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An Adaptive Derivative Free Method for Bayesian
Posterior Approximation

Matti Raitoharju*, Simo Ali-Loytty

Abstract—In the Gaussian mixture approach a Bayesian pos- function in the prior mean and use it asin the Kalman
terior .probablllty dlstrlbutlon.functlon. is approximated using update (3). This is used in the Extended Kalman Filter (EKF)
a weighted sum of Gaussians. This work presents a novel [2, p. 278]. This requires analytical differentiation bfz),

method for generating a Gaussian mixture by splitting the pior . - . .
taking the direction of maximum nonlinearity into account. The which can be difficult or impossible to perform, also the

proposed method is computationally feasible and does notqeire ~ @Pproximation may be poor if the Jacobidnvaries a lot in
analytical differentiation. Tests show that the method appoxi- a small area around the prior mean.
mates the posterior better with fewer Gaussian componentshain The Unscented Kalman Filter (UKF) is an alternative to
existing methods. EKF that does not require analytical differentiation. Thi€FJ
update is based on the evaluation of the measurement fanctio
I. INTRODUCTION at the so called sigma points. The computation of the sigma

N Bayes' theorem am-dimensional state vector is pomts_, require the computation of a matrix square root of the
covariance matrix

estimated by updating its prior distribution using given

_ T
measurements. The posterior distribution given measureme P=1LL )
y is using, for example, Cholesky decomposition. The extended
p(ylz)p(x) symmetric sigma point set is
p(xly) = — =, @ > gmap
p(y) o=
0=
where p(x) is the prior probability density function (pdf) o _ .
of the state,p(y) is a normalizing constanty(y|z) is the Xi= w4 Qi 1 S.n ©)
measurement likelihood angd(z|y) is the posterior pdf. In Xi =% = Aip, n<i<2n,
general the update cannot be done analytically. whereA; = v+ €L.; (L.; is thei® column of L) and ¢

In this paper the prior is assumed to be a Gaussian and {8&,, 4gorithm parameter. The prior is updated by using the
measuremery to be a scalar that may be written in the fom?ollowing approximations in the Kalman update (3)

y=h@ +e, @ e~ Qmh(xi)
whereh(x) is the measurement function ands the measure- S ~R T
PR I+ Qi (h(xi) —2) (R(xi) — 6
ment error, assumed to be zero mean Gaussian independent of Z e (hla) = 2) (h0x) = 2) ©
the prior. CrY Qv —x) (hOa) —2)",

If the measurement function is linear, i.e(x) may be
written as.Jz, the posterior can be computed with the Kalma#hereQo,m = n%g Qo,c = n%g + (1 — e + Buke), Qie =
update [1] Qim = gz, (1 > 0) and & = afye(n + ruke) — n. The
T variables with subscript UKF are algorithm parameters [3],
z = h(x% S = JP”L +R [4]. Although the UKF update evaluates the measurement in
g i PJ [f i cs 7’ ®) several points, the posterior distribution is approxirdatgth
et =c+K(y-z) PT=P-KSK a single Gaussian. In many cases a single Gaussian is not
wherez andz ™ are the prior and posterior meaand P+ €nough to give a good approximation of the posterior.
are the prior and posterior covariances dids the variance Gaussian mixture filters use a weighted sum of Gaussian
of the measurement error. In this paper we assumeRttarid components to approximate the pdfs [5],
R are nonsingular.
If the measurement model is not linear the above update p(e) = ZwkpN(.|Ik’Pk)’ (7)
cannot be used directly. For nonlinear cases one of the eshplwherew,, is the component weight ang (e|x, P;.) is a pdf
update methods is to compute the Jacobian of the measurenagiiormal distribution with mean;, and covariance’. This

allows better approximation of the posterior especiallyewh
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and normalized so that the sum of weights is one. Using (9) with (11) we get
Although this paper concentrates only on a single update ATHA,

the proposed method is intended to be part of a GMF that Q,; =h(z) + JA; + + h(z) — JA;

does the estimation of a time series. Usually GMFs do not (—A-)TH(—A-§

have a constant number of components and a critical issue is 4+ TV on(z) = ATHA, (12)
to keep the number of components low while still estimating 2

the distributions well. and

In algorithms found in the literature the splitting of theqor 1
component in case of nonlinearity into components depend@” :E[(Ai +8))TH(A: + 8)) = ATHA = ATHA,]
only on the prior distribution. Examples of this kind of GMFs :A?HAi = AiTHAj, H is symmetric (13)
are Sigma Point GMF (SPGMF) [6], Box GMF (BGMF) N ) ] )
[7] and Split and Merge Unscented GMF [8]. The first twd NUS matrixQ may be written in matrix form
algorithms _require analyti_cal different_iation of the_ MES Q =~LTH~L, (14)
ment equation and the third uses a simple numerical method
for testing if the measurement equation is nonlinear. I8 thivhich implies that matrix? H may be computed by
work we propose a new method for prior component splitting 1 - o 1 .
that evaluates nonlinearity without the need for analytica PH = ?VLL HyLL™" = ?LQL : (15)

differentiation and does the component splitting by takin
b pring by ‘CErue computation of the nonlinearity value (10) does not need

into account both the prior distribution and the measurémen =
e inverse ofL, because

function. In contrast to the methods found in the literatine
proposed method does not add components in linear direction

In the next section a measure of nonlinearity and a formula
for its estimation is discussed. Then the splitting of prior
according to nonlinearity is presented. In Section IV weveho 1. SPLITTING THE PRIOR
test results of performance of the proposed method compare
to existing methods. The paper is concluded in Section V.

X @i
I 50 (16)
v

1 1
tr PHPH = tr - LQL™ ' LQL™" =
Y Y

(iin this section we propose a novel method for choosing the
components of the Gaussian mixture formed from a Gaussian
prior by finding the direction of the maximum nonlinearity.
If the measurement is nonlinear according to criterion (10)
A second order Taylor series expansion of a scalar functifithin a Gaussian component, the component is split into a
with a single vector parameter may be written as mixture of two Gaussians that preserves the mean and the
1 covariance of the original component. If the nonlinearsy i
h(z +A) = h(z) + JA + §ATHA +e(a), ©) high in resulting components the split is done recursively f
where H is the Hessian and(A) is the error caused by thethe nonlinear com_pone_n_ts. The recursive splitting helpa_ke _
higher order components of the measurement equation. If fHgher order nonlinearities of the measurement equatitn in
quadratic termi ATHA and the higher order term(A) are account. _
zero then the Kalman update (3) may be used directly. If the The SPlit vector is chosen from a set of vectors that have
quadratic and higher order terms are small the EKF and UKRE same probability density

II. MEASURING NONLINEARITY

approximations should work well. _ 1 —1a"P'a _ tant 17
In GMF it is necessary to evaluate whether the nonlinearity pla) = Vor det pe = constan (17)

is large or small. In [6], it is proposed that a measureme
should be considered highly nonlinear if

tr PHPH > R. (10)

This criterion comes from the comparison of the EKF and the _ N ) )
Second Order Gaussian filter [2, pp. 345-349], [9, p. 385k THvhere 3 is a positive algorithm parameter. Using Lagrange

{Hat maximizes the absolute value of quadratic term in (9).
This may be written as

argmax [T Ha|, subject toa’ P~1a = g, (18)

termtr PHPH is called nonlinearity in this paper. multipliers we see that critical points of the optimization
Next we propose a numerical method for computing tHifoblem are vectors that satisfy the constraint and
term PH. In th|_s derivation the h!gher _order tera(A) is 9Ha — 2\P—la & PHa — \a. (19)
assumed negligible and the matiixin (4) is computed using
Cholesky decomposition aP. We define matrixQ as Thus, the critical points are eigenvectorsiof] that are scaled
e 1 ; :
Wz + Ay) + hiz — A;) — 2h(2) = to satisfya® P~*a = (. Using (19) with (18) we have

Qij = %[h(I +Ai +4) +h(z— A = 4j)— argmax |a’ Ha| = argmax |a” \P™'a| = argmax |\3),

2h(7) — Qii — Qj 4] ¥ 75(:{1) (20)

where A, = L. ;. If v is chosen asy = /n + ¢ then the from which it is seen that an eigenvectorcorresponding
computed values of the measurement equation in (11) maythe eigenvalue having the largest absolute value is in the
also be used in the UKF component update (6). direction of maximum nonlinearity.



Equation (14) may be rewritten

1 T
—Q=L"HL. (21)
v

Because matrix.” HL is real and symmetric its eigenvalues

are real and eigenvectors may be chosen orthonormal. NH‘S’. 1
the eigenvalue decomposition 6f H L is
LTHLV = VA, (22) com_poner_ns. Usings close_ to 1, the _nonl_inearity decreases
fast in splits, but the resulting approximation may be bad. O
where matrixV” is orthonormal having the eigenvectors as itsther hand using a small value gfreduces the nonlinearity
columns; the diagonal elements of the diagonal matriare more slowly. In our tests in Section IV we usgd= 0.5 as a
the corresponding eigenvalues. Multiplying the above #qna compromise that gave good results in our test scenario.
from the left by L we have If the measurement is not scalar the splitting could be done
LLTHLV = LVA < (PH)LV = LVA, 23) for each measurement component separately. Further if the
measurements are independent then the update may be done
from which we see that matriceBH and LTHL = 712Q separately for each measurement component.
have the same eigenvalues and that an eigenvectej%@f
multiplied from the left byL is an eigenvector oP H. Now
the split vector may be written as
_ _ Evaluation of the performance is done by comparing the
= \/BLVQ“ (24) posterior distributions computed by several methods. The
where e; is the i column of the identity matrix and is proposed method is called adaptive splitting (AS) where
the index of to the largest eigenvalue in magnitude. Thike prior is split until none of the mixture components is
parameters of a two component mixture that preserves ttensidered highly nonlinear according to criterion (10heT
mean and covariance of the prior may be written method is also tested in a variant where at most one split
is allowed (AS2). Other methods in comparison are single
(25) component UKF, SPGMF [6] with parametersogmr = 0.5
and kspemr = 4 and BGMF [7], with N = 1 andcy = 1.
where w is the weight of the original component and th&SPGMF and BGMF use analytic computation of nonlinearity
parameters marked with are parameters of the new splito decide whether the prior shall be split. All tested method
components [8]. To ensure that the covariance matrix stayse UKF update (6) withvykr = 1073, sukr = 0 and
positive definite we have to ensure thdtPq > 0 for any Guke = 2 [4]. The reference solution is computed using a
q # 0, that is, dense grid where the probability density function is evedda
¢"Pg=q" (P —ad®)g = ¢"LL g — Bq" LVei' VI g in each _point _using Bayes’ update formula (1_). o
T 2 5 T 2 9 T 9 Our simulation scenario was a two dimensional positioning
= [IL74q|I" = Beos™0|[L7g|"[[Veil|” = [[L7q[[*(1 = ), (26) case. The measurement function used in simulations was a
whered is the angle betweei”q and Ve;. Thus3 must be range measurement from the origin,

chosen from the rang@, 1].
Because of the trace properties it holds thaPHPH = h(z) = [zl + e, (28)

5 . . .
>_A%. The reduction of nonlinearity may be evaluated b%heres is a zero mean Gaussian error term with variaRce

looking at the change of the eigenvalues in the resulting . .
. A In the simulations the range measurement had mean chosen
component, assuming that the Hessiéndoes not change. . S .
Because randomly from a uniform distribution if0, 10] and a unit
variance. The prior mean was uniformly distributed withtbot
PHLV = (p - \/BLVei(\/BLVei)T) HLV dimensions in rang®, 10] and covariance matrix had all 10 on
T T T diagonal and non diagonal elements were uniformly randomly
= (LL" = BLVese/ VI LT) HLV chosen from the range-10, 10]. The split distance parameter
= (L — BLVeierT) LTHLV (27) 3 used in simulations was set 65 i.e. the eigenvalue aP H
=(L- ﬂLVeieiTVT) VA in the split direction was halved in each split.
. T An example of a test is presented in Figure 2, where a
=LV (A — )\Zﬂeiei ) . . . . . .
single 2D range measurement is applied to a Gaussian prior.
it follows that the new matri¥’ H has the same eigenvectors a¥vhen comparing visually the true posterior and the differen
the original matrixP H and only thei™ eigenvalue is changed, posterior approximations it is seen that the single Gaossia
from )\; to (1 — 3)\;. Thus the nonlinearity is reduced byUKF approximation is not enough in this case and that the
(28 — BH)A2. proposed method (AS) produces estimates at least as good as
In Figure 1 the effect of paramete? on the resulting the other methods.
components is presented. The original Gaussian representeln Table | are mean results from 10000 simulation runs.
by the dashed contour line is horizontally split into two newTime” is the relative time of the method compared to UKF.

Effect of 3 on resulting components of splitting

IV. RESULTS

Ty =z+a I_=x—a

P=P—ad" ﬁ):%w ’



Prior Measurement likelihood
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True posterior UKF posterior
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SPGMF posterior BGMF posterior

AS posterior AS2 posterior

Fig. 2.
are shown as dots.
TABLE |
COMPARISON OF DIFFERENT POSTERIOR APPROXIMATION METHODS

Method | Time K-L divergence  Components
UKF 1.0 0.74 1
SPGMF 2.9 0.50 3.8
BGMF | 125 0.47 6.6
AS 4.9 0.39 2.6
AS2 24 0.47 1.7

"K-L divergence” (Kullback-Leibler divergence [10]) is de
fined as

Do) = [ o) 1og%, (29)

where p(x) is the reference pdf and(z) is the pdf of the

. . o . 3
Gaussian mixture approximation. "Components” is the numbé ]

of components in the posterior approximations.
Results show that the proposed method produces a poster

that is clearly closer to the true posterior than UKF, SPGMF
or BGMF, and that performs at least as well as the other

methods even when the maximum number of components
limited to two. This is a clear indication that the measuratne
nonlinearity should be taken into account in splitting. Tést

for nonlinearity (10) gave same result in all 10000 cases fdfl

the analytical and numerical methods.
If the state would include more dimensions, for example

the 2D velocity, the number of components of SPGMF andf]

BGMF would have increased from 5 to 9 and from 9 to 81 re

this would require manual work to customize the algorithms

[10]

V. CONCLUSION
In this paper it was shown that the nonlinearity of a

Exemplary prior and posterior approximations inecaé one range measurement. Pdfs are presented with contps amd the component means

the posterior approximation may be done accurately with a
relatively small number of components. The proposed method
produces better results with a smaller number of components
than existing methods and may be used when the measurement

equation is hard or even impossible to differentiate.
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