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Abstract

We present a method for tracking the 3-axis orientation of a

monocular camera using orthogonal vanishing points detected in indi-

vidual frames of a sequence of images. Robust and real-time vanishing

point detection is done using a standard line segment detection method

and an adaptive RANSAC algorithm. Vanishing points and corre-

sponding vanishing directions found in consecutive frames are associ-

ated with each other to produce a sequence of orientation quaternions,

which is processed by an extended Kalman filter. Experiments with

a consumer-level, handheld mobile device indicate that the accuracy

of the proposed method is comparable with those of consumer-grade

inertial motion sensors.

Keywords: Computer vision, indoor navigation, vanishing points, orienta-
tion estimation

1 Introduction

With the availability of cheap small low-power vision sensors, there is a
surge of interest in using them in positioning and navigation applications
in digital devices such as mobile phones. There is already an extensive body
of work in the computer vision field on the so-called egomotion problem of
inferring 3D motion (six degree-of-freedom rotation and translation) of a
camera mounted on a robot or a vehicle from a sequence of images. Most
methods are based on detecting and tracking primitive image features (points,
lines, etc.) in the image stream. Methods such as simultaneous localization
and mapping (SLAM) and structure from motion (SfM) use visual and other
data to build up a three-dimensional model of the environment, relative to
which the camera’s motion is described [10].
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In this work we focus on the development of a vision-based sensor for
the 3-axis orientation, that is, a gyroscope. Because the measurement error
of conventional gyroscopes that are based on inertial sensors accumulates
(drifts) over time, a navigation system needs to include driftless data sources,
such as vision-based sensors [19, 22]. In principle, a camera gyroscope is
driftless and should thus well complement an inertial gyroscope.

Our system is based on tracking vanishing points that have been identified
using line segments detected in images. Concerning ourselves only with van-
ishing points makes orientation tracking significantly easier for the following
reasons:

1. Vanishing points arise from line features that are distinct and abundant
in images of architectural scenes in indoor and dense urban environ-
ments, where Global Navigation Satellite System (GNSS) positioning
is inadequate.

2. The number of interesting (orthogonal) vanishing points is limited,
since any scene in the 3-dimensional world can contain at most three
mutually orthogonal directions.

3. Vanishing points are dependent only on the camera’s orientation, not
its position.

4. Vanishing point based methods are robust with regard to non-
stationary objects (people, vehicles) moving in the scene.

Vanishing points have been used in applications including autonomous
vehicle navigation [17], architectural scene reconstruction [1, 12, 20, 21], and
photo correction [8]. Similarly to our approach, most studies assume that the
camera’s instrinsic parameters are known and fixed, but vanishing points can
also be used for intrinsic parameter calibration [3, 11, 16, 18]. The vanishing
point based camera gyroscope of Kessler et al. [14] is similar to ours, except
that they do not filter orientation estimates, and compute only the horizon
line and the central vanishing point.

This paper is structured as follows. In Section 2, we define the pinhole
camera model, derive vanishing points algebraically and describe their basic
properties using projective geometry. Section 3 describes the combination of
line segment detection and RANSAC-based line clustering used for vanishing
point detection. The method for extracting and filtering accurate orienta-
tion measurements from detected vanishing points is presented in section 4.
Finally in section 5, experiments are conducted using a mobile phone con-
taining both a camera and inertial sensors. Conclusions and discussion of
areas of future work are in section 6.
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2 Geometry of Vanishing Points

The theory of vanishing points is usually presented in the context of projective
geometry, the study of properties of geometric objects under projective trans-
formations. A camera can be considered as such a transformation, since it
takes a 3-dimensional scene and projects it onto a 2-dimensional image plane.
In projective geometry, points are represented in homogeneous coordinates.
For example, a point in 2-dimensional Euclidian space (x, y) ∈ R2 can be
transformed into a homogeneous point in a projective 2-space P2 ⊆ R3 sim-
ply by appending component 1 to the end of the Euclidian representation,
(x, y, 1) ∈ P2. In projective space P2, the points (x, y, 1) and (αx,αy,α) are
equivalent for any non-zero α. An important subset of P2 consists of points
that have the form (x, y, 0). These points are known as the ideal points
and they correspond to points located infinitely far away from the origin.
Similarly, in the projective space P3, ideal points have the form (x, y, z, 0).

In order to define vanishing points algebraically, we specify the projective
transformation used to model the camera. One of the simplest and most
commonly used models for a finite projective camera is the pinhole model
[10]:

P : P
3 #→ P

2, P (X) = KR [I3,−t]X, (1)

where K ∈ R3×3 is the camera’s calibration matrix, R ∈ R3×3 is an or-
thogonal rotation matrix and t ∈ R3 is the camera’s translation vector in
the world coordinate frame (Figure 1). Rotation R and translation t are
known as the extrinsic camera parameters. The calibration matrix K is an
upper-triangular matrix consisting of the intrinsic camera parameters

K =







αf s px
0 f py
0 0 1






,

where f is the focal length, (px, py) is the principal point, α is the pixel aspect
ratio and s is the skew coefficient of the camera. Most CCD-based digital
cameras have square pixels (α = 1), zero skew (s = 0) and principal point
close to the image center. It is also reasonable to assume that the intrinsic
camera parameters do not change over time.

Consider a line in 3-space that goes through point A = (ax, ay, az, 1)T

with direction vector D = (dT , 0)T ,d ∈ R3. The line’s equation is

X(λ) = A+ λD, λ ∈ R.

When this line is projected through the pinhole camera P onto the image
plane P2, we get

x(λ) = P (X(λ)) = P (A) + λP (D) = a+ λKRd,
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Figure 1: Pinhole camera model. Camera rotation R and translation t define
a coordinate transformation from the world coordinate frame W to the camera
frame C. A point in the camera frame C can be projected onto the image plane I if
the camera calibration matrix K is known. Combining these two transformations
results in the camera model (1) which takes a point X ∈ P3 in the world frame W
and projects it into a point x ∈ P2 on the image plane I.

where a = P (A) is the image of A. The vanishing point v ∈ P2 correspond-
ing to the direction d is the limit point of projected line x(λ) as λ tends to
infinity,

v = lim
λ→∞
x(λ) = lim

λ→∞
(a+ λKRd) = KRd. (2)

When (2) is represented in the camera’s own coordinate frame (R = I3, t = 0)
we get

v = Kd. (3)

From (2) we can infer that the vanishing point v does not depend on the
camera’s position. Furthermore, equation (3) shows that there is an one-
to-one relation between direction vectors in 3-space and vanishing points in
the image plane. Two vanishing points v1 and v2 are said to be orthogonal
if the corresponding line directions d1 and d2 are orthogonal. A vanishing
point v ∈ P2 which is also an ideal point is called an infinite vanishing point.
Similarly, non-ideal vanishing points are referred to as finite vanishing points.

3 Vanishing Point Detection

As noted in the previous section, there is a direct correspondence between the
camera’s orientation in the world frame and the vanishing points found in the
image. The problem of determining the camera’s orientation can therefore be
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treated as the problem of finding vanishing points. The camera’s orientation
has three degrees of freedom, so we need to detect three vanishing points in
every image. In section 4.1 it is shown that if we assume the three major
vanishing points to be mutually orthogonal, then detecting only two of these
points is enough to describe the camera rotation uniquely.

Vanishing point detection can be regarded as the search for points in an
image where projections of parallel scene lines intersect. Our method for
vanishing point detection is based on line segment detection in the images
and it can basically be separated into two parts:

1. Line segment detection. The line segment detector takes a grayscale
image as an input and returns a list of line segments detected in the
image.

2. Line clustering. Detected line segments are clustered into groups of
lines with common intersection points. Clusters with most line seg-
ments are picked and detected vanishing points are chosen to be the
intersection points within these clusters.

The next two sections describe these two steps in more detail.

3.1 Line Segment Detection

In the last few decades, numerous algorithms have been proposed for line
detection. Most of the methods are based on the Hough transform [6] or
connected component analysis of image gradient orientations [2]. We use a
method of Gioi et al. [9] which belongs to the latter category. Although not
as fast as some methods based on Hough transform, it has linear complexity
with regard to the image size. With proper image scaling, we found Gioi’s
method to be able to perform under real-time constraints. Figure 2 shows
typical output of the line detector [9] in an indoor scene.

3.2 Line Clustering

After line segments have been extracted from the image, the Random Sample
Consensus algorithm [7] (RANSAC) is used to cluster the line segments into
groups whose lines share a common intersection point. These intersection
points are regarded as the detected vanishing points. RANSAC produces
one line cluster at a time, so in order to detect three vanishing points, the
RANSAC algorithm is applied three times. Between each application, line
segments corresponding to already detected vanishing points are removed.
We do not differentiate between finite and infinite vanishing points during the
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Figure 2: Line segment detection

Figure 3: Angles between line segments and a vanishing point v.

line clustering. For our purposes, infinite vanishing points are approximated
sufficiently well by finite vanishing points located far away from the image
center.

In each RANSAC iteration, a pair of line segments is chosen randomly.
The intersection point of this pair is a candidate for the vanishing point. To
measure the quality of the vanishing point candidate, each of the detected
line segments is labelled either as an inlier or an outlier, based on how well
they support the given candidate. We define the distance function d(v, l)
between vanishing point v and line segment l to be the angle between line
segment l and the line going through v and the midpoint of l (Figure 3).
Line segment li is said to be an inlier if its distance from vanishing point
d(v, li) < θt for some predeterminated threshold level θt.

The number of RANSAC iterations is determined adaptively, as follows.
Let r denote the ratio of inliers to outliers corresponding to vanishing point
v in the set of detected line segments. We want to calculate the number
of iterations k needed to ensure with probability p that at least one of the
random line pairs chosen by RANSAC is free of outliers. The probability of
choosing k pairs of line segments with at least one outlier each is (1− r2)k.
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The number of iterations needed to ensure that this probability is below the
threshold 1− p is

k ≥
log (1− p)

log (1− r2)
. (4)

The true inlier ratio r is unknown but it can be approximated from below
by the number of line segments in the largest cluster found in the earlier
iterations divided by the number of all line segments.

RANSAC produces crude estimates of vanishing points and their inlier
sets of line segments. The next section describes how the extra information
within the set of inliers can be used to further refine the vanishing point
estimates.

3.3 Vanishing Point Refinement

Given a set of inlier lines {l1, . . . , ln}, li ∈ R3, corresponding to a vanishing
point v the following equation holds:

[l1, . . . , ln]
Tv = 0. (5)

Overdetermined system (5) can be solved for the nontrivial v (basis of the
null space of [l1, . . . , ln]T ) using SVD. Instead of solving system (5) directly,
Cipolla and Boyer [4] suggest that lines li should first be transformed into
normalized image coordinates

Li =
K−1li
‖K−1li‖

, i = 1, . . . , n,

where K is the known camera calibration matrix. Normalized image coordi-
nates correspond to a camera with focal length of 1 and principal point at
the origin of the image. Instead of solving system (5) for the vanishing point
v, we solve the following system for the corresponding vanishing direction d

[L1, . . . ,Ln]
Td = Ld = 0. (6)

Vanishing directions can be transformed back into vanishing points by mul-
tiplying them from left with the camera calibration matrix K. Example of
line clusters corresponding to refined vanishing point estimates found in an
indoor scene is shown in Figure 4.

4 Orientation Tracking

In this section, we present a simple method for inferring the camera orienta-
tion from two or three mutually orthogonal vanishing points. We also present
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Figure 4: Results of the RANSAC-based line clustering. Upper left image displays
all of the detected line segments. Other three images show line clusters correspond-
ing to the three major orthogonal vanishing points detected in the scene. Upper
right and lower left images correspond to the vertical and horizontal vanishing
points located far away from the image center. Lower right image corresponds to
the vanishing point at the end of the hallway.

a quaternion-based Kalman filter to estimate the real camera rotation from
a sequence of orientation measurements.

4.1 Extracting Orientation from Vanishing Points

Equation (2) relates vanishing points with the camera orientation and ac-
tual line directions found in the scene. We assume that in the scene there
exist three major line directions that are mutually orthogonal, and that
the detected vanishing points correspond to these directions. This assump-
tion is reasonable for indoor scenes based on rectangular architecture. The
RANSAC-based vanishing point detection described in earlier sections gen-
erates three vanishing point candidates from an image regardless how many
orthogonal line directions can be seen in the image (e.g. image of an wall can
have at most two orthogonal vanishing points.). Under the orthogonality as-
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sumption, these vanishing points should be orthogonal and the corresponding
vanishing directions.

di =
K−1vi
‖K−1vi‖

, i = 1, 2, 3,

should form an orthonormal basis in R3. If only two of the vanishing direc-
tions are approximately orthogonal (one of the detected vanishing points is
false), then the third direction can be inferred from them using cross-product.

Due to the approximative nature of the vanishing point detection, matrix
D = [d1,d2,d3] is not necessarily orthogonal. It can be shown [13, pp. 431–
432] that the closest (in sense of Frobenius-norm) orthogonal matrix to D is
given by

D̂ = UV T ,

where D = UΣV T is a singular value decomposition of D.
Given two orthonormal basesD1 = [d1,d2,d3] andD2 = [d′1,d

′

2,d
′

3], their
relative rotation matrix is given by

R = D2D
T
1 .

For any image, the vanishing direction matrix D can be chosen in multi-
ple ways. The signs and the order of detected vanishing directions di are
arbitrary and likely to change between frames. To avoid ambiguity in the
vanishing direction matrices Di we swap and change the signs of its columns
in such way that it resembles as closely as possible to the vanishing direction
matrix found in the previous frame. The details are as follows.

Assume that the matrix D1 = [d1,d2,d3] consists of the vanishing di-
rections found in the previous frame i − 1 and matrix D2 = [d′1,d

′

2,d
′

3] is
constructed from the vanishing directions found in the current frame i. To
resolve the ambiguity in D2 and to ensure that it is a proper rotation matrix,
we associate it with the matrix D1. To do this we compute a score matrix S
as follows

S = DT2D1 =







d′T1 d1 d
′T
1 d2 d

′T
1 d3

d′T
2
d1 d

′T
2
d2 d

′T
2
d3

d′T
3
d1 d

′T
3
d2 d

′T
3
d3






.

We want the order of columns of D2 to be such that it corresponds to the
order of columns in D1. To determine the proper order we search for the
maximum absolute values in the rows i = 1, 2 of S. For each row, if the
maximum absolute value of row i is found in the column j, we swap the
columns i and j in matrix D2, or if i = j, do nothing. Also, if the sign of
Sij is negative, we multiply the column i of the re-arranged matrix D2 with
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−1. Changing the order and signs of the columns of D2 does not change the
fact that it is an orthogonal matrix. If the D matrix found in the first frame
was associated with the identity matrix I3 we know that it has determinant
detD = +1. The association process ensures that this property carries on in
the subsequent frames.

4.2 Orientation Filtering

Previous sections described how we can obtain direct, but noisy measure-
ments of the camera’s orientation relative to the scene. To improve the
orientation estimation, we use an extended Kalman filter (EKF). In addition
to attenuating noise, filtering also makes it possible to continue camera ori-
entation estimation when vanishing point detection fails to detect at least
two orthogonal vanishing points.

For the purpose of filtering, we represent the camera orientation as a
four-dimensional orientation quaternion. Orientation quaternions can read-
ily be transformed into rotation matrices and Euler angles [5], but are more
compact than rotation matrices and do not have the singularities and dis-
continuities that Euler angles can have.

For a moving camera, it is necessary that we also model higher order mo-
tion parameters such as velocity and acceleration. We include the estimate
of the camera’s angular velocity in the state vector and model angular accel-
erations as random process noise. The complete state vector of the camera
consists of the camera orientation quaternion q ∈ R4 and angular velocity
vector ω ∈ R3

x =

[

q
ω

]

.

For sequential motion filtering, we represent the continuous motion of the
camera using a sequence of discrete states which we label using subscript k.
We assume the timestep ∆t between any two consecutive camera states to be
constant and equal with the inverse of the camera’s framerate. Our camera
motion model assumes constant angular velocity with unknown random zero-
mean Gaussian angular accelerations αk occurring in each timestep k

f(xk,n) =

[

qk ∗ q((ωk + n)∆t)
ωk + n

]

,

where the impulse of angular velocity n = α∆t ∼ N(0, Q) is used to model
the uncertainty in the camera’s motion. We use q(·) to denote conversion
from angle-axis representation of a rotation (3-vector) to orientation quater-
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Figure 5: Process model of the orientation filtering using EKF.

nion. The measurement model h returns the quaternion part of the state
vector plus noise,

h(xk) = Hxk + rk = qk + rk,

where rk ∼ N(0, Rk) and H = [I3, 04×3].
The standard EKF algorithm consists of prediction and update steps. The

prediction step is

xk = f(xk−1, 0)
Pk = Fk−1Pk−1F

T
k−1 +Gk−1QG

T
k−1

where

Fk−1 =
∂f

∂x

∣

∣

∣

∣

∣

x=xk−1,n=0

Gk−1 =
∂f

∂n

∣

∣

∣

∣

∣

x=xk−1,n=0

Formulas for these matrices are lengthy and for the sake of brevity will not
be presented here.

The update step is

zk = yk − h(xk)
Sk = HkPkH

T
k +Rk

Kk = PkH
T
k S
−1

k

xk = xk +Kkzk
Pk = (I −KkHk)Pk

When vanishing point detection fails to produce a reasonable orientation, we
skip the update step and just use the prediction.

5 Experimental Results

Experiments were conducted using a Nokia N900 mobile phone. The N900
shares similar hardware with many other modern smartphones: it has 5

11



megapixel camera for taking still images, it can capture 720p video at 25 fps
and it has internal inertial measurement unit (IMU) with 3-axis accelerom-
eter, 3-axis gyroscope and magnetometer.

The calibration matrix K for the camera was determined using method
similar to Zhang [23]. The calibration process involved taking multiple pic-
tures of planar calibration pattern shown in Figure 6.

Figure 6: Calibration pattern

In our experiments the phone was used to capture handheld video in
an indoor scene while direct orientation measurements from the IMU were
recorded in the background. The video was afterwards divided into 680
individual frames. Line segments and vanishing points were detected in each
frame offline using a desktop computer and our proposed method was used
to track the camera’s orientation through the whole image sequence.

Videos taken with the phone had native resolution of 848x480 pixels but
in order to speed up the line segment detection, all of the frames were scaled
down by 50% before processing. Line segment detection code was written
in C-language, RANSAC-based line clustering, orientation computation and
filtering were written as unoptimized MATLAB code. Line segment detection
using detector [9] was clearly the bottleneck of the algorithm in terms of
speed. Using 2.27 GHz dual core desktop computer we were able to process
the test video with average rate of 20 fps which was very close to the native
framerate of the camera (25 fps). The resulting orientation estimates were
similar to those of the IMU (Figure 7).
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Figure 7: Results from an experiment with handheld camera. Dashed red line
represents rotation angles measured using our proposed method, the solid blue
line is the output of the built-in IMU.

6 Conclusions

We have presented a framework for a 3-axis gyroscope that works by tracking
vanishing points detected in individual frames of a sequence of images taken
by a monocular camera. Initial experiments indicate that the system can in
principle track orientation in real time with an accuracy comparable to that
of consumer-grade IMUs. Because the vision-based system is in principle
driftless, it has good potential as a component of an integrated navigation
system.

The weakest link in our camera gyroscope system is line detection. First,
the images need to contain sufficient line features to infer vanishing points,
and so the system can be expected to work well in well-lit man-made en-
vironments, such as indoors and in urban outdoor settings, but not so well
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elsewhere. Lines are difficult to detect in images that are blurred by rapid
camera motion; in this case the motion-blur based camera gyroscope of Klein
and Drummond [15] could be a good alternative or complement. Finally, as
line detection is the most computationally demanding stage of our system,
the most important area for further work is the development of faster algo-
rithms for vanishing point detection in an image stream.
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