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The authors have studied the use of the self-organizing map �SOM� in the analysis of lipid
conformations produced by atomic-scale molecular dynamics simulations. First, focusing on the
methodological aspects, they have systematically studied how the SOM can be employed in the
analysis of lipid conformations in a controlled and reliable fashion. For this purpose, they have used
a previously reported 50 ns atomistic molecular dynamics simulation of a 1-palmitoyl-2-linoeayl-
sn-glycero-3-phosphatidylcholine �PLPC� lipid bilayer and analyzed separately the conformations
of the headgroup and the glycerol regions, as well as the diunsaturated fatty acid chain. They have
elucidated the effect of training parameters on the quality of the results, as well as the effect of the
size of the SOM. It turns out that the main conformational states of each region in the molecule are
easily distinguished together with a variety of other typical structural features. As a second topic, the
authors applied the SOM to the PLPC data to demonstrate how it can be used in the analysis that
goes beyond the standard methods commonly used to study the structure and dynamics of lipid
membranes. Overall, the results suggest that the SOM method provides a relatively simple and
robust tool for quickly gaining a qualitative understanding of the most important features of the
conformations of the system, without a priori knowledge. It seems plausible that the insight given
by the SOM could be applied to a variety of biomolecular systems and the design of coarse-grained
models for these systems. © 2007 American Institute of Physics. �DOI: 10.1063/1.2429066�

I. INTRODUCTION

During the last decade, the role of lipids and lipid bilay-
ers in many biological processes has become more
recognized.1 Lipids are a central constituent of biological
membranes, and these membranes act as an environment for
a wide variety of biomolecular assemblies and biochemical
processes. The structural features of membranes are central
in controlling these processes, and the properties of the lipid
molecules determine many fundamental properties of the
membrane. Studies of conformational characteristics of the
lipids can therefore yield valuable information about the be-
havior of membranes.

With increases in available computing resources, atom-
istic molecular dynamics �MD� simulations have been in-
creasingly used in studies of biological membranes.2–6 Such
simulations produce a wealth of conformational data that
should be analyzed to gain more insight into the characteris-
tic features of the system. Traditionally these data have been
analyzed by calculating various structural quantities,2 and
possibly visualizing the system frame by frame. Also differ-
ent projection and clustering methods have been applied to
aid the interpretation of the data.7 Based on the observations,

hypotheses on the behavior of the system can subsequently
be formed and tested by calculating additional quantities.

Approaches based on neural networks provide alterna-
tive methods for analysis of complex data.8 Some of these
approaches, such as the self-organizing map �SOM�,9 are
based on unsupervised learning, and thus require no a priori
knowledge of the data that are being analyzed. This makes
them promising candidates for the analysis of conformational
data, in particular, for the initial analysis, where one wants to
quickly form a qualitative understanding of the most impor-
tant features of the system. In the context of proteins, SOMs
have been applied to, e.g., analysis of three-dimensional
structures of amino acid sequences from the protein data
bank,10 classification of sequences within a protein family,11

identification of overrepresented motifs in sequences,12,13

prediction of HIV protease cleavage sites,14 and a study of
ammonium salts as ligands at the neuronal nicotinic acetyl-
choline receptor.15 However, we are only aware of one pre-
liminary study of the applicability of SOMs in the conforma-
tional analysis of lipids.16

Conceptually, a SOM is a mapping from high-
dimensional input data vectors into a low-dimensional �usu-
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ally one- or two-dimensional� grid of so-called neurons. Af-
ter successful training with input data, similar data vectors
are mapped to the same or neighboring neurons. This is the
origin of the self-organizing behavior of the map. The SOM
can be used to convert the nonlinear statistical relationships
of high-dimensional data into simple geometric relationships
of the neurons.9 The low dimensionality of the output space
makes the visualization of the results simple and thus makes
it possible to quickly find relevant information about the sys-
tem.

The self-organizing map describes the data using only
relatively few model conformations, and hence it produces
an abstraction of the data. This feature can be used to extract
general characteristics of the data, as well as to find the most
relevant conformational states. Thus the SOM can also be
seen as a coarse-graining approach. The knowledge gained
by SOM analysis could be used as a basis for further studies,
or the information on the most relevant conformational states
could also help in the construction of coarse-grained models
for the system. The latter issue is of particular interest, since
a number of systematic schemes have recently been proposed
to find effective interactions for coarse-grained models of
biomolecular systems.17–24 However, much less attention has
been paid to develop techniques for finding appropriate
coarse-grained representations for biomolecules. Our results
indicate that the SOM can provide a useful tool for this pur-
pose.

In the present work, we have focused on the different
aspects of SOMs in the analysis of lipid conformations.
There were three separate goals for this work: to consider the
possibilities and limitations of the SOM analysis in this con-
text, to study the conformations of a specific lipid system,
and to gain more understanding of the methodology, in par-
ticular, the training parameters, for further work. A lipid sys-
tem provides an ideal test case for the approach, since the
structure of lipid bilayers is already well understood, and the
lipid molecules are relatively small. However, the a priori
nature of the SOMs should be advantageous for studies of
more complex biological systems.

As a model system for all these studies, we have used a
50 ns MD simulation of a 1-palmitoyl-2-linoleoyl-

sn-glycero-3-phosphatidylcholine �PLPC� bilayer.25,26 PLPC
was chosen because the double bonds in the sn-2 chain give
rise to interesting conformational features. In addition, PLPC
allows us to compare our results with the previous ones by
Hyvönen et al.,16 who conducted pioneering studies of
SOMs applied to molecular dynamics data for PLPC. While
Ref. 16 demonstrated the aptitude of SOM for conforma-
tional studies of lipid systems, it was also limited in scope
due to the short sampling time �1 ns� that was feasible at that
time. Here we extend this work. The molecular structure of
the PLPC molecule, as well as a snapshot from the MD
simulation, are shown in Fig. 1. As in Ref. 16, we have used
dihedral angles to parametrize the conformations. This
choice was made because of its simplicity, as well as to
facilitate comparison with earlier studies. Its consequences
are briefly discussed in Sec. III.

We have systematically studied how SOMs could be
used in the analysis of lipid conformations, and elucidated
the effect of various parameters that influence the behavior
of the SOM. The effect of different training parameters on
the structure and quality of the map, as well as the effect of
the size of the map, have been investigated. Simple qualita-
tive rules have been deduced for the behavior of the SOM.
These rules can be used for improving the quality of the map
and for tuning the level of detail of the map, and provide a
sound basis for further work. We have also tested different
methods for assessing the quality of the map, and propose a
new method that can be used to determine whether the size
of the map is sufficient.

Using the parameters deduced above, we then apply the
SOM analysis to PLPC. We analyze the molecule in three
separate parts: the headgroup, the glycerol region, and the
sn-2 chain. In addition, we find that our results for the whole
molecule differ significantly from those of the earlier study,16

and discuss reasons for this. We also give examples of how
SOMs can be used to gain new insights into the structure and
dynamics of lipid bilayers. The SOM is used to study the
dynamics of the headgroup region, and to analyze the corre-
lations between the conformations of the different parts of
the molecule. In addition, we provide an example of how the
SOMs could be used in coarse graining. The results demon-

FIG. 1. �Color online� �a� Molecular structure of PLPC.
The numbers show the indexing of the dihedral angles.
One of the bonds in the glycerol backbone has two
associated dihedral angles, and thus two indices. The
saturated 16:0 sn-1 chain is formed by the dihedrals
12–25, while the diunsaturated 18:2 sn-2 chain �dihe-
drals 26–41� has two cis double bonds at dihedrals 34
and 37. �b� PLPC bilayer in atomic detail.
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strate that the SOM can be used as a robust tool for gaining
qualitative insights into the conformations of the molecules.
Finally, we present a thorough discussion of different aspects
of the SOM methodology for studies of biomolecular confor-
mations. We discuss the advantages and problems of the
SOM approach, and point out possible directions for future
research, such as analyzing complexes of molecules to gain
insight into specific interactions between the molecules.

II. METHODS

A. Self-organizing maps

A SOM is a powerful software tool for the visualization
of high-dimensional data.9 It consists of a low-dimensional
grid of so-called neurons, and a model vector associated with
each neuron. Each model vector represents a group of similar
data vectors. SOM analysis consists of five phases: selection
of data representation, selection of map structure, initializa-
tion of the model vectors, training of the map, and finally
analysis of the trained map. In this section, we briefly de-
scribe the SOM method and the choices that we have made
for the first four phases. Most of these choices are discussed
in more detail in Sec. III. All the SOM analysis in this work
was performed using the SOM Toolbox,27 which was slightly
modified to take into account the periodic nature of the used
variables.

Selection of data representation. We have decided to use
the values of the dihedral angles to represent the conforma-
tions, as was done in Ref. 16. In this case, an individual
molecule can be visualized by using the relevant set of dihe-
dral angles together with the average bond lengths and bond
angles in the molecule. The similarity of conformations was
measured using standard Euclidean metric for the dihedral
vectors without weighting. We also tested different weighting
schemes for the analysis of the whole molecule, but this did
not significantly alter the results. The SOM implementation
was modified to take into account the periodic nature of the
angle variables.

Selection of map structure. We have used a nonperiodic
�sheetlike� hexagonal grid of neurons for the SOMs. The
map size of 48�72 was selected for the final analyses. How-
ever, for the analysis of the whole molecule, a size of 40
�60 was used to speed up the training. We also studied the
effect of the size of the map on the results, see Sec. III.

Initialization. The initial values for the model vectors
were constructed using linear initialization9 where the model
vectors are placed on a regular lattice on a two-dimensional
plane �one-dimensional if the map is linear� that is oriented
such that the variance of the data, projected to the plane, is
maximal. This plane is spanned by the eigenvectors of the
data covariance matrix corresponding to the largest
eigenvalues.9

Training. Once the SOM is initialized, it has to be
trained with the data vectors. The training aims to modify the
model vectors such that they represent the typical features of
the data vectors as precisely as possible. The map should
also represent the topology, i.e., the structure and internal
distances of the original data. We have used sequential
training9 where the data vectors are traversed one by one,

and at each step the best-matching unit �BMU� of a given
data vector is moved towards the data vector. The BMU is
defined to be the neuron whose model vector is closer to the
data vector than that of any other neuron. In addition to the
BMU, the model vectors of neighboring neurons are also
updated, although by a smaller amount. This update step may
be expressed as

mi = mi
0 + hBMU�x�,i�t��x − mi

0� ,

where mi
0 and mi are the model vectors before and after the

update, x is the data vector, BMU�x� is the BMU corre-
sponding to x, and hi,j�t� is a neighborhood function. The
vector x−mi

0 is the direction towards which the model vector
should be moved in order to make it more similar to the data
vector.

The neighborhood function determines the magnitude of
the changes to the model vectors and is a decreasing function
of the distance between neurons i and j. Typically the neigh-
borhood function is written as

hi,j�t� = ��t�g��ri − r j�;t� ,

where ��t�� �0,1� is a learning rate, and g�r ; t� is a shape
function, which is usually taken to be Gaussian with a time-
varying variance �2�t�, scaled such that g�0; t�=1. The vec-
tors ri are the positions of the neurons on the low-
dimensional grid. Both ��t� �called the neighborhood radius�
and ��t� are decreasing functions of time such that in the
beginning of the training the map organizes rapidly, while
towards the end of the training more and more detailed fea-
tures of the map are tuned.

In this study, the initial learning rate was 0.3, and it
decreased exponentially during the training to a final value of
0.0015. The neighborhood radius decreased linearly from an
initial value of 3 to a final value of 0.7. The length of the
training was ten epochs, i.e., each data vector was presented
to the map ten times during the training.

B. Molecular dynamics

For our analysis of PLPC conformations, we used the
conformations produced by a 50 ns molecular dynamics
simulation of a PLPC bilayer with 128 fully hydrated lipid
molecules. The details of the simulation have been published
elsewhere,25 and only a brief summary will be given here.
The simulation was performed in the NpT ensemble with the
GROMACS molecular simulation package.28 The force field
and the starting configuration were taken from a previous
study of a PLPC bilayer.29 The temperature was kept at
310 K with a Nosé-Hoover thermostat,30,31 and a Parrinello-
Rahman barostat32,33 was used to keep the pressure at 1 bar.
Long-range electrostatic interactions were handled using the
particle-mesh Ewald method.34,35 After equilibration, 36 ns
of the 50 ns trajectory were used for analysis, with the con-
figurations saved every 10 ps. VMD software36 was used for
the visualization of molecular structures.

III. CHOOSING PARAMETERS FOR SOM

There are many choices that have to be made in the
process of constructing and training a self-organizing map,
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and some of these choices may significantly alter the prop-
erties of the resulting map. In this section, we discuss the
effects of these choices. We also study the effect of different
training parameters to give simple rules for selecting them.
An understanding of these effects can also be used to tune
the map towards a specific goal such as a desired level of
detail.

It is important to notice that there are actually three goals
that are being optimized simultaneously: the resolution of the
map, its topological properties, and the computational effort
needed to train it. In many cases improving one of these
leads inevitably to worse performance for the other ones.

A. Data representation

To use SOM for conformational data, we have to choose
how to represent the conformations as n-dimensional vec-
tors. Typically, Euclidean distance between these vectors is
used to measure the similarity of the conformations, which
should be taken into account when selecting the representa-
tion. The results of the analysis can only be as good as the
underlying representation of the data allows. Hence, select-
ing the data representation is perhaps the most important step
in applying the SOM approach. The dihedral angles seem to
work well for the analyses in this work, but in other cases
careful consideration is required before fixing the represen-
tation.

Some different alternatives for the representation are dis-
cussed in Ref. 7, along with their advantages and disadvan-
tages. For example, using the dihedral angles is rather sensi-
tive to local conformational changes and similarities, but not
very sensitive to the apparent cancellation of changes in two
dihedral angles. It should also be noted that the SOM places
some additional limitations on the metric �and the represen-
tation�: for each pair of conformations, we should have a
well-defined method for making one of the conformations
more similar to the other.

It is also possible to modify the similarity measure by
weighting the distance norm to place more emphasis on cer-
tain variables. This may be particularly useful in the case of
complex molecules where some of the variables are clearly
more important than the others. Weights can also be used to
highlight some areas of the molecule such that the conforma-
tions of these parts are more likely to form clusters in the
final map �by a cluster we mean a region of the map in which
the model vectors are similar to each other, and different
from model vectors in other clusters�. However, this requires
some insight into the system under study, and thus compli-
cates the analysis.

B. Structure and initialization

We have decided to use a two-dimensional hexagonal
grid of neurons. This is a typical choice for the two-
dimensional structure because it gives the most isotropic
structure for the map. Sheet topology was chosen for the
map, i.e., the map itself is not periodic. We confirmed that
although the dihedrals are periodic, this does not have any
major effect on the map. We chose to use 48�72 neurons as
a standard map size for most of the studies in this work. One

dimension was chosen significantly larger than the other to
allow the map to orient itself properly.9 Training such a map
with our conformation data �400 000 conformations, each
having 12 dihedrals� takes a few days on a standard desktop
computer. The effects of the size of the map on the resulting
map will be discussed at the end of this section.

Linear initialization was used to set the initial values for
the model vectors. The initialization routine was used as it
was implemented in the SOM Toolbox, with no consider-
ation for periodicity of the dihedral angles. For most angles
this does not matter, because they are distributed around the
180° value. For the rest, the map seems to quickly converge
to reasonable values, confirming that the initialization does
not decrease the quality of the map. In principle, the initial-
ization method does not affect the results, but careful initial-
ization may lead to faster convergence in the training phase.

C. Training

The features of the map after training are mainly influ-
enced by three factors: the behavior of the neighborhood
function hi,j�t� as a function of time, the length of training,
and the training data itself. As discussed in the previous sec-
tion, the behavior of the neighborhood function is param-
etrized by two quantities: the learning rate ��t� and the
neighborhood radius ��t�. To determine how these different
parameters affect the features of the resulting map, we
looked at different possibilities for the selection of these
training parameters. The different options were selected from
the multitude of possibilities provided by the SOM Toolbox,
using the default values as a starting point. For the studies
described here, the data for the headgroups of the PLPC
molecules were used for training. The size of the map was
48�72 neurons in all cases.

To quantitatively assess the quality of the maps with
different training parameters, we use quantization and topo-
graphic errors. The quantization error is defined as the aver-
age distance between each data vector and its BMU, and the
topographic error is the proportion of all data vectors for
which the BMU and the second best matching unit are not
adjacent on the low-dimensional grid. The quantization error
measures how well the model vectors can represent the un-
derlying data, i.e., the resolution of the map. The topographic
error measures how well the map preserves the topological
features of the input data.

Choice of �. For ��t�, we used a linearly decreasing
form. The initial value was set to 3, and the final value was
varied from 0 to 0.8. Generally a smaller final value results
in a larger topographic error, but a smaller quantization error.
This makes sense, since with a small neighborhood radius
only the BMU of a data vector is updated towards the end of
the training, which improves resolution, but does not con-
serve the topology of the map. However, one of the most
important features of a SOM is that it should represent the
topological properties of the data. Hence, we decided to use
a value of 0.7 for the final value of the neighborhood radius.
The effect of ��t� is also coupled to the size of the map, and
is discussed further at the end of this section.

Choice of �. For ��t�, we tested three possible forms, a
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linearly decreasing one �zero at the end of training�, an ex-
ponentially decreasing form �by the name “power” in SOM
Toolbox�, and an inverse form ���a+ t�−1�. In addition to the
form of the learning rate, we varied its initial value �0 from
0.1 to 0.5. For the nonlinear forms, the built-in value of the
SOM Toolbox was used for the final value of � �this is
0.005�0 for the exponential form and 0.01�0 for the inverse
form�. For this system, the inverse form gave a poor topol-
ogy for the map and was discarded. The linear and exponen-
tial forms differed little from each other, with the power form
usually giving a slightly better topographic error at the cost
of slightly poorer quantization error. As for the initial value,
we found that a smaller value leads to a better topology,
again at the cost of a somewhat poorer resolution. We de-
cided to use an initial value of 0.3 and a power form for the
learning rate as a reasonable compromise for minimizing
both error measures.

Length of training. The number of data samples is very
large and the data contain very similar vectors. Hence, a
reasonably low number of epochs �passes over the data� can
be used. We trained the maps with either five or ten epochs,
and noticed no significant improvement for longer training,
neither in quantization nor topographic error. However, the
training length of ten epochs was chosen for production runs
to make sure that the individual data samples are represented
well enough. It should be noted that the effect of training
length is difficult to study independently since it also affects
the time evolution of the other parameters.

Choice of training data. Also the choice of training data
can have an effect on the resulting map since the map can be
only as good as the training data. Some effects of poor train-
ing data are discussed in more detail in Sec. V. Our results
show that the number of configurations that are used in train-
ing is not as crucial as a good sampling of the conforma-
tional space. In the present study, the conformational dynam-
ics for the well and poorly sampled cases differ significantly,
which could be used to distinguish these two cases �see Sec.
V�. For the representative sample, the trajectory of a single
molecule covers most of the map, while for the short sample,
such trajectories cover only a few neurons.

D. Map size

The size of the map has a significant effect on the fea-
tures of the map, and on the type of errors induced by the
mapping. These effects are coupled to the choice of training
parameters, in particular the neighborhood radius. To study
these effects in detail, we constructed several maps with dif-
ferent sizes and neighborhood radii and compared their prop-
erties. The selected map sizes were 48�72, 40�60, 32
�48, 24�36, 16�24, and 8�12. The absolute upper limit
for the size is set by the amount of training data: there should
be enough data per neuron to avoid overlearning �where the
map learns to represent the individual data vectors and not
general features�. First, we used similar training parameters
for all sizes, scaling the neighborhood radius down with the
size of the map. In this case, decreasing the size of the map
leads to a significant increase in the topographic error, with a
smaller increment in the quantization error. We also trained

smaller maps �sizes 16�24 and 24�32� with training pa-
rameters identical to those of the largest map. In this case the
topographic error actually decreases when the map size is
decreased, accompanied with a significant increase in the
quantization error.

Visualization of the different sized maps gives additional
insight into the method. Two important visualization meth-
ods for the SOMs are unified distance matrices �U matrices�
and component planes.9 In the U matrix, neurons are colored
based on their average distance from their neighbors. This
gives a clear overview of the general structure of the map.
The component planes show the dihedral angles of the model
vectors in an easily readable way.

Figure 2 shows the U matrices for the different maps. In
light regions the model vectors of neighboring neurons are
similar, and the darker regions mark larger differences. The
largest maps in Figs. 2�a�–2�c� have distinct clusters with
distinct boundaries, and these clusters cover the majority of
the map. When the map size is decreased further, the bound-
aries of the clusters become more vague �Figs. 2�d�–2�f��.
However, using the same neighborhood radius for the
smaller maps as for the largest map results in clearer cluster-
ing �Figs. 2�g� and 2�h��, although for the smaller map a
large portion of the map is taken up by the boundaries be-
tween clusters.

The component planes are shown in Fig. 3 for four se-
lected maps. Each small figure shows the values of a single
dihedral angle for each model vector, and the color range
visualizes the angle range that is actually used by the model
vectors. The component planes show that for all map sizes
the map has distinct regions for different values of each di-
hedral angle. However, the smallest maps trained with a
small neighborhood radius �Figs. 3�e� and 3�f�� have several
single-neuron clusters, and neighboring neurons even within
a single cluster can have substantial variability. This explains
the poor topology of the map. In contrast, the component
planes for a small map trained with a larger neighborhood
radius �Fig. 3�h�� show nearly smooth variation of the angles,
with the exception of cluster boundaries. This explains why
the U matrices for the latter map show clearer structure. The
component planes also show that as the map size is reduced,
there is a significant reduction in the range over which the
angles in the model vectors vary, indicating more “averaged”
configurations �see Sec. V for more discussion�. This can be
most clearly seen in dihedrals 2, 5, 9, 10, and 42 �see Fig.
1�a��, in particular between Figs. 3�a� and 3�h�.

In the present work, we have also developed a simple
way to assess the cluster structure of the SOMs. The so-
called BMU rank plot, i.e., a plot of hits �number of data
vectors having the neuron as BMU� as a function of the rank
of the neuron �the position of the neuron after sorting accord-
ing to the number of hits�, can give quick insight into the
topological features of the map, beyond the topographic er-
ror.

The different map sizes above provide a good illustration
of the usefulness of BMU rank plots in assessing the struc-
ture of the map. Rank plots for the different maps are shown
in Fig. 4. The 40�60 case has been excluded for the sake of
clarity, and because it does not significantly differ from the
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other nearby sizes. First, the figure shows that when the �fi-
nal� neighborhood radius is increased while keeping the size
of the map constant, the number of low hit count neurons
increases. This is consistent with the presence of more dis-
tinct cluster boundaries. Second, it shows that the percentage
of the low hit count neurons increases when the size of the
map is reduced, with the exception of the smallest map size.
This trend can be explained by noting that the number of
clusters is roughly constant irrespective of the size of the
map, and therefore the cluster boundaries �whose width does
not change significantly� take up a larger portion of the
smaller maps. For the smallest map there are no longer any
cluster boundaries, resulting in the lack of low hit count neu-
rons. These conclusions are in agreement with the other vi-
sualizations, highlighting the applicability of BMU rank
plots in quickly making a rough assessment of the structure
of the map.

To summarize, the size of the SOM and the neighbor-
hood radius both affect the properties of the map signifi-
cantly. The neighborhood radius effectively determines the
size of the smallest clusters that can appear on the map, and
thus increasing it makes the map smoother, decreasing reso-
lution and improving topology. The neigborhood radius also
affects the minimum width of a boundary between clusters.
Too low a radius leads to a poor topology of the map, and the
self-organizing property of the SOM is lost. The presence of
single-neuron clusters that are very dissimilar to their neigh-
bors indicates too small a neighborhood radius. Varying the

size of the map while keeping the neighborhood radius con-
stant changes the maximum number of clusters that the map
can have, and hence it can be used to tune the resolution of
the map. If the map size is too small for every significant
conformation to have its own cluster, some clusters are
merged, and the boundaries of the clusters may become
vague, making the analysis more difficult. However, the
component planes show that all maps have distinct regions
for the four major conformations of the headgroup-glycerol
region �see next section�. In addition, the relative proportion
of the map that is allocated for each conformation is quite
independent of the size of the map.

IV. CONFORMATIONAL ANALYSIS OF PLPC

We first applied the SOM to analyze the conformations
of the whole PLPC molecule as in Ref. 16. However, even
with the largest map sizes the map shows only vague clusters
and is thus very difficult to analyze. This and other measures
indicate that even larger map sizes would be needed to ad-
equately describe the whole molecule, but such sizes are not
computationally feasible. The other possibility is to reduce
the complexity of the conformational space, an option also
suggested by Hyvönen et al.16 This can be accomplished by
studying only a subset of the dihedral angles. We did this for
three different groups: the headgroup, consisting of dihedral
angles 1–11 and 42 �see Fig. 1�a��, the glycerol region �di-
hedral angles 5–13, 26–27, and 42�, and the diunsaturated

FIG. 2. U matrices for different SOM sizes and different training parameters. Headgroup data were used for the training of all maps. In light regions the
neighboring neurons represent similar conformations, and dark regions mark larger differences. For the maps in �a�–�f� the neighborhood radius was scaled
with the size of the map. The training parameters for maps �g� and �h� were identical to those of �a�.
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sn-2 chain �dihedral angles 30–41�. The results for these
groups are presented in this section, and the more detailed
discussion of the whole molecule is deferred to the next sec-
tion, where we will also compare our results with those of
Ref. 16.

The different regions have rather different structures, and
serve different functions in the membrane. The polar head-
groups prefer to be in contact with water, and they form the
outermost layer of the membrane. They also shield the non-
polar parts of the membrane from contact with water. The
glycerol forms the backbone of the molecule to which the
other parts are attached, and thus influences the overall shape
of the whole molecule. Finally, the tails form the innermost
part of the bilayer. In biological membranes, this region acts,
for example, as an environment for the hydrophobic parts of
integral membrane proteins. The unsaturated cis bonds in the
sn-2 chain have an effect on the ordering of the chains, and
therefore also on other physical properties. Hence, under-
standing the effect of different conformations of the sn-2
chain is of specific interest.

A. Headgroup

The trained SOM for the headgroup data is visualized in
Figs. 2�a� and 3�a�. Figure 2�a� shows the U matrix and Fig.

3�a� the component planes. There is a prominent boundary in
the map, particularly distinct in the U matrix, extending di-
agonally from the lower left corner to the upper right corner.
The lower part of the map has large homogeneous clusters,
while the upper part is scattered with small clusters and re-

FIG. 3. �Color� Component planes for different SOM sizes and different training parameters. Headgroup data were used for the training of all maps. The maps
are selected from those in Fig. 2, and the panels have been labeled accordingly. Each small figure shows the values of one dihedral angle for each model
vector. The color range is the same for all figures, and the color bar below each figure shows the range of values that are present on the map.

FIG. 4. Plots of hit counts as functions of neuron rank for different map
sizes. Headgroup data were used for training the maps. The letters in paren-
theses refer to the different maps in Figs. 2 and 3. The black lines are for
maps trained with identical neighborhood radii. For the gray lines, the
neighborhood radius was scaled down with the size of the map. For each
plot, the number of hits has been scaled by the average number of hits, and
the rank has been scaled to range from zero to one.
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gions with no clear clusters at all. From the component
planes in Fig. 3�a� it is evident that this boundary is charac-
terized by a large change in the dihedral angle 7. The lower
part of the map corresponds to the most typical value of this
angle, while the upper part covers the other values. There are
also strong correlations between dihedral angles 6, 7, 11, and
42. These dihedral angles are located in the region where the
headgroup is attached to the glycerol backbone, and thus the
boundary reflects the conformational degrees of freedom of
the headgroup with respect to the glycerol region. On cross-
ing the boundary we see a major change in more than one
dihedral angle, which explains why the boundary is so
clearly visible. This also suggests that there is a high poten-
tial barrier associated with the boundary, and therefore we
should see fewer conformational transitions across the
boundary than inside the regions.

To further visualize the conformations in different clus-
ters we have chosen one neuron from each cluster for closer
inspection. The neurons were chosen approximately in the
middle of the cluster such that they would have as many hits
as possible. Inside one cluster it is justifiable to look at only
one neuron and the associated model vector since the neigh-
boring neurons in the same cluster are very similar and show
no qualitative difference.

Figure 5 shows the clusters �determined manually� and
the conformations of the associated model vectors. The divi-
sion between the upper left and lower right halves of the map
is also clearly visible in the conformations: the upper left
corner has six conformations where the lower part of the
group �between sn-1 and sn-2 chains� is straight and bond 5
points towards the viewer �the direction is determined by
dihedral 6�, and for the rest of the conformations above the
dark boundary the bond points away from the viewer and
bond 7 is downwards, inducing a kink in the glycerol region.
For the conformations below the boundary, bond 5 points
away from the viewer and bond 7 towards the viewer. Thus
the boundary indeed marks the differences between these
three major configurations of the headgroup with respect to

the glycerol region. The clusters inside these major regions
are distinguished by different orientations of the P-N vector
in the headgroup and, in some cases, different orientations of
the beginning of the sn-2 chain.

The component planes also show that there is a two-part
region where dihedral 8 is significantly different from the
rest of the map �red regions in the dihedral 8 plane�. There
are no clear clusters within this region, indicating that the
value of dihedral 8 is the main determining factor for this
class of conformations. This group of conformations pro-
vides a fourth major class for the headgroup. The conforma-
tions in this class differ from other conformations in that the
first carbon of the sn-2 chain and the sn-1 carbon atom are
on the same side of the sn-2 C–O bond. Analysis of the
dynamics in Sec. VI additionally shows that there is a large
barrier in crossing to or from this region.

The SOM can also be used to visualize the conforma-
tional dynamics of the molecules by plotting the trajectories
of individual molecules on the map.16 A thorough analysis of
the headgroup dynamics is postponed until Sec. VI, here it
suffices to note that the trajectories �not shown� indicate that
the molecules stay within one region of the map for tens of
picoseconds before jumping to another region. The move-
ment within a region results from small fluctuations in dihe-
dral angles while a longer leap is caused by one or more
dihedral angles changing from one local potential minimum
to another. The effect of the prominent diagonal boundary on
the map can also be clearly seen in the trajectories: transi-
tions over the boundary are very rare events.

B. Glycerol region

Figure 6 shows the U matrix of the SOM for the glycerol
region, together with representative configurations for the
major clusters in the map. The component planes of the map
are shown in Fig. 7.

The glycerol region contains many of the same dihedral
angles as the headgroup region. Hence, it is not surprising
that the map shows a boundary similar to the one in the

FIG. 5. �Color online� Visualization of most prominent conformations of
headgroup SOM. The glycerol backbone is oriented identically for all con-
formations, and the carbons where the tails start are marked with arrows.
The U matrix is shown in the background, and the clusters have been de-
termined manually.

FIG. 6. �Color online� U matrix of SOM for glycerol region �dihedral angles
5–13, 26–27, and 42 in Fig. 1�a��. The conformations for the most promi-
nent clusters are also visualized, with the glycerol backbone in identical
orientation for all conformations. The arrows mark the carbon atoms where
the tails are attached. The clusters have been determined manually.
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headgroup map, and a separate region for high values of
dihedral 8. In the case of the glycerol SOM, the boundary
runs from the lower right corner to the upper left part of the
map. This boundary, as the one in the headgroup SOM, is
characterized by simultaneous changes in the dihedral angles
6, 7, 11, and 42. In the upper right corner, there are five
conformations that have a straight configuration between
sn-1 and sn-2 chains and bond 5 pointing toward the viewer,
corresponding to the upper left corner of the headgroup map.
The other conformations above the boundary have bond 7
pointing downwards and bond 5 away from the viewer �with
one exception�, and the configurations below the boundary
all have bond 5 pointing away from the viewer and bond 7
towards the viewer, both in correspondence with the head-
group map. The clusters within these groups are distin-
guished by the different orientations of the first bonds of the
tails. The correspondence between the headgroup and the
glycerol map will be analyzed in more detail in Sec. VI. One
should also note that the trans and gauche states of dihedral

angles 13 and 27 are clearly visible and correspond to differ-
ent areas of the map.

The conformational dynamics shows many features
reminiscent of the headgroup case. Transitions across the
boundary are rare, and short-time transitions take place pre-
dominantly between neurons in the same cluster.

C. sn-2 chain

Figure 8 shows the U matrix of the SOM for the diun-
saturated sn-2 chain, together with representative configura-
tions for some major clusters in the map. The BMU rank plot
is shown in Fig. 9 and the component planes are shown in
Fig. 10. In this case the structure of the U matrix is markedly
different from the other two cases. The map has a large num-
ber of small clusters, but the boundaries of these clusters
cannot be clearly defined. There are also areas which are
difficult to classify as belonging to any cluster. However, the
selected visualizations of the conformations indicate that in
different parts of the map, the dihedral angles around the
double bonds have different values, and that there may also
be differences in the saturated regions.

The differences in the structure of the map, compared
with the other two cases, can be explained by the conforma-
tional space accessible to the chain. The chain has six dihe-
dral angles with trans-gauche type behavior, as well as four
skew-type dihedral angles close to the double bonds. In ad-

FIG. 7. �Color� Component planes of SOM for glycerol region. See Fig. 3
for details on how to interpret the figures.

FIG. 8. �Color online� U matrix of sn-2 chain SOM �dihedral angles 30–41
in Fig. 1�a��. The conformations for some of the largest clusters are also
visualized. The carbon atom closest to the headgroup has been colored dif-
ferently from the rest and marked with an arrow, and the first bond is
oriented identically for all conformations. The clusters have been deter-
mined manually.

FIG. 9. BMU rank plot of sn-2 chain SOM. The number of hits has been
scaled by the average number of hits, and the rank has been scaled to range
from zero to one.

FIG. 10. �Color� Component planes of sn-2 chain SOM. See Fig. 3 for
details on how to interpret the figures.
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dition, the correlations between different angles are weak.
Thus there are a large number of probable conformations of
the chain, characterized by a major change in one or more of
the dihedral angles. Because of rapid trans-gauche isomer-
ization rate for the chain �of the order of tens of picosec-
onds�, the chains explore this conformational space thor-
oughly during the simulation. As there is only a limited
amount of neurons on the map, it is not possible to have a
separate cluster for each of these conformations. In addition,
the conformational space is intrinsically high dimensional, so
it cannot be easily mapped into a two-dimensional plane
while preserving the topology, as a SOM attempts to do. A
quick comparison of quantization and topographic errors to
the other cases shows that the topographic error is similar in
all cases, but the quantization error is significantly higher for
the sn-2 chain SOM. This is in agreement with the above
discussion: if each conformation cannot have its own cluster
in the SOM, the resolution suffers because several distinct
conformations have to be described by a single cluster.

Also the BMU rank plot, shown in Fig. 9, is different
from the other cases. For the sn-2 chain SOM there are a few
neurons with a very large hit count, but there is no plateau at
intermediate ranks. Thus a very large proportion of the neu-
rons has rather low hit counts. This indicates the presence of
many cluster boundaries, see above. A significantly larger
map would be required to obtain a plateau in the rank plot
and thus to have clear clusters on the map. However, there
are also some similarities with the whole molecule SOM,
and it is possible that overlearning-related problems could
occur with a larger map �see discussion in the next section�.

The component planes in Fig. 10 show that despite the
problems noted above, the SOM is able to form a rather good
representation of the conformational space of the chain. For
each trans-gauche-type dihedral �dihedrals 30–32 and 39–
31� the map clearly shows three distinct �possibly non-
continuous� regions, with the largest region corresponding to
the trans state and the other regions to the two gauche states.
Similar partitioning into two roughly equally sized domains
can be seen for the skew-type dihedrals �dihedrals 33, 35, 36,
and 38� in the vicinity of the double bond. Thus, each region
of the map is characterized by a specific combination of the
different possible values for the dihedral angles, and the
boundaries for these domains are rather sharp.

Comparison of the SOM for the sn-2 chain with the
headgroup SOMs in Figs. 2�g� and 2�h� show some interest-
ing similarities: the U matrix has large dark areas that do not
have any clear clusters. In addition, in both cases the com-
ponent planes show that the map has clear regions for differ-
ent conformations, despite the apparent lack of structure in
the U matrices. Also the BMU rank plots show similar tails
of low hit counts. This observation highlights an important
issue that has to be kept in mind when analyzing the map,
namely, that a single visualization of the map may give an
incomplete picture of the results. It also suggests that for the
smaller headgroup SOMs the size of the map is approaching
the limit of being able to describe the conformational space
of the headgroup adequately. Conversely, it also indicates
that a larger map for the sn-2 chain probably would indeed
have a clearer cluster structure.

For the sn-2 chain the trajectories of individual mol-
ecules on the map feature rapid transitions over the whole
map. This is natural because the time scale for conforma-
tional transitions in the chain is of the same order of magni-
tude as the sampling interval of our data.

V. ANALYSIS OF WHOLE LIPID AND COMPARISON
TO EARLIER RESULTS

The SOM for the whole lipid molecule shows some
qualitative differences to that described in Ref. 16, which, to
our knowledge, is the only SOM study of lipid systems prior
to the present work. In Ref. 16, one applied a map of size
10�10 to a 1 ns MD simulation of a PLPC bilayer with
1.44�106 lipid conformations. It was found that the result-
ing model molecules had clearly distinct conformations, and
it seemed that the SOM represented the data profoundly
well. In the present work, however, the final neuronal model
molecules were very similar to each other, in particular, with
a small map such as the one used by Hyvönen et al. The
dihedral angle values for nearly all model molecules were
very close to their average values. This effect is most pro-
nounced in the tail region. We studied several map sizes, and
this holds for all of them. We argue that these differences
originate mainly from the differences in the MD input data.
In addition, our results show that the map size used by
Hyvönen et al. is probably too small to take full advantage of
the SOM analysis.

Leaving aside the details in different force fields used in
the two studies, an important factor affecting the results of a
SOM analysis is how the conformational space of the mol-
ecules is sampled. In the present work, we had 3601 samples
of 128 molecules �460 918 conformations in total� at 10 ps
intervals, covering 36 ns. The earlier study had 40 000
samples of 36 molecules �1 440 000 conformations in total�
at 0.025 ps intervals, covering an interval of 1 ns �very rea-
sonable at the time�, and every tenth frame was used for
training. The major difference is the length of the interval
between sampled configurations: a short sampling interval
results in major correlations between configurations and
hence in many very similar conformations. This is because
the time scale of conformational isomerization of the mol-
ecule is of the order of picoseconds or tens of picoseconds.
Therefore many of the 1.4�106 conformations are, in fact,
nearly identical, and the data represent only a part of the
conformational space. A significant part of the variability re-
sults from the different initial configurations of different
molecules. This explains the differences in the SOMs: when
there are only few conformations in the data, the SOM con-
verges to these conformations, determined mostly by the ini-
tial configuration of the simulation, and thus does not repre-
sent the general properties of the system.

To verify our arguments we performed a 1 ns extension
to our PLPC simulation saving the configurations every
0.04 ps, and chose randomly 32 molecules for analysis. We
then trained two SOMs, one with the 1 ns data and another
with our original 36 ns data. For both maps, the training
parameters were identical to those used in the analysis of
molecular parts, and the map size was 40�60. We also did
the analysis for the 10�10 maps used in Ref. 16. We found
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that due to the complexity of the conformations, such a map
is too small to take full advantage of the SOM analysis �re-
sults not shown�.

The U matrix, selected component planes, and the BMU
rank plot for the 40�60 maps trained with the 36 ns data are
shown in Figs. 11�a�, 12�a�, and 13 solid line�, respectively.
For the sake of clarity, only some of the dihedral angles are
shown in the component planes, but similar conclusions can
be drawn from all of the angles.

The rank plot indicates that the size of the map may be
too small, but nevertheless, the other figures show that the
SOM is able to form a relatively good representation of the
data. The component planes for the headgroup dihedrals
show many features that are similar to the results in the pre-
vious section. However, many of the trans-gauche dihedrals
in the tails show only conformations close to the most prob-
able trans value. Also, the quantization error �divided by the
number of dihedral angles to make them comparable� is
higher than for the headgroup maps, indicating that there is
stronger averaging than for the headgroup. In particular, this
can be seen in the reduced range of the model dihedrals. It is
also interesting to note that the U matrix has a prominent
boundary similar to the headgroup and glycerol cases. How-
ever, in this case this boundary is characterized by simulta-
neous changes in dihedrals 3 and 4. Also the other boundary,
characterized by changes in dihedrals 6, 7, 11, and 42, is
present, but it is not as clearly visible in the U matrix.

The U matrix, selected component planes, and the BMU
rank plot for the 1 ns data are shown in Figs. 11�b�, 12�b�,
and 13 dashed line�, respectively. There is a profound differ-
ence between these results and those for the 36 ns data, con-
firming the importance of sufficient sampling of the confor-
mational space. The quantization error is actually 25% lower
than for the 36 ns data, and the topographic error is one-third
of that of the 36 ns map. Both of these agree with only
partial sampling of the conformational space: when the map
represents only a part of the conformational space, it can
adapt to more detailed features of the data, which leads to
better resolution. Further, for the 1 ns data, the ranges of the
dihedral angles present in the map are much wider, indicat-
ing more diversity in the conformations represented by the
map. This is in agreement with the observed averaging: the
model molecules in the SOM trained with the 36 ns data are
strongly averaged and the chains are mostly in straight all-
trans states with the exception of the double bond region.

Further analysis of the 40�60 map for the 1 ns data
yields additional insight into the behavior of SOMs. The
number of distinct conformations per molecule can be
roughly estimated by dividing the length of the sample by
the average conformational isomerization time. Taking 10 ps
as the isomerization time �this is of the same order of mag-
nitude as the fastest transitions in the molecule�, we can es-

FIG. 11. U matrices for whole molecule SOMs with different training sets
�see text for details�.

FIG. 12. �Color� Component planes of whole molecule SOMs with different
training sets �see text and Fig. 11�. For the sake of clarity, only a subset of
the dihedral angles is shown. The dihedrals for the headgroup �3, 6, and 7�,
glycerol �6, 7, and 12�, and sn-2 �20, 29, 33, and 35� regions can be com-
pared with the respective SOMs in Figs. 3, 7, and 10.

FIG. 13. BMU rank plots of whole molecule SOMs. The number of hits has
been scaled by the average number of hits, and the rank has been scaled to
range from zero to one.
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timate that there are at most 100 distinct conformations for a
molecule, and thus the maximum number of distinct confor-
mations in the training data is of the order of 3000. As the
40�60 map has 2400 neurons, there is nearly one neuron for
each configurations, making it possible for the map to adapt
to the training data nearly perfectly. Thus there is very little
averaging, and the map essentially does very little to aid in
the analysis of the data. This is also demonstrated by the
conformational dynamics �trajectories not shown�: for most
of the 1 ns trajectory each molecule stays at the same neu-
ron, and there are only few transitions to neurons farther
away. The fact that this does not happen for the 36 ns data
also confirms that the conformational space is sampled better
in that case. This phenomenon is related to overlearning,
which occurs if the number of data vectors is comparable to
the size of the map. However, as the number of data vectors
is not a problem in the current case, better results could
probably be obtained by a careful selection of the training
parameters. The dynamics of the molecules provides a good
indicator for assessing whether the sampling is sufficient: if
the trajectories of individual molecules do not cover a major
part of the map, the sampling is probably not long enough.

VI. APPLICATIONS

A. Headgroup dynamics

To demonstrate how the SOMs can be used in analysis
that goes beyond the standard practices to study the structure
and dynamics of membranes,2 we now consider three appli-
cations. As a first case, we analyze the dynamics of the lipid
headgroup. Some qualitative aspects were already discussed
in Sec. IV. Here we focus on more quantitative analysis of
the 48�72 headgroup map.

The simplest way to analyze the dynamics of the head-
group region would be to directly study the transition fre-
quencies between different neurons. However, the large size
of the map makes the number of possible transitions intrac-
table. Hence, some kind of clustering is needed to group the
neurons into larger units. A systematic method is to be pre-
ferred, because in subjective clustering, like the one in Fig.
5, large parts of the map cannot be easily assigned to any
cluster. The transition frequencies between neurons provide
an attractive measure of the similarity of the neurons: the
more transitions between two neurons, the more similar they
are. This measure has an additional advantage in that it has
not been used in the construction of the map. Hence, the
resulting clustering offers an independent method for assess-
ing the quality of the map. The measure can also be easily
extended to clusters of neurons by averaging, as discussed
below.

Figure 14 shows the clustering based on transition fre-
quencies. The clustering was constructed using hierarchical
agglomerative clustering.37 In this method, we first construct
an initial clustering by putting each neuron in its own cluster.
We then merge the most similar clusters, and continue until
only one cluster remains. This yields a hierarchy that can
then be used to select a suitable clustering. The final cluster-
ing was obtained by finding all merges where both clusters
had at least 80 neurons, and undoing these and all subsequent

merges to these clusters. After this, all neurons in clusters
that had less than five neurons were considered as outliers,
and they were merged to the most similar clusters. Due to the
clustering method, different values for the splitting size limit
result in slightly different clusters: starting from a high value
and gradually lowering the limit results initially in a few big
clusters, which then split into smaller and smaller pieces.
The selected value of 80 was chosen manually to get a rea-
sonably small amount of clusters that were not too large and
that were either continuous or formed from a few continuous
regions.

In the above process, we need to be able to calculate the
distance between the new cluster �formed by merging two
clusters� and all the other clusters. There are several ways of
defining this distance.37 Here, we have adopted the average
distance: the distance between the new cluster N and some
other cluster, say, A, is calculated as the weighted average of
the distances between A and the original clusters forming N.
The resulting distance has a simple physical interpretation: it
gives the expectation value for the number of transitions be-
tween two randomly selected neurons belonging to different
clusters.

The final clustering has 23 clusters, which makes direct
studies of the transition matrix feasible. The cluster numbers
in Fig. 14 have been selected manually in such a way that
most of the transitions occur between numbers that are close
to each other, e.g., 3 and 4.

On the average, 80% of the transitions occur within one
cluster, which shows that the clustering represents the actual
dynamics of the molecules. For individual clusters, the pro-
portion of intracluster transitions ranges from 57% �cluster
10� to 98% �cluster 9�, with values of 76%–92% for clusters
1–8 and 63%–83% for clusters 11–23. Clusters with a sig-
nificant amount of transitions to nearby clusters typically dis-
play a smaller percentage of intracluster transitions. For ex-
ample, 64%–65% of the transitions in clusters 11 and 12 are
intracluster, while only 18% of the transitions are to other
clusters than the two. The difference between clusters 1–9
and 10–23 is in line with the structure of the U matrix: in the
region covered by clusters 10–23 the neurons are typically
much more similar to their neighbors, and therefore it is
understandable that there are more intercluster transitions.

FIG. 14. �Color online� Clustering of headgroup SOM based on transition
frequencies. The U matrix is shown in the background. The clusters are not
necessarily continuous. Unlabeled neurons have zero hits.
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The intracluster transition probabilities can be used to
estimate the lifetimes of individual clusters. We define the
lifetime of a cluster as the time after which the probability of
a conformation belonging to the same cluster as initially is
less than 1/e �where e is the Euler number�. With this defi-
nition, the 98% probability of an intracluster transition in
cluster 9 translates into 650 ps, cluster 10 has a lifetime of
18 ps, and the rest have lifetimes in the range of 22–120 ps.
The long lifetime of cluster 9 warrants further study: it turns
out that if a trajectory properly enters the cluster �i.e., stays
there longer than tens of picoseconds�, the lifetime is actu-
ally of the order of 5–10 ns. This cluster corresponds to the
fourth class of conformations discussed in the headgroup
analysis in Sec. IV, characterized by a large value of dihedral
8. The long lifetime of the cluster shows that transitions to
and from such a conformation have a high potential barrier.

The prominent diagonal boundary in the U matrix is also
seen in the transition frequencies: only 0.3% of the transi-
tions occur over the boundary, i.e., between clusters 1–9 and
10–23. The transition matrix also shows that these transitions
cannot happen arbitrarily, but that the most probable paths
are from cluster 4 to 17 or 19–23, from 6 to 10 or 12–15, or
from 8 to 17 or 23, and identically to the other direction.

To understand these transitions, one can look at the angle
between the P-N vector and the vector connecting the first
carbons of the tails. The latter characterizes the orientation of
the glycerol backbone in the plane of the membrane, and
hence this angle is related to the joint between the headgroup
and the glycerol regions. Looking at the values of this angle
for the conformations in different clusters, we see that for the
most probable transitions, this angle does not typically
change significantly. This makes the conformational change
smaller, and therefore the transition is more probable.

There are also smaller blocks of clusters between which
the transitions are less probable. For example, transitions be-
tween clusters 1–3 and 5–8 occur mainly either through clus-
ter 4 or directly between clusters 1 and 8. The main differ-
ence between the blocks is in dihedrals 3 and 4, i.e., in the
orientation of the P-N vector. Cluster 4 has a similar orien-
tation of the P-N vector as clusters 1–3. In its glycerol part,
cluster 4 is closer to 5–8. Hence, it functions as a transition
state between 1–3 and 5–8. Direct transitions from 1 to 8 are
possible because the glycerol part in these clusters is very
similar. A similar pair of blocks is formed on the other side
of the diagonal by clusters 10–16 and 19–23, although here
the pattern of transitions is more complex.

The preliminary results shown here demonstrate how the
SOM can aid in the analysis of the dynamics of a complex
biological system. The SOM provides a good starting point
for the clustering based on transition rates, and also offers a
useful template for the visualization of the clusters. In addi-
tion, these results propose that conformations that are close
to each other on the map resulting from SOM analysis are
typically also close in the dynamical sense.

B. Correlations within molecules

As a second application, we discuss the relationship be-
tween the conformations of different parts of a lipid mol-

ecule. By focusing on where groups of conformations occur
on SOMs that portray different parts of a lipid molecule, one
can gain more insight into such relationships. The SOMs
provide an easy way of visually performing such compari-
son. For example, we can check how a given cluster in the
headgroup SOM maps onto the glycerol or sn-2 SOM: we
first identify all conformations in the underlying data that
have their BMUs in the cluster of interest in the headgroup
SOM. We then calculate the BMUs of these conformations
on the other maps, and plot the number of hits on top of the
U matrices �or other visualizations�. If some clusters map
into one or a few well-defined, continuous subregions of the
other SOM, we can conclude that there is some correlation
between the different parts. We can also perform the map-
ping with the maps interchanged to check whether the found
regions also map back to the original clusters.

Comparing the headgroup and glycerol SOMs in this
way, we note that the three major groups of headgroup clus-
ters �we use the numbering in Fig. 14 because it gives a
convenient frame of reference�, 1–8, 9, and 10–23, map to
separate �more or less� continuous regions in the glycerol
map. The different regions are characterized by different val-
ues of dihedrals 7 and 8, and are located similarly to the
headgroup map: clusters 1–8 map to the upper right half of
the glycerol map, clusters 10–23 to the lower left half, and
cluster 9 is located in between. In addition, cluster 5, clusters
4 and 6, and clusters 10 and 17 map to distinct regions that
are characterized by distinct values of dihedral 10 �cluster 5�
or dihedral 6 �the others�.

The above mappings are natural, because the dihedrals
that characterize the specific groups of clusters are common
to the headgroup and glycerol regions. However, the above
mapping also enables us to compare how the dihedrals 12–13
and 26–27 �that are part of our definition of the glycerol
region, but not part of the headgroup� behave for different
conformations of the headgroup. Qualitative insight can be
gained by comparing the distributions of the different dihe-
drals �Fig. 7� for the regions into which different headgroup
clusters map. Such a comparison shows that dihedral 12 is
often larger for clusters 1–4 and 6–8 than for clusters 10–23
�in Fig. 14�. Armed with this knowledge, we can then make
a more quantitative comparison by plotting the histograms of
this dihedral for the conformations that belong to the differ-
ent clusters. This confirms that the observed difference is
real: the distribution of dihedral 12 �over all conformations�
has two wide peaks, and conformations in clusters 1–4 and
6–8 have values mostly close to one of the peak values,
while conformations in clusters 10–23 have values close to
the other peak. For the remaining clusters 5 and 9, the his-
togram is similar to the global distribution.

The above difference originates from the fact that the
orientation of the glycerol backbone with respect to the
membrane normal is different on different sides of the diag-
onal. Dihedral 12 determines the orientation of the sn-1
chain with respect to the glycerol backbone, and the sn-1
chain is always more or less in the same orientation with
respect to the membrane normal. Hence, the dihedral has to
be in different orientations in different clusters to prevent the
tail from pointing out of the membrane.
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Similarly, we find that dihedral 26 has a specific value in
cluster 9, which again originates in the requirement that the
beginning of the tail is always directed into the membrane. In
contrast, the following dihedral angles along the tails, i.e.,
dihedrals 13 and 27, do not have any clear correlations with
the headgroup conformation, which indicates that the tail
conformations are more or less independent of the head-
group.

The last conclusion is also supported by a comparison of
the headgroup SOM to the sn-2 chain. All the clusters on the
headgroup SOM map to the whole sn-2 SOM, showing that
the conformations of the two regions are independent. Simi-
lar results are obtained when comparing the glycerol and
sn-2 regions.

C. Coarse graining

Finally, we provide an example of how the information
from the SOMs could be used in constructing coarse-grained
models. The aim of coarse graining is to design simplified
models that include only the relevant degrees of freedom for
the problem at hand. The ability of the SOM to find the most
relevant states with only minimal human intervention could
be particularly useful for the selection of the necessary de-
grees of freedom. Here we discuss one possible use of this
information in constructing a coarse-grained model. We
separately focus on each part of the molecule, selecting a
minimal coarse-grained description that is able to represent
the most relevant conformations of the lipid as represented
by the maps.

The headgroup map shows that the most important fea-
tures in the headgroup region are related to the orientation of
the headgroup with respect to the glycerol backbone. This is
because there is a fairly small set of specific conformations
in this part of the molecule. This finding is in line with
atomic-scale molecular dynamics simulations and experi-
ments, that have demonstrated the importance of the P-N
vector orientation for electrostatic properties at the
membrane-water interface.38,39 To be able to describe these
conformations, the coarse-grained headgroup should have at
least two particles that define the direction of the P-N vector.

The glycerol map shows that the most important confor-
mations in the glycerol region are related to the orientation
of the P-N vector with respect to the glycerol backbone, and
the direction of the first bonds of the tails. Hence, the glyc-
erol region itself does not contain any significant internal
degrees of freedom, and can be described by one and two
particles. Two particles help us to distinguish the tails from
each other, although this could also be achieved by a careful
choice of bending potentials and other interactions. Two par-
ticles could also make it easier to describe the relative orien-
tation of the glycerol and the P-N vector in the x-y plane, but
again, this could also be achieved by a proper choice of
intramolecular interactions.

Finally, the sn-2 map shows the lack of any specific
important conformations. This indicates that the most pro-
nounced effect of the double bonds is to induce generic dis-
order in the tail region instead of promoting a set of typical
conformations. Hence, the general shape of the tails is the

most important feature to consider in the coarse-grained de-
scription, and the double bonds can be included by appropri-
ate intramolecular interactions.

Figure 15 summarizes the model. To complete the
model, we would also need to determine the interactions for
the different particles, but such analysis is beyond the scope
of this article. However, it is interesting to note that the suc-
cessful coarse-grained model developed by Marrink et al.40

incorporates the features discussed above. That model was
constructed based on experiences from the atomistic models,
and the similarity demonstrates the possibilities the self-
organizing maps have to offer in this context.

VII. DISCUSSION AND CONCLUSIONS

Self-organizing maps have many features that make
them useful in the analysis of large amounts of conforma-
tional data. They are particularly appropriate for gaining a
qualitative understanding of the most important features of a
complex system. They do not require any significant a priori
knowledge of the behavior of the system, which makes them
an excellent tool for initial studies. In addition, the ease of
visualizing the results helps in gaining additional understand-
ing, which can then be used when planning for further stud-
ies. Nevertheless, some care is warranted to confirm the va-
lidity of conclusions.

Advantages of SOM. Many standard methods used to
characterize lipid bilayers are global in nature. For example,
electron density and lateral pressure profiles, as well as deu-
terium order parameters, give information on the global
structure of the bilayer. Such information is important for the
general behavior of the bilayer, but it is difficult to relate it to
molecular details such as conformations of the molecules or
specific interactions between different molecules. In contrast,
the information gained by clustering methods such as SOM
gives a view on the properties of individual molecules. The
clustering methods are particularly effective in reducing the
complexity of the molecular configurations to such levels
that can be handled by simpler analysis methods or humans.
One of the main advantages is that one can study a relatively
small set of configurations to form hypotheses about the gen-
eral behavior of the system, and then test these using other
methods.

FIG. 15. �Color online� Schematic representation of SOM-derived coarse-
grained model �see text for details�. The three regions were considered sepa-
rately based on the different SOMs.
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The main advantage of SOM over other clustering meth-
ods is the ease of visualization of the results. Further, this
visualization can be made in such a way that it is generally
easy for a human analyst to find nontrivial characteristics for
the conformations. The information gained in this way can
then be used in planning more quantitative analysis, and in
some cases also the map itself can provide a basis for further
analysis. In many ways, SOM is more qualitative than many
other methods, but it also gives more freedom for a careful
interpreter to get around the limitations of the method.

The present work provides several examples of these
advantages. The clustering of the headgroup conformations
gives an idea of the different typical conformations of the
headgroup. The SOM makes it easy to group these clusters
into larger entities, and thus to find the four major classes
�see Sec. IV�. It also turns out that different regions of the
map have distinct orientations in the bilayer, characterized by
the orientation of the glycerol backbone with respect to the
membrane normal �data not shown�. Further, the ease of vi-
sualization and assessment of the sensibility of the clustering
were highly beneficial in the study of headgroup dynamics in
Sec. VI, as well as in studies of correlations within the dif-
ferent regions.

Using SOMs. SOMs are also relatively easy to use, since
the tools are freely available, and only minor modifications
are needed for taking into account the periodicity of the
angles. However, some care is needed in selecting the size of
the map and the training parameters, and some experimenta-
tion may be required to take full advantage of the approach.
Effective interpretation of the results may also require some
effort if one has no previous experience of similar methods.

The effects of the various parameters were discussed in
Sec. III, and the qualitative rules described there give a good
idea of how the parameters affect the results. Also, the
present work gives reasonable initial values for these quan-
tities. After training a map with these values, one can then
see whether the level of detail is proper for the use one
needs, and possibly do fine-tuning of the values.

First, an absolute upper limit for the size of the map is
given by the number of training samples, because there
should be a sufficient number �preferably at least a few hun-
dred� of training samples per neuron. Below this limit, one
can then choose a size for the map such that a desirable level
of detail is achieved. As for the training parameters, the
choices described in Sec. II give a reasonable starting point.
The most important thing is to have the initial neighborhood
radius large enough to allow for the initial organization of
the map, and to also have a sufficiently large final neighbor-
hood radius for good visualization properties. Further, long
enough training �in practice, slow enough variation of the
training parameters� should be used to avoid trapping into a
local optimum for the map. Full automation of this process is
unfortunately difficult because of the qualitative nature of the
SOM and the large amount of human interpretation needed
to get full advantage of the map. However, the exact values
of the training parameters are not very important, since a
rather wide range of values leads to very similar maps.

Evaluating map quality. Evaluating the quality of the
trained map is one of the central tasks in determining how

successful the SOM approach has been. It is also needed to
decide whether the training parameters should be tuned fur-
ther to obtain better results. The quantization and topo-
graphic errors can be used to get an initial idea of the quality
of the map. Both measures should be taken into account, as a
map can have a very good resolution while having a very
poor topology, or vice versa. Poor resolution indicates that
the map cannot adequately represent the data, while poor
topology makes the visualization of the map less useful. In a
good quality map both of these properties are within accept-
able limits. However, a priori estimation of these limits is
not straightforward.

In addition to the above simple error measures, the BMU
rank plots have been found to provide a good estimate for the
quality of the map. They are particularly useful for quickly
assessing information on the clusters and their boundaries on
the map. Because distinct clustering increases the amount of
information that can be obtained from the SOM, the rank
plots can thus be used to assess the usefulness of the map.
There are two features that, when present in the rank plot,
indicate distinct clustering and sufficient map size: the pres-
ence of a significant amount of neurons with low hit counts,
and a relatively flat plateau, indicating a peaked distribution
of hit counts. In particular, there should not be a tail floating
above zero caused by too small a map size. There are two
reasons why such features are beneficial. First, neurons that
fall between clusters generally have a low hit count, and thus
their presence indicates a clear division into clusters. The
second reason is related to the shape and size of the clusters:
if many neurons have a nearly constant hit count, it indicates
that the neurons cover the clusters more or less evenly, which
leads to a more desirable cluster structure.

Robustness of SOM. The self-organizing map is a robust
tool, as can be seen when comparing the results for the head-
group and glycerol regions, as well as the results for the
larger SOM for the whole molecule. The headgroup and
glycerol regions overlap partially, and the common region
has four major conformations. For all three cases, the SOM
is able to find these features without any difficulties. How-
ever, the cluster structure within these major conformations
is different for the three cases, highlighting the possibility to
tailor the method to study interesting features of different
parts of the system. Similar robustness can also be seen in
the results for the different map sizes.

Despite the robustness, the analysis of the SOM should
be done carefully considering all available information, such
as the U matrix and the component planes. Otherwise some
features of the system might be missed. A good example of
this is provided by the headgroup and glycerol data sets,
where the U matrix shows only a single prominent boundary,
but a more careful analysis uncovers four major conforma-
tions. The SOM for the whole lipid shows a similar boundary
in the U matrix, but in that case it actually separates different
conformations �see previous section�. Thus the orientation of
the map and the relative positions of the clusters may alter
the appearance of the U matrix significantly. This is a prop-
erty of the similarity measure used �standard Euclidean dis-
tance�, and thus some other measure might be better for vi-
sualizing the U matrix. This could facilitate the analysis by
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highlighting different types of cluster boundaries. It could
also be interesting to use different distance measures for the
training phase.

In the analysis, one should also note that the sequential
training algorithm presents the data vectors to the SOM one
by one, and therefore the results depend on the order of the
data vectors. To minimize this effect, the data vectors are
typically presented in a random order. This nondeterministic-
ity contributes to the fact that there does not necessarily exist
a simple mapping between clusters in different maps, even if
they are trained using identical data. Linear initialization re-
duces this effect, but it should still be kept in mind when
interpreting the results.

Prospects. The automated data analysis performed by the
SOM could be taken a step further by using a clustering
algorithm for locating clusters in the SOM. The clustering
problem in general,41 as well as clustering of self-organized
maps,42–44 have been studied extensively, and there are sev-
eral algorithms that could be tested in the current context.
This could remove one more manual step from the current
procedure, and thus make the procedure less subjective. Such
a two-phase process could also reduce the number of model
vectors by using single model vectors for each cluster, with-
out losing the many advantages of a larger map. Steps in this
direction were already taken when considering the head-
group dynamics.

The SOM approach could also be used for conforma-
tional studies beyond single-molecule level. For example,
self-organizing maps could be used to classify conformations
of phospholipid-cholesterol pairs,45–47 to study structures of
lipid complexes bridged together by salt,48,49 to characterize
conformations of carbohydrate moieties in glycolipids,50 and
to explore conformational degrees of freedom associated
with peptides attached to membranes.51 The main difficulty
in this approach is the proper selection of variables for de-
scribing the conformations of molecular complexes. How-
ever, with a carefully selected set of variables the SOM could
give valuable insight into the interaction between the mol-
ecules, without the need of making a priori assumptions.
This could prove advantageous in studies of specific interac-
tions between different molecules over atomistic scales.

The SOM itself can also be used as a starting point for
further studies that go beyond the standard approaches often
used to characterize structural as well as dynamical proper-
ties of biomolecular systems, as we have done for the the
conformational dynamics and intramolecular correlations.
The data from the map could also be used, for example, for
assessing the correlations between neighboring molecules, or
for selecting interesting conformations for further analysis.
Such information could yield further insight into the specific
properties of the molecules in the system. It is also plausible
to combine SOM with coarse graining to design simplified
models that include only the most relevant degrees of free-
dom. As shown in this work, the SOM can provide excep-
tionally useful information for this purpose.

Concluding, the SOM is a promising, relatively simple,
and robust tool for a variety of purposes in biomolecular
systems. Efforts to develop the method further, as well as
applications to other lipid systems, are in progress.
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