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Abstract Field programmable gate array (FPGA) is a flexible solution for
offloading part of the computations from a processor. In particular, it can
be used to accelerate an execution of a computationally heavy part of the
software application, e.g., in DSP, where small kernels are repeated often.
Since an application code for a processor is a software, a design methodology
is needed to convert the code into a hardware implementation, applicable to the
FPGA. In this paper, we propose a design method, which uses the Transport
Triggered Architecture (TTA) processor template and the TTA-based Co-
design Environment toolset to automate the design process. With software as
a starting point, we generate a RTL implementation of an application-specific
TTA processor together with the hardware/software interfaces required to
offload computations from the system main processor. To exemplify how the
integration of the customized TTA with a new platform could look like, we
describe a process of developing required interfaces from a scratch. Finally,
we present how to take advantage of the scalability of the TTA processor to
target platform and application-specific requirements.
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1 Introduction

The growing complexity of software applications running on the portable de-
vices like mobile phones, smart phones, PDAs etc., call for the increase in the
processing power offered by their CPUs. Typically, a RISC processor employed
as a general purpose processing unit does not provide enough computational
resources and the use of a specialized hardware accelerator is inevitable. A
DSP co-processor is a common solution to speed up multimedia applications.
Nevertheless how powerful the DSP processor is, a dedicated hardware will do
the same task faster, consume less power, and take smaller silicon area.

Reconfigurable hardware in form of field programmable gate array (FPGA)
makes an excellent solution for increasing the performance of an embedded sys-
tem, as part of the application code can be offloaded from the processor. The
performance increase requires careful planning though. Quite often the over-
head of such arrangements, e.g., cost of data transfers between a CPU and an
FPGA may be higher than the performance gain. Also the clock frequency of
the FPGA is often much lower than the CPU. Therefore, the inherent paral-
lelism of the application needs to be exploited efficiently. Finally, the tradi-
tional development style for FPGA resembles hardware design process, which
requires that the designer has expertise in hardware structures. Additionally,
application code is often in a form of software code, hence, offloading requires
the description to be converted to RTL structure. Therefore, there is a need
for a design methodology converting software partition to a hardware struc-
ture. The methodology could be used, e.g., by software designers without a
deep knowledge on the hardware implementations, as rapid way of offloading
computations to an FPGA.

In this paper, we describe a design methodology for offloading computa-
tions from a CPU to a FPGA. The proposed method allows a part of an appli-
cation code, described in the C language, to be executed on the application-
tailored processor, implemented on the FPGA. The method supports full ANSI
C language; targets with an operating system; exploits DMA transfers to min-
imize the overheads, and allows the user to scale-up/down the computational
resources. Our experiments show that this method is scalable and can exploit
the inherent parallelism of the application. In addition, the designer makes his
efforts on the higher abstraction level, thus deep knowledge on the hardware
design is not needed. The paper extends our previous work in [1] by providing
details of the proposed design methodology.

The remaining part of the paper is organized as follows. Section 2 presents
a brief survey of other available tools automating the offloading process. Sec-
tion 3 sketches the offloading of computations, Section 4 details the implemen-
tation methodology for the described accelerator blocks, Section 5 describes
the platform specific interfacing, Section 6 discusses results for two different
TTA designs, and Section 7 concludes the paper.
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2 Related Work

Traditionally the C language has been used to implement DSP algorithms
and applications. The large amounts of legacy C code turns attention to de-
sign methods capable of converting functionality described in C language to
a hardware structure, as easily as possible. A large number of tools, taking
C program as an initial description, is already available on the market. In
theory, such tools could be used for a FPGA based acceleration. However,
many tools have serious limitations, e.g., only a subset of C is fully supported,
which makes the C to hardware conversion process more complex and time
consuming. Furthermore, many tools generate only the RTL description of an
hardware accelerator without support for the system integration. The user has
to manually design the scheduling and communication mechanisms between
the accelerator and host processor, build the interface units, and provide device
drivers.

Synfora PICO [2] generates processor arrays from C programs. However, it
supports only a limited subset of C. It also requires manual setting of param-
eters affecting the scheduling of operations. CoWare Processor Designer [3] is
a toolset for designing application-specific processors (ASIP) and it is not a
generic tool for converting C to HDL descriptions. Target IP Designer [4,5]
is another similar tool. AutoESL [6] supports high and low level parallelism
but it does not support the full ANSI C language. Impulse CoDeveloper [7]
is targeted for an FPGA based acceleration but it assumes a computational
model comprised of the sequential processes communicating with each other.
Therefore, it suits well only if the application consists of the independent pro-
cesses receiving and emitting data streams. In addition, it does not support
full ANSI C language.

Binachip-FPGA [8] targets also FPGA acceleration. In contrast to other
tools, the description of the system is given as a compiled binary for a sup-
ported processor architecture instead of a C language source code. Cascade [9]
is another tool which uses ARM, PowerPC, or MicroBlaze binaries as the de-
scription of the desired functionality. These tools inputting binaries instead
of source code are assumed to be targeted to cases where the source code of
the program is not available. Otherwise it is hard to justify the lower level
input format given that even the C language is a very low level sequential lan-
guage from which producing a parallel implementation is already often very
challenging, even if the described algorithm is inherently parallel.

Catapult-C [10] generates a fixed function implementation instead of a
processor-based one. As a drawback, generating the hardware implementation
requires lots of user attention. C2H is a tool only for the Altera FPGA de-
vices. It requires direct access to a memory, shared with the master processor.
The tool supports only a subset of C and its external connectivity is based
on Altera’s Avalon bus. Cynthesizer [11] is another tool for rapid hardware
generation. However, it requires using SystemC as well. In general, extensive
modifications are required to the original ANSI C code [12]. NISC [13] is a
tool for generating no-instruction-set-computer architecture processors from
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C. On the architectural level the basic idea of the NISC, the use of an ex-
tremely “bare bone” processor template, is similar to the TTA template used
in this work. However, full ANSI C is not supported.

In the proposed method, we target for supporting the full ANSI C descrip-
tions and allow user to trade of execution time against area according to given
requirements. In addition, the proposed method supports offloading on targets
with operating systems (OS).

3 Design Method for Offloading Computations

An FPGA in an embedded system gives a unique opportunity to system de-
signers to offload some of the computation from the host processor, hence
reducing the computational load on it. This hardware can serve as a hardware
accelerator for some specific, e.g., DSP, algorithm that cannot be computed
efficiently enough by the main unit. Another common case is to simply offload
some computationally intensive tasks from the host processor in a multi-task
system and let the processor execute other tasks while waiting for the results
of the offloaded computation. Either way, the system designer is faced with
the following design challenges:

– host processor utilization;
– hardware (HW) / software (SW) interface between the host processor and

the offloaded unit; and
– co-design methodology to produce a HW accelerated implementation from

the SW implementation.

When considering the host utilization, several issues need to be taken into
account. Firstly, since the multi-tasking systems, governed by an operating
system are of our primary interest, it is essential that the offloaded execution
is non-blocking. This means that the host processor should be able to continue
execution while the offloading hardware is doing its job. Quite often this means
that the operating system schedules different tasks/processes to the processor
until the execution can be resumed. Secondly, in some cases the FPGA system
does not have a random access to the local memory of the processor where
the operands of the computations are stored. This imposes the requirement
of transferring data to and from the local memory of the FPGA device. Not
only this takes time but also, if done actively by the host processor, it keeps
the processor busy. A common way to avoid occupying the host processor for
the data transfers is the use of Direct Memory Access (DMA) transfers. In
the platforms supporting DMA, this method offloads the data transfers from
the processor to a peripheral hardware unit. Thirdly, the FPGA circuit usually
runs at a clock frequency several times lower than the one of the host processor.
The actual acceleration expected from using the FPGA needs to be calculated
keeping this in mind. Naturally, the gain arising from the fact that the host
processor can perform other tasks meanwhile is preserved. These factors lead us
to the following conclusion: in order to speed up application execution with an
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FPGA accelerator, the speed of the accelerator hardware should compensate
the additional data transfer penalties, the potentially lower clock frequency of
the accelerator, and the overhead of task switching in the operating system.
Preferably, the accelerator design technique should be scalable so it can be
used to design accelerators that meet the required computational efficiency
while staying within the silicon area limits of the platform.

The communication interface is specific to the used platform and hardware
accelerator. If the accelerator is manually designed for the certain platform,
the interface will be a direct map to the interface exposed by the platform.
If the accelerator is generated with an automated approach, e.g., using a pro-
cessor template, the need for an adapter interface is most certain. Should the
DMA be exploited the interface needs to implement the means to enable this
functionality. The interface is comprised of the hardware (HW) and software
(SW) part. The HW interface establishes the signal connections between the
system platform and the accelerator. The SW interface, in its basic form, al-
lows data transfers to be performed, initiating the computations, and signaling
the host processor about their completion.

For the design methodology, our approach is to design an application-
specific processor for the task to be offloaded, and then use a retargetable
C compiler to generate a binary code for the customized processor. We will
also show how to create a HW/SW interface for an arbitrary platform. This
interface requires non-recurring engineer work. Once created it can be reused
on this particular platform with different application-customized accelerators.
The HW and SW interfaces can be later distributed, e.g., in the form of
reusable libraries.

4 Accelerator Implementation

In this work, the transport triggered architecture (TTA) [14] was used as a pro-
cessor template for designing the accelerators. For design automation, TTA-
based Codesign Environment (TCE) [15–17], that uses the TTA paradigm as
a template for customizing application-specific processors, was used.

4.1 Processor Template

Transport Triggered Architectures (TTA) belong to a class of exposed data
path VLIW architectures, i.e., the details of the data path transfers are ex-
posed to the programmer. This enables various unique optimizations in code
generation and the data path interconnection customization.

In contrast to traditional “operation triggered architectures” where oper-
ations are decoded to control signals that initiate operand transports, TTA
instructions explicitly define and schedule the operand transports. The oper-
ation executions are side effects of the operand transports. The internal buses
are used efficiently as the data transports on each bus can be controlled inde-
pendently.
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Fig. 1 TTA processors consist of the control unit (CU) and variable number of function
units (FU), special FUs (SFU), register files (RF) and load/store units (LSU). Unused
connections between the resources can be excluded from the interconnection network because
of the data transport programming.

The modular structure of the TTA is illustrated in Fig. 1. Basic building
blocks of TTA processors are function units (FU), register files (RF), a con-
trol unit, and an interconnection network between the data path resources.
TTA processors are programmed by data transports between the computing
resources and the programming paradigm reminds data flow programming.
Each function unit contains one or more input ports. One of the input ports
is a trigger port, which triggers the operation execution when the operand
is moved to this port. This means that other operands have to be moved to
corresponding ports on earlier or at the same instruction cycle as the move
to trigger port. This requires careful scheduling of data transports. Operands
can be passed directly from one function unit to another (software bypassing).
Furthermore, the data can be often fully bypassed without the need for storing
temporary results in a register file at all. In addition to reducing the number
of needed general purpose registers to avoid spills, software bypassing lowers
register file pressure, one of the biggest bottlenecks of the VLIW machines [18].

One of the main benefits of the TTA template is its flexibility; the archi-
tectures generated using the TTA template can be scaled to the requirements
at hand. For instance, there are no limits on the number of parallel FUs or
RFs. The FUs can have an arbitrary number of pipeline stages or an arbitrary
delay. Furthermore, there is no limit on the number of input and output ports
of FUs and the FUs can be connected to an external interface of the pro-
cessor directly. The external interface is simply extended with the connected
FU signals, which allows, e.g., using local memories freely. A second signifi-
cant benefit is the simplicity and modularity of the processor, which alleviates
verification and pre-synthesis cost estimations.
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4.2 TTA-based Codesign Environment

The TTA-based Codesign Environment (TCE) [15–17] is a toolset that uses the
TTA paradigm for developing application-specific instruction set processors.
TCE offers a set of tools, which allow a designer to customize the processor
architecture; compile high level language programs for the designed architec-
tures; simulate the program execution; and evaluate the cost functions of ex-
ecution cycles, area, and energy. The toolset includes both command line and
graphical user interface tools for powerful scripting and comfortable usability.

TCE allows the designer to design processors completely manually or in a
semi-automated fashion. In the first case, the designer uses a graphical tool to
instantiate an architecture template and to populate it with resources. The li-
brary of predefined processor units include: register files, functional units, long
immediate units etc. Additionally, the designer can add his own customized
application-specific units. The graphical tool allows connecting processor re-
sources with each other through the transport buses.

In the semi-automated design flow, the designer can automatically create
an architecture based on the requirements of the application. Starting from an
initial architecture provided by the designer, the design space explorer auto-
matically adds and removes resources. Finally, the designer is given a database
of architectures with associated information about the cycle counts required
for executing the application.

The TCE design flow for FPGA circuits is illustrated in Fig. 2. The input
is a high level language program. The first design space exploration loop is
performed at the architecture level where the designed TTA is modified using
graphical tools and evaluated using a retargetable compiler and a processor
simulator. It should be noted that the “design space explorer” can be an
automatic tool or the designer, depending on the desired design flow. The next
phase is the hardware generation where a platform specific implementation
of the architecture is produced. The implementation is then evaluated with
platform vendor specific tools, which can return the design space exploration
back to the architecture exploration in case the desired constraints (area, clock
frequency, speed, power consumption) are not met.

The design variations are evaluated at architectural level by compiling
programs for them and running architectural simulations. The C compiler is
ANSI C compliant, hence, there are no restrictions on the C syntax. Once the
designer is satisfied with the architecture the processor and proper program
image can be generated. TCE tools generate the HDL files for the selected
architecture and a bit image of the application. The processor architecture
can be synthesized from the HDL files using third party tools.

In order to overcome the disadvantage of long instructions in VLIW designs
the instruction compression can be used at this point. The binary image of the
application is compressed and a corresponding decompressing block is added
to the control unit of the target processor. For a more detailed description of
the TCE FPGA design flow, the reader is referred to our previous paper [16].
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Fig. 2 TCE design flow for FPGA circuits.

4.3 Accelerator Design

The method for designing an accelerator on a FPGA for offloading computa-
tions from the host processor contains the following steps:

1. select a piece of code to be offloaded from the processor to the FPGA;
2. replace selected code by calls to the device driver to initiate operand trans-

fers and execution on the FPGA;
3. customize a TTA processor for the selected code with the aid of the TCE-

toolkit;
4. using TCE tools, generate an HDL description of the customized TTA pro-

cessor with required interfaces from platform specific hardware databases
and obtain the FPGA configuration with the commercial synthesis and
place & route tools; and

5. generate machine code with the TCE retargetable compiler for the cus-
tomized TTA.

At runtime the FPGA configuration is downloaded to the FPGA and the
TTA binary program code is loaded to the FPGA memory. After the initial-
izations the FPGA accelerator can be used under the software running on the
host processor. The interfaces are to be loaded from platform-specific compo-
nent libraries.
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Fig. 3 Organization of the target platform. MPMC: Multi-port memory controller. DMAC:
DMA controller.

5 Target-Specific Interfacing

The communication between the host processor and the application-specific
TTA processor(s) configured on the FPGA is target dependent. Therefore, in-
terfaces and protocols with device drivers are tailored for each target platform.
However, once the tailoring has been done, the interfaces and protocols can
be stored to libraries and reused for new applications.

5.1 Hardware Interface

Our example target platform was RealView Platform Baseboard for ARM926EJ-
S, which contains the ARM processor and an FPGA chip. The simplified block
diagram presenting the main components and their connections is shown in
Fig. 3.

In this platform, all peripherals, which have a memory-mapped interface,
communicate with the processor through the ARM specific AMBA AHB bus.
Fig. 4 shows the basic connection of the slave peripherals to the tri-state
AMBA AHB bus [19]. All AHB slave modules have their inputs permanently
connected to the AHB signals. Outputs on the other hand are multiplexed. The
Decoder component resolves addresses from the AHB address bus (HADDR)
and activates the right component both by setting its HSEL signal high and
multiplexing its output back to the AHB bus.

Since TTAs use the Harvard architecture, their interface is comprised of the
separate busses to instruction and data memories. Additionally, our TTA in-
cluded two control signals: input TTA START and output TTA COMPLETE.
Those signals were used to start the computations and indicate that the results
are ready. Once TTA COMPLETE signal is asserted, the TTA is locked and
does not perform any tasks. This prevents from possible data corruption and
allows safe copying of results from the memory on the FPGA to a memory
accessed by the host processor.
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Fig. 4 Connection of AMBA AHB slaves [19].

The adapting interface between the target platform and TTA, presented
in Fig. 5 is realized through three distinctive components instantiated on
the FPGA: the data memory, the instruction memory and the DMA mod-
ule (DMAM). Both memories are AMBA AHB slaves. The data memory is a
dual-port RAM built from the on-chip memory cells on the FPGA. One port
is connected to the TTA data memory interface, while the second port, which
has an AHB interface, is connected to the AMBA bus.

The instruction memory is implemented in a similar way, with one excep-
tion. The ports are asymmetric in width. This is due to the very long instruc-
tion word of the TTA and, at the same time, the 32-bits width of the port
connected to the AMBA bus. Because of this asymmetry, additional control
logic is needed on the AMBA port to store and assemble several data words
from the host processor, into a complete instruction word. This control logic
is described with generic parameters, thus it can be reused easily by obtaining
the details of binary code from the TCE compiler: memory size (the number
of instructions to be stored); memory width (the instruction width); and word
width (word with of data obtained from the host interface, in this case, the
AHB uses 32-bit words).
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Fig. 5 Principal block diagram of application-specific processor in FPGA.

The actual data transfers on the FPGA are managed by the DMAM, which
is also a simple finite state machine (FSM) that synchronizes DMA transfers
with TTA processing and interleaves the accesses to the data memory. Typi-
cally, the following steps occur:

1. TTA is idle (locked) and does not access data memory, the DMAM enables
DMA transfers;

2. DMA controller transfers data (divided into bursts) and the DMAM ac-
knowledges consecutive bursts;

3. after the last burst the DMAM acknowledges transfer and unlocks the TTA
which starts processing data in the memory;

4. once processing is done the TTA locks itself and informs the DMAM about
the task completion; and

5. DMAM enables DMA transfers (pending or upcoming).

After the last step the DMA controller can setup the transfer back to the
SDRAM. From the host processor point of view, offloading computations is
nothing more than pushing data back and forth. The additional advantage
comes from the fact that locking the TTA processor can result in significant
power savings as the processor itself is neither polling nor waiting for an ex-
ternal interrupt.

5.2 Software Interface

The software interface is a platform specific driver. Our software platform was
a Linux based OS, Maemo Scirocco [20], which is tailored for mobile systems.
Therefore, we implemented the driver as Linux kernel module.

The host-slave communication is managed by the host processor through
the DMA controller configured with the device driver. The driver is imple-
mented as a kernel module, thus the driver can be dynamically loaded on
runtime. The driver is implemented as a character device driver, which means
that all the operations are performed on the file corresponding to the physical
device. The list of system calls implemented by the DMA driver can be found
in Table 1.
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Table 1 System calls implemented by DMA controller Linux driver

System Call Implementation description

open Initiates driver specific struc-
ture. Opens a channel to com-
municate with the DMA con-
troller.

close Finishes an on-going transfer (if
any) and clears private data.

ioctl Sets transfer parameters, e.g.,
channel, number of bytes to
be transferred, source and
destination addresses etc. In the
basic case, configuring a DMA
transfer requires setting param-
eters in four registers in the
DMA controller (DMACCxS-
rcAddr, DMACCxDestAddr,
DMACCxControl, DMACCx-
Configuration). More details
can be found in DMA controller
documentation [21].

write Triggers transfer from SDRAM
to FPGA. All necessary param-
eters need to be setup with the
Ioctl beforehand.

read Implements a blocking read op-
eration. Triggers transfer from
the FPGA to the SDRAM. This
transfer might be blocked by the
DMAM until TTA finishes pro-
cessing. The transfer parameters
need to be setup with the Ioctl
beforehand.

mmap Maps buffer from the kernel
space to the user space. Mmap
is required to make the same
buffer visible in both spaces. It
must be visible in the kernel
space for the DMA controller
and in the user space for the ap-
plication. Data copying between
kernel and user spaces is avoided
by using the same buffer.

The developed driver supports both non-blocking and blocking data trans-
fers. The driver implements also the DMA interrupt service, which is used to
wakeup application during the blocking read. Since the DMA interrupt is en-
abled per transfer, it is important to enable it by the ioctl system call before
blocking read is issued. Fig. 6 presents a typical use of the DMA controller
driver system calls in the application program.
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/∗ Open dev i c e ∗/
fd0 = open (CHANNEL0, ORDWR) ;
/∗ Al l o ca t e DMA bu f f e r in ke rne l space ∗/
i o c t l ( fd0 , PL08X IOC ALLOC SDRAM BUFF, 8 ∗ BUF SIZE ) ;

/∗ Map bu f f e r from ke rne l to user space ∗/
bu f f e r = mmap(NULL, BUF SIZE ,
PROTREAD | PROTWRITE, MAP SHARED, fd0 , 0 ) ;
/∗ Setup DMA c o n t r o l l e r r e g i s t e r s ∗/
i o c t l ( fd0 , PL08X IOC SET ALL , &dmac c params ) ;
/∗ Enable DMA in t e r r up t ∗/
i o c t l ( fd0 , PL08X IOC SET DMA IRQ , 1 ) ;

. . .

/∗ The wr i t e and read system c a l l s
∗ r ep l a c e the c a l l to o f f l o ad ed func t i on
∗ in the o r i g i n a l code . ∗/

/∗ Trans fe r data from SDRAM to FPGA ∗/
wr i t e ( fd0 , NULL, 0 ) ;
/∗ Blocking read un t i l o f f l o a d i n g i s done ∗/
read ( fd0 , NULL, 0 ) ;

. . .

/∗ Unmap bu f f e r ∗/
munmap(v−>work [ 0 ] , 8 ∗ BUF SIZE ) ;
/∗ Close dev i c e ∗/
c l o s e ( fd0 ) ;

Fig. 6 Example of offloading code with blocking call.

5.3 Processor - Accelerator Interaction

Figure 7 presents the sequence diagram describing how the host processor
operates with the accelerator during the program execution. Assuming that
the FPGA has already been configured for the given application the interaction
is carried in the following fashion. First, the application is started on the ARM
processor. When the offloading should start, the host processor configures the
DMA controller to perform a block transfer from the SDRAM to the TTA
local memory in FPGA and starts the transfer. The host processor is now
free for executing other tasks. After the DMA block transfer is completed,
the TTA processor immediately starts processing the data. Once the TTA
processor has completed the processing, it signals the end of the processing
for the DMA controller such that the DMA transfer from the FPGA to the
SDRAM could be initiated. When the transfer is finished, the DMA controller
signals the host processor with the interrupt that offloading is completed and
results are available. The interrupt service routine of the DMA device driver
signals the operating system for context switch and the application continues
its execution. On the consecutive offloading events the procedure is repeated.
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Fig. 7 Sequence diagram of a program execution with offloading.

6 Experiments

To proof the feasibility of the proposed methodology, we carried out experi-
ments with the RealView Platform Baseboard, equipped with a Xilinx Virtex-
II family FPGA. At heart of the board is ARM926EJ-S, the 32-bit RISC pro-
cessor with a wide range of peripherals including the DMA controller (DMAC)
and the memory management unit (MMU). The board contains also 128MB of
the 32-bits wide SDRAM and 128MB of the 32-bits wide NOR flash memories.

The proposed design methodology was experimented by using the Tremor
Ogg Vorbis audio decoder [22] as an example application. It is an open-source,
fixed-point implementation of the standard, designed especially for platforms
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Fig. 8 Flow diagram of Tremor Ogg Vorbis audio decoder.

without floating-point arithmetics. Instead of compiling code directly on the
board we decided to cross-compile it with the Scratchbox cross-compiling
toolkit [23] run on the i686 Linux based host machine.

Finding a part of the application suitable for offloading is not trivial in a
general case, especially with large programs. Fortunately in situations when
the computational kernel cannot be easily identified, profiling tools, like TCE’s
proxim or GNU’s gprof, can be used. The profiling provided information about
the most complex functions in the Tremor Ogg Vorbis decoder. In Fig. 8, the
flow diagram of the decoder along with the percentage of clock cycles used by
the most significant parts of the application. Nearly 50% of computation time
was used to compute the modified discrete cosine transform. As this function
processes data in a consistent memory range, it was an obvious candidate for
offloading. We built the customized TTA processor for the MDCT with the
aid of TCE tools. To illustrate the scalability of the tools, we developed two
processors. First, targeting to the short execution time, and second, aiming at
the smaller area. We call them as fastTTA and smallTTA, respectively. The
starting point was a so called minimal architecture, which contains just enough
resources for the TCE compiler to compile any program for. The function,
computing MDCT, was extracted from Tremor code and wrapped to a main
function in a separate file. The TCE compiler supports ANSI C language so no
other modifications were done to the original code. The code was compiled and
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Fig. 9 Principal organization of the customized TTAs: (a) machine with limited resources,
”smallTTA” and (b) higher performance machine, ”fastTTA”.

profiled in a cycle accurate simulator. The profiling tool shows the utilization
of each function unit, hence, the often used FUs were duplicated to improve
performance. The final configuration is given in Fig. 9(a).

The fastTTA, partially presented in Fig. 9(b), was obtained with the de-
sign space explorer tool from the TCE toolset. This tool automates the design
process by adding resources iteratively until the cycle count cannot be reduced
any more. Compared to smallTTA, fastTTA has following components in ad-
dition: two multipliers, three ALUs, two shifters, two register files, and 12
buses. The profiling, code modification and design of two application-specific
TTA processors took approximately two days of work.

Two TTA machines were integrated with the rest of the hardware system
from Fig. 5. Both designs were synthesized with the Xilinx ISE Design Suite
10.1. Table 2 presents some results taken from the synthesis and place & route
reports. As we can see, the fastTTA takes almost three times more FPGA
slices than the smallTTA due to the large number of FUs and interconnect
buses. Also the difference in number of multipliers is significant. The fastTTa
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uses nine embedded 18-bit multipliers, when the smallTTA has only three.
The on-chip memory is also almost 50% larger when the fastTTA is used.

The difference in performance of TTAs represents TComp value, measured
by the clock cycle accurate simulator from the TCE toolkit. The smallTTA
takes 68315 cycles to execute the offloaded task, while the fastTTA executes
the same routine in 50639 cycles.

The critical path of both designs, given in Table 2, is affected by two fac-
tors. Firstly, the synthesis was made for a relatively old FPGA architecture,
namely Xilinx Virtex II. As example, clock frequency of 191MHz with a simi-
lar TTA processor was obtained when synthesized for a modern Xilinx Virtex-5
FPGA [16].

Secondly, no manual optimizations were used to optimize the critical path.
Much higher clock frequencies could be obtained with manually optimized
interconnect buses. That manual optimization can be easily applied with the
help of graphical user interface from one of the tools in TCE. It is worth
mentioned that this optimization process does not require a hardware design
expertise from a designer. The longer critical path of fastTTA is due to the
more complex interconnection bus. The complexity of the bus increases with
the number of FUs and RFs in the design and the bus is often in the critical
path of the FPGA implementations of TTAs.

Table 2 Characteristics of the offloading compared to software-only implementation.

FastTTA SmallTTA ARM

FPGA slices 15412 4960 N/A
FPGA memory [kB] 86 54 N/A
FPGA Mul18 blocks 9 3 N/A
Max clock frequency [MHz] 35.90 36.02 210.00
Critical path [ns] 27.85 27.77 N/A
TComp [clock cycles] 50639 68315 682500
TTrans [clock cycles] 9216 9216 N/A
TOS [clock cycles] ˜1000 ˜1000 N/A
TOffload [clock cycles] 60855 78531 682500
Offloaded code size [bytes] 21064 10986 7380

To measure the execution time of the application, as accurate as possible,
we instantiated one additional component to the FPGA, cycle counter, which
simply measures the number of FPGA clock cycles. The component has mem-
ory mapped registers, which allow start, stop, reset, and read of the measured
clock cycles. The cycle counter is an AMBA AHB slave and can be accessed
by the ARM processor exactly in the same way as any other memory mapped
peripheral in the system.

The execution time of the accelerated function TOffload can be split into
three distinct parts:

TOffload = TComp + TTrans + TOS (1)
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(a)

(b)

Fig. 10 AMBA HTRANS signal messages during a data transfer: (a) burst and (b) non-
burst transfer. Each box corresponds to one clock cycle. Dark boxes indicate cycles when
valid data is presented on the bus.

where TComp is the time used by TTA on the computations, TTrans indicates
the time of data transfers and TOS reflects OS overhead of the master/slave
communication. In our experiments, TOffload was measured with the cycle
counter. The exact value of TComp can be calculated with the cycle accurate
simulator from TCE tools. TTrans can be computed based on the transfer
protocol and the number of data elements to be transferred. Based on the
previous the TOS can be calculated according to (1).

Table 2 lists also the execution time results. The number of clock cycles
the offloading takes is compared to the cycles that host processor needs to
perform same computations. However, to correctly interpret these results we
need to take into account that generally, the host processor runs at the higher
frequency than the slave processor. In our case, the ratio equals 7. Keeping that
in mind we obtain 1.6x and 1.24x speedup when offloading with the fastTTA
and smallTTA, respectively. Additional gain comes from a fact that the host
processor can perform other task while waiting for offloading to complete. We
are running a multitask OS and other processes can be scheduled to run on
the CPU during that time, as shown in Fig. 7.

The number of bytes the offloaded function takes after compiling is given in
the last row of Tab. 2. As can be seen, the program for fastTTA is almost twice
as big as the binary for the smallTTA. Conserving available memory on the
FPGA for other purposes can be another reason to customize the accelerator
exactly to the application requirements.

Finally, the reason for relatively low data transfer throughput is the transfer
protocol used on the AMBA bus. Fig. 10 shows messages transferred from the
master to the slave on the HTRANS, one of the AMBA signals. There are four
distinct messages but only NONSEQ and SEQ indicate valid data on the bus.
If we take a closer look at the messages during the burst transfer, shown in
Fig. 10(a), we will see that 18 clock cycles are required to transfer four words
of data. In other words, 4.5 cycles per word. In non-burst transfer, depicted
by Fig. 10(b), one data word is send every 6 cycles. If we transfer 1024 words,
which is the common case for the Tremor decoder, the transfer will take 4608
or 6144 clock cycles in burst and non-burst modes respectively. The bus we
are using to transfer is not used for any other purpose, so it is safe to claim
that calculated numbers hold in the general case. The burst mode can be set
with the DMACCxControl registers of the DMA controller.
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7 Conclusion

In this paper, we described a method for offloading computations from a host
processor to an FPGA. The proposed approach supports platforms with an
operating system and offloads both computation and data transfer between
host and slave processors. The computations are implemented as a TTA pro-
cessor, which is customized for the given application and exploits the inherent
instruction level parallelism of the application. The interfaces and communi-
cation between the host processor and the slave TTA are target-specific but
can be reused in the same target. The communication packages and interfaces
are generic and allow any type of functionality to be offloaded from the host
processor under this environment.

As a case study, we customized two TTAs for an audio decoding applica-
tion, showing the scalability of the TCE toolset. The obtained results demon-
strate that the difference in the targeted parameters is significant and the
final product can be a trade-off based on the requirements. The design work
is done with TCE tools on the high abstraction level, thus no hardware design
expertise is needed. Finally, in our experiment, the results show that offload-
ing speedup the application execution when compared to the software-only
execution. However, the speedup depends on characteristics of the processor
and FPGA fabric. Additional gain comes from a fact that the offloading is a
non-blocking procedure. In a multitask operating system, other process can
be scheduled to run on the CPU while the offloading is taking place.
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