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Capacitive Measurement of Facial Activity Intensity
Ville Rantanen, Student Member, IEEE, Hanna Venesvirta, Oleg Špakov, Jarmo Verho, Akos Vetek, Veikko

Surakka, and Jukka Lekkala

Abstract—The measurement of the intensity of facial muscle
activity can be used in several applications such as human–
computer interaction and behavioural science. A new method
for the intensity measurement is presented. It is based on a
contactless, capacitive measurement of the movements that the
facial activity produces. The muscles responsible for raising the
eyebrows, lowering the eyebrows, raising the mouth corners,
and pulling down the mouth corners were measured simultane-
ously with the capacitive method and electromyography (EMG)
during controlled experiments. Each muscle was activated by
10 participants at three different intensity levels (low, medium,
and high), 10 repetitions at each level. The capacitive intensity
values were in good agreement with the ones registered with the
EMG: average mean absolute errors were between 7–12% of
the observed intensity range. However, compared to the EMG,
the capacitive intensity values were noticed to have offsets that
may be partly caused by the measurement itself and partly by
the EMG reference. As a result, the measurement may require a
calibration for more intensity values than just the maximum. In
the case of the capacitive method it is also required to distinguish
between the muscle activations originating from the same facial
regions to determine which activation is taking place. This was
done with an almost perfect performance by using hierarchical
clustering to cluster the intensity values.

Index Terms—capacitive measurement, distance measurement,
electromyography (EMG), facial activity measurement, muscle
activation intensity measurement

I. INTRODUCTION

THE human facial activity can be a source of a vast
amount of information. Both voluntary and spontaneous

activity can be registered. Applications for the measurement
of voluntary facial activity includes human–computer and
human–technology interaction where it can be used as control
signals [1], [2], [3], [4], [5], [6]. Spontaneous activity, on the
other hand, can provide invaluable information for example
for behavioural science and medicine [7], [8], [9], [10], [11],

The authors would like to thank Nokia Research Center, Finnish Funding
Agency for Technology and Innovation (Tekes), Finnish Doctoral Program in
User-Centered Information Technology (UCIT) and Finnish Cultural Foun-
dation for funding the research, and Nokia Foundation and International
Measurement Confederation (IMEKO) for support.

V. Rantanen, J. Verho, and J. Lekkala are with the Sensor Technology and
Biomeasurements, Department of Automation Science and Engineering, Tam-
pere University of Technology, Tampere, Finland (email: ville.rantanen@tut.fi,
jarmo.verho@tut.fi, jukka.lekkala@tut.fi).
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[12]. While detecting the facial activations correctly may
be sufficient in some applications, distinguishing between
different intensity levels of the activity can provide additional
value in others.

One method to measure facial activity is surface electromyo-
graphy (EMG) that measures the electrical activity of the
muscles and the intensity of the activity. EMG has a high
temporal resolution which makes it good for the measurement
of spontaneous activity that has a rapid onset and a short du-
ration [9]. A notable benefit of the EMG is that the processing
of the signals to find out the activation intensities is simple and
computationally efficient [13], [14, ch. 5]. Another advantage
is the possibility to detect facial activity when it is not even
visible [9].

The major drawbacks of the EMG are caused by the
requirement to physically attach the electrodes to the face.
The preparation of the electrode sites includes cleaning and
abrasion of the skin, and the application of electrode paste
to achieve good electrical contact [13]. The electrodes are
mildly intrusive and may inhibit movements [9]. Further, the
measured spontaneous behaviour may be altered when the
person becomes self-conscious about the attached electrodes
[9], [13]. The measurement may also be affected by loosening
of the electrodes caused by facial movements [9]. Due to the
space requirement of the electrodes and the electrode leads,
the number of measurable channels is limited [9]. Even if
EMG is used to measure the activation intensities of single
muscles, its specificity is considered to be low [9]. It suffers
from crosstalk which means that the activity of neighbouring
muscles and muscles whose fibres interweave with those of
the target muscle are also measured [9], [13]. Some variation
in the placement of the electrodes between experiments is
also always present despite the guidelines of the measurement
locations for different muscles [11].

A second option to measure facial activity consists of vision-
based methods. Probably the most comprehensive one is Facial
Action Coding System (FACS) that describes facial activity
based on all the movements that the human anatomy allows
[9], [15], [16]. Each possible movement caused by a single
muscle or a few muscles is called an action unit. The latest
version of FACS includes a 6-point scale for the intensity of
the action units from not visible to extreme [16]. Originally
FACS included manual coding of the facial activity by an
expert that viewed slow-motion video recordings of the face
[15], [16]. More recently, automated methods that rely on
machine vision have been developed to carry out the coding
[8], [9], [11], [12]. In addition to automatically recognising
the activity, there are studies where the intensity information
has been extracted for some action units such as the ones
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responsible for smiling [9], [17], [18]. In a more recent
study, the intensity information was obtained and reported
for 15 action units but its accuracy was not evaluated [12].
Nevertheless, the intensity information provided by FACS is
highly similar to the one by the EMG, and a high correlation
(r = 0.85) between the two have been reported when using
manual coding [9].

The drawbacks of automated measurement of facial ac-
tivity with machine vision methods are mainly caused by
the computational requirements. The general workflow of the
image processing includes preprocessing, face detection and
feature extraction to find tracked features, image alignment
to compensate for the pose and the camera locations, and
action unit recognition [8], [9], [12]. Other drawbacks are
introduced by the cameras. The measurement is susceptible
to environmental lighting conditions, and it requires the user
to be relatively still as it relies on remotely placed cameras.

A third option to measure facial activity is a capacitive
method that applies a contactless measurement of the move-
ment of the facial tissue [5]. The measurement electrodes
for the capacitive measurement need to be supported close
to the targeted facial tissue to register the movements [5].
The measurement can be integrated to wearable devices, and
it has mostly been used as a simple detector of the facial
activity [6], [19], [20], [21]. These studies only measured a few
channels with electrodes on fixed locations on eyeglass-like
prototypes. The signal processing for the detection was done
with a computationally efficient algorithm [5], [19]. Later,
the number of channels have been increased to 22 with a
prototype device that had the electrodes mounted on adjustable
extensions on a headset [22]. The prototype was used to locate
simple facial movements to correct facial regions based on a
multichannel measurement with a wearable prototype device
and principal component analysis of the data [22].

The drawbacks of the capacitive method have not been ex-
tensively reported because it has mostly been used as a simple
detector. However, the measurement has been mentioned to be
slightly sensitive to the movement of the measurement device
on the head and that this movement cannot necessarily be
distinguished from the one of the targeted facial tissue [22].

Based on the discussed properties of the facial activity
measurement methods, the capacitive method has advantages
compared to EMG and vision-based ones. Compared to EMG,
the number of channels that can be measured simultaneously
is larger. The capacitive measurement is contactless, and, thus,
more comfortable than EMG, and it does not inhibit the tar-
geted movements. The lack of physical contact to the face may
also introduce less self-conscious behaviour when measuring
spontaneous activity [13] even though the measurement is
not completely unintrusive. Compared to automatic vision-
based methods, the computational requirements are lighter, the
measurement is not susceptible to changes in environmental
lighting conditions, and it is usable in mobile applications.

The goal of this study was to evaluate the capacitive
facial activity measurement as a new method to determine
the activity intensity. A wearable prototype device was used
to measure facial activity with a multichannel capacitive
measurement. Simultaneous EMG measurements were carried

out to obtain reference values for the intensities. Experiments
were conducted to collect data from activations of the muscles
Frontalis (that raises the eyebrows), Corrugator supercilii
(that lowers the eyebrows), Zygomaticus major (that raises the
mouth corners), and Triangularis (aka Depressor anguli oris
that pulls the mouth corners down). Data was analysed to eval-
uate the performance of the capacitive intensity measurement
relative to the EMG measurement. Further, because a single
capacitive channel cannot be expected to only respond to the
activity of a specific muscle, hierarchical clustering with the
Ward’s method was used to distinguish between the muscle
activations that originated from the different muscles at the
same facial regions.

II. METHODS

A. Capacitive Measurement of Facial Activity

The used method for measuring the intensity of facial
activity is based on the capacitive measurement of facial
movements. It can be considered a distance measurement
between a measurement electrode and the facial tissue [5],
[22]. The measurement has the same principle as capacitive
push buttons and touchpads, and a single channel requires only
a single electrode. The electrode produces an electric field that
is used to measure the movement of conducting objects in its
proximity by measuring the capacitance due to the capacitive
coupling between the electrode and the object.

B. Capacitance Measurement Equipment

The capacitance measurement in this study is carried out
with a programmable controller for capacitance touch sensors
(AD7147 by Analog Devices) that applies a multichannel mea-
surement. The same controller and its older version (AD7142)
have been used for the task before [5], [19], [22]. A controller
(AD7143) from the same product range has also been used for
a distance measurement in automotive applications [23]. The
controllers AD7142 and AD7143 measure the capacitances
between a transmitter electrode and receiver electrodes, but
AD7147 operates in a single-electrode mode that uses only one
electrode in the measurement [24]. The measurement range
of the controller is reported to be ±8 pF with a femtofarad
resolution [24]. An excitation signal at 250 kHz charges a
measurement electrode, and a sigma-delta (Σ-∆) modulator
continuously samples the flowing charge that changes due
to the capacitive coupling between the electrode and the
measurement target [24]. Further, the controller produces an
active shield signal that can be used to shield the sensor
traces to avoid stray capacitances. The shield has the same
waveform as the excitation signal, and, thus, the capacitance
between the electrodes and the shield does not affect the
measured capacitances [24]. The combination of shielding
the electrodes and their traces and using the sigma-delta
modulation effectively eliminates noise and other interferences
and makes the measurement of very low capacitance values
possible.
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C. Prototype Device

The wireless, head-mounted prototype device is seen in
Fig. 1. The construction of the prototype follows that of acous-
tic hearing protectors. The wearability, weight, and comforta-
bility are on a par with those of the protectors. The prototype
earmuffs include the electronics and the extensions in front of
the face house the electrodes for the capacitive measurement.
There are a total of 22 channels for the measurement: 11 for
each side of the face. The electrodes used in the measurement
are printed circuit board pieces with a size of 12 x 20 mm. The
pieces are double sided and their backplanes are connected
to the shield signal of the AD7147 controller. Thin coaxial
cables are used to shield the sensor traces by connecting also
the cable sheaths to the shield signal. Two controllers are
used, one for each side of the face. The sampling frequency
of the capacitance measurement is limited by the number of
measured channels and was 29 Hz in this case.

The device also measures EMG signals as a bipolar mea-
surement without a separate grounding electrode. It is done
with basic three-amplifier instrumentation amplifiers that have
antialiasing filters with a cut-off frequency of 150 Hz. The
signals were sampled at 435 Hz. Since the content of the EMG
is known to mostly reside between 10 and 200 Hz [13], the
measurement registers most of the EMG activity. The wires to
the EMG electrodes are coaxial wires that shield the signals
with a constant potential.

The wireless operation of the device is achieved with a
Li-ion battery and a Bluetooth module (RN-41 by Roving
Networks). The device also has additional functionality such
as inertial measurements that were not used in this study.
The operation of the device is handled by a microcontroller
(ATMega168P by Atmel).

Top

Middle

Bottom

4
3

2
1

3
21

4
3

2
1

Figure 1. The head-mounted measurement device. The numbers represent the
different measurement channels on the extensions. The electrodes are at the
numbered locations facing the face.

D. Experiments

Twenty successful trials to collect data were carried out by
voluntary participants. Ten trials included Frontalis and Cor-

rugator supercilii activations and ten included Zygomaticus
major and Triangularis activations. Each muscle was activated
at three intensity levels: low, medium, and high. The number
of participants was 14 (8 female and 6 male, ages 19–44,
mean age 32), and 6 of them carried out both the upper face
and the lower face trials. The selection of the participants
was not strictly controlled. The only requirements were their
willingness, necessary skills in carrying out the voluntary
muscle activations, and sufficient eyesight to see onscreen
information during the trials.

The experimental procedure was started by asking the
participant a written consent to use the collected data, and
explaining how the trial proceeds. The facial skin was prepared
for the attachment of the EMG electrodes to proper locations
for the measurement of the target muscles of that trial. The
attachment was done according to the guidelines provided in
[13]. The electrodes for the capacitance measurements were
adjusted to be approximately at a distance of 1 cm from the
face when the facial expression was neutral. The top extension
channels targeted the eyebrows, the middle ones the cheek
bone areas, and the bottom ones the mouth corner and the
jaw areas. Since the EMG electrodes disturb the capacitance
measurements, the capacitances were measured from the right
side of the face and the EMG signals from the muscles on
the left side of the face. The only exception was the Frontalis
muscle for which the standard measurement location for EMG
is on the forehead so that it could also be measured from the
right side of the face. Fig. 2 shows the device on participants
during the trials.

(a) Upper face trials: Frontalis and Cor-
rugator supercilii measurements

(b) Lower face trials: Zygomaticus ma-
jor and Triangularis measurements

Figure 2. The device on participants during the trials.

After setting up the device, the maximum EMG inten-
sity levels, i.e. maximum voluntary contraction levels, were
determined. The average of 5 EMG intensity peak maxima
during maximum voluntary contractions was considered as
the maximum level. At the same time, the experimenter
verified that the muscle activations were carried out without
excessive activation of other muscles than the target muscle.
The target intensity levels during the actual trial were defined
as percentages of the determined maximum. The low level was
considered to be 20-40%, the medium 40-60%, and the high
60-80%. The upper limit of the high level was selected to be
less than 100% because the maximum voluntary contraction
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cannot be expected to be easily produced multiple times.
Before the actual trial was started, the participant was allowed
to try activating the muscles and holding the activations at the
target levels in a short practice session.

In the actual trial, the participant activated the muscles
according to instructions given as synthesized speech. Each
instruction stated the activation and the target intensity. Then
a beep sound was played to indicate that the activation task
started. A vertical bar whose height indicated the current
activation intensity was shown to the participant, and the
target level was highlighted as shown in Fig. 3. After the
participant had held the muscle activation in the target level
for 2 seconds, another beep sound was played to indicate the
successful completion of the task. Participants were given 10
seconds for completing each task, and between tasks they were
instructed to relax for 5 seconds. Ten repetitions of each of
the three intensities of the two target muscles of that trial were
performed in randomized order. This resulted in a total length
of 20 minutes for the trial.

Figure 3. The visual feedback of the EMG activation intensity that was
shown to the participant during the experiments. The different background
colors show the different intensities (none, low, medium, and high), the cyan
vertical bar shows the current level, and the green highlighting shows the
target level of the task.

E. Signal Processing

The signal processing for converting raw signals to signals
that represent the intensity of facial movements is shown in
Fig. 4. Examples of the signal processing are shown in Fig. 5.

1) EMG Signal Processing:
a) Baseline removal: The raw EMG signals were input

to a single-pole high-pass filter with a time constant of 35 ms
for removing their baselines. In the offline analysis this filter
was applied as a zero-phase forward and reverse filter.

b) Full-wave rectifier: The signals after the baseline
removal were fed to a full-wave rectifier.

c) Smoothing filter: A smoothing filter was used to
convert the rectified signals to intensity signals. A 500 ms
moving root mean square (RMS) filter was used for the task
in the offline analysis, but the online filter that was applied
during the trials was a single-pole low-pass filter with a time
constant of 500 ms. Computational efficiency was desired for
the online use and better smoothing and more accurate EMG
amplitude estimation for the offline one. Either the average
rectified value or the RMS value are considered to be good
estimates for the true EMG amplitude [14, ch. 5].

d) Baseline correction: The effect of the noise on the
EMG intensity signal was decreased by carrying out a base-
line correction for the smoothed signal. A moving window
minimum filter with a window length of 15 s was used for the

Raw EMG
signal

Baseline
removal

Full-wave
rectifier

Smoothing
filter

Baseline
correction

EMG
intensity
signal

Raw
capacitance

signal

Conversion
to distance

Baseline
removal

Smoothing
filter

Capacitive
intensity
signal

Figure 4. Block diagram presentation of the signal processing of the EMG
and capacitance signals.

task. It took the minimum value of each window, and further
applied a 10 s moving average filter to the solved baseline
before subtracting it from the smoothed signal. The length of
the window for the minimum filter was determined based on
the fact that participants had 10 s of time to carry out each
activation task. Baseline correction was not done in the online
processing which may cause small differences between the
EMG intensity levels that were registered online and the ones
that were solved offline.

2) Capacitance Signal Processing:
a) Conversion to distance: The raw capacitance signals

were converted to distance signals, or, more precisely, to
signals that were proportional to the distance between the
facial tissue and the measurement electrode. The capacitance
of each channel was modelled with the equation for a parallel-
plate capacitor:

C =
εA

d
, (1)

where ε is the permittivity of the substance between the
capacitor plates, A the plate area, and d the distance between
the plates. One plate of the capacitor is the measurement
electrode and the other the facial tissue facing the electrode.
The measure proportional to the distance becomes

dp =
1

C
=

1

Cs − Cb
, (2)

where Cs is the value of the capacitance sample and Cb is
the base level of the capacitance channel. The subtraction of
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(a) EMG signal baseline removal: blue
is the signal and red its baseline.
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(b) Capacitive signal baseline removal:
blue is the signal, red dots the baseline
candidates, and red line the baseline.
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t

(c) EMG signal smoothing: blue is the
rectified signal and red the smoothed
signal.

0 5 10 15 20

t

(d) Capacitive signal smoothing: blue
is the signal and red the smoothed
signal.

0 5 10 15 20

t

(e) Smoothed EMG and capacitive sig-
nals: blue is the EMG and red the
capacitance. Capacitive signal y-axis
is reversed, and the signals are nor-
malised and aligned for the illustration.

Figure 5. Examples of the signal processing.

the base level is required because the channels have unique
offsets that are affected by their electrical connections and
surroundings of their electrodes. The base levels were mea-
sured when the measurement electrodes were directed away
from conducting objects.

b) Baseline removal: To further convert the distance
signals to indicate relative changes in the distance, baseline
removal was carried out. The signals may have stepwise
changes and drift due to small movements of the device on the
head, and a slow drift has occasionally also been observed to
be introduced in the measurement electronics. A median filter
was chosen to find the baseline because it follows stepwise
changes and the drift well but is unaffected by short-duration
peaks that the facial activity often produces. A window length
of 30 s was chosen for the filter based on the length of the
activation tasks. However, the median filtering was enhanced
by not including all the signal samples in it, but selecting
only a part of the samples as baseline candidates by applying
a constant false alarm rate (CFAR) processor.

The CFAR processor calculates an adaptive threshold based
on the noise characteristics of the processed signal [25, ch.
5], [26]. The distance signal was first pre-processed with a
differentiator, a single-pole low-pass filter with a time constant

of 20 ms, and a full-wave rectifier to be suitable for the
CFAR processor. The differentiator and the low-pass filter
were implemented as a single zero-phase forward and reverse
filter. The CFAR processor took the current pre-processed
sample as a test sample and samples from its both sides as
reference samples. Some samples adjacent to the test sample
were left out as guard samples to reduce the information
overlap between the test and reference samples. Samples
within 1 second from the test sample were considered the
guard samples and the following 14 seconds the reference
samples. The adaptive threshold was calculated as the mean
of the reference samples. The mean could be multiplied by
a sensitivity parameter, but in this case the parameter was
chosen to be 1. The threshold was then used to determine
which samples did not exceed it. The corresponding samples
of the input distance signal were included in the calculation
of the median to solve the baseline value.

The calculated median signal was further smoothed with
a 2-second moving average before it was subtracted as the
baseline from the distance signal.

c) Smoothing filter: The capacitive intensity signals were
calculated with a smoothing filter after the baseline removal.
A 500 ms moving average was used for the smoothing.

3) Signal Alignment: The calculated EMG and capacitance
intensity signals were aligned in time. This was done because
the processing of the signals introduces delays of variable
length. To be able to compare the signals, the filtered EMG
signals were first downsampled to 29 Hz by taking every 15th
sample from them. Then the alignment was done based on the
highest cross-correlation between the capacitance channels and
the EMG channels, and delaying all the capacitance signals
with the corresponding delay.

4) Activation Intensity Calculation: The noise levels of the
EMG and capacitance signals are not constant all the time due
to different noise sources. EMG suffers from powerline noise
and electrode movement artefacts. The noises of the capacitive
intensity signals are affected by the exact initial distance of
the electrodes to the face. Noise introduces differences in
the waveforms of the two intensity signal types. Thus, the
EMG and the capacitive intensity signals were not compared
directly, but the activation intensity for each channel was
chosen to be the mean of the intensity signal during the 2-
second interval that the participant held the target intensity.
This efficiently removes the effect that noise might have on
momentary intensity.

F. Performance of the Capacitive Facial Activity Intensity
Measurement

Linear regression was computed for the activation intensities
to find out how the capacitive intensity compares to the EMG
one. Correlation coefficients and intensity estimation errors
of the capacitive channels were calculated for the different
muscles. The errors of the capacitive intensity values from a
fitted regression line are represented with the mean absolute
error (MAE) and the 95th percentile of the absolute error.

The intensities were normalised by dividing the EMG inten-
sities with the maximum intensity value within the trial. The
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normalised intensity range [0, 1] then is the range of intensities
that is likely to be encountered. The intensity ranges in this
scale become 0.25-0.50 for low, 0.50-0.75 for medium, and
0.75-1.00 for high. The capacitive values were normalised by
mapping the normalised EMG intensities [0, 1] to [C0, C0 +1]
by using the regression equations of the channels.

The capacitive intensity value C0 at the EMG intensity
0 is an offset that each capacitive channel has. The offset
indicates how small intensities can be registered with the
capacitive measurement. The offset values were normalised by
multiplying them by the signs of the correlation coefficients
because their interpretation would otherwise depend on the
signs. A negative normalised offset represents the activation
intensity level that is required for the activation to produce
visible changes in the capacitively measured intensity. A
positive offset on the other hand means that small changes
are easily distinguishable from the signal. However, it should
be noted that EMG crosstalk also affects the observed offsets.

In the comparison of the intensity values, the capacitive
intensity needs to be represented based on the multichannel
data. A single capacitance channel per muscle was chosen as
an indicator of the activation intensity. The channel with the
best average regression coefficient during the tasks of a muscle
was selected to represent the intensity of that muscle.

G. Distinguishing Activations of Different Muscles from the
Capacitance Data

The capacitance intensity signals are produced by the move-
ment of the facial tissue. The same measurement channel
can respond to the activation of different muscles. Thus,
the activations need to be distinguished from one another to
know which muscle’s activation intensity is represented by the
registered capacitance at any given time. To estimate how well
the two movements of each trial could be distinguished from
one another, the solved activation intensities (the means during
the 2-second intervals) were clustered. The face was divided
into two regions for the clustering. Only the intensities of
the capacitance signals from the top extensions were included
when doing the clustering for the upper face trials, and both
middle and bottom extensions when doing the clustering for
the lower face trials.

Hierarchical clustering was chosen to always have the same
results for the same set of data. The linkage of the clustering
was done with the Ward’s method that forms clusters by
minimising the increase in the total within-cluster variance
about the cluster centre [27], [28]. A fixed number of 9 clusters
were formed. The number was selected based on what the
data was expected to be. Each trial had 6 different events, i.e.
2 movements and 3 intensities. In addition, the movements
of the face cannot be expected to always be the same when
performing repetitions of the same activation, and the data for
the different intensities of the same muscle can be expected to
be elongated to a certain direction. Ward’s method is not good
at handling elongated clusters and outliers [28], and, thus,
3 additional clusters were included to account for possible
spread in the data.

The performance of distinguishing the activations from one
another was calculated for each muscle. It was chosen to be

presented with the percentages of the activations that were
clustered to clusters specific to the muscle in question. A
cluster was considered to be specific to a certain muscle when
majority of activations clustered to it were from that muscle.

H. Visual Inspection

Visual inspection of videos of the participants recorded
during the trials was carried to support the analysis of the
data. Essential information that affected the results was logged
during the inspection. This included information if the par-
ticipants carried out the movements as instructed, about the
symmetry of the movements, and about the fit and placement
of the device on the head. Unusually small movements even
with the highest activation intensities were also noted.

III. RESULTS

The percentages of successfully performed muscle activa-
tion tasks in the trials are shown in Table I. Since the maximum
number of successful tasks was 10 for each intensity, one
task corresponds to 10%. Percentages for single participants
are always higher than 70% because otherwise the trial was
considered unsuccessful and discarded from the analysis. The
amount of such trials was four for upper face trials and two
for lower face ones.

Table I
THE MEANS AND STANDARD DEVIATIONS OF THE PERCENTAGES OF

SUCCESSFULLY PERFORMED MUSCLE ACTIVATION TASKS IN THE TRIALS.

Contraction intensity
Low Medium High

Frontalis 99.0 ± 3.2 100.0 ± 0.0 94.0 ± 10.7
Corrugator supercilii 99.0 ± 3.2 100.0 ± 0.0 98.0 ± 4.2
Zygomaticus major 100.0 ± 0.0 99.0 ± 3.2 96.0 ± 9.7
Triangularis 100.0 ± 0.0 98.0 ± 4.2 87.0 ± 13.4

A. Performance of the Capacitive Facial Activity Intensity
Measurement

Fig. 6 shows an example of the linear regression for
the solved activation intensities. The figure shows how the
relationship between the capacitive and EMG intensities can
be approximated to be linear within the range of the observed
intensities.

The results of the performance estimation are shown in
Table II. The locations of the channels are shown in Fig. 1.

The capacitive intensity measurements of the Frontalis mus-
cle have strong correlations (absolute values > 0.8) with the
EMG measurement with all the participants. The correlations
of the Corrugator supercilii intensity measurement are strong
with 7 out of the 8 participants that were not considered
outliers. The Zygomaticus major measurements have a strong
correlation with all the 7 participants that are not considered
outliers. The correlations in the Triangularis measurements are
strong with 3 out of the 6 participants that were not considered
outliers.

While none of the participants were considered outliers in
the Frontalis tasks, two were considered such in the Corruga-
tor supercilii tasks. Participant 2 had simultaneous activation
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Table II
THE PERFORMANCE OF THE CAPACITIVE INTENSITY MEASUREMENT. PARTICIPANTS 1 TO 6 WERE THE SAME IN BOTH THE UPPER AND THE LOWER FACE

TRIALS. THE LETTERS U AND L REFER TO PARTICIPANTS THAT CARRIED OUT ONLY EITHER THE UPPER OR THE LOWER FACE TRIALS, RESPECTIVELY.
PARTICIPANTS CONSIDERED AS OUTLIERS ARE MARKED WITH AN ASTERISK. CORRELATION COEFFICIENT r BETWEEN THE EMG AND CAPACITIVE
INTENSITY SIGNALS, CAPACITIVE OFFSET C0 · sgn(r) THAT IS INDEPENDENT OF THE SIGN OF THE CORRELATION COEFFICIENT, MEAN ABSOLUTE

ERROR (MAE), AND 95TH PERCENTILE P95 OF THE ABSOLUTE ERROR ARE SHOWN. DUE TO THE NORMALISATION, THE ERRORS ARE PROPORTIONS OF
THE EFFECTIVE MEASUREMENT RANGE, AND THE OFFSET IS ALSO RELATIVE TO THE RANGE. THE MEANS AND STANDARD DEVIATIONS ARE

CALCULATED WITHOUT THE OUTLIERS, AND IN THE CASE OF THE CORRELATION COEFFICIENT FROM THE ABSOLUTE VALUE.

Part. r C0 · sgn(r) MAE P95

1 0.96 -0.04 0.06 0.13
2 0.83 -0.29 0.09 0.19
3 0.97 -0.02 0.06 0.12
4 0.94 0.12 0.07 0.20
5 0.96 -0.01 0.07 0.17
6 0.92 -0.54 0.09 0.26
7u 0.95 -0.02 0.07 0.21
8u 0.95 -0.15 0.06 0.15
9u 0.95 0.12 0.07 0.15
10u 0.96 -0.39 0.04 0.11

Mean 0.94 ± 0.04 -0.12 ± 0.22 0.07 ± 0.01 0.17 ± 0.04

(a) Frontalis from the channel top right 2

Part. r C0 · sgn(r) MAE P95

1 0.96 -0.28 0.05 0.11
2 * 0.85 -0.11 0.11 0.35
3 0.88 -0.30 0.08 0.19
4 -0.78 -0.10 0.12 0.40
5 * 0.57 -0.09 0.31 0.64
6 0.96 -0.14 0.06 0.12
7u 0.94 -0.21 0.07 0.14
8u 0.90 0.23 0.10 0.23
9u 0.96 -0.04 0.05 0.14
10u 0.94 -0.11 0.06 0.17

Mean 0.92 ± 0.06 -0.12 ± 0.17 0.07 ± 0.02 0.19 ± 0.10

(b) Corrugator supercilii from the channel top right 2

Part. r C0 · sgn(r) MAE P95

1 -0.94 0.20 0.07 0.16
2 * -0.74 0.60 0.19 0.53
3 -0.96 0.70 0.05 0.13
4 -0.90 0.44 0.12 0.24
5 -0.91 -0.03 0.08 0.17
6 -0.90 0.03 0.11 0.22
7l -0.85 0.03 0.12 0.32
8l * -0.74 -0.45 0.18 0.35
9l -0.96 -0.26 0.06 0.14
10l* -0.33 15.08 0.50 1.11

Mean 0.92 ± 0.04 0.16 ± 0.32 0.09 ± 0.03 0.20 ± 0.07

(c) Zygomaticus major from the channel middle right 1

Part. r C0 · sgn(r) MAE P95

1 -0.76 -0.26 0.15 0.34
2 * 0.23 -0.81 0.64 1.59
3 -0.83 0.90 0.09 0.24
4 * -0.05 -10.58 3.30 8.94
5 -0.90 0.34 0.09 0.20
6 -0.88 -0.04 0.09 0.29
7l -0.91 0.29 0.08 0.16
8l * 0.71 0.19 0.18 0.38
9l * -0.05 20.26 3.70 7.78
10l -0.65 0.08 0.20 0.54

Mean 0.82 ± 0.10 0.22 ± 0.40 0.12 ± 0.05 0.29 ± 0.13

(d) Triangularis from the channel bottom right 2
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Figure 6. An example of the relationship between the EMG and the
capacitive intensity values with the measured activation intensities from a
single participant. The EMG has been normalized to the range [0,1] and the
corresponding capacitive values to the range [Co,Co+1].

of the Frontalis in the tasks. With participant 5, the problem
was the fit of the device: the extensions could not reach the
Corrugator supercilii area to register its movements. In the
Zygomaticus major tasks, three participants were considered
outliers. Participant 2 made several of the activations asymmet-
rically. Participant 8l activated the Triangularis simultaneously
with the target muscle. For participant 10l, the fit of the
device was also so that the middle extensions could not reach

in front of the cheek bone region well enough to register
the movements the same way as with other participants.
In the Triangularis tasks, participant 2 was considered an
outlier due to simultaneous activation of Zygomaticus major.
Participant 4 made only Zygomaticus major activations even
during Triangularis tasks. With participant 8l, the movement
was the same as in the Zygomaticus major tasks, i.e. both the
muscles of the trial activated. Participant 9l had asymmetries
in the movements, especially at the stronger intensities.

It was also observed that the movement range of the
activations was really small with participants 1 and 10l even
during the maximum activation intensities of the Triangularis.
However, this was not considered to fulfil the set outlier
criteria.

B. Distinguishing Activations of Different Muscles from the
Capacitance Data

The results of distinguishing the activations of different
muscles from one another are shown in Table III. The partici-
pants that could not activate the muscles of the trial separately
as instructed were considered outliers.

IV. DISCUSSION

Generally, the capacitive intensity measurement achieved
high correlations with the EMG intensity measurement. The
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Table III
THE PERFORMANCE OF DISTINGUISHING THE ACTIVATIONS FROM ONE

ANOTHER FOR THE TWO PAIRS OF THE MUSCLE ACTIVATIONS. THE
PERCENTAGES OF THE ACTIVATIONS THAT WERE CLUSTERED TO
CLUSTERS SPECIFIC TO THE MUSCLE IN QUESTION ARE SHOWN.

Part. Front. Corr.

1 100.0 100.0
2 * 60.0 100.0
3 100.0 100.0
4 100.0 100.0
5 100.0 100.0
6 100.0 93.3
7u 100.0 100.0
8u 96.3 100.0
9u 100.0 100.0
10u 83.3 100.0

Mean 97.7 ±
5.5

99.3 ±
2.2

(a) Upper face trials: Frontalis and Cor-
rugator supercilii

Part. Zyg. Triang.

1 100.0 100.0
2 * 100.0 96.6
3 100.0 100.0
4 * 37.9 100.0
5 100.0 100.0
6 100.0 100.0
7l 100.0 100.0
8l * 23.3 100.0
9l 100.0 100.0
10l 100.0 100.0

Mean 100.0 ±
0.0

100.0 ±
0.0

(b) Lower face trials: Zygomaticus major
and Triangularis

weakest correlation values were obtained for the Triangularis
muscle that is difficult to measure with the capacitive method
due to the movement that its activation produces. The move-
ment is mostly tangential relative to the surface of the face
as opposed to normal that would be more easily detected.
Also, very small movement ranges were encountered with
some participants. Other issues that affected the calculated
correlation values were also encountered. In the case of the
Corrugator supercilii muscle, the correlation value of partici-
pant 4 was not strong and was also of opposite sign compared
to the other participants. This was caused by slightly unsuitable
positioning of the device on the head. The top extensions were
too low for the measurement which caused the movement
to be registered differently than with the other participants.
The two other correlation values that had an opposite sign
compared to the values of other participants were encountered
in the Triangularis tasks with the outlier participants. In these
the reason was that the participants actually contracted the
antagonist muscle during the tasks.

Even if the relationship between the capacitive and EMG
signals was linear within the range of the measured intensities,
the solved capacitive offset values indicated that the range
from the background signal level (0) to the minimum mea-
sured intensity was not always linear. The magnitudes of the
normalised offsets describe the capacitance changes that occur
within this range. They should be larger than −0.25 for the
measurement to be able to measure the entire range beginning
from the EMG intensity value 0.25 that was considered the
lower end of the low intensity range. The negative offset values
of the Frontalis muscle indicated problems in the measurement
of that muscle with participants 2, 6, and 10u. An apparent
reason for the offsets with participants 2 and 10u could not
be pointed out, but the negative values for both were large
enough to render the capacitive measurement unusable in
the low intensity range. The offset of participant 6 resulted
from unexpected changes in the capacitive signals during the
activations. Different activation intensities caused the signal
to change to different directions. The lowest intensity activa-
tions introduced negative intensity values while the medium

and high activations caused positive ones. These unexpected
changes affected only two of the measured channels: top right
1 and 2. The offsets were better in the Corrugator supercilii
tasks. Still, two participants had negative offsets close to
−0.30 which means that capacitance started to respond to
the activation after the intensity was already above the lowest
fifth of the defined low intensity range. In the Zygomaticus
major tasks, the participants not considered outliers all had
such offsets that even the low intensity range is measurable.
The same applied to the Triangularis tasks. However, similar
unexpected changes in the signals that were encountered with
participant 6 in the Frontalis tasks were met with participant
2 in the Triangularis tasks. In this case the reason was the
activation of the Zygomaticus major simultaneously.

The intensity estimation errors as described by the mean
absolute error can be considered acceptable with all muscles
for most participants that were not considered outliers. MAEs
less than or equal to 0.10 on average were obtained for
all muscles except the Triangularis. The average P95 values
were less than or equal to 0.20 for all other muscles but
the Triangularis. In the Frontalis tasks, a high value was
met with participant 6 who was already noticed to introduce
some unusual changes to capacitive signals. In the Corrugator
supercilii tasks, the very high P95 value with participant 4
could be explained with the unsuitable positioning of the
device on the head as described earlier. In the Zygomaticus
major tasks, an evident explanation for the high value with
participant 7l could not be given, but the value may have been
affected by the positioning of the middle extensions relative to
the movements that the Zygomaticus major produces with that
specific anatomy of the face. Finally, the Triangularis had the
highest overall P95 values that can be considered to result from
the already discussed difficulties in measuring its movements.

The observed performance of the capacitive method may be
influenced by a few issues that can make the results appear
worse than the performance truly is. The noise of the reference
EMG measurement may have affected the results. The noise
levels varied a bit between the channels and the trials and
in some cases even within a trial. The noise characteristics
may be such that the simple baseline correction that was
done to the EMG intensity signal was not sufficient to correct
the effect of the noise. EMG crosstalk may also contribute
and especially the observed offsets may be caused by it. The
way that the capacitive measurement registers the activity may
also affect the observed performance. Some movement of the
device in the head may occur during the muscle activations,
which changes the way the activations are seen in the signals.
Other facial movements than those caused by the target muscle
also affect the measurements. Further, the absolute distances of
the capacitance measurement electrodes to the face may affect
the measurement because the parallel-plate capacitor model
that was used in the calculations assumes that the distance
is really small compared to the plate area. The conversion
of capacitance signals to distance signals further assumes that
each capacitance is introduced by the parallel plates. However,
the facial tissue is not always clearly a plate.

The capacitive channel to represent the activation intensity
of each muscle was chosen based on which channel had the
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best average correlation. In actual use, this information is not
available without measuring the EMG as well, but the channel
selection needs to be justified in other ways. The physical
positioning of the capacitance channels with respect to the
movements that the targeted activations introduce may be used
as a basis for it. The channels with the best average correlation
correspond with the locations where each muscle activation is
seen to cause distinct movements.

The results of distinguishing between the different move-
ments were really good. When the outlier participants were
left out from the analysis, only a small number of activations
were the cause of the decreased performance. All these am-
biguously clustered activations were low-intensity ones. The
low-intensity activations of the different muscles are close to
each other in the data and may be problematic at times.

An important issue that affects the feasibility of the capac-
itive measurement method is the adjustment of the electrode
locations. It affects how the movements are registered. An
expert made the adjustment in this study, and it was noticed
that the adjustment could be made easier. The movement
ranges of the electrode extensions, currently adjustable with
the ball-and-socket joints, could be far less to achieve the nec-
essary adjustability while simplifying proper positioning. Also,
a calibration phase could be used to instruct the adjustment of
the electrodes to optimal locations.

To measure different intensities, the calibration phase is
obligatory for determining the maximum activity levels. The
offset should also be calibrated unless further studies show
that the offsets observed in this study were mainly caused by
the noise and crosstalk related to the EMG reference signals.
For distinguishing between different muscle activations in real-
time use cases, the calibration phase can be used to collect data
to be used for classification. The clustering could be used as a
basis for simple classification, for example, by mapping data
to clusters formed in the calibration phase based on which
cluster centre the data point is closest to. Real classifiers could
also be used. These could consider the temporal content of the
intensity signals in addition to the current intensity values.

This study revealed that the capacitive method for measuring
activation intensity has properties that are very similar to
those of the EMG. The correlations between the intensities
measured with the two methods were mostly strong. The
signals also have a very similar temporal content meaning that
the capacitive method should function well in determining the
onset and duration of spontaneous facial activity. On the other
hand, also the drawbacks of the methods are similar. Both can
be considered to suffer from crosstalk. In EMG, it is caused by
the electrical activity of surrounding muscles and also by the
electrode placement. In the capacitive method, the crosstalk is
caused by the facial movements that interfering muscles cause
when activated, and also by the possible small movements of
the measurement device on the head. The capacitive method
also has a similar property as the automated FACS: it requires
to determine which muscles are active similarly as FACS needs
a classifier to solve the active action units [8], [29], [30], [12].

V. CONCLUSIONS

A new capacitive method for measuring the intensity of
facial activity was presented. The measurement that has pre-
viously been used to detect and locate facial activity was
shown to be able to register the activation intensities of the
muscles Frontalis, Corrugator supercilii, Zygomaticus major,
and Triangularis. The intensity estimation errors compared
to the EMG were small except for the Triangularis muscle.
Additionally, the linear relationship between the EMG and the
capacitive intensity values was in some cases noticed to have
an offset while in the ideal case a zero EMG intensity value
should correspond to a zero capacitive value. This might cause
difficulties in distinguishing the low intensity activations from
the baseline. A more complex calibration procedure may also
be necessary because of the offset. However, the distinction
between the different facial activations based on the capacitive
intensity data appears more straightforward and in this study
could be done almost perfectly for all the target muscles.

Future developments of the method should include verifi-
cation measurements to find out if the noticed offsets of the
capacitive intensity measurement were affected by the EMG
reference. A calibration phase should be developed to calibrate
the measurement for different intensities, and the movements
should be classified also in real-time. Calibration could include
an automated instruction phase to instruct the user to adjust
the electrodes to the desired distance from the face to achieve
optimal operation. Finally, a modified implementation of the
signal processing algorithms should be made to utilise the
intensity information in real-time.
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