
Tampere University of Technology

Author(s) Aho, Timo, Elomaa, Tapio, Kujala, Jussi

Title Reducing splaying by taking advantage of working sets

Citation Aho, Timo, Elomaa, Tapio, Kujala, Jussi 2008. Reducing splaying by taking advantage of
 working sets. Lecture Notes in Computer Science vol. 5038, pp. 1-13.

Year 2008

DOI http://dx.doi.org/10.1007/978-3-540-68552-4_1

Version Post-print

URN http://URN.fi/URN:NBN:fi:tty-201312201536

Copyright The final publication is available at link.springer.com.

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

Reducing Splaying by Taking

Advantage of Working Sets

Timo Aho, Tapio Elomaa, and Jussi Kujala

Department of Software Systems, Tampere University of Technology
P.O. Box 553 (Korkeakoulunkatu 1), FI-33101 Tampere, Finland

{timo.aho,tapio.elomaa,jussi.kujala}@tut.fi

Abstract. Access requests to keys stored into a data structure often
exhibit locality of reference in practice. Such a regularity can be mod-
eled, e.g., by working sets. In this paper we study to what extent can
the existence of working sets be taken advantage of in splay trees. In
order to reduce the number of costly splay operations we monitor for
information on the current working set and its change. We introduce a
simple algorithm which attempts to splay only when necessary. Under
worst-case analysis the algorithm guarantees an amortized logarithmic
bound. In empirical experiments it is 5% more efficient than random-
ized splay trees and at most 10% more efficient than the original splay
tree. We also briefly analyze the usefulness of the commonly-used Zipf’s
distribution as a general model of locality of reference.

1 Introduction

Many search trees facilitate efficient access to the stored items by keeping the tree
in balance using rotations [1]. The balance invariant is maintained independent
of the sequence of access requests observed. Splay trees [2], on the other hand,
manage to do without any invariant, but need to splay in connection of each
access and update. Splay trees lose the provably logarithmic worst-case bounds
of individual operations, but still behave well under amortized analysis. The need
for (expensive) splaying can be reduced by randomizing the decision of whether
to splay or not in connection of an operation [3,4] as well as by heuristic limit-
splaying algorithms [2,5,6].

Several theoretical results indicate that splay trees should work particularly
well when there is locality of reference in the request sequence [2]. However,
some empirical studies [6,7,8] have indicated that they could be actually at
their best in highly dynamic environments, where the focus of locality drifts
over time. Moreover, despite careful implementation basic splay tree variations
have empirically been observed to be less efficient than red-black trees (RBTs),
standard binary search trees (BSTs), and hashing at least in some situations
[6,7]. Randomized adaptive data structures can do better [4,6], but only heuristic
limit-splaying has been competitive in practice [6]. However, some recent studies
[9,10] have demonstrated that in some settings splay trees may be more efficient
than other BSTs. We hope that paying better attention to the properties of the

input — splaying only when necessary and useful — would lead to more efficient
performance.

Randomized splay trees achieve some practical savings without giving in
on asymptotic efficiency. Nevertheless, they still do not pay any attention to
the properties of the request sequence. The best advantage of randomization
has been shown for fixed probability distributions, while request sequences with
high dynamic locality of reference benefit from randomization only slightly [4].
Our aim in this paper is to study whether the amount of splay operations could
be reduced more efficiently. In other words, we investigate how large savings (if
any) can be achieved by monitoring the actual input that is seen.

In particular, we examine access request sequences that exhibit locality of
reference in the form of working sets [11]. This means that, at any time interval,
most accesses refer only to a small portion of all keys— the current working set.
Real-world situations often conform with this assumption. Of course, we cannot
afford to implement a too complicated request sequence monitoring method,
because then we would be destined to lose in time consumption to the in-practice
efficient (randomized) splay trees.

We will introduce and analyze a quite straightforward version of the splay tree
which takes the existence of working sets in the request sequence into account.
The algorithm maintains a (discounted) counter to monitor the (average) depths
of recent searches in the tree. Low average search depth indicates that a working
set exists near the root of the tree and is being actively used. Occasional deep
searches do not change the situation. Only when the searches are constantly
deep, is there need to update the splay tree.

The remainder of this paper is organized as follows. In Section 2 we briefly
recapitulate splay trees and their relation to working sets. Section 3 presents
the main idea of conditional adaptation of a binary search tree studied in this
paper. The splay tree algorithm based on this idea is introduced in Section 4.
An empirical evaluation of the algorithm is reported and analyzed in Sections 5
and 6. Finally, Section 7 gives the concluding remarks of the paper.

2 Adaptive Data Structures and Working Sets

A splay tree is a BST with the keys in symmetric order. In it the accessed item
is elevated to the root of the tree using splay rotations [2]. These operations keep
the tree pretty well in balance. Because no other balancing is enforced, a splay
tree does not contain any additional information and, thus, does not require extra
storage space. Because of its strategy, a splay tree also keeps recently accessed
items very near the root. Thus, it automatically handles also working sets quite
efficiently. On the downside, the accessed key is splayed to the root even if it is
accessed only once during the whole access sequence. Also unnecessary splaying
is executed even if the current working set is near the root and, thus, already
efficiently accessible.

Sleator and Tarjan [2] proved many interesting bounds and properties for the
time consumption of splay trees. In this paper we need only one of these results.

The formulation of the following theorem comes from Albers and Karpinski [4].
Throughout this paper we denote by m the number of access requests in the
operation sequence and by n the number of keys mentioned (all of them stored
in the tree).

Theorem 1 (Balance Theorem). The total access time incurred by an access

sequence is at most 3m log2 n + m + C, where C = n log2 n.

There are two basic implementations for splay trees: top-down and bottom-
up splaying. Asymptotically their access times are the same, but the practical
efficiency of these implementations has been under some controversy [6]. In our
experiments top-down splaying was always more efficient than the bottom-up
version. Therefore, we report our results using top-down splaying with all the
algorithms.

An interesting theoretical examination of splay trees has been presented by
Subramanian [12]. He proposed a more general group of trees possessing simi-
lar properties as splay trees. The splay heuristic has additionally been applied
in other tree structures [13]. Iacono [14] has also discussed the topic of splay
trees and working sets. He presented new distribution sensitive data structures
consisting of multiple trees and proved very interesting features for them.

After the submission of this paper we learned that independent of us Lee and
Martel [10] have proposed an algorithm very similar to ours for cache efficient
splaying. Their algorithm uses a sliding window of accesses. The algorithm exe-
cutes splaying if a too large portion of the accesses is deeper than a predefined
limit depth. They also present experiments somewhat similar to ours. However,
their test setting is more static.

For self-organizing lists a heuristic with some reminiscence with the splaying
operation is the move-to-front rule [15]. Amer and Oommen [16] have recently
examined the effect of locality of reference in self-organizing lists.

3 Conditional Adaptation of a Binary Search Tree

Before introducing the BST algorithm intended to cope with working sets, we
give the basic philosophy of the algorithm: how to identify a working set and its
change.

We execute splay operations only when the active working set is not near
the root or when the whole tree is unbalanced. Thus, unnecessary splaying is
avoided in accessing a single item outside the working set as well as an item
of the working set already near the root. The latter is useful especially when
the access operations are approximately uniformly distributed among the items
in a working set; in other words, there are not several layers of working sets.
However, assuming this would be very restrictive and, thus, we do not use it in
the paper.

In order to gain knowledge of the input we simply maintain a discounted
depth counter, which gives us information about the relation between on-going
access operations and the current working set. If the last few access operations

are deep, we can conclude that the working set has changed or the tree is not in
balance. Thus, there is need to splay to correct the situation.

For our counter we need an approximate value for the size of working sets
w. See e.g. [11,17] for techniques on approximating w. With this value we can
calculate the limit depth limitw, which represents the acceptable average depth
for access operations in working sets. We set limitw = a log2(w + 1), where the
multiplier a is a constant chosen suitably for the current environment.

The value of the condition counter is updated in connection of an access
operation to depth as follows:

counter ← d · counter + depth − limitw,

where the discounting factor d, 0 ≤ d < 1, is a constant regulating the impact
of the history of access operations on the current value. The difference depth −
limitw tells us how much (if at all) below the limit depth we have reached. If the
value of counter is non-positive we may assume that splaying is not required.
On the other hand, a positive value suggests that the operation is needed.

Taking discounted history into account ensures that isolated accesses outside
the working set do not restructure the tree needlessly. On the other hand, giving
too much weight to earlier accesses makes the data structure slow to react to
changes in the working set.

We could as well let the value of limitw change during the execution of algo-
rithm. In fact, in our empirical evaluation we use a dynamically changing limitw.
However, for a more straightforward analysis we assume for the time being that
the value is constant. We also assume that the accessed item can be found in
the tree; if not, the value of counter should be left unchanged.

There are alternatives for our approach. We could, for example, get rid of the
whole discounting philosophy and use individual access counters for the keys [5].
These counters should be included either in the nodes of the tree or kept in a
separate data structure. However, e.g., Lai and Wood [5] have already inspected
the first approach with splay tree. Also Seidel and Aragon [18] introduced ran-
domized search trees and Cheetham et al. [19] conditional rotating based on
this approach. Because keeping the nodes free from additional information is an
essential part of splay trees, we would nevertheless like to find another way.

On the other hand, if the counters were kept in a separate data structure,
updating this information would be problematic. We are, anyway, mostly inter-
ested in only the last access operations. Thus, too static counters would not react
quickly enough to the altering working set. Hence, we should have a technique to
decrease the significance of old access operations. We are not aware of a solution
that would not raise the running time too much. Lee and Martel [10] solve the
problem by counting only the amount of deep accesses. Thus their solution loses
information about the access depths.

procedure Wsplay(x)

(1) if counter > 0 then

(2) depth ← Splay(x)
(3) counter ← depth − limitw

else

(4) depth ← BSTaccess(x)
(5) counter ← counter · d + depth − limitw

(6) if counter > 0 then

(7) Splay(x)
(8) counter ← depth − limitw

Algorithm 1: The Wsplay algorithm.

4 The Algorithm Detecting Working Sets: Wsplay

Let us now introduce an algorithm based on the information collecting approach
described above. Wsplay (Algorithm 1) simply splays whenever the condition
counter implies that the working set is changing.

Function BSTaccess implements the standard BST access and returns the
depth of accessed item. As we want to execute the more efficient top-down version
of splaying, we splay if counter indicates the need of splaying in the beginning of
access. This is the case when the previous access operation— which necessarily
included splaying —was deep. Thus we avoid doing unnecessary BST access
before every top-down splay. Otherwise we access the item, update the condition
counter, and splay if the updated counter value indicates a need for it. Observe
that after each execution of the Splay function, the history of access depths is
erased.

We assume that the function Splay also returns the original depth of the
accessed item. Note that setting d = 0 makes Wsplay very similar to the algo-
rithm introduced by Sleator and Tarjan in the Long Splay Theorem [2, Theorem
7].

We now prove a logarithmic bound for the running time of Wsplay. Recall
that m is the length of the access sequence and n the number of nodes in the splay
tree. The sequence of access operations H is divided in two disjoint categories.
Let Hs consist of access operations including splaying and Hn of those without
a splay operation. Because the tree structure does not change as a result of the
accesses in Hn, the time consumption of these two sequences can be analyzed
separately.

The sequence Hs essentially consists of splay operations. Only constant time
overhead is caused by counter updating. Thus, the time consumption on Hs is
bounded by Theorem 1.

To derive a bound for the time consumption on the sequence Hn, we analyze
the values of variable counter during the access operations of a single continuous
sequence Hc ⊆ Hn, Hc = 〈h1, h2, . . . , hc〉. Either the first access operation h1

is the first access in the whole sequence H or its predecessor includes splaying.

During Hc splay operations are not executed. Let us denote the values of the
variable counter right after the first update in the algorithm on line 5 with
subindices, respectively. Note that the updates on lines 3 and 8 are not executed
because no splay operations are executed in Hn. In particular, counter0 is the
value of the variable in the beginning of the access h1. By the definition of Hc

counter0 ≤ 0. Let depth(hi) be the depth of access operation hi.
With these definitions we give a bound for the average access depth in the

sequence Hc. To achieve this, we need to prove that if splay operations are
not done the value of counter i gives a sort of a bound for the depth of access
operation hi. Intuitively the idea is to show that if the counter is never above 0,
the average depth of accesses cannot be too much larger than limitw.

Lemma 1. If for all l, 0 ≤ l < c, counterl ≤ 0, then for all i, 1 ≤ i ≤ c,

i
∑

j=1

(depth(hj)− limitw) + counter0 ≤ counteri.

Proof. During the access operations hi, 1 ≤ i ≤ c, no splay operation is executed
and, thus, it holds that

counter i =
i

∑

j=1

(depth(hj)− limitw) di−j + dicounter0.

We prove the claim by induction over the index i.
Let i = 1. Because 0 ≤ d < 1, it is clear that depth(h1)− limitw +counter0 ≤

depth(h1)− limitw +d ·counter 0 = counter1. Hence, the claim holds in this case.
Let us then assume that the claim holds when 1 ≤ i = k < c. We focus on

the situation i = k + 1. By assumption we know that counterk ≤ 0. Thus,

counterk+1 = counterk · d + depth(hk+1)− limitw

≥ counterk + depth(hk+1)− limitw

≥

k+1
∑

j=1

(depth(hj)− limitw) + counter0.

Hence, the lemma is valid.

Because the value of counter0 is assigned during the last splayed access, we
know that counter0 ≥ −limitw. We also know that counter c ≤ 0 and, thus, by
Lemma 1 we have that

c
∑

i=1

depth(hi)− limitw · (c + 1)

≤
c

∑

i=1

depth(hi)− limitw · c + counter0 ≤ counter c ≤ 0

⇔
1

c

c
∑

i=1

depth(hi) ≤

(

1 +
1

c

)

limitw ≤ 2 limitw.

The bound is strict: it happens, e.g., when counter0 = −limitw, depth(h1) =
(1 + d)limitw, and c = 1.

The above bound for average depth holds for all of Hc ⊆ Hn. Thus writing
|Hn| = mn and |Hs| = ms, we have the following theorem:

Theorem 2. Let C = n log2 n and mn+ms = m. The total access time incurred

by Wsplay is at most 2mnlimitw + ms(3 log2 n + 1) + C.

5 Test Setting

As reference algorithms in our empirical evaluation we use splay trees, RBT,
and a randomized version of splay trees. All splaying is implemented in a simple
top-down fashion. The programming environment is Microsoft Visual C++ 2005
and we use full optimization for speed. The test environment is a PC with a 3.00
GHz Intel Pentium 4 CPU and 1 GB RAM. The cache sizes are 16 kB for L1
and 2 MB for L2.

5.1 The Evaluated Version of Wsplay

The problem in evaluating Wsplay is to control its two parameters d and limitw.
Examining all value combinations would be a massive task. However, moderate
changes in the value of parameter d do not affect the results much in practice.
Hence, we use a constant value d = 0.9.

The parameter limitw is more problematic because with different values the
results vary. However, we are mostly interested in how efficient is splay reduction
by monitoring. Thus, a very natural way is to compare its efficiency against data
structures that reduce splaying without such monitoring. Randomized splay trees
[3,4] do it at random. The data structure of Albers and Karpinski [4], referred
here as Rsplay, matches Wsplay perfectly in the sense that it contains no
other modifications to basic splay trees than reduced splaying.

Rsplay needs as a parameter the probability p. With the probability 1− p
standard BST access is executed instead of splaying. We modify Wsplay to
execute the same amount of splaying by including simple adaptation for the
variable limitw. We adjust it in the beginning of every access by adding a value
proportional to difference between p and amount of executed splay operations.
To prevent algorithm from executing all the available splaying in the beginning,
we start the sequence with a 1/p length margin where no splaying is allowed.
Values of 0, 1, 1/2, 1/4, . . . , 1/512 for p are examined. This works well in prac-
tice: the difference between p and amount of Wsplay splaying was at most
min(0.1%, 0.05p). Note that this modification does not affect the bound of The-
orem 2. We can easily keep everything in O(log2 n) time given a maximum value
for limitw. With this modification it is possible to relate Rsplay and Wsplay

with different values of p.

5.2 Description of the Data

The keys are inserted in trees in random order. For BSTs this usually leads to a
well-balanced tree [20]. We examine only accesses with integer keys in nodes.

The locality of reference is often modeled with Zipf’s distribution (ZD) [21, p.
400]. In it the ith most commonly accessed item is accessed with a probability pi

inversely proportional to i. We want to experiment with different kinds of ratios
of locality or skewness. Therefore, we use the modification in which we have an
additional parameter α ≥ 0 [21] so that the ith item has access probability

pi =
1

iαC
,

where C =
∑n

j=1
(1/jα) and n is the number of nodes in tree. This distribution

is uniform when α = 0 and the pure ZD when α = 1. The parameter α alone
does not give very good control over the skewness of the data. Therefore, Bell
and Gupta [7] defined another parameter, the skew factor :

β =

n/100
∑

j=1

pj .

Hence, β is the probability of accessing the 1% of items that is most frequently
accessed. With β = 0.01 the distribution, obviously, is uniform.

To achieve dynamic locality we change the access distribution after every
t = 128 accesses. When the value of t was very low the results were more like
with uniform distribution, but otherwise changing t moderately did not affect
the results substantially.

We report the evaluation for tree size n = 217 and m = 220 accesses. We
also evaluated the tests at least partially for tree sizes ranging up to 225. The
results were similar with different sizes of trees. However, splay tree benefited
from larger tree sizes compared to Wsplay and Rsplay. For n = 225 splay tree
was at least as efficient as the other two with all the skewness values. For the
parameter β we used values 0.01, 0.1, 0.2, . . . , 0.9. The values of α in the same
order are 0, 0.504, 0.664, 0.764, 0.844, 0.914, 0.981, 1.052, 1.135, and 1.258.

6 Empirical Evaluation

6.1 Average Depth of an Access

The average access depths for the data structures are depicted in Fig. 1. For
Wsplay and Rsplay the averages over all values of the parameter p are shown.
An interesting observation is that the average access depth for RBT is essentially
optimal (recall that n = 217). This may be a reason for the practical efficiency
of RBT. Our results resemble those of Bell and Gupta [7]: RBT is superior with
low skewness values and with high ones splay trees excel. With low values of
β there is no real locality in referencing and, thus, distribution sensitivity is of

Fig. 1. The average access depths for all data structures.

little use. On the other hand, with high values of β it is useful to raise all the
items near the root as soon as possible.

Detailed results for Wsplay and Rsplay are presented in Fig. 2. Only results
for the best values of p are reported. As expected, Wsplay was better than R-

splay with all value combinations of β and p. For both algorithms the same
trend for changing the value of p occurs. The best performance for Wsplay is
obtained with p = 1/16 and for Rsplay the best value is p = 1/4. The difference
between the performance of the algorithms increases with low values of p: With
p = 1/2 the difference is only 0–2% depending on skewness, with p = 1/4 it is
already 4–5%, and raises to 7–10% when p = 1/16.

The difference of the algorithms on uniform data is probably due to balancing.
While Rsplay does the balances at random, limitw of Wsplay settles to a depth
in which the amount p of splaying is executed. Thus, the whole tree is treated
as a working set. Only roughly the deepest portion p of all accesses are splayed.
Splaying the deepest node in a tree tends to halve the depth of a very unbalanced
tree [2]. Hence, splaying the deepest nodes in all situations seems to be a better
strategy than random splaying. The greater difference in performance between
the algorithms for low values of p could also be based on the same reason. For
low values of p the only reason to splay is to keep tree balanced and Wsplay

does this better.

As expected, it seems that with high skewness factor values higher values
of p were more suitable. It is clearly useful to splay the new working set near
the root as soon as possible. Also splaying items near the root does not seem to
make the tree more unbalanced. E.g., splaying two different items to the root in
turns does not affect the overall balance at all.

Fig. 2. The average access depths of Wsplay and Rsplay with different values of p.
The curve for splay tree is marked with the dashed line.

6.2 Access Times

The access times for the data structures shown in Fig. 3 are all averages over five
evaluations. On the whole the results resemble those of average access depths.
RBT is even more superior in these results and splay trees take the most benefit
from locality of reference. The overall decrease in access time for splay tree from
β = 0.01 to β = 0.9 is nearly 50%. An unexpected result is that also RBT
decreases its access time by 35% without restructuring the tree.

Also the most efficient Wsplay and Rsplay are presented in Fig. 3. Under-
standably the running times decrease as the skewness increases. Also the relative
success of the algorithms with different values of p and β is similar to average
depths. However, the costly monitoring in Wsplay reduces its absolute perfor-
mance. Nevertheless, the most efficient Wsplay (p = 1/32) is usually 5% faster
than the most efficient Rsplay (p = 1/16). With β = 0.9 the difference is only
2%. With low values of β Wsplay is 7–12% faster than the original splay tree.

With values p < 1/4 Wsplay is 3–5% more efficient than Rsplay, but with
values 0, 1, 1/2, and 1/4 of p the latter prevails. This seems to indicate that in
Wsplay the cost of monitoring the input is compensated only when the amount
of splay operations is small. With larger values of p Rsplay reacts to the change
of distribution soon enough. Also Rsplay seems to need a little more splaying
for similar effect, because random splay operations are often not useful. However,
absolutely both data structures are most efficient with values 1/4 ≥ p ≥ 1/64.

Also with uniform distribution large values of p do not have as good balancing
effect as with lower values. In other words, also Wsplay does too much splaying
on accesses that are not very deep in the tree. Thus, restructuring may set the
tree out of balance. However with lower values of p Wsplay is able to splay only
the deepest accesses and thus keep the tree balanced.

Fig. 3. The average access times for all data structures. For Wsplay and Rsplay the
best values of p are shown. The curve for splay tree is marked with the dashed line.

However, an interesting discovery raises if we examine the efficiency of W-

splay and Rsplay for parameter value p = 1 (always splay). By comparing
these to the original splay tree we get a picture of the implementation specific
overhead for the monitoring in Wsplay and decision-making in Rsplay. W-

splay uses 4–7% and Rsplay 1–3% more time than a splay tree. The access
times for Rsplay do not include the generation of random numbers. This raises
the question whether to compare Wsplay to splay or Wsplay with p = 1.
Wsplay increases its efficiency at most more than 15% when compared to the
version where Wsplay always splays. Similar value for Rsplay is 10%.

6.3 On the Suitability of Zipf’s Distribution

Let us briefly analyze the observation that also RBTs seem to be more efficient
with higher locality of reference when ZD is used as input (Fig. 3). To the best
of our knowledge this has not been reported before.

In Fig. 1 the average depth of RBT does not change. Hence, that is not the
reason for the observation. We made sure that setting off compiler optimizations
and altering the interval of changing the distribution (value t) did not matter.
However, decreasing the size of tree n reduced the advantage of locality of refer-
ence down to 25%, but even with very small trees (e.g., n = 8) the phenomenon
occurred. This contradicts the observation of Bell and Gupta [7] who had a
tree of size 4 095. A natural explanation for this is that both operating system
and hardware efficiency have progressed significantly since their evaluation. In
particular, cache management has progressed in recent years.

In fact, caching could be the reason for this phenomenon. ZD weights the
most accessed items very much and thus, with a high probability, only few items
are accessed. Let us assume a cache so small that only one path to a node in

the whole tree fits it. With high locality even this is useful because a single item
is accessed most of the time and, thus, very often the access path is already in
cache. Modern memory hierarchy generally consists of many cache layers and
for every one of them there is an amount of nodes or paths that fit in. Thus,
ZD makes static BSTs use caching very efficiently [22]. Paging complicates the
analysis in practice, but the basic idea is the same. A splay tree does not gain as
much benefit from caching. In it the access times are more related to the average
depth of an accesses in the tree. A natural cause for this could be the amount
of restructuring and memory writing the splay tree does.

We also tried the same evaluation with high skewness but with only one level
of working sets. The items in the working set were accessed multiple times uni-
formly. With a changing probability items were also accessed uniformly outside
the working set. The same phenomenon did present itself only slightly. In this
case fitting only some of the items in the cache is not at all as useful as it is for
ZD. This issue, of course, ought to be studied more thoroughly. Nevertheless, it
raises the question of how cautious we should be when generalizing the results
with ZD. However, there are studies with real-life data that rank splay tree very
efficient in certain situations [9]. Maybe other alternatives (e.g. Lévy distribu-
tion [23] or actual web page requests) for modeling locality of reference should
be used.

7 Conclusion

This work studied whether it is possible to gain advantage for splay trees by
taking the properties of the access sequence into account. On one hand, both
the average access depth and time were reduced when compared to randomized
splay. This was also the case when compared to splay with high skewness. On the
other hand, splay trees excelled with high locality of reference. Also red-black
trees were still usually more efficient in these experiments.

Further variations for our algorithms can easily be designed. For example
the method can be applied to most of the splay tree versions introduced in [2].
These versions include bottom-up splaying and semi-splaying. Also executing a
window of splay operations during change of working set is possible.

Acknowledgments

We would like to thank the anonymous reviewers for insightful and helpful com-
ments. This work was supported by Academy of Finland projects Intents

(206280), Alea (210795), and “Machine learning and online data structures”
(119699). Moreover, the work of T. Aho and J. Kujala is financially supported
by Tampere Graduate School in Information Science and Engineering.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
2nd edn. The MIT Press, Cambridge, MA (2001)

2. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
32(3) (1985) 652–686

3. Fürer, M.: Randomized splay trees. In: Proceedings of the Tenth Annual ACM-
SIAM Symposium on Discrete Algorithms, Philadelphia, PA, SIAM (1999) 903–904

4. Albers, S., Karpinski, M.: Randomized splay trees: Theoretical and experimental
results. Information Processing Letters 81(4) (2002) 213–221

5. Lai, T.W., Wood, D.: Adaptive heuristics for binary search trees and constant
linkage cost. In: Proceedings of the Second Annual ACM-SIAM Symposium on
Discrete Algorithms, Philadelphia, PA, SIAM (1991) 72–77

6. Williams, H.E., Zobel, J., Heinz, S.: Self-adjusting trees in practice for large text
collections. Software: Practice and Experience 31(10) (2001) 925–939

7. Bell, J., Gupta, G.: An evaluation of self-adjusting binary search tree techniques.
Software: Practice and Experience 23(4) (1993) 369–382

8. Heinz, S., Zobel, J.: Performance of data structures for small sets of strings.
Australian Computer Science Communications 24(1) (2002) 87–94

9. Pfaff, B.: Performance analysis of BSTs in system software. ACM SIGMETRICS
Performance Evaluation Review 32(1) (2004) 410–411

10. Lee, E.K., Martel, C.U.: When to use splay trees. Software: Practice and Experi-
ence 37(15) (2007) 1559–1575

11. Denning, P.J.: Working sets past and present. IEEE Transactions on Software
Engineering 6(1) (1980) 64–84

12. Subramanian, A.: An explanation of splaying. Journal of Algorithms 20(3) (1996)
512–525

13. Badr, G.H., Oommen, B.J.: Self-adjusting of ternary search tries using conditional
rotations and randomized heuristics. The Computer Journal 48(2) (2005) 200–219

14. Iacono, J.: Alternatives to splay trees with O(log n) worst-case access times. In:
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, Philadelphia, PA, SIAM (2001) 516–522

15. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2) (1985) 202–208

16. Amer, A., Oommen, B.J.: Lists on lists: A framework for self-organizing lists in
environments with locality of reference. In: Proceedings of the Fifth International
Workshop on Experimental Algorithms. Volume 4007 of Lecture Notes in Com-
puter Science., Berlin, Heidelberg, Springer-Verlag (2006) 109–120

17. Dhodapkar, A.S., Smith, J.E.: Managing multi-configuration hardware via dynamic
working set analysis. In: Proceedings of the 29th Annual International Symposium
on Computer Architecture, Los Alamitos, CA, IEEE Computer Society (2002)
233–244

18. Seidel, R., Aragon, C.: Randomized search trees. Algorithmica 16(4) (1996) 464–
497

19. Cheetham, R.P., Oommen, B.J., Ng, D.T.: Adaptive structuring of binary search
trees using conditional rotations. IEEE Transactions on Knowledge and Data
Engineering 5(4) (1993) 695–704

20. Mart́ınez, C., Roura, S.: Randomized binary search trees. Journal of the ACM
45(2) (1998) 288–323

21. Knuth, D.E.: The Art of Computer Programming. Volume 3: Sorting and Search-
ing. 2nd edn. Addison-Wesley, Boston, MA (1998)

22. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees
of small height. In: Proceedings of the thirteenth annual ACM-SIAM symposium
on Discrete algorithms, Philadelphia, PA, SIAM (2002) 39–48

23. Applebaum, D.: Lévy processes — from probability to finance and quantum groups.
Notices of the American Mathematical Society 51(11) (2004) 1336–1347

