
Noname manuscript No.
(will be inserted by the editor)

Code Density and Energy Efficiency of Exposed
Datapath Architectures

Pekka Jääskeläinen · Heikki Kultala ·
Timo Viitanen · Jarmo Takala

Received: date / Accepted: date

Abstract Exposing details of the processor datapath to the programmer is mo-
tivated by improvements in the energy efficiency and the simplification of the
microarchitecture. However, an instruction format that can control the data path
in a more explicit manner requires more expressiveness when compared to an
instruction format that implements more of the control logic in the processor
hardware and presents conventional general purpose register based instructions
to the programmer. That is, programs for exposed datapath processors might re-
quire additional instruction memory bits to be fetched, which consumes additional
energy.

With the interest in energy and power efficiency rising in the past decade,
exposed datapath architectures have received renewed attention. Several variations
of the additional details to expose to the programmer have been proposed in the
academy, and some exposed datapath features have also appeared in commercial
architectures. The different variations of proposed exposed datapath architectures
and their effects to the energy efficiency, however, have not so far been analyzed
in a systematic manner in public.

This article provides a review of exposed datapath approaches and highlights
their differences. In addition, a set of interesting exposed datapath design choices
is evaluated in a closer study. Due to the fact that memories constitute a major
component of power consumption in contemporary processors, we analyze instruc-
tion encodings for different exposed datapath variations and consider the energy
required to fetch the additional instruction bits in comparison to the register file
access savings achieved with the exposed datapath.

P. Jääskeläinen, H. Kultala, T.Viitanen and J. Takala
Tampere University of Technology, Finland
{pekka.jaaskelainen,heikki.kultala, timo.2.viitanen, jarmo.takala}@tut.fi

2 Pekka Jääskeläinen et al.

1 Introduction

The term “exposed datapath” is seen in the literature being attached to processor
architectures where additional processor datapath details are given to the direct
control of the programmer or the compiler [36,18,12]. Clearly, which details can
be considered “additional” in this sense are relative.

In this article, we consider a processor to implement an exposed datapath ar-
chitecture in case it presents a programming model that has one or both of the
following features:

– Programmer access to function unit ports or small register files coupled with
function unit ports to avoid overheads of a large centralized general purpose
register file.

– More fine grained control of the datapath than only defining function unit
operations.

Exposed datapath architectures are motivated by their simpler control hard-
ware and the benefits from the additional programmer control [41,20]. In addition
to potentially enabling smaller and higher clock frequency processor designs, their
impact to the energy efficiency is nowadays considered an even more interesting
aspect [17]. The simplified decode and hardware instruction scheduling logic con-
sumes less power, and the increased compiler control can decrease register pressure
and register file utilization significantly.

The reduced register file pressure improves both the dynamic power consump-
tion, due to the less register file accesses needed, and the static power consumption,
as it is possible to serve the same amount of parallel operations with simpler regis-
ter files [20]. There is an implication from reduced general purpose register pressure
that is especially interesting in case of contemporary throughput-oriented Graph-
ics Processing Units (GPUs). For GPUs, which are optimized for massively data
parallel workloads and the Single Program Multiple Data (SPMD) programming
model, the reduced need for General Purpose Registers (GPR) translates to more
“threads” (or instances of the kernel) to be potentially alive at the same time
(with the same number of GPRs consumed). This helps increasing the utilization
of the function units and to saturate the available memory bandwidth.

This paper reviews the work in exposed datapath architectures and evaluates
their consequences to the code density and register file access savings. We identify
the most useful features given their code density overheads in order to provide
guidelines for processor designers that are considering adding exposed datapath
features to their designs.

There are several common characteristics in the architectures reviewed in this
article. They are usually very compiler-oriented; only limited dynamic scheduling
of the instructions is performed, if any. Their assembly programming is tedious
and error-prone due to the additional details exposed to the programmer – their
feasible use requires a compiler that supports a higher-level programming lan-
guage than the assembly. The low level programming model also implies the lack
of legacy binary code support between processor families; due to exposing details
of the datapath to programs, they need to be recompiled whenever the architecture
is updated. In addition, especially the instruction-level parallel exposed datapath
machines might have ultra wide instruction words due to the additional program-

Code Density and Energy Efficiency of Exposed Datapath Architectures 3

mer control and due to no-operation bits needed because of the visible function
unit pipelines and the lack of data hazard detection hardware.

The implications for the code density is given an emphasis in the article. In case
the energy needed to read the possible additional instruction bits to control the
datapath details from the instruction memory exceeds the energy benefit from the
additional programmer control, the feature can be considered counter-productive
in low power processor designs.

This article contributes the following: 1) An overview of exposed datapath ar-
chitectures, both the academic and the commercialized offerings; 2) an analysis
of the code density implications from different additional programmer controlled
details; and 3) an evaluation of their implications for energy consumption by con-
centrating on the general purpose register access savings and the instruction fetch
costs.

2 Exposed Datapath Architectures

The fundamental ideas in exposing most or all of the control of the processor inter-
nal components to the programmer can be traced back to the idea of microcoding.
Microcoding was proposed in the early 1950s to be used to simplify and modular-
ize the processor control unit implementation by allowing the processor designer
to describe the processor control signals to be produced from programmer-visible
instructions as small microprograms instead of hard-wired logic. In horizontal mi-
crocoding, the microprogram for each instruction describes precisely what happens
at each cycle of the execution of the coded instruction in the processor datapath,
including the register enable signals, data routing through multiplexors etc. In
vertical microcoding, on the other hand, the microprogram contains instructions
that need some level of further decoding by the processor hardware and expand
to control signals for multiple execution cycles. One of the earliest commercially
successful machines that employed microcoding was the System/360 series from
IBM in the 1960s. [39,32]

Microprograms are typically stored in read-only memories or programmable
logic circuits (called control stores) inside the processor control unit. In some cases,
the control store is writable, which enables on-the-field updates of the so called
firmware of the processor. In the early days of microcoded machines, the writable
control stores were used for instruction set emulation and to implement instruction
sets customized for different higher-level programming languages within a single
processor microarchitecture. [32]

In the light of the microprogramming and writable control stores, the concept
of the exposed datapath architectures can be interpreted to reflect the fact that
the details that have been typically visible only to the microcode programmer are
exposed to the common programmers of the processor. That is, an “extremely ex-
posed architecture” could fetch the datapath control signal values directly from the
program memory instead of indirectly from a microcode control store or through
a decoding stage. All the exposed datapath architectures in this review follow this
principle to some degree. They mainly differ in the level of additional instruc-
tion decoding and hardware control logic needed, which places their programmer
interface somewhere between horizontal and vertical microcoding.

4 Pekka Jääskeläinen et al.

2.1 From CISC to RISC and VLIW

Reduced Instruction Set Computer (RISC) was proposed by researchers in the
University of California in the late 1970s. The motivation was that the earlier,
Complex Instruction Set Computers (CISC) included overly complex instruction
decoding and execution logic given the widespread use of higher-level programming
language compilers that abstract the processor instruction set from the program-
mers. [34] The CISC machines can be implemented using microprograms which are
expanded to RISC-like simple operations and control signals at runtime. Thus, in
this point of view, the RISC style can be thought of as a step from CISC towards
“exposed datapath architectures” by exposing the smaller granularity function
unit operations visible in microprograms to the programmer.

FPS-164 was a scientific co-processor introduced in 1981 that included an in-
struction set similar to the ones in horizontal microprograms. With this architec-
ture it became clear that such detailed instruction sets demand efficient higher-
level language compilers to be feasible. Hand-programming of such machines was
considered burdensome and error-prone which led to porting a Fortran-77 compiler
to this architecture [37].

Research in horizontal microcode compaction (producing parallel micropro-
grams automatically) led Josh Fisher to the ideas on the original Very Long In-
struction Word (VLIW) architecture and the associated compilation techniques
for global extraction of instruction level parallelism in the early 1980s. The global
instruction scheduling technique called trace scheduling was used to efficiently
utilize the statically scheduled VLIW architectures for programs with branches.
In essence, the original VLIW was a statically scheduled multi-issue RISC, thus
resembled the horizontally microcoded machines that expose fine grained parallel
hardware resource schedule timings to the programmer. [14]

2.2 Bypassing Register File in Software

It is usual that the register file (RF) is bypassed (or “forwarded”) in the processor
pipeline to alleviate stalls resulting from data hazards. In case an instruction
is reading a result produced by a previous instruction in the pipeline, without
bypassing the instruction would need to wait until the result was written to the
RF only after which it could read it to execute its operation. With bypassing, the
result from a previous instruction can be forwarded to the input of the consuming
function unit before it is written to the RF.

However, the bypass paths add complexity to the routing and the decoding logic
of the processor datapath. In addition, if the bypassing is done in the hardware,
the instructions still need to refer to general purpose registers (GPRs), thus need
registers assigned to them by the compiler. This increases the register pressure and
might lead to spilling temporary values to memory. The instructions also some-
times write the values to the register file unnecessarily in case the next instruction
that got the data through the forwarding connections is the only consumer.

Exposing the bypass network, or the function unit result registers, to the pro-
grammer is a popular design choice to get benefits from a more visible datapath
without dramatically changing the programming model. The idea of letting the

Code Density and Energy Efficiency of Exposed Datapath Architectures 5

Fig. 1 Example of a classical 5-stage RISC pipeline with the bypass paths visible. Adapted
from [41]. The darkened rectangles depict pipeline registers.

programmer to express register file bypassing in software is later in this article
referred to as software bypassing [9].

Software bypassing reduces the pressure on the number of required GPRs and
the number of RF accesses. For example, virtual registers are additional values
introduced to the operand fields of the instruction that indicate that the operands
should be routed from the bypasses instead of reading them from the register
file [41]. The destination field is augmented with bits that enable omitting the re-
sult write to the register file. This capability is added on top of a traditional 5-stage
pipeline architecture as depicted in Fig. 1. In this pipeline, the three bypass paths
for both operands can be controlled explicitly using the virtual register operands;
the values of the previous three instructions in the pipeline can be referred to di-
rectly without accessing the register file. Fig. 2 shows a pseudo assembly program
controlling a pipeline with software bypassing support.

a) add r1, r2, r3 b) add :, r2, r3
mul r2, r1, r4 mul r2, bp1, r4

Fig. 2 Pseudo assembly code snippet implementing r2 = r1 ∗ (r2 + r3) with a) a GPR based
instruction set (first parameter is the target register) and b) an architecture with the bypass
paths visible using a virtual register markup to refer to the values coming straight from the
bypass paths. In the latter, : marks a value that should not be written to the register file and
bp1 denotes a value in bypass -1.

The Efficient Low-power Microprocessor (ELM) project of the Stanford Univer-
sity studied techniques to reduce power consumption of embedded processors [12].
They identified that the main source of energy inefficiency in embedded RISC pro-
cessors is the instruction and data supply, more specifically the caches. In order to
reduce this bottleneck, they proposed the use of explicitly controlled instruction
register files [4] and operand register files [2]. Both of these techniques increase the
programmer-visibility by exposing more of the microarchitecture to the program-
mer. The operand registers enable explicit operand forwarding between function
units, bypassing the larger general purpose register file.

6 Pekka Jääskeläinen et al.

Operand Register Files (ORF) are present also in NVIDIA’s research architec-
ture referred to as Echelon [24]. The compiler controlled latency optimized cores
in their system are three way VLIWs with the additional level of data locality
added to improve power efficiency.

Similarly to Stanford ELM and Echelon, MOVE-Pro considers adding a small
set of registers local to the function units to improve the temporal freedom of the
software bypassing optimization [18] and to reduce the general purpose register
file accesses. In their work the small register file is located at the function unit
output, in contrast to Stanford ELM and Echelon where the additional register
files store function unit input operands. The MOVE-Pro paper does not evaluate
whether the additional complexity of multiple programmer accessible output or
input registers (instead of just one) is beneficial on average. In [18] the comparisons
were made against a simple RISC architecture instead of the previous exposed
datapath processors. For example, in [29] and [41] the authors observe that the vast
majority of temporary values are short lived, which can be interpreted that they
are used once or maybe twice in the program by instructions close to the producer,
which logically would speak against the additional complexity of multiple operand
or result registers.

Some of the AMD GPUs (at least the Evergreen [1] family), provide access to
the previously computed ALU values. The access is done using special registers
called previous vector and previous scalar that can be used as source operands. It
allows limited software bypassing of the results produced by the previous instruc-
tion group. Similarly, versions of ARM Mali GPUs [27] have been found to utilize
a programming model with direct access to function unit ports in their Vertex
Shader cores. Some of the function units even have an additional delayed output
register, which enables temporary variables to be accessed for longer time.

Out-of-the-box Computing proposes a statically scheduled architecture called
the Mill that avoids the general purpose register file bottleneck by using a tempo-
rary result storage called the Belt. The Mill architecture also exposes the function
unit pipeline latencies, like VLIW architectures. At the time of this writing, the
architecture is not yet fully published, but some of its novel concepts are advertised
in talks given by the CTO of the company [16].

Nevertheless, according to the recordings and slide sets of the talks, the Belt
is an interesting concept analogous to a conveyor belt. It can be described as a
FIFO that stores results from function units. New results pushed from one end
push out old results from the other end. What differentiates this idea from stack
or accumulator machines is that all the previous results, not only the last one, in
the belt can be directly referred to by the next instructions.

The Belt idea is similar to accessing function unit result ports directly (espe-
cially the cases where there are multiple registers per output). The similar idea was
proposed in the MOVE-Pro with its multiple result registers. However, in the Mill
architecture, they take a step further and remove the general purpose register file
completely. That is, it is possible to access temporary values only from the belt.
The next level in the memory hierarchy is a scratch pad memory where long lived
variables can be spilled. An interesting implication from this is that as the belt is
always the implicit destination, the instructions do not need to encode destination
specifiers at all, which potentially leads to instruction word width savings.

Code Density and Energy Efficiency of Exposed Datapath Architectures 7

2.3 Data Transport Programming

Data transport programming provides additional programmer freedom on top of
the software controlled bypasses: the possibility to control the timing of the func-
tion unit operand and result data transfers. This helps reducing the RF pressure
further as there is often slack in the programs: it is not necessary to move the
results to the next consumer or the register file immediately when they are ready.
Thus, while the software bypassing capability alone reduces the number of accesses
to the RF and the register pressure, the additional freedom of transport program-
ming can simplify the number of RF ports required to serve multiple functions
units even further. [9]

The concept of data transport programmed architectures was first proposed
for control processors in the mid-1970s. The work published by Lipovski can be
seen as one of the first research efforts in transport programmed processors [28,
35]. The proposed processor, named Conditional MOVE (CMOVE) included only
one instruction: a data move between memory mapped control registers. The ALU
was attached to the core as an I/O device.

Corporaal et al. have done extensive research on the benefits of data trans-
port programming. In a project called MOVE, they studied a data transport
programmed architecture for general purpose applications and high performance
computing [6]. In addition to an example transport programmed processor imple-
mentation called MOVE32INT [8], the MOVE project also produced a processor
design toolset with a retargetable C compiler, instruction set simulator, and au-
tomated design space exploration tools [10].

One of the key discoveries made in the MOVE project was the potential of
transport programming in reducing the register file complexity bottleneck of wide
VLIW architectures [20,23]. Significant reductions to the RF complexity were mea-
sured for transport programmed processors in the MOVE project. For example,
in [20] the authors conclude that two parallel operations can be supported using
only a two-ported register file, and 3.6 parallel operations using a six-ported regis-
ter file. This is a quite dramatic improvement to the original VLIW which requires
at least four read ports and two write ports to support two parallel operations,
and at least eight read ports and four write ports to support the average of 3.6
parallel operations.

The MOVE group proposed a new classification for processor architectures ac-
cording to how the instructions trigger the operation execution. In this classifica-
tion, their data transport architecture belonged to the class of Transport Triggered
Architectures (TTA) while the “traditional” architectures were classified as Oper-
ation Triggered Architectures (OTA) [7]. Instead of starting operations in function
units by the instructions, TTAs start the function unit operations as side-effects of
writing operand data to a “triggering port” of the function unit. Fig. 3 presents an
example TTA processor along with an instruction controlling the data transports
for a single cycle.

It should be noted that data transport programming does not imply that the
function unit operations are triggered by transports; the operation execution can
also be controlled separately from the data movements. This idea was proposed in
later (2011) MOVE-Pro [18] work from the group of Corporaal. MOVE-Pro does
not have designated trigger ports to start the operation like in the original MOVE,
thus increasing instruction scheduling freedom by allowing arbitrary operand move

8 Pekka Jääskeläinen et al.

ALU

Control Unit Immediate Unit

Complex MULLoad Store
Unit 1 Input/Output

FPU Register File

Load Store
Unit 2

Boolean
Register File

Instruction Memory

Data Memory

Transport bus

Interconnection
Network

Socket

Port

Connection

#4 -> ALU.IN

Instruction

LSU1.R -> ALU.IN2.ADD

RF.2 -> LSU2.T.STW

-

-

Fig. 3 Example of a TTA processor datapath. The datapath consists of function units, register
files, boolean register files, and a customizable interconnection network. Data transports are
explicitly programmed; a write to a special trigger port of a function unit starts the operation
execution. The example instruction defines moves for three buses out of five, performing an
integer summation of a value loaded from memory and a constant. In parallel, the third move
stores a register to memory. The rest of the buses are idle. The connections enabled by the
moves are highlighted with squares.

ordering for each operation. The other way to look at it is that, in fact, all of the
ports in their architecture are potentially triggering, which means the instruc-
tions need to encode the triggering info (add an opcode field) for all types of
operand move instructions, or a separate function unit issue field for each function
unit that can be triggered in parallel, like in the traditional VLIW/RISC style.
The programming simplification of allowing all move instructions to any operand
to trigger the operation execution has been proposed previously as Synchronous
Transfer Architecture, (STA) [15].

On top of the software bypassing, another interesting optimization proposed in
the context of the TTA work in MOVE was operand sharing [9]. The idea is that as
the function unit input ports are visible to the programmer and can have storage
of their own, sometimes the previously used operand value can be reused in the
successive computation. That is, the operand data that is the same for the next
operation needs not to be moved again to the input port of the function unit. This
optimization could be adopted also to non-transport programmed architectures in
case the function unit input ports are exposed to the programmer. In that case, the
optimization saves energy thanks to the reduced register file reads and avoiding
routing the operand again to the function unit input as illustrated in the example
in Fig. 4.

Research on TTAs in Tampere University of Technology was started in the
early 2000s. This work was based on the TTA template produced in the MOVE
project. An exposed datapath processor design and programming toolset named
TTA-Based Co-Design Environment (TCE) [22] was released to public in 2009
with an open source license. It provides a retargetable architecture description
language driven toolchain like the previous MOVE toolset. The architecture de-
scription language called Architecture Description File (ADF) is used to describe
exposed datapath processors using a parametrized processor template. ADF en-

Code Density and Energy Efficiency of Exposed Datapath Architectures 9

a) add r1, r2, r3 b) add r1, r2, r3
add r5, r2, r4 add r5, ’, r4

Fig. 4 Pseudo assembly code snippet implementing r1 = r2+r3; r5 = r2+r4; with a) a GPR
based instruction set (first parameter is the target register) and b) an architecture with the
function unit input port storage visible using a virtual register markup to refer to the previous
values in the function unit ports. In the latter, ′ marks a value that should not be read from
the register file but from the function unit input port (shadow) register. This is called the
operand sharing optimization.

Fig. 5 The 16-bit instruction format of MAXQ consists of two modes: a transport between
two locations, and a constant write to an index in the central transfer map [30].

ables describing original MOVE-style TTA processors, but also processors with
more limited datapath control [5].

MAXQ [30] from Maxim Integrated (introduced in 2004) is a commercial mi-
crocontroller that implements the data transport programming paradigm. The
16-bit processor implements the instruction fetch, decode and execution done in
a single pipeline stage. That is, the core is optimized for branch-heavy code, and
the transport programming helps in simplifying the processor structure in order
to provide the single-cycle instruction pipeline to reduce branch penalities. The
architecture is similar to the early CMOVE architecture in its mapping of all com-
ponents, including the function units, the register file, memories, and I/O devices
to the same address space (referred to as central transfer map) [28,35]. MAXQ has
a compact instruction encoding (see Fig. 5) used to refer to the locations in the
address space to execute operations, access I/O devices or registers, either directly
or indirectly through a prefix register.

2.4 Microprogramming

Some architectures provide a programmer interface that looks like the micropro-
grams in microcode-based processor implementations. They allow controlling the
datapath at the level of multiplexer select signals and expose the finest granular-
ity function unit opcodes to the programmer. While data transport programmed
architectures expose the movements of data between registers in the processor,
the microprogrammed architectures expose even more details such as the pipeline
register enable signals and, in general, have very little decoding, if at all, done to
the instruction bits when they are converted to control signals.

In 2003, a processor concept later to be called FlexCore [36] was proposed
within the FlexSoC [21] research project at Chalmers University of Technology.
FlexCores are programmed using so called Native-ISA (N-ISA) instructions that
are seemingly similar to horizontal microcode instructions. For instruction width

10 Pekka Jääskeläinen et al.

reduction they proposed the use of a “reconfigurable instruction decoder” which is
an instruction decompression unit that expands instructions encoded in so called
Application-Specific ISA (AS-ISA) format to the more detailed N-ISA format [3].
This is a concept similar to vertical microcoding with a writable control store. The
reconfigurability of the instruction decoder/decompressor allows the emulation of
multiple traditional ISAs with a single FlexCore datapath, an idea similar to a use
case for the original vertical microcoding. It also resembles the dynamic translation
used in the Crusoe processors [25] where the translation is done using a more
complex software layer. FlexCore is supported by a compiler with an instruction
scheduler [33].

Similarly to FlexCore, the No Instruction Set Computer (NISC) [31] utilizes the
idea of horizontally microcoded programming with no additional decoding logic.
Their compiler can also generate a Finite State Machine (FSM) based control logic,
making their design flow an interesting candidate as an implementation technique
for high level synthesis.

Silicon Hive produced a processor template based on what they called the Ul-
tra Long Instruction Word (ULIW) architecture, and offered several pre-designed
cores as programmable IP blocks [11]. The designs they published exploited hier-
archical distributed register files connected to a subset of function units to improve
energy efficiency and to reduce the centralized register file bottleneck.

Silicon Hive applied an explicitly controlled datapath approach to support the
scalable processor template (e.g., 41 parallel issue slots [26]). It is indicated that
the datapath is exposed to the degree that the bypasses and the pipeline control
are programmer controlled, but to which extent this programming model has been
applied in the sold cores is not clear [38]. The ultra long instruction words would
speak for it; their AVISPA design, for example, has 510-bit instructions, which
leads a rather big part of the energy to be consumed in the “configuration memory”
(instruction memory). The instruction memory energy efficiency can be improved
by means of using the so-called “data-flow mode” which aims to compile the inner
loops of programs to single instructions that are executed repeatedly on the input
data, thus reducing the switching activity for the instruction stream. In this setting
the processor looks like a Coarse Grained Reconfigurable Array (CGRA).

Static pipelining exposes a classical five-stage pipeline by removing the pipeline
registers and letting the compiler to control the same aspects the hardware con-
trols in the traditional pipelined version [13]. The concept resembles a micro-
programmed machine with a template-based instruction encoding to limit the
instruction word width.

2.5 Classification

In order to summarize the reviewed architecture variants, the architectures can
be categorized according to their degree of explicit processor control given to the
compiler as illustrated in Figure 6. In this picture, the innermost set includes the
architectures that expose basic function unit operations to the programmer. These
operations are of the complexity level of micro operations in microcoded CISC ar-
chitectures. It can be thought that instead of expanding the complex instructions
to simpler function unit operations at hardware, the programmer directly con-
trols the basic operations. In case of VLIW, an additional detail visible to the

Code Density and Energy Efficiency of Exposed Datapath Architectures 11

Fig. 6 The mentioned architectures and architecture concepts classified according to the level
of processor details exposed to the programmer/compiler. Each outermost set is a superset of
the innermost ones in the sense that the architectures in the outer sets provide more program-
mer control than the ones in the inner ones.

programmer is the function unit pipeline latencies, and they commonly lack data
hazard detection in the hardware. While not generally considered exposed datapath
architectures, they are included here as reference points.

The next degree includes architectures that provide capabilities to bypass a
centralized register file with software. In practice, this is done using either explicit
access to the bypass connections, function unit ports, result registers, or with
smaller distributed storage placed closer to the function units.

Explicit data transfers mean the ability to temporally control the data move-
ments between datapath registers. These registers can include register file ports
and function unit operand or result ports.

The architectures that provide the greatest programmer freedom are in the out-
ermost set. Their programming model resembles the microprograms of microcoded
processors, presenting very low level details of the datapath implementation to the
programmer.

3 Evaluation

In order to quantify the benefits of the different degrees of freedoms in various ex-
posed datapath design alternatives, we identified a set of interesting design points
for evaluation. In order to remove the compiler efficiency variance from the eval-
uation, we manually software pipelined typical loop kernels executed on this type
of static architectures. From these benchmarks we evaluated the differences in the

12 Pekka Jääskeläinen et al.

datapath resource usage, concentrating on the register file accesses and the num-
ber of required general purpose registers, the two main aspects that the exposed
datapath features are assumed to improve. We also considered the effects of each
variation on instruction encoding, and finally, we summed up the energy consump-
tion of the register file accesses and the instruction fetch to see the overall energy
impact from the different architecture design alternatives.

3.1 Benchmark Applications

Software pipelined 2-way unrolled versions of the SAXPY (Single-Precision AX
Plus Y), convolution, and the DCT (Discrete Cosine Transform) butterfly loops
were used in the evaluations. These are common routines in linear algebra and
signal processing. In all kernels the code being compared consists of only the
steady state of a software pipelined loop, i.e., does not include the overhead code,
which fills or drains the “software pipeline”.

The sequential pseudo assembly programs of the kernels are listed in the fol-
lowing. We unrolled the kernels twice to hide latencies.

SAXPY:

loop: X0 = load(XPTR+0)

X1 = load(XPTR+4)

Y0 = load(YPTR+0)

Y1 = load(YPTR+4)

RES0 = fma(X0, A , Y0)

RES1 = fma(X1, A , Y1)

store(RES0, YPTR+0)

store(RES1, YPTR+4)

XPTR = XPTR+8

YPTR = YPTR+8

I = add(I,2)

COND = cmple(I, LIMIT)

cjump COND, loop

Convolution accumulates two different sums, which are then merged after the
inner loop. The inner loop consists of the following operations:

loop: X0 = load(XPTR+0)

X1 = load(XPTR+4)

Y0 = load(YPTR+0)

Y1 = load(YPTR+4)

SUM0 = fma(X0, Y0, SUM0)

SUM1 = fma(X1, Y1, SUM1)

XPTR = XPTR+8

YPTR = YPTR+8

I = add(I,2)

COND = cmple(I, LIMIT)

cjump COND, loop

Code Density and Energy Efficiency of Exposed Datapath Architectures 13

Fig. 7 Example VLIW datapath used as a basis for evaluation. Outputs of each function unit
can be forwarded through the bypass network.

DCT butterfly:

loop: X0 = load(X0PTR+0)

X1 = load(X1PTR+0)

Y0 = fma(TW, X1, X0)

Y1 = fms(TW, X1, X0)

store(Y0, X0PTR+0)

store(Y1, X1PTR+0)

X0PTR = add(X0PTR, PINCR)

X1PTR = add(X1PTR, PINCR)

I = add(I,1)

COND = cmple(I, limit)

cjump COND, loop

3.2 Datapath Resources

A processor with the same execution resources and connectivity was designed for
the considered exposed datapath models and the kernels were manually optimized
to each of the variations. The resources of the processors were selected so that each
variation could execute the SAXPY loop kernel optimally in 6 cycles and both the
Convolution and the DCT Butterfly kernels optimally in 4 cycles, executing a
single load or store operation at every instruction cycle.

The execution units are as follows:

1. A load-store unit with base+offset addressing
2. A floating point unit (FPU) and an integer arithmetic-logic unit (ALU) sharing

the same execution port (or issue slot)
3. An integer ALU

14 Pekka Jääskeläinen et al.

4. A branch unit

The latencies of the operations are as follows:

– Loads 3 cycles
– ALU operations 3 cycles
– FMA (Fused Multiply-Add) operations 4 cycles
– Integer operations 1 cycle
– Jumps 3 delay slots

3.3 Variations of Exposed Datapath

The following exposed datapath variations were evaluated:

Basic operations

– VLIW (the baseline)
This models a RISC or a VLIW machine with fixed cycles for operand and
result transports. Register bypasses are assumed to be available to reduce the
latency, but the results are always written also to the register file.

Software bypassing

– SB: Software bypassing.
Like “VLIW” except the programmer can read the result from the function
unit directly (SB=Software Bypass). Writing the result to the register file can
also be omitted.

– SBR: Software bypass with result register.
Like “SB” except the result stays live in the result register until the next result
computed in the same function unit overwrites it.

– SBR2: Visible function unit result ports with two result registers.
Like “SBR” except that there is a temporary storage for the previous two
results in each function unit. Only one of the result registers of the same
function unit can be read at the same cycle.

– SBR2/2: Visible function unit result ports with two result registers and two
read ports.
Like “SBR2” except that both result registers can be read in parallel.

– SBR4: Visible function unit result ports with four result registers.
Like “SBR2” except that the result storage can hold the four latest results.

– SBR4/2: Visible function unit result ports with four result registers and two
parallel result reads.
Like “SBR4” except that two of the result registers can be read simultaneously.

– ORF2: Like SB but each FU has a local input register file with 2 registers
than can be written by any function unit, but read only by the corresponding
function unit.

– ORF4: Like ORF2, but each input register file contains 4 registers.

Code Density and Energy Efficiency of Exposed Datapath Architectures 15

Explicit data transfers

– OF: Temporal operand read freedom.
Like VLIW/SB, but with the possibility to control the timing of the first
operand transport. This has the potential to balance the load placed to the
RF ports across more cycles. It allows operand sharing between operations and
software bypassing some results that are produced earlier even though there is
no result register. Writes to the register file can be omitted.

– TF: Full datapath transport freedom.
The case where all operand and result transfers can be freely scheduled. The
operations are triggered as a side-effect of a trigger port data transfer.

– TFR2: Full datapath transport freedom with two result registers.
Like “TF” but with storage for two previous results in each function unit. Only
one of the results in the same function unit can be read at the same clock cycle.

– TFR2/2: Full datapath transport freedom with two result registers and two
parallel result reads.
Otherwise like “TFR2” except that the two result registers can be read simul-
taneously

– TFR4: Full datapath transport freedom with four result registers.
Like “TFR2” but with four result registers in each function unit. Only one of
the results of the same function unit can be read at same clock cycle.

– TFTR4/2: Full datapath transport freedom with four result registers and two
parallel result reads.
Otherwise like “TFR4” except that two of the four result registers can be read
simultaneously.

Table 1 General purpose register resource usage of SAXPY with the different datapath pro-
gramming models. Reads and writes are the sum of general purpose register file reads and
writes. The live GPRs value indicates the register pressure; it is the maximum number of
GPRs in use at the same time. Rd port and wr port counts measure the pressure on the main
register file resources; it is the number of read or write accesses the program has to perform
at parallel to reach a cycle optimal schedule to the main GPR register file. Local RF access
means accesses to a smaller register files closer to the function units. The local RFs can be
either operand register files or output register files, depending on the architecture variation.

Architecture reads writes live GPRs rd ports wr ports local RF access
VLIW 21 10 11 4 2 0
SB 15 6 9 3 2 0
SBR 14 6 9 3 2 0
SBR2 12 5 8 3 2 9r
SBR2/2 9 3 7 2 1 12r
SBR4 7 3 6 3 1 14r
SBR4/2 4 0 4 1 0 17r
ORF2 5 3 3 2 1 11r + 4w
ORF4 4 2 2 2 1 12r + 5w
OF 8 5 8 2 2 0
TF 8 5 8 2 1 0
TFR2 7 4 7 2 1 12r
TFR2/2 6 3 6 2 1 11r
TFR4 4 1 4 2 1 13r
TFR4/2 3 0 3 1 0 13r

16 Pekka Jääskeläinen et al.

Table 2 General purpose register resource usage of convolution. See Table 1 caption for
explanation.

Architecture reads writes live GPRs rd ports wr ports local RF access
VLIW 16 10 8 5 3 0
SB 8 5 6 3 2 0
SBR 8 5 6 3 2 0
SBR2 8 5 6 3 2 8r
SBR2/2 7 4 5 3 2 9r
SBR4 6 4 5 2 2 10r
SBR4/2 1 0 1 1 0 15r
ORF2 4 2 2 2 1 4r + 3w
ORF4 4 2 2 2 1 4r + 3w
OF 5 4 5 2 2 0
TF 5 4 5 2 2 0
TFR2 5 4 5 2 1 11
TFR2/2 5 4 5 2 1 12
TFR4 3 2 3 2 2 12
TFR4/2 1 0 1 1 0 13

Table 3 General purpose register resource usage of DCT butterfly. See Table 1 caption for
explanation.

Architecture reads writes live GPRs rd ports wr ports local RF access
VLIW 20 8 10 7 2 0
SB 14 6 9 5 2 0
SBR 12 4 8 5 2 0
SBR2 12 4 8 5 2 8r
SBR2/2 8 3 7 3 2 12r
SBR4 11 4 8 4 2 9r
SBR4/2 5 0 4 2 0 15r
ORF2 8 2 4 3 1 6r + 4w
ORF4 6 2 2 2 1 8r + 4w
OF 8 5 7 3 2 0
TF 6 3 6 3 1 0r
TFR2 6 3 6 3 1 9r
TFR2/2 6 3 6 3 1 9r
TFR4 4 1 4 2 0 11r
TFR4/2 3 0 3 2 0 12r

3.4 Result Analysis

Software bypassing with dead result elimination seems to have considerable effect
on the amount of register file usage. It enables 25-50% of all register writes to be
eliminated on these benchmark kernels.

The number of register file reads and total data transfers can be reduced dra-
matically with transport programmed processors in comparison to just exposing
the result ports of an otherwise VLIW-style architecture. The main reason for this
was operand sharing; the values of the x and y pointers of SAXPY and convolution
routines could be kept in the function unit port for multiple memory operations,
and the scalar multiplier A could be kept in the FMA port for the duration of the
whole inner loop.

Adding registers to the function unit outputs to allow result values to be by-
passed later than the cycle they arrive seems to have more mixed results, and seem

Code Density and Energy Efficiency of Exposed Datapath Architectures 17

V
LI

W S
B

S
B

R

S
B

2

S
B

2
/2

S
B

R
4

S
B

R
4

/2

O
R

F2

O
R

F4 O
F

T
F

T
FR

2

T
FR

2
/2

T
FR

4

T
FR

4
/2

Architecture

5

10

15

20

25

30
R

e
g
is

te
r

a
cc

e
ss

e
s

SAXPY
Convolution
Butterfly

Fig. 8 General purpose register accesses on the benchmark kernels on the different architec-
tures.

to depend more on the workload. For SAXPY, which has less dense code, adding
more result registers seems to always help, but for Convolution benefits were seen
only after adding a fourth result register.

The amount of result read ports seems to become important in all cases on
processors without explicit data transfers. Multiple result registers seem to give a
much larger benefit if two result registers can be read at same cycle. A single read
port seems to become a bottleneck. Multiple output ports for the result registers
may, however, lead to a more complex result register file and bypass network, and
the cost of accessing the result registers starts to approach the cost of accessing
ordinary registers in the main register file. Obviously, how much adding a smaller
result storage gives benefit depends on the size of the larger register files in the
hierarchy of which access is avoided using it.

On explicit data transfer processors with the temporal operand freedom, the
ability to read multiple result registers of the same function unit at the same cycle
is still beneficial, but the effect is considerably smaller than without transport
freedom.

Increasing output registers of function units to four registers with two result
read ports resulted in very few accesses to the main register file in all cases.
However, in these benchmark cases all of the loop-carried variables could be kept
in the result registers. With a larger kernel where all the loop-carried variables
would not fit the output registers the benefit from four result registers would be
smaller.

Even very small input register files that can be read by only single function
units can cover most of the register data traffic in these cases and so reduce the
amount of traffic to the main register file considerably. Even input register files of

18 Pekka Jääskeläinen et al.

Bits

Input operand RF index

Input operand 0 RF index
(with immediate) 1 Immediate

2-input Opcode Input 1 Input 2 (Imm) Output

3-input (simple) Opcode Input 1 Input 2 (imm) Input 3 Output

3-input (opt.) 0 Opcode Input 1 Input 2 (imm) Output
3-input (opt.) 1 Input 3 Input 1 o Input 2 Output

Fig. 9 Instruction encoding for VLIW issue slots in the example processor.

size two can lower the amount of accesses to the main register file considerably,
but four input registers seem to give some further reduction in accesses to the
main GPR file.

3.5 Code Density

VLIW processors use a horizontal instruction encoding where the instruction is
divided into separate fields that control the different function units. Figure 9 shows
a possible instruction encoding for the example processor, assuming 32 general
purpose registers and 5-bit opcode fields and immediates. The ALU+BU and
ALU+LSU units are encoded simply as an opcode field and three operand fields,
for a total of 21 bits, each. A similar encoding for the ALU+FPU gives 26 bits.
However, by only encoding the third operand for the two applicable operations
fmadd and fmsub this can be optimized down to 23 bits. Removing the immediate,
which the floating-point instructions are unlikely to use, saves one more bit.

In the SB variation, the instruction needs additional information to control
the bypass network. As discussed in section 2, software bypass sources can be
encoded as virtual register indices. Case SBR specifies that output registers hold
their values on a no-operation instruction. Since a nop opcode is necessary in any
case, SBR requires no additional instruction bits.

Cases SBR2 through SBR4/2 add more result registers to each FU, which
can be encoded as additional bypass sources. The largest configurations have 12
sources, leaving values for only 20 general purpose registers. This is justified since
these configurations can also run the test programs using fewer general purpose
registers. Since most of the instruction word consists of register indices, increasing
the number of logical registers has a large impact on the instruction width. It is
possible to store the output port indices in separate fields as a middle ground.

Cases ORF2 and ORF4 add all the input registers as possible destinations for
result, and registers of a single input register file as possible sources of operations.
These can be encoded with virtual register indexes, where the result fields limit
the amount of GPRs.

Explicit data transfer processors such as TTAs can be programmed by defining
moves on a network of transport buses. The instruction word consists of a source
and destination field for each bus. There is a large design space of possible net-
works, many of which are inefficient or nonfunctional. Due to this, earlier work
often relies on automated design space exploration. In order to obtain a meaning-

Code Density and Energy Efficiency of Exposed Datapath Architectures 19

Fig. 10 Explicit data transfer version of the example VLIW datapath in Figure 7 with the
same connections. Black boxes indicate bypass connections.

ful comparison, we designed a bus network with connectivity as close as possible
to the example VLIW datapath, as shown in Figure 10.

The bus-encoded instruction word is almost identical to SB, except where
SB has nop instructions for each FU, TF/OF must encode a lack of transfer on
each bus. The nop condition can be encoded in either the source or destination
field. In the example processor, it appears optimal to use an additional virtual
register. Moreover, the optimization in Figure 9 is inapplicable, since the input
operands of the ALU+FPU are spread onto three separately programmable buses.
This costs 4 additional instruction bits. Like the corresponding software bypassing
architectures, cases TFR2 through TFR4/2 can be encoded with either additional
virtual registers or separate output index fields. Table 4 shows the tradeoff between
programming model, GPRs and instruction bits.

In the analysis so far, exposed-datapath techniques have little effect on the
instruction word and, in particular, bus encoding is very close to simple VLIW
encoding. One feature that excaberates the differences in practical systems is con-
ditional execution, where instructions can be predicated on guard bits; this is useful
for programming conditional behavior without expensive branches. TF processors
usually have predicates for each move slot instead of each issue slot, which would
triple their amount in the example processor. Table 4 shows the effect of a 1-bit
predicate on the example processor. While this table shows the maximum cost of
predicating all move slots, it is possible to predicate only trigger or result moves
with some added compiler complexity.

Moreover, we have not considered variable-length instruction encoding. Since
practical programs have serial sections where the wide machines are underuti-
lized, an encoding where multiple serial instructions fit in the space of one parallel
instruction is desirable. One possible variable-length encoding scheme is to only
encode active issue slots, indicated by a short bitmask at the start of the instruc-
tion. TF moves are less convenient units of encoding than VLIW slots since they
are more numerous and have varying lengths. Alternate schemes have been pro-
posed for TF, such as template-based encoding, which only allows some common
nop patterns [19].

20 Pekka Jääskeläinen et al.

Table 4 Instruction width of the evaluated datapath with different programmer exposed
features. Bits indicate instruction word size, GPRs is the number of general purpose registers
available to the programmer. In 32 registers and 64 registers, the processor has the said number
of RF indices, and all bypass sources are represented as virtual registers. OR field is like 32
registers, except output register indices are encoded in a separate field; therefore, fewer bypass
sources are needed. 1-bit predicates is like 32 registers, except with support for conditional
execution, with 1-bit predicates for each issue slot (for VLIW and SB) or move slot (for OF
and TF).

Processor
32 registers OR field 64 registers 1-bit predicates

Bits GPRs Bits GPRs Bits GPRs Bits GPRs
VLIW 64 32 74 64 67 32
SB(R) 64 29 74 61 67 29
SBR2 64 26 67 29 74 58 67 26
SBR2/2 64 26 70 29 74 58 67 26
SBR4 64 20 70 29 74 52 67 20
SBR4/2 64 20 73 29 74 52 67 20
ORF2 64 26 74 58 67 26
ORF4 64 20 74 52 67 20
OF/TF 68 28 78 60 78 28
TFR2 68 25 71 28 78 57 78 25
TFR2/2 68 25 74 28 78 57 78 25
TFR4 68 19 74 28 78 51 78 19
TFR4/2 68 19 77 28 78 51 78 19

3.6 Power Consumption

The results of the previous sections enable us to estimate the power effects of each
programming model on the most affected parts of the processor; the register file
(RF) and the instruction fetch. We characterize the leakage power and read energy
of instruction memory and RFs using CACTI 6.5 [40]. Both instruction memories
and RFs are modeled as low-power SRAMs on 32nm synthesis technology at 350K.
We assume a 256-word L1 instruction cache. Non-power-of-two instruction memory
widths were estimated by linear interpolation between 64-bit and 128-bit SRAM.
We assumed the same local RF access energies as in [2], relative to a reference
RF read energy estimated with CACTI. The output RF is assumed to replace
an output register. Bypass network complexity nor any bypass energies were not
modeled; this causes a minor bias in favor of SB2/2, SBR4/2, etc. which have more
complex bypass network, and minor bias against OF/TF and ORF architectures
which can read more operands locally from operand registers without bypass.

Figure 11 shows estimated power when running an average of the microbench-
mark kernels at 500MHz. Exposed datapath techniques appear to give significant
reductions in RF power. Instruction fetch takes up significant power, but not
enough to make the code density overhead of TF significant. Cases SBR4/2 and
TFR4/2 use very little RF power, but may be less attractive in practice due to the
enlarged bypass network and additional FU output register hardware, which are
not included in the power model. The ORF architectures with operand register
files save a lot of power in the main RF accesses, but they may require slightly
more complex interconnects for storing results as the results may go to any of the
four register files. TFR4 seems to represent an interesting architecture, taking al-
most as little power as SBR4/2 without enlarging the bypass network but requires
only one simultaneous read access to the small result register file.

Code Density and Energy Efficiency of Exposed Datapath Architectures 21

V
LI

W S
B

S
B

R

S
B

2

S
B

2
/2

S
B

R
4

S
B

R
4

/2

O
R

F2

O
R

F4 O
F

T
F

T
FR

2

T
FR

2
/2

T
FR

4

T
FR

4
/2

Architecture

0.0

0.5

1.0

1.5

2.0

2.5

3.0
P
o
w

e
r

(m
W

)
local RF power

RF power

Fetch power

I$1 leakage

Fig. 11 Estimated RF and fetch power consumption on microbenchmark kernels (averaged)
in the different programming models.

V
LI

W S
B

S
B

R

S
B

2

S
B

2
/2

S
B

R
4

S
B

R
4

/2

O
R

F2

O
R

F4 O
F

T
F

T
FR

2

T
FR

2
/2

T
FR

4

T
FR

4
/2

Architecture

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
o
w

e
r

(m
W

)

1-bit predicate

local RF power

RF power

Fetch power

I$1 leakage

Fig. 12 Estimated RF and fetch power consumption when encoding output register indices
in separate fields. Effect from predicated execution with 1-bit predicates is also shown.

22 Pekka Jääskeläinen et al.

There is a high probability of running out of general purpose registers on the
larger architectures, especially for wider-issue processors. Therefore, we also ob-
tained power figures with output register indices encoded in separate fields (middle
column in Table 4). The encoding has some combinatorial inefficiency, but ensures
that at least 27 or 28 GPRs are available. It can be regarded as the worst-case
instruction bit cost of each architecture. The results are shown in Figure 12. Code
density is now more visible than with virtual registers and has some practical ef-
fects, e.g., the RF power reduction from TFR2 and TFR4 is mostly offset by the
increasing fetch power.

3.7 Effects from the Reduced Register File Complexity

A major benefit of the transport programming freedom in the explicit data trans-
fer processors is the ability to reduce the number of register file ports, which is
the main scaling bottleneck of VLIW architectures. Therefore, it is interesting to
evaluate whether a shrunk machine with fewer register file ports and connections
can be programmed with a shorter instruction. As shown in Figure 13, reduc-
ing the example TF architecture to three RF ports, and shrinking the connection
network accordingly, reduces the instruction word from 68 bits to 62. With micro-
optimizations to eliminate redundancies by, e.g., resizing the immediates, this can
be shrunk further to 55 bits, 19% less than the baseline VLIW instruction.

Fig. 13 Transport programmed datapath with reduced RF ports. RF indices are encoded
separately from buses.

Reduced number of ports also affect the RF power consumption. According to
CACTI, a memory access to the simplified 3-port RF uses 64% energy of the full
10-port RF. Figure 14 shows power figures assuming the minimum complexity RF
required to run each benchmark in 6 cycles. TF instruction optimization similar
to Figure 14 is applied whenever possible, but only has a small effect.

Code Density and Energy Efficiency of Exposed Datapath Architectures 23

V
LI

W S
B

S
B

R

S
B

2

S
B

2
/2

S
B

R
4

S
B

R
4

/2

O
R

F2

O
R

F4 O
F

T
F

T
FR

2

T
FR

2
/2

T
FR

4

T
FR

4
/2

Architecture

0.0

0.5

1.0

1.5

2.0

2.5

3.0
P
o
w

e
r

(m
W

)
Baseline

local RF power

RF power

Fetch power

I$1 leakage

Fig. 14 Estimated register file and fetch power consumption on microbenchmark kernels
(averaged) with reduced RF ports and connections. Compared against the machine with the
baseline register file.

4 Conclusions

This paper reviewed different approaches to exposed datapath architectures. It
provided an overview of the proposed alternatives and an evaluation of various
interesting exposed datapath design points. The focus of the article was on the
instruction density versus energy efficiency trade-off apparent in these kind of
architectures. The goal was to find which of the additional programmer freedoms
and control points are the most beneficial when taking in to account their impact
on code density.

We confirmed earlier findings that exposed-datapath techniques give significant
register file power reductions. Even the simplest benchmarked exposed datapath
architecture, a VLIW with software bypassing, saves 25% of RF and fetch power.
The processors with 4-word, 2-read port output RFs gave the largest savings of 59%
and 60%, respectively. The effects on instruction fetch power were comparatively
insignificant with a careful instruction encoding.

Processors with explicit data transfers required 13% less fetch and RF power on
average than corresponding software-bypassing VLIWs, or 17% with reduced RF
ports. However, due to their bus encoding, explicit data transfer machines have
code density difficulties with serial code, which was not included in our model
at this time. Since the instruction has many independent fields of varying size,
conventional VLIW compression schemes for serial code may be impractical to
implement, and for the same reason conditional execution may require more in-
struction bits. It depends on the case (e.g., how branchy the code is) whether
the RF power advantage is large enough to offset these difficulties. For this pa-

24 Pekka Jääskeläinen et al.

per we analyzed only data-oriented kernels typically mapped to this type of static
data-oriented architecture.

In contrast to what was suggested in [29] and [41] of majority of variables being
short-lived, we found that a particularly interesting design point is a processor
with transport freedom with a 4-entry output register file fused to each function
unit. With the considered kernels it consumes 20% less benchmarked power than
the corresponding software-bypassing VLIW, 19% less than the baseline TF, and
52% less than the VLIW baseline. This style of design, which explores smaller
operand or result buffers is discussed in the reviewed literature and deserves more
attention. The standard operation programmed VLIW augmented with software
bypassing capabilities and a small result register file with two parallel read accesses
can get close to the efficiency of a transport programmed one. Further research is
warranted to confirm whether these architectures remain efficient with larger test
programs.

An interesting finding was that due to the ability to shrink the register file ar-
chitecture without performance loss, the instruction encodings of the exposed dat-
apath variations (especially transport programmed) also get smaller. This means
that sometimes the additional programmer detail can, in fact, lead to improved
code density, not always worsening like generally assumed earlier.

This article focused mostly on the energy benefits in exposed datapath vari-
ations. However, like it has been pointed out in earlier work [20], the benefits
of exposing the datapath go beyond the energy savings. For example, exposing
the datapath enables supporting wider VLIW designs with simpler register files,
avoiding a common clock frequency scaling bottleneck. Whether this benefit is im-
portant enough to justify the additional compiler engineering complexity required
depends on the instruction-level parallelism available in the applications of inter-
est. Similarly, how major impact the power consumption of the datapath has to
the total power consumption of the design is highly dependent on the targeted
applications, especially on their data memory and I/O characteristics.

In the future, we plan to look more into the variations of exposed datapath
architectures and their compiler support. One point that was left out from this eval-
uation was that of context switches: If fast interrupts or preemption are required
from an exposed datapath processor design, what are the minimal additional re-
quirements to the hardware and the software? This is not of high concern in archi-
tectures with multiple cores where separate cores can be dedicated for interrupts
or I/O, but perhaps more so in ultra low power control-oriented applications, or
if one wants to support an operating system with pre-emptive scheduling. In this
evaluation we assumed that the cores using exposed datapath features are those
that might interrupt, but usually are not interrupted, thus not used in reactive
applications.

Acknowledgements

This work was funded by Academy of Finland (funding decision 253087), Finnish
Funding Agency for Technology and Innovation (project ”Parallel Acceleration”,
funding decision 40115/13), and ARTEMIS joint undertaking under grant agree-
ment no 641439 (ALMARVI).

Code Density and Energy Efficiency of Exposed Datapath Architectures 25

References

1. Advanced Micro Devices, Inc.: Evergreen Family Instruction Set Architecture Instructions
and Microcode Reference Guide (2011). Rev. 1.1a

2. Balfour, J., Halting, R., Dally, W.: Operand registers and explicit operand forwarding.
Computer Architecture Letters 8(2), 60–63 (2009). DOI 10.1109/L-CA.2009.45

3. Bardizbanyan, A., Själander, M., Larsson-Edefors, P.: Reconfigurable instruction decoding
for a wide-control-word processor. In: Proc. IEEE Int. Symp. Parallel Distr. Process., pp.
322–325 (2011). DOI 10.1109/IPDPS.2011.155

4. Black-Schaffer, D., Balfour, J., Dally, W., Parikh, V., Park, J.: Hierarchical instruction
register organization. Computer Architecture Letters 7(2), 41–44 (2008). DOI 10.1109/L-
CA.2008.7

5. Cilio, A., Schot, H., Janssen, J.: Architecture Definition File: Processor Architecture Defi-
nition File Format for a New TTA Design Framework. Tampere University of Technology,
Finland (2006). URL http://tce.cs.tut.fi/specs/ADF.pdf

6. Corporaal, H.: Transport triggered architectures examined for general purpose applica-
tions. In: Proc. Sixth Workshop Comput. Syst., pp. 55–71. Delft, the Netherlands (1993)

7. Corporaal, H.: Microprocessor Architectures: From VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

8. Corporaal, H., Arend, P.: MOVE32INT, a sea of gates realization of a high performance
transport triggered architecture. Microprocess. Microprogramming 38, 53–60 (1993). DOI
10.1016/0165-6074(93)90125-5

9. Corporaal, H., Hoogerbrugge, J.: Code generation for transport triggered architectures.
In: Code Generation for Embedded Processors, pp. 240–259. Springer-Verlag, Heidelberg,
Germany (1995). DOI 10.1007/978-1-4615-2323-9 14

10. Corporaal, H., Mulder, H.: MOVE: A framework for high-performance processor de-
sign. In: Proc. ACM/IEEE Conf. Supercomputing, pp. 692–701 (1991). DOI
10.1145/125826.126159

11. van Dalen, E., Pestana, S., van Wel, A.: An integrated, low-power processor for im-
age signal processing. In: IEEE Int. Symp. Multimedia, pp. 501–508 (2006). DOI
10.1109/ISM.2006.27

12. Dally, W., Balfour, J., Black-Shaffer, D., Chen, J., Harting, R., Parikh, V., J.Park,
D.Sheffield: Efficient embedded computing. Computer 41(7), 27–32 (2008). DOI
10.1109/MC.2008.224

13. Finlayson, I., Davis, B., Gavin, P., Uh, G.R., Whalley, D., Själander, M., Tyson, G.: Im-
proving processor efficiency by statically pipelining instructions. In: Proc. ACM SIG-
PLAN/SIGBED Conf. Languages Compilers Tools Embedded Syst., pp. 33–44. ACM
(2013). DOI 10.1145/2465554.2465559

14. Fisher, J.: Trace scheduling: A technique for global microcode compaction. IEEE Trans.
Comput. C-30(7), 478–490 (1995). DOI 10.1109/TC.1981.1675827

15. G.Cichon, Robelly, P., Seidel, H., Matúš, E., Bronzel, M., Fettweis, G.: Synchronous trans-
fer architecture (STA). In: Computer Systems: Architectures, Modeling, and Simulation,
Lecture Notes in Computer Science, vol. 3133, pp. 193–207. Springer, Berlin, Germany
(2004). DOI 10.1007/978-3-540-27776-7 36

16. Godard, I.: Drinking from the firehose: The Belt machine model in the MillTMCPU archi-
tectures (2013). URL http://ootbcomp.com/docs/belt/index.html

17. Guzma, V., Jääskeläinen, P., Kellomäki, P., Takala, J.: Impact of software bypassing on
instruction level parallelism and register file traffic. In: Embedded Computer Systems:
Architectures, Modeling, and Simulation, Lecture Notes in Computer Science, vol. 5114,
pp. 23–32. Springer, Heidelberg, Germany (2008). DOI 10.1007/978-3-540-70550-5 4

18. He, Y., She, D., Mesman, B., Corporaal, H.: MOVE-Pro: A low power and high code
density TTA architecture. In: Proc. Int. Conf. Embedded Comput. Syst.: Arch. Modeling
Simulation, pp. 294–301 (2011). DOI 10.1109/SAMOS.2011.6045474

19. Heikkinen, J., Rantanen, T., Cilio, A., Takala, J., Corporaal, H.: Evaluating template-
based instruction compression on transport triggered architectures. In: Proc. IEEE
Int. Workshop. System-on-Chip for Real-Time Applications, pp. 192–195 (2003). DOI
10.1109/IWSOC.2003.1213033

20. Hoogerbrugge, J., Corporaal, H.: Register file port requirements of Transport Triggered
Architectures. In: Proc. Annual Int. Symp. Microarchitecture, pp. 191–195 (1994). DOI
10.1109/MICRO.1994.717458

26 Pekka Jääskeläinen et al.

21. Hughes, K., Jeppson, P., Larsson-Edefors, M., Sheeran, M., Stenström, P., Svensson, L.:
”FlexSoC: Combining flexbility and efficiency in SoC designs”. In: Proc. IEEE NorChip
Conf. (2003)

22. Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-specific
instruction-set processors. In: Proc. SPIE Multimedia Mobile Devices, pp. 65,070X–1 –
65,070X–11 (2007). DOI 10.1117/12.707233

23. Janssen, J., Corporaal, H.: Partitioned register file for TTAs. In: Proc. Ann. Workshop
Microprogramming, pp. 303–312 (1996). DOI 10.1109/MICRO.1995.476840

24. Keckler, S., Dally, W., Khailany, B., Garland, M., Glasco, D.: GPUs and the future of
parallel computing. IEEE Micro 31(5), 7–17 (2011). DOI 10.1109/MM.2011.89

25. Klaiber, A.: The Technology Behind Crusoe Processors: Low-power x86-Compatible Pro-
cessors Implemented with Code Morphing Software. Tech. rep., Transmeta Corp. (2000)

26. Leijten, J., Burns, G., Huisken, J., Waterlander, E., van Wel, A.: AVISPA: A massively par-
allel reconfigurable accelerator. In: Proc. Int. Symp.System-on-Chip, pp. 165–168 (2003).
DOI 10.1109/ISSOC.2003.1267747

27. Lima: An open source graphics driver for ARM Mali GPUs (2013). URL
http://limadriver.org

28. Lipovski, G.: The architecture of a simple, effective control processor. In: Euromicro Symp.
Microprocess. Microprogramming, pp. 7–19 (1976)

29. Lozano, L., Gao, G.: Exploiting short-lived variables in superscalar processors. In: Proc.
Ann. Int. Symp. Microarch., pp. 292–302 (1995). DOI 10.1109/MICRO.1995.476839

30. Maxim Integrated Products, Inc.: Introduction to the MAXQ Architecture (2004). Appli-
cation Note 3222

31. Reshadi, M., Gorjiara, B., Gajski, D.: Utilizing horizontal and vertical parallelism with a
no-instruction-set compiler for custom datapaths. In: Proc. Int. Conf. Comput. Design,
pp. 69–76 (2005). DOI 10.1109/ICCD.2005.112

32. Rosin, R.: Contemporary concepts of microprogramming and emulation. ACM Computing
Surveys 1(4), 197–212 (1969). DOI 10.1145/356556.356559

33. Schilling, T., Själander, M., Larsson-Edefors, P.: Scheduling for an embedded architecture
with a flexible datapath. In: IEEE Comput. Soc. Ann. Symp. VLSI, pp. 151–156 (2009).
DOI 10.1109/ISVLSI.2009.6

34. Smith, R.: A historical overview of computer architecture. IEEE Annals of the History of
Computing 10(4), 277–303 (1988). DOI 10.1109/MAHC.1988.10039

35. Tabak, D., Lipovski, G.: MOVE architecture in digital controllers. IEEE Journal of Solid-
State Circuits 15(1), 116–126 (1980). DOI 10.1109/JSSC.1980.1051344

36. Thuresson, M., Själander, M., Bjork, M., Svensson, L., Larsson-Edefors, P., Stenström,
P.: FlexCore: Utilizing exposed datapath control for efficient computing. In: Proc. Int.
Conf. Embedded Comput. Syst.: Arch. Modeling Simulation, pp. 18–25 (2007). DOI
10.1109/ICSAMOS.2007.4285729

37. Touzeau, R.: A Fortran compiler for the FPS-164 scientific computer. In: Proc. SIGPLAN
Symp. Compiler Construction, pp. 48–57 (1984). DOI 10.1145/502874.502879

38. Vaughan-Nichols, S.: Vendors go to extreme lengths for new chips. Computer 37(1), 18–20
(2004). DOI 10.1109/MC.2004.1260714

39. Wilkes, M.: The growth of interest in microprogramming: A literature survey. ACM
Computing Surveys 1(3), 139–145 (1969). DOI 10.1145/356551.356553

40. Wilton, S.J., Jouppi, N.P.: CACTI: An enhanced cache access and cycle time model. IEEE
J. Solid-State Circ. 31(5), 677–688 (1996). DOI 10.1109/4.509850

41. Yan, J., Zhang, W.: Virtual registers: Reducing register pressure without enlarging the
register file. In: High Performance Embedded Architectures and Compilers, Lecture Notes
in Computer Science, vol. 4367, pp. 57–70. Springer (2007). DOI 10.1007/978-3-540-69338-
3 5

