).
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Often, however, the computation needed to simulate the price and Greeks of
an exotic multi-underlying derivative to reasonable levels of accuracy can run
on a single high-performance computer even for hours. Consider, for example,
the simulation of prices and greeks of path-dependent exotic cliquets written on
a portfolio of 30 selected stock. A financial institute may have hundreds of such
computationally-intensive derivative contracts whose prices and Greeks must be
computed daily or even hourly. Moreover, it may be required to compute a set
of prices or volatilities corresponding to a set of parameters. For example, the
hedging of co-movements in the option’s parameters can require the computation
of a price surface, and computing a single price surface on a 10 × 10 grid to
reasonable level of accuracy may require several hours. Another example of
a time-consuming task is model calibration, which requires computing a large
set of the implicit volatilities of vanilla options. Also the implied volatilities
of exotic options can be requested (see Ewald, Yang, and Xiao 2006). For
stochastic models that do not have Heston-type (1993) closed form solutions,
doing the calibration with a Monte Carlo method is a very computationally-
intensive task. If more accuracy is desired, the computation becomes even more
protracted. According to the standard rule of thumb for Monte Carlo methods,
each additional correct digit in an option price requires a hundred-fold increase
in computing time. Variance-reduction techniques can reduce the number of
Monte Carlo simulations needed to achieve a given accuracy up to a certain
point, but not necessarily enough.

Any Monte Carlo computation can naturally be divided into independent
subtasks. Time-consuming simulations can be run on different computational
units (“cores”), with no need for communication between the subtasks, and the
final result is given by a simple averaging operation. Price or volatility com-
putations corresponding to different parameters can also be run independently.
Computations that can so easily be distributed are called “embarrassingly par-
allel” by algorithm scientists. By running the subtasks simultaneously on a
large number of cores, results can be obtained much faster: ideally, the speedup
is nearly linear (i.e. proportional to the number of cores).

Although the concept of distributed computing has been around as long
as computing, general-purpose low-cost systems have only recently started to
become generally available. In contrast to a supercomputer, which nowadays
means a custom-built array of identical cores linked by high-speed data connec-
tions, distributed computing is typically based on a heterogeneous network of
stand-alone computers linked by conventional data connections. A famous ex-
ample is the SETI@home public computing project3, which uses spare capacity
(“cycle scavenging”) of three million cores around the world to analyse radio
telescope data.

The applications of distributed computing to finance have been an active
area of research. In addition to equity derivative pricing, the following fi-
nancial computations can be solved using Monte Carlo methods, and hence
easily distributed: Portfolio management, value-at-risk, interest rate deriva-
tives, swaps and swaptions, forex derivatives, commondity derivatives and other
new products (weather derivatives etc), assets and liability modeling, multi-
asset options and cliquets, and calibration (see, for example Chatagny and
Chopard 2000, Zanghirati, Cocco, Paruolo, and Taddei 2000, Godart 2000,

3http://setiathome.berkeley.edu/

2



Glasserman 2003, Tezuka, Murata, Tanaka, and Yumae 2005).
In this paper, we investigate and compare the use of two distributed com-

puting environments for arithmetic Asian option price calculations: a cluster
of dedicated high-performance computers intended for scientific and technical
computing, and a “PC grid” that exploits the spare computing capacity of an
organization’s desktop PCs. We are interested in questions such as:

• how can algorithms coded in Matlab (a popular interactive scientific com-
puting software system) be run in a distributed environment?

• what computing speeds are achievable?

• can a PC grid compute be competitive with a scientific computing cluster?

The paper is organised as follows. The option pricing model (an arithmetic-
average Asian call option with stochastic volatility) and the Monte Carlo algo-
rithm that we use as a benchmark problem are presented in section 2. Sections 3
and 4 describe the distributed computing environments, the process of adapting
the code to run on them, and some timing results. We close with a discussion
of the opportunities and challenges of distributed computing for computational
finance.

2 Benchmark problem

2.1 Pricing Model

We price arithmetic Asian calls according to Heston’s (1993) model. The price
of the underlying asset under the martingale measure is assumed to follow the
stochastic differential equation

d lnS(t) =
(

r − 1
2
v(t)

)
dt +

√
v(t)dW(t), S(0) = S0 > 0,(1)

where r is the constant instantaneous risk-free interest rate, v the stochastic
return variance, and W a standard Brownian motion. The return variance is
assumed to be a mean-reverting process

dv(t) = κ (v̄ − v(t)) dt + ψ
√

v(t)dWv(t), v(0) = v0 > 0,(2)

where v̄ is a reference variance, κ the speed of reversion, ψ the volatility of
volatility, and dWv is a standard Brownian motion with dWdWv = ρdt, ρ ∈
[−1, 1].

The price of a fixed strike Asian call option is

e−r(T−t)Et

[
S̄ − E

]+
,(3)

where t0 < t is the writing day of the option, T > t the maturity date of the
option, E the strike price, Et the conditional expectation at time t under the
martingale measure, and

S̄ =
1
N

N∑

i=1

S(ti),(4)

where t0 ≤ t1 < t2 < . . . < tN ≤ T , is the arithmetic average price of the
underlying stock.
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2.2 Monte Carlo algorithm

Eq. (1) is discretized by the stochastic Euler scheme as

ln Si+1 = ln Si +
(

r − 1
2
vi

)
∆t + εi

√
vi∆t,(5)

where {εi} is a sequence of independent standard normal random variables. The
volatility process (2) is discretized by the Milstein scheme and an absorbing
condition is applied at the zero-volatility boundary:

vi+1 =
[
vi + κ(v̄ − vi)∆t + ξiψ

√
vi∆t +

1
4
ψ2∆t

(
ξi

2 − 1
)]+

(6)

Here ξi = ρεi +
√

1− ρ2ε∗i , where {ε∗i } is a sequence of independent standard
normal random variables that are uncorrelated to the {εi}.

To price the option we simulate M paths of stock price and volatility using
(5) and (6) with ∆t = (T − t0)/N and v̄ = v0. We then take the mean of the
discounted payoffs computed from (3). The Monte Carlo price at t = t0 is then

e−r(T−t)

M

M∑

k=1

[
1
N

N∑

i=1

S(ti)(k) − E

]+

.

Matlab code that implements this algorithm is presented in the Appendix.

2.3 Benchmark Problem

As a benchmark problem we calculate the prices of 100 arithmetic Asian call
options with the same maturities. Such a task is relevant if a bank has 100
Asian contracts to price (with same maturities) or if the bank want to compute
a set of prices or volatilities corresponding to a set of parameters for hedging or
calibration purposes. We calculate a price surface of equally spaced points on
(S0, v0) ∈ [45, 47] × [0.35, 0.40] with the fixed parameter values r = 0.06, E =
70, ρ = −0.5, κ = 0.1, ψ = 0.5, T = 1, N = 365.

With M = 104 simulations for each point, the Monte Carlo error is still
significant (Figure 1), and we need to take M = 106 to obtain a visually smooth
surface. On a single high performance desktop computer the computation of
this surface requires at least 7 hours.

3 Results

In this section we introduce our PC grid and Linux cluster, and present the
computational results with them. Table 1 compares PC grid and our cluster,
which are more or less typical of such systems.

3.1 Distribution on a PC grid

The PC grid at the Tampere University of Technology makes use of the spare
computing capacity of PCs in researchers’ offices and eight computer labs at
different locations on the campus, altogether up to 470 cores. The grid includes
a range of hardware (Intel Celeron 2.6 GHz, Core2 1.86 GHz, Pentium4 2.8 GHz
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Figure 1: Asian call option price surface on a 10 by 10 grid.

and 3 GHz, and others), memory (between 0.5 and 2 GB), and operating systems
(Windows XP, Linux and also Mac OS in near future). Data transfer is by
100 MB ethernet connections. The PC grid is built by using Java based grid
middleware from Techila Technologies, which supports all platforms capable to
run Java, for example, Windows, MAC OS, Linux etc. Even when the PC’s
are in “heavy” interactive use, the middleware is typically able to use 95–98%
percent of the capacity without the interactive user noticing anything.

When performing computation with the PC grid, the following approach is
used. The Matlab compiler is used to produce a stand-alone application that
can be run on computers without Matlab licences. A programmer identifies
computation-intensive hotspots in the application and adds code to define how
to generate jobs to perform the associated computation. When a hotspot is
encountered during the execution of the application, the associated set of jobs
is uploaded to the grid server. The server in turn distributes the jobs to the
computational units participating in the grid. The distribution can be parame-
terized, which allows one to take into account the performance and the current
load of participating cores, as well as running the same application with differ-
ent parameters with virtually no extra effort. If necessary, the Matlab runtime
libraries (97 MB/226 MB extracted) are automatically installed on each com-
puter on the grid. When all jobs have been processed, the grid server sends
the results of the computation to the application, which can then continue its
execution.

The computation task, the set of the prices of 100 Asian options, was divided
into 400 jobs — four sets of 250000 simulations for each price. The Techila mid-
dleware shared these jobs out among computers on the grid, achieving nearly
linear speedup, that is, results were produced at a rate that was nearly propor-
tional to the number of cores in use (Figure 2). The overall running time for
the problem was 24 minutes with 20 cores, and 4 min 40 sec with 120 cores.

The timings shown in Figure 3 used all 470 cores and different numbers of
jobs. The best time to complete the task was 2 min 28 sec, achieved when
the task is divided into 1000 jobs. For fewer jobs, load balancing cannot be
performed well, while for larger numbers of jobs, delays associated with data
transfer, scheduling, and start-up of the computation begin to dominate. Fig-
ure 3 also demonstrates that it is better to overestimate than underestimate the
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Table 1: A comparison between PC grid and Akaatti cluster.

PC grid Akaatti cluster

gridification application modified to con-
tain support for distributed
computation

application modified to en-
able running in a cluster
with different sets of param-
eters; initialization scripts

operating sys-
tem

different nodes have differ-
ent OS (Windows XP, Win-
dows Vista, etc.)

all nodes run Linux

administration nodes belong to different or-
ganisational units; the grid
can be administered sepa-
rately by a single unit

single system administra-
tion unit

node usage PCs are intended for inter-
active use, their computa-
tional capacity is idle most
of the time

cluster nodes are intended
for (typically long-duration)
batch jobs

equipment pur-
chase and main-
tenance

PCs upgrades and main-
tainance is done by the PC
owners, at no cost to the
grid; grid software licences
needed

cluster costs include
equipment upgrades, main-
tenance (electricity, air
conditioning, machine room
rental, etc.) and system
administration salaries

data transfer
rate

0.1 GB/s 1 GB/s

RAM / core 0.5–2 GB 4–8 GB

commercial
software usage
(Matlab)

not directly, but stand-
alone executable files cre-
ated by the Matlab com-
piler can be run

Matlab available on all
nodes

scheduling soft-
ware

Techila (proprietary) SGE (open source)

number of jobs.

3.2 Distribution on a cluster

The Tampere University of Technology’s scientific computing cluster “Akaatti”
consists of 32 complete computers (”nodes”) mounted on a rack in an air-
conditioned machine room. The system has 2.2 GHz and 2.6 GHz dual-core
AMD Opteron processors and 2.33 GHz Intel quad-core Xeon processors, al-
together 120 cores. In our tests we could use only 80 cores, the rest being in
use by other researchers. Each node has 4GB to 8GB memory, gigabit ether-
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Figure 2: Timings for computing task divided into 400 jobs
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Figure 3: Timings for computing task distributed among 470 cores in PC grid

net, and runs open-source NPACI Rocks Linux version 4.1. Most of the nodes
are accessible only in batch mode; batch jobs are scheduled by the open-source
software Sun Grid Engine (SGE) version 6.0u8.

The first step in porting the benchmark problem to Akaatti was to compile
the asian Matlab function along with a Matlab function that reads parameters
from a file and writes results to a file. Timings are for codes produced with the
same compiler version as the PC grid.

The price surface computation task was divided into 400 jobs – four sets of
250000 simulations for each price point. A Matlab script generates the 400 files
containing input parameters for each job. The SGE “job array” feature allows
all the jobs to be submitted using a single 10-line job control file. The scheduler
keeps all the jobs in a wait queue, assigning them to cores as resources become
available. After all the jobs have run, the 400 output files are combined by
another Matlab script.

The computations were completed on the cluster at best only 25% faster than
on the PC grid with the same number of cores.The difference in computing times
was smaller with larger numbers of cores, becoming nearly equal with 80 cores.
The speedup was nearly linear (Figure 2).
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4 Discussion

4.1 Challenges

As mentioned earlier, there are several financial problems that require intensive
computing, and are potential applications for distributed computing. However,
we have identified critical points that must all be fulfilled to enable distributed
computing to become a seriously taken tool in finance sector as well as in any
field of industry.

From option analyst’s point of view:

• Usability. The distributed computing system should be easy to use,
meaning that the system must be seamlessly integratable to mathemat-
ical tools like Matlab. How or where the computation is performed is
redundant information for the user. The most interested point is that the
correct results are gained as easy and as fast as possible.

• Gridification of the mathematical problem (i.e. how the computa-
tion is modified to enable distributed computing). It should be possible to
gridify the code without great efforts and deep software engineering skills.

• Availability and reliability. The distributed computing solution must
be robust, i.e. it must be always available 24/7/365, the system must oper-
ate trustworthily, and the system has to be able to recover from abnormal
situations.

From the point of view of IT management and system administration:

• Data and infrastructure security. Fine grained security must be in-
volved in the distributed computing solution. In cluster computing sys-
tems this is not in as big relevance as in PC grid system since clusters are
dedicated for computing and not in other use.

• Administration and management ability. Even without distributed
computing systems the IT departments have hands full of work. There are
not many IT departments that have in-depth knowledge and experience
of distributed computing systems. That is why the whole administration
and management of the distributed computing system must be simple and
easy.

4.2 Don’t neglect other ways to speed up the computation

Although distributed computing can, for some tasks, produce impressive speedups,
so can intelligent modelling, algorithm development, and coding. For example:

• variance-reduction techniques can reduce the number of Monte Carlo sim-
ulations needed to achieve a given accuracy. (Glasserman 2003, Ch 4)

• In the asian code, the two lines x=zeros(N,1); C=zeros(M,1); are not
strictly necessary, but by pre-allocating memory they speed up the code
at least ten-fold.
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• Coding the algorithms in fortran or C instead of Matlab could give faster
programs, because of better compilers. Our Matlab code ran about three
times slower than our hand-coded fortran90 implementation of the same
algorithm. However, the Release 2007 Matlab compiler produced code
that ran on the cluster only about 20% slower than the fortran implemen-
tation, so this performance gap is closing fast.

• With this particular benchmarking problem, the surface could be fitted
by regression, greatly reducing the required number of price values.

5 Conclusions

In this paper, we have studied two different ways to run Asian option algorithm
coded in Matlab in a distributed environment. One was based on a PC grid
infrastructure where the actual application was reworked to utilize distributed
computational facilities internally invisibly to the user, and the other on com-
posing the program in the form that can be given as the input to a cluster,
where the user defines the necessary input files. An additional difference is that
the PC grid was using the surplus processor time of computers allocated to
other tasks, whereas the cluster had computers that were dedicated to scientific
computation.

Based on our experiments, the cluster was 25% faster than the PC grid when
the number of cores was 40 or less, mainly due to differences in hardwares.
Both systems try to utilize the most powerful cores.4 Around 80 cores, the
computing times become nearly equal. Thus, a PC grid can be considered
somewhat competitive with a scientific computing cluster, at least when the
number of nodes increases. Both the cluster and PC grid achieved nearly linear
speedup, that is, the number of option prices computed in a given time was
nearly linearly proportional to the number of cores used, i.e. a grid of 120 cores
was nearly 120 times faster than a single PC.

Clusters are designed to accomodate a variety of computational problems,
and because of their larger memories, unified disk systems, and faster data
transfer rates are clearly superior to PC grids for problems that are data in-
tensive or that require extensive communication between parallel tasks. How-
ever, for computation-intensive tasks that require little or no communication
between parallel tasks, the PC grid is an attractive alternative because of its
low cost, availability of extensive computational resources (many organisations
have dozens or hundreds of PCs, nearly all of whose computational capacity is
idle), and other factors.

We found that dividing a large computing task into more subtasks than
the number of available cores can improve the overall performance by ensuring
more equal distribution of the computations. The important question regarding
the optimal granularity of computational tasks and its relation to available
computation infrastructure remains future work. In the example used in this
paper, setting the number of jobs to twice the number of cores gave the best
results. However, this is not necessarily a general result, and believe that more
work should be invested in researching this issue.

4Cluster has Intel quad core Xeon-processors (roughly 40 cores) which are more powerful
than the most powerful processors in PC grid.
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We conclude that distributed computing is a feasible and attractive option
for Monte Carlo option pricing computations. The dedicated cluster and the
PC grid both offer comparable performance, scalability, and ability to operate
heterogenous environments (i.e. computers of different performance level). The
choice of system will in the end depend on management issues such as over-
all cost of ownership, open-source vs. commercial software, data security, and
compatibility with the organization’s existing computing resources.
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Appendix

The following Matlab code computes the value of an asian option using the
Monte Carlo algorithm described in section 2.

function price=asian(S0,v0,r,rho,kappa,psi,E,T,M,N)

Dt=1/N;

x=zeros(N,1);

C=zeros(M,1);

for m=1:M

w=randn(N,1);

y=randn(N,1);

z=rho*w+sqrt(1-rho^2)*y;

v=v0;

x(1)=0;

for j=1:N-1

x(j+1)=x(j)+(r-0.5*v)*Dt+sqrt(v*Dt)*w(j);

v=max(0,v+kappa*(v0-v)*Dt + psi*sqrt(v*Dt)*z(j) ...

+0.25*psi^2*Dt*(z(j)^2-1));

end

S=S0*exp(x);

C(m)=max(sum(S)/N-E,0);

end

price=exp(-r*T)*sum(C)/M;
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