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An Adaptive Derivative Free Method for Bayesian
Posterior Approximation

Matti Raitoharju*, Simo Ali-Löytty

Abstract—In the Gaussian mixture approach a Bayesian pos-
terior probability distribution function is approximated using
a weighted sum of Gaussians. This work presents a novel
method for generating a Gaussian mixture by splitting the prior
taking the direction of maximum nonlinearity into account. The
proposed method is computationally feasible and does not require
analytical differentiation. Tests show that the method approxi-
mates the posterior better with fewer Gaussian components than
existing methods.

I. I NTRODUCTION

I N Bayes’ theorem ann-dimensional state vectorx is
estimated by updating its prior distribution using given

measurements. The posterior distribution given measurement
y is

p(x|y) =
p(y|x)p(x)

p(y)
, (1)

where p(x) is the prior probability density function (pdf)
of the state,p(y) is a normalizing constant,p(y|x) is the
measurement likelihood andp(x|y) is the posterior pdf. In
general the update cannot be done analytically.

In this paper the prior is assumed to be a Gaussian and the
measurementy to be a scalar that may be written in the form

y = h(x) + ε, (2)

whereh(x) is the measurement function andε is the measure-
ment error, assumed to be zero mean Gaussian independent of
the prior.

If the measurement function is linear, i.e.h(x) may be
written asJx, the posterior can be computed with the Kalman
update [1]

z = h(x) S = JPJT + R

C = PJT K = CS−1

x+ = x + K (y − z) P+ = P − KSKT

, (3)

wherex andx+ are the prior and posterior means,P andP+

are the prior and posterior covariances andR is the variance
of the measurement error. In this paper we assume thatP and
R are nonsingular.

If the measurement model is not linear the above update
cannot be used directly. For nonlinear cases one of the simplest
update methods is to compute the Jacobian of the measurement
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function in the prior mean and use it asJ in the Kalman
update (3). This is used in the Extended Kalman Filter (EKF)
[2, p. 278]. This requires analytical differentiation ofh(x),
which can be difficult or impossible to perform, also the
approximation may be poor if the JacobianJ varies a lot in
a small area around the prior mean.

The Unscented Kalman Filter (UKF) is an alternative to
EKF that does not require analytical differentiation. The UKF
update is based on the evaluation of the measurement function
at the so called sigma points. The computation of the sigma
points require the computation of a matrix square root of the
covariance matrix

P = LLT (4)

using, for example, Cholesky decomposition. The extended
symmetric sigma point set is

χ0 = x

χi = x + ∆i, 1 ≤ i ≤ n (5)

χi = x − ∆i−n, n < i ≤ 2n,

where∆i =
√

n + ξL:,i (L:,i is the ith column of L) and ξ

is an algorithm parameter. The prior is updated by using the
following approximations in the Kalman update (3)

z ≈
∑

Ωi,mh(χi)

S ≈R +
∑

Ωi,c (h(χi) − z) (h(χi) − z)T (6)

C ≈
∑

Ωi,c (χi − x) (h(χi) − z)
T

,

whereΩ0,m = ξ
n+ξ

, Ω0,c = ξ
n+ξ

+(1−α2
UKF +βUKF), Ωi,c =

Ωi,m = 1

2n+2ξ
, (i > 0) and ξ = α2

UKF(n + κUKF) − n. The
variables with subscript UKF are algorithm parameters [3],
[4]. Although the UKF update evaluates the measurement in
several points, the posterior distribution is approximated with
a single Gaussian. In many cases a single Gaussian is not
enough to give a good approximation of the posterior.

Gaussian mixture filters use a weighted sum of Gaussian
components to approximate the pdfs [5],

p(•) =
∑

wkpN(•|xk, Pk), (7)

wherewk is the component weight andpN(•|xk, Pk) is a pdf
of normal distribution with meanxk and covariancePk. This
allows better approximation of the posterior especially when
the true posterior is multimodal. The update of any single
component may be done using the EKF or UKF formula and
the weight of a component is multiplied by the innovation
likelihood

w+

k ∝ wkpN (y|zk, Sk), (8)
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and normalized so that the sum of weights is one.
Although this paper concentrates only on a single update

the proposed method is intended to be part of a GMF that
does the estimation of a time series. Usually GMFs do not
have a constant number of components and a critical issue is
to keep the number of components low while still estimating
the distributions well.

In algorithms found in the literature the splitting of the prior
component in case of nonlinearity into components depends
only on the prior distribution. Examples of this kind of GMFs
are Sigma Point GMF (SPGMF) [6], Box GMF (BGMF)
[7] and Split and Merge Unscented GMF [8]. The first two
algorithms require analytical differentiation of the measure-
ment equation and the third uses a simple numerical method
for testing if the measurement equation is nonlinear. In this
work we propose a new method for prior component splitting
that evaluates nonlinearity without the need for analytical
differentiation and does the component splitting by taking
into account both the prior distribution and the measurement
function. In contrast to the methods found in the literaturethe
proposed method does not add components in linear directions.

In the next section a measure of nonlinearity and a formula
for its estimation is discussed. Then the splitting of prior
according to nonlinearity is presented. In Section IV we show
test results of performance of the proposed method compared
to existing methods. The paper is concluded in Section V.

II. M EASURING NONLINEARITY

A second order Taylor series expansion of a scalar function
with a single vector parameter may be written as

h(x + ∆) = h(x) + J∆ +
1

2
∆T H∆ + ε(∆), (9)

whereH is the Hessian andε(∆) is the error caused by the
higher order components of the measurement equation. If the
quadratic term1

2
∆T H∆ and the higher order termε(∆) are

zero then the Kalman update (3) may be used directly. If the
quadratic and higher order terms are small the EKF and UKF
approximations should work well.

In GMF it is necessary to evaluate whether the nonlinearity
is large or small. In [6], it is proposed that a measurement
should be considered highly nonlinear if

tr PHPH > R. (10)

This criterion comes from the comparison of the EKF and the
Second Order Gaussian filter [2, pp. 345-349], [9, p. 385]. The
term tr PHPH is called nonlinearity in this paper.

Next we propose a numerical method for computing the
term PH . In this derivation the higher order termε(∆) is
assumed negligible and the matrixL in (4) is computed using
Cholesky decomposition ofP . We define matrixQ as

Qi,j =







h(x + ∆i) + h(x − ∆i) − 2h(x) , i = j
1

2
[h(x + ∆i + ∆j) + h(x − ∆i − ∆j)−
2h(x) − Qi,i − Qj,j ] , i 6= j

(11)
where∆i = γL:,i. If γ is chosen asγ =

√
n + ξ then the

computed values of the measurement equation in (11) may
also be used in the UKF component update (6).

Using (9) with (11) we get

Qi,i =h(x) + J∆i +
∆T

i H∆i

2
+ h(x) − J∆i

+
(−∆i)

T H(−∆i)

2
− 2h(x) = ∆T

i H∆i (12)

and

Qi,j =
1

2
[(∆i + ∆j)

T H(∆i + ∆j) − ∆T
i H∆i − ∆T

j H∆j ]

=∆T
j H∆i = ∆T

i H∆j , H is symmetric. (13)

Thus matrixQ may be written in matrix form

Q = γLT HγL, (14)

which implies that matrixPH may be computed by

PH =
1

γ2
γLLTHγLL−1 =

1

γ2
LQL−1. (15)

The computation of the nonlinearity value (10) does not need
the inverse ofL, because

tr PHPH = tr
1

γ2
LQL−1 1

γ2
LQL−1 =

∑

i,j Q2
i,j

γ4
. (16)

III. SPLITTING THE PRIOR

In this section we propose a novel method for choosing the
components of the Gaussian mixture formed from a Gaussian
prior by finding the direction of the maximum nonlinearity.
If the measurement is nonlinear according to criterion (10)
within a Gaussian component, the component is split into a
mixture of two Gaussians that preserves the mean and the
covariance of the original component. If the nonlinearity is
high in resulting components the split is done recursively for
the nonlinear components. The recursive splitting helps totake
higher order nonlinearities of the measurement equation into
account.

The split vectora is chosen from a set of vectors that have
the same probability density

p(a) =
1√

2π detP
e−

1

2
aT P−1a = constant (17)

that maximizes the absolute value of quadratic term in (9).
This may be written as

argmax
a

|aT Ha|, subject toaT P−1a = β, (18)

where β is a positive algorithm parameter. Using Lagrange
multipliers we see that critical points of the optimization
problem are vectors that satisfy the constraint and

2Ha = 2λP−1a ⇔ PHa = λa. (19)

Thus, the critical points are eigenvectors ofPH that are scaled
to satisfyaT P−1a = β. Using (19) with (18) we have

arg max
a

|aT Ha| = arg max
a

|aT λP−1a| = arg max
a

|λβ|,
(20)

from which it is seen that an eigenvectora corresponding
to the eigenvalue having the largest absolute value is in the
direction of maximum nonlinearity.
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Equation (14) may be rewritten

1

γ2
Q = LT HL. (21)

Because matrixLT HL is real and symmetric its eigenvalues
are real and eigenvectors may be chosen orthonormal. Now
the eigenvalue decomposition ofLT HL is

LT HLV = V Λ, (22)

where matrixV is orthonormal having the eigenvectors as its
columns; the diagonal elements of the diagonal matrixΛ are
the corresponding eigenvalues. Multiplying the above equation
from the left byL we have

LLT HLV = LV Λ ⇔ (PH)LV = LV Λ, (23)

from which we see that matricesPH and LT HL = 1

γ2 Q

have the same eigenvalues and that an eigenvector of1

γ2 Q

multiplied from the left byL is an eigenvector ofPH . Now
the split vector may be written as

a =
√

βLV ei, (24)

where ei is the ith column of the identity matrix andi is
the index of to the largest eigenvalue in magnitude. The
parameters of a two component mixture that preserves the
mean and covariance of the prior may be written

x̃+ = x + a x̃
−

= x − a

P̃ = P − aaT w̃ = 1

2
w

, (25)

where w is the weight of the original component and the
parameters marked with̃ are parameters of the new split
components [8]. To ensure that the covariance matrix stays
positive definite we have to ensure thatqT P̃ q > 0 for any
q 6= 0, that is,

qT P̃ q = qT (P − aaT )q = qT LLT q − βqT LV eie
T
i V T LT q

= ||LT q||2 − β cos2 θ||LT q||2||V ei||2 ≥ ||LT q||2(1 − β), (26)

whereθ is the angle betweenLT q andV ei. Thusβ must be
chosen from the range[0, 1[.

Because of the trace properties it holds thattrPHPH =
∑

λ2. The reduction of nonlinearity may be evaluated by
looking at the change of the eigenvalues in the resulting
component, assuming that the HessianH does not change.
Because

P̃HLV =
(

P −
√

βLV ei(
√

βLV ei)
T
)

HLV

=
(

LLT − βLV eie
T
i V T LT

)

HLV

=
(

L − βLV eie
T
i V T

)

LT HLV (27)

=
(

L − βLV eie
T
i V T

)

V Λ

= LV
(

Λ − λiβeie
T
i

)

.

it follows that the new matrix̃PH has the same eigenvectors as
the original matrixPH and only theith eigenvalue is changed,
from λi to (1 − β)λi. Thus the nonlinearity is reduced by
(2β − β2)λ2

i .
In Figure 1 the effect of parameterβ on the resulting

components is presented. The original Gaussian represented
by the dashed contour line is horizontally split into two new

β=0.25 β=0.5 β=0.75 β=1

Fig. 1. Effect ofβ on resulting components of splitting

components. Usingβ close to 1, the nonlinearity decreases
fast in splits, but the resulting approximation may be bad. On
other hand using a small value ofβ reduces the nonlinearity
more slowly. In our tests in Section IV we usedβ = 0.5 as a
compromise that gave good results in our test scenario.

If the measurement is not scalar the splitting could be done
for each measurement component separately. Further if the
measurements are independent then the update may be done
separately for each measurement component.

IV. RESULTS

Evaluation of the performance is done by comparing the
posterior distributions computed by several methods. The
proposed method is called adaptive splitting (AS) where
the prior is split until none of the mixture components is
considered highly nonlinear according to criterion (10). The
method is also tested in a variant where at most one split
is allowed (AS2). Other methods in comparison are single
component UKF, SPGMF [6] with parametersτSPGMF = 0.5
and κSPGMF = 4 and BGMF [7], with N = 1 and cΣ = 1.
SPGMF and BGMF use analytic computation of nonlinearity
to decide whether the prior shall be split. All tested methods
use UKF update (6) withαUKF = 10−3, κUKF = 0 and
βUKF = 2 [4]. The reference solution is computed using a
dense grid where the probability density function is evaluated
in each point using Bayes’ update formula (1).

Our simulation scenario was a two dimensional positioning
case. The measurement function used in simulations was a
range measurement from the origin,

h(x) = ||x|| + ε, (28)

whereε is a zero mean Gaussian error term with varianceR.
In the simulations the range measurement had mean chosen

randomly from a uniform distribution in[0, 10] and a unit
variance. The prior mean was uniformly distributed with both
dimensions in range[0, 10] and covariance matrix had all 10 on
diagonal and non diagonal elements were uniformly randomly
chosen from the range[−10, 10]. The split distance parameter
β used in simulations was set to0.5 i.e. the eigenvalue ofPH

in the split direction was halved in each split.
An example of a test is presented in Figure 2, where a

single 2D range measurement is applied to a Gaussian prior.
When comparing visually the true posterior and the different
posterior approximations it is seen that the single Gaussian of
UKF approximation is not enough in this case and that the
proposed method (AS) produces estimates at least as good as
the other methods.

In Table I are mean results from 10000 simulation runs.
”Time” is the relative time of the method compared to UKF.
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Prior Measurement likelihood True posterior UKF posterior

SPGMF posterior BGMF posterior AS posterior AS2 posterior

Fig. 2. Exemplary prior and posterior approximations in case of one range measurement. Pdfs are presented with contour maps and the component means
are shown as dots.

TABLE I
COMPARISON OF DIFFERENT POSTERIOR APPROXIMATION METHODS

Method Time K-L divergence Components
UKF 1.0 0.74 1

SPGMF 2.9 0.50 3.8
BGMF 12.5 0.47 6.6

AS 4.9 0.39 2.6
AS2 2.4 0.47 1.7

”K-L divergence” (Kullback-Leibler divergence [10]) is de-
fined as

DKL (p||q) =

∫

p(x) log
p(x)

q(x)
, (29)

where p(x) is the reference pdf andq(x) is the pdf of the
Gaussian mixture approximation. ”Components” is the number
of components in the posterior approximations.

Results show that the proposed method produces a posterior
that is clearly closer to the true posterior than UKF, SPGMF
or BGMF, and that performs at least as well as the other
methods even when the maximum number of components is
limited to two. This is a clear indication that the measurement
nonlinearity should be taken into account in splitting. Thetest
for nonlinearity (10) gave same result in all 10000 cases for
the analytical and numerical methods.

If the state would include more dimensions, for example,
the 2D velocity, the number of components of SPGMF and
BGMF would have increased from 5 to 9 and from 9 to 81 re-
spectively, whereas AS would not have any more components.
Although the SPGMF and BGMF could be programmed in a
such way that they do not do splitting in linear dimensions,
this would require manual work to customize the algorithms.

V. CONCLUSION

In this paper it was shown that the nonlinearity of a
measurement may be estimated numerically and that if the
prior is split in the direction of the maximum nonlinearity

the posterior approximation may be done accurately with a
relatively small number of components. The proposed method
produces better results with a smaller number of components
than existing methods and may be used when the measurement
equation is hard or even impossible to differentiate.

REFERENCES

[1] Y. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,”Automatic Control, IEEE Transactions on,
vol. 9, no. 4, pp. 333 – 339, oct 1964.

[2] A. H. Jazwinski,Stochastic Processes and Filtering Theory, ser. Math-
ematics in Science and Engineering. Academic Press, 1970, vol. 64.

[3] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” inAmerican Control Conference, vol. 3,
1995, pp. 1628–1632.

[4] E. Wan and R. Van Der Merwe, “The unscented Kalman filter for
nonlinear estimation,” inAdaptive Systems for Signal Processing, Com-
munications, and Control Symposium 2000. AS-SPCC. The IEEE 2000,
2000, pp. 153 –158.

[5] H. W. Sorenson and D. L. Alspach, “Recursive
Bayesian estimation using Gaussian sums,”Automatica,
vol. 7, no. 4, pp. 465–479, 1971. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/0005109871900975
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