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Abstract 

 
Model-based condition monitoring methods are widely used in condition monitoring. They usually rely on ad hoc 

approaches to verify the system model and then best practices are reported to detect the given set of faults. This first 

part of a two-piece paper introduces a generic Global Sensitivity Analysis-based approach that can be applied 

systematically to verify the model parameter sensitivities used for the model-based fault detection. The case study is a 

generic servo valve-controlled hydraulic cylinder with unknown loading condition which is then systematically 

analyzed with Global Sensitivity Analysis. The method shows valuable insight into systematic model verification and 

resulting fault detection in terms of showing the dominant sensitivity of the nominal flow rate and nominal pressure 

difference, and the exact sensitivities of 0-1 dm3/min external and internal leakages on cylinder chamber pressures and 

velocity. In the second paper, an Unscented Kalman Filter-based Fault Detection and Isolation scheme for leakage and 

valve faults of a generic servo valve-controlled hydraulic cylinder is devised and fault patterns are presented. 
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1 Introduction 

In a fault detection process, system condition is 

constantly observed and decisions are made whether 

the system has faults. Once a fault is detected, a fault 

isolation process takes over and localizes the cause of 

the fault. 

To avoid false alarms (or false positives), in 

model-based condition monitoring it is important to 

verify the model to be as accurate as possible. A 

Global Sensitivity Analysis (GSA, Saltelli et al. 2008) 

helps in the verification, since it reveals the most 

sensitive parameters of the system in a systematic way. 

By focusing efforts on improving the sensitive 

parameters, a more robust model is reached. The GSA 

can also reveal the sensitivity of faults on system 

outputs, which is useful for fault detection purposes. 

Model sensitivity can be analyzed locally. For 

instance, a Local Sensitivity Analysis (LSA) to a 

nonlinear variable displacement axial piston pump 

model was applied to study parameter sensitivities and 

to reduce model order (Kim et al., 1987), and to a 

linear water quality model (Pastres et al., 1997). In 

LSA, parameters are deviated individually from their 

nominal values, which can be performed analytically 

with Eq. (1) if the model output is differentiable and 

otherwise numerically with Eq. (2): 

 

Si =
𝜕𝑌

𝜕𝑋i
, i = {1,2,3,… , k} (1) 

 

Si =
𝑌 − f(𝑋1, 𝑋2, 𝑋3, … , 𝑋i + ∆𝑋i, … , 𝑋k)

∆𝑋i

 (2) 

 

where 𝑆i is the sensitivity of output 𝑌 =
f(𝑋1, 𝑋2, 𝑋3, … , 𝑋k) to a change in parameter 𝑋i. 

Thus LSA sensitivities are valid in close proximity 

of nominal parameters. Therefore, GSA is more 

applicable to nonlinear models since GSA sensitivities 

are valid in a wider parameter space. Previously, GSA 

has been used in studying, for example the sensitive 

forces in a pipe bend and parameters in a dam-break 

experiment (Hall. et al., 2009), and the parameters in   

water hammer model (Kaliatka et al., 2009). The GSA 

method of this paper is the variance-based Sobol’  

indices because it is simpler to implement than for 

instance the Fourier Amplitude Sensitivity Test 

(FAST). 

Current studies on model-based condition 

monitoring rely on an ad hoc approach to find the best 

ways to detect faults and to verify the model 

parameters. Our proposal in this paper is the systematic 

utilization of GSA to verify the system model and to 

find the best practices to detect faults. 

This paper is organized as follows. In Section 2, 

the mechanism of a generic valve-controlled hydraulic 

cylinder that drives a manipulator joint is presented. 

Then the corresponding test bed is introduced and 

modelled. In Section 3, the GSA algorithm and its 

implementation with Monte Carlo methods are 

described. In Section 4, the GSA is applied to the test 

bed and the results are discussed. 



 

2 Modelling and Test Bed 

The objective of the fault detection and isolation 

scheme that is devised in part 2 on the basis of part 1 is 

that it is applicable to a generic valve-controlled 

cylinder that drives any of the n-DOF manipulator 

joints, see Fig. 1:. 

 

 
Fig. 1: A manipulator joint driven by a hydraulic cylinder. 

 

The piston position of the ith cylinder is given by 

the law of cosines: 

 

𝑥i(𝜃i) = √𝐿i1
2 + 𝐿i2

2 − 2𝐿i1𝐿i2 cos 𝜃i − 𝐿𝑖3 (3) 

 

Piston velocity of the ith cylinder can be 

differentiated from Eq. (3): 

 

�̇�i(𝜃i) = 𝑟i(𝜃i)�̇�i (4) 

 

where �̇�i is the angular velocity of the joint and the 

torque arm of the ith cylinder is given by: 

 

𝑟i(𝜃i) =
𝐿i1𝐿i2 sin 𝜃i

√𝐿i1
2 + 𝐿i2

2 − 2𝐿i1𝐿i2 cos 𝜃i

 
(5) 

 

Consider an open chain manipulator system that 

consists of n cylinders. The piston velocities of all 

cylinders can be presented compactly with matrix 

notation: 

 

�̇� = 𝐑(𝜽)�̇� = [

r1(𝜃1) 0 ⋯ 0
0 r2(𝜃2) ⋯ 0
⋮ ⋯ ⋱ ⋮
0 0 ⋯ rn(𝜃n)

] �̇� (6) 

 

The torques acting on the joints expressed with 

linear actuator coordinates are (Beiner and Mattila, 

1999): 

 
𝝉cyl = 𝐑(𝜽)𝑭

= 𝐉(𝜽)𝐑(𝜽)−1�̈� − 𝐉(𝜽)𝐑(𝜽)−1�̇�(𝜽)𝐑(𝜽)−1�̇� + 𝑽(𝜽, �̇�)

+ 𝑮(𝜽) 
(7) 

 

where 𝐑(𝜽)𝑭 consists of cylinder actuator torques, 

𝑽(𝜽, �̇�) consists of torques caused by the Coriolis 

effect and centrifugal force, and 𝑮(𝜽) is the vector of 

gravitational torques. 

2.1 Case Study –Test Bed 

The GSA is applied to a hydraulic boom called 

Single Axis Mock-up (SAM), shown in Fig. 2:. 

 

 
Fig. 2: The hydraulic diagram of the SAM. 

 

The SAM has a 4/3-directional valve that controls 

the joint cylinder. Three restrictor valves are used to 

emulate external leakages (‘External leakage A’ and 

‘External leakage B’) and internal leakage (‘Internal 

leakage’). The external leakage emulates fluid leakage 

to the environment due to a broken hose, pipe or a 

failed coupling, while the internal leakage arrangement 

emulates cylinder seal failure. The system components 

are listed to Appendix 1, Table 9:. The SAM, with a 

4.5 Hz maximum hydraulic natural frequency (Fig. 4:), 

is illustrated in Fig. 3:. 

 

 
Fig. 3: An illustration of the boom. 

 

 
Fig. 4: The estimated hydraulic natural frequency of SAM. 
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2.2 Case Study –Test Bed 
Model 

The mathematical model is divided into hydraulic 

system equations, motion equations of the boom, and 

then the entire model is presented in a continuous-time 

and in a discretized state space form. 

2.2.1 Hydraulic System Equations 

Equations (8) and (9) describing the change in 

chamber pressures are as follows (Watton, 1989): 

 

�̇�𝐴 = 
𝐵𝑒𝑓𝑓𝐴

𝑉0𝐴 + 𝐴𝐴𝑥
(𝑄𝐴(pA, xs) − 𝐴𝐴�̇�) (8) 

 

�̇�𝐵 =  
𝐵𝑒𝑓𝑓𝐵

𝑉0𝐵 + 𝐴𝐵(𝑥𝑚𝑎𝑥 − 𝑥)
(𝑄𝐵(pB, xs) + 𝐴𝐵�̇�) (9) 

 

where 𝐵effX is the effective bulk modulus in chamber X 

(for X = A, B), 𝑉0X is the volume in chamber X, 𝐴X is 

the area in chamber X, 𝑄X is the flow sum to and from 

chamber X, 𝑥max is the cylinder stroke, 𝑥 is the piston 

position and �̇� denotes velocity. 

The algebraic equations for flows 𝑄A(pA, xs) and 

𝑄B(pB, xs) with the flow into the cylinder being 

positive can be written as follows: 

 
𝑄𝐴(…)

= {

𝐾𝑣𝑃𝐴(𝑥𝑠 + 𝑜𝑓𝑓𝑠𝑒𝑡)√|𝑝𝑆 − 𝑝𝐴|𝑠𝑔𝑛(𝑝𝑆 − 𝑝𝐴) + 𝑄𝑙𝑒𝑎𝑘𝐴,        𝑥𝑠 + 𝑜𝑓𝑓𝑠𝑒𝑡 > 0

−𝐾𝑣𝐴𝑇(−𝑥𝑠 + 𝑜𝑓𝑓𝑠𝑒𝑡)√|𝑝𝐴 − 𝑝𝑇|𝑠𝑔𝑛(𝑝𝐴 − 𝑝𝑇)  +  𝑄𝑙𝑒𝑎𝑘𝐴 , 𝑥𝑠 + 𝑜𝑓𝑓𝑠𝑒𝑡 < 0

0,                                                                                                   xs = −𝑜𝑓𝑓𝑠𝑒𝑡

 (10) 

 
QB(…)

= {

−KvBT(xs + offset)√|pB − pT|sgn(pB − pT) + 𝑄𝑙𝑒𝑎𝑘𝐵 ,      𝑥s + offset > 0

KvPB(−xs + offset)√|pS − pB|sgn(pS − pB) + 𝑄𝑙𝑒𝑎𝑘𝐵 ,      𝑥s + offset < 0

0,                                                                                                     xs = −𝑜𝑓𝑓𝑠𝑒𝑡  

 (11) 

 

where KvX is flow coefficient in notch X, for X = PA, 

AT, BT and PB, 𝑥s is the spool position, offset denotes 

the deviation of the valve spool from its correct 

position, 𝑝S is the supply pressure, 𝑝A is the pressure 

A, 𝑝T is the tank pressure and 𝑝B is the pressure B. The 

flow coefficients are defined as follows: 

 

𝐾vX =
𝑄𝑁,𝑋

√ΔpN,X

 (12) 

 

where 𝑄N,X is the nominal flow rate and ΔpN,X is the 

nominal pressure difference in notch X. 

The terms 𝑄leakA and 𝑄leakB are laminar leakage 

flows, present when the spool position is between -1 % 

and 1 % of its maximum: 

 

{
𝑄𝑙𝑒𝑎𝑘𝐴 = 𝐾𝑣𝑃𝐴,𝑙𝑒𝑎𝑘(𝑝𝑆 − 𝑝𝐴) − 𝐾𝑣𝐴𝑇,𝑙𝑒𝑎𝑘(𝑝𝐴 − 𝑝𝑇), |xs| < 0.01

0,                                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

 

{
𝑄𝑙𝑒𝑎𝑘𝐵 = 𝐾𝑣𝑃𝐵,𝑙𝑒𝑎𝑘(𝑝𝑆 − 𝑝𝐵) − 𝐾𝑣𝐵𝑇,𝑙𝑒𝑎𝑘(𝑝𝐵 − 𝑝𝑇) |xs| < 0.01

0,                                                                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

 

where 𝐾𝑣𝑋,𝑙𝑒𝑎𝑘 are the leakage flow coefficients. 

The spool 𝑥𝑠 dynamics are modelled with the 2nd 

order differential equation: 

 

�̈�𝑠 = 𝐾𝜔𝑛
2𝑢 − 2𝜔𝑛𝑑𝑟�̇�𝑠 − 𝜔𝑛

2𝑥𝑠 (15) 

2.2.2 Motion Equations of the Boom 

The piston position 𝑥(𝜃) is calculated according to 

Eq. (3) and the velocity �̇�(𝜃) according to Eq. (4). 

We calculate the angular acceleration of the boom 

�̈� by dividing the sum of torques acting on the boom 

with total moment of inertia as follows: 

 

�̈� =
∑ 𝜏

𝐽tot

=
𝜏cyl + 𝜏mR − 𝜏mL − 𝜏B

1
12

𝑚B𝐿B
2 + 𝑚L𝐿

2 + 𝑚R𝐿2
  (16) 

 

where 𝜏cyl is the torque generated by the cylinder, 𝜏mR 

and 𝜏mL are the torques caused by the load masses on 

the right and left, respectively, and 𝜏B is the torque 

produced by the boom, since the boom is not jointed to 

the base from its center of gravity. The total moment of 

inertia 𝐽tot consists of the load masses 𝑚L and 𝑚R at a 

distance 𝐿 from the center of rotation, and of the 

boom’s moment of inertia with mass 𝑚B and length 𝐿B. 

The friction force 𝐹µ is as follows (Canudas de Wit 

et al., 1995): 

 

𝐹µ(�̇�, z) = 𝜎0𝑧 + 𝜎1[
𝜎0|�̇�|

[FC + (FS − FC)e
−(ẋ/vs)2

z] + 𝑏�̇� (17) 

 

 

where 𝑧 is the bending of the cylinder seal, 𝜎0 is the 

stiffness of the seal, 𝜎1 is the damping coefficient and 

𝑏 is the viscous friction coefficient. This friction model 

includes the stick-slip phenomenon. For more 

information on the dynamics of state variable z refer to 

the original publication (Canudas de Wit et al., 1995). 

The relation between pressure levels and friction force 

was neglected. 

2.2.3 State Space Representation of the 
Model 

The entire model can be presented compactly in 

state space form. The states of the system are: 

 
𝒙 = [𝑝A, 𝑝B, 𝑥s, �̇�s, 𝑥, 𝑥,̇ 𝑧]T = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7]

T (18) 

 

The continuous-time state space representation is 

then: 

 

[
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

�̇�7]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝐵effA

𝑉0A + 𝐴A𝑥5

(𝑄A(x1, x3) − 𝐴A𝑥6)

𝐵effB

𝑉0B + 𝐴B(𝑥max − 𝑥5)
(𝑄B(x2, x3) + 𝐴B𝑥6)

𝑥4

𝐾𝜔n𝑢 − 2𝜔n𝑑r𝑥4 − 𝜔n
2𝑥3

𝑥6

𝑚reduced
−1 (𝑥1𝐴A − 𝑥2𝐴B − 𝐹µ(x6, x7) − 𝐹ext)

𝑥6 − 𝜎0|𝑥6|[𝐹c + (𝐹S − 𝐹c)𝑒
−(𝑥6/𝑣s)

2
]−1𝑥7 ]

 
 
 
 
 
 
 
 
 

 (19) 

 

 



 

where 𝑚reduced is the reduced mass on the cylinder 

and 𝐹ext is the external force which can be written as: 

 

𝑚reduced(𝜃) =
𝐽tot

𝑟2(𝜃)
 (20) 

 

𝐹ext =
−𝜏mR + 𝜏mL + 𝜏B

𝑟
 (21) 

 

The continuous-time state space representation can 

be transformed to discrete-time with sampling time T 

with Euler’s forward method: 

 

[
 
 
 
 
 
 
 
𝑥1(𝑘 + 1)

𝑥2(𝑘 + 1)

𝑥3(𝑘 + 1)

𝑥4(𝑘 + 1)

𝑥5(𝑘 + 1)

𝑥6(𝑘 + 1)

𝑥7(𝑘 + 1)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
𝑥1(𝑘)

𝑥2(𝑘)

𝑥3(𝑘)

𝑥4(𝑘)

𝑥5(𝑘)

𝑥6(𝑘)

𝑥7(𝑘)]
 
 
 
 
 
 
 

+ 

 

𝑇

[
 
 
 
 
 
 
 
 
 
 
 

𝐵effA

𝐴A𝑥5(𝑘) + 𝑉0A
(𝑄A(x1(𝑘), x3(𝑘)) − 𝐴A𝑥6(𝑘))

𝐵effB

𝐴A(𝑥max − 𝑥5(𝑘)) + 𝑉0B
(𝑄B(x2(𝑘), x3(𝑘)) + 𝐴B𝑥6(𝑘))

𝑥4(𝑘)

𝐾𝜔n𝑢(𝑘) − 2𝜔n𝑑r𝑥4(𝑘) − 𝜔n
2𝑥3(𝑘)

𝑥6(𝑘)

𝑚reduced
−1 (𝑥1(𝑘)𝐴A − 𝑥2(𝑘)𝐴B − 𝐹µ(x6(𝑘), x7(𝑘)) − 𝐹ext)

𝑥6(𝑘) − 𝜎0|𝑥6(𝑘)| [𝐹c + (𝐹S − 𝐹c)𝑒
−(

𝑥6(𝑘)
𝑣s

)
2

]

−1

𝑥7(𝑘)
]
 
 
 
 
 
 
 
 
 
 
 

 

(22) 

3 Global Sensitivity 
Analysis 

A Global Sensitivity Analysis (GSA) method 

called Sobol’ indices, its computation procedure and its 

usefulness for condition monitoring and model 

verification are introduced in this section. 

3.1 Sobol’ Indices Method 

 The premises for the variance-based Sobol’ 

indices method are as follows (Saltelli et al., 2008, pp. 

160-163). Consider the model to be a square-integrable 

function 𝒀 = f(𝑿) which can be divided into 

summands of increasing dimensionality: 

 

f(𝑋1, 𝑋2, 𝑋3, … 𝑋k)  

= f0 + ∑ fi(𝑋i)

k

i=1

+ ∑ ∑ fij(𝑋i, 𝑋j) + ⋯

k

j=i+1

k

i=1

+ f1…k(𝑋1, 𝑋2, 𝑋3, … 𝑋k) 

(23) 

 

where k is the number of parameters and 𝑋k is the 

random parameter k. 

Equation (23) has a total of 2k terms and infinite 

solutions. Sobol’ proposed one solution, which 

decomposes the function f(𝑿) into conditional 

expectations. The first three terms can be written as: 

 

f0 = E(𝒀) (24) 

 

fi = E(𝒀|𝑋i) − E(𝒀) (25) 

 

fij = E(𝒀|𝑋i, 𝑋j) − fi − fj − E(𝒀) (26) 

 

where E(𝒀) denotes the expectation of model output Y, 

E(𝒀|𝑋i) is the conditional expectation of output Y 

given that input 𝑋i is fixed to a certain value. 

The variances of Eq. (24)-(26) have the following 

properties: 

 

V0 = V(f0) = 0 (27) 

 

Vi = V(fi) = V[E(𝒀|𝑋i)] (28) 

 

Vij = V(fij)

= V[E(𝒀|𝑋i, 𝑋j)] − V[E(𝒀|𝑋i)] − V[E(𝒀|𝑋j)] 
(29) 

 

The conditional variance in Eq. (28) is used to 

calculate first order sensitivity indices, which is a 

measure on the main effect of parameter 𝑋i on output 

Y: 

 

Si =
V[E(𝒀|𝑋i)]

V(𝒀)
 (30) 

 

where V(𝒀) is the unconditional variance of output Y. 

The interpretation for the term V[E(𝒀|𝑋i)] is that 

first the conditional expectation E(𝒀|𝑋i) is calculated 

by fixing the input 𝑋i to a certain value 𝑋i
∗ and 

allowing other inputs to vary. Thus a complete 

representation for the conditional expectation is 

E~Xi
(𝒀|𝑋i = 𝑋i

∗). The ~𝑋i operator means that the 

expectation is calculated over every input excluding 𝑋i. 

For k inputs that is a set {𝑋1, 𝑋2, … , 𝑋i−1, 𝑋i+1, … , 𝑋k}. 
Then the variance of the expectation is calculated over 

different values of 𝑋i. Thus the complete representation 

for the nominator is VXi
[E~Xi

(𝑌|𝑋i = 𝑋i
∗)]. 

The total order effects, which include the first 

order effect but also the terms that come from 

interaction between parameters, is derived from the law 

of total variance: 

 

V(𝒀) = V[E(𝒀|𝑋~i)] + E[V(𝒀|𝑋~i)] (31) 

 

where the first term is the main effect and the 

remaining term the residual. 

Then the total order sensitivity indices can be 

calculated with: 

 

STi
=

E[V(𝒀|𝑋~i)]

V(𝒀)
= 1 −

V[𝐸(𝒀|𝑋~i)]

V(𝒀)
 (32) 

 



 

where the latter equality is obtained from Eq. (31) by 

solving it for E[V(𝒀|𝑋~i)] and placing it to the former 

equality. 

In Eq. (32), E[V(𝒀|𝑋~i)] is a term that contains the 

variance of Y that would be left if all inputs but 𝑋i 

could be fixed (𝑋i would be allowed to vary). Thus, 

diving E[V(𝒀|𝑋~i)] by V(𝒀) gives the proportion of the 

variance that is caused by 𝑋i. The term V[E(𝒀|𝑋~i)] 
contains the variance that would disappear from V(𝒀) 

if all inputs but 𝑋i could be fixed. 

3.2 Computing Sobol’ Indices 

The analytical computation of Sobol’ indices of 

differential equation models is not possible. From 

Saltelli (2002) and Saltelli et al. (2008, pp. 164-167) a 

procedure for computing sensitivity indices is reached. 

Consider two matrices 𝐗1 and 𝐗2 which are of size 

N x k. N is the sample size (the number of 

simulations), and k is the amount of parameters that are 

randomly varied. In 𝐗1 and 𝐗2 each row m, for 

example 𝑿1
m with m = {1,2,3, … , N}, corresponds to 

one simulation with k random inputs in the columns. 

The inputs are varied using quasi-random numbers 

from the Sobol’ sequence (Sobol’ & Kucherenko, 

2005), which produces more accurate sensitivity 

indices than pseudorandom numbers drawn randomly. 

Simulating with input matrices 𝐗1 and 𝐗2 N times, 

two output matrices 𝐘1 =  f(𝐗1) and 𝐘2 = f(𝐗2) of size 

N x M are created, where M is the number of outputs. 

For 𝒀1 and 𝒀2 the estimated variances are: 

 

V̂(𝐘1) =
1

𝑁
∑ f2(𝑿1

m)

N

m=1

− f̂1
2 (33) 

 

V̂(𝐘2) =
1

𝑁
∑ f2(𝑿2

m)

N

m=1

− f̂2
2 (34) 

 

where the squared expectation estimates are: 

 

f̂1
2 =

1

𝑁
∑ f(𝑿1

m)𝑓(𝑿2
m)

N

m=1

 (35) 

 

f̂2
2 = (

1

𝑁
∑ f(𝑿2

m)

N

m=1

)2 (36) 

 

Equation (33) and Eq. (34) are used for computing first 

and total order indices, respectively. 

We introduce input matrix 𝐗3i for calculating the 

nominators in Eq. (30) and (32). Matrix 𝐗3i has the 

same values as 𝐗2 except that the ith column is taken 

from matrix 𝐗1. The first order sensitivity indices are: 

 

Si =
V[E(𝒀|𝑋i)]

V(𝒀)
=

1
𝑁

∑ f(𝑿1
m)N

m=1 f(𝑿3i
m) − f̂1

2

1
𝑁

∑ f2(𝑿1
m)N

m=1 − f̂1
2

 (37) 

 

In the scalar product f(𝑿1
m)f(𝑿3i

m) the columns for 

𝑋i are the same. If 𝑋i is influential, high and low values 

of outputs f(𝑿1
m) and f(𝑿3i

m) are associated (a high 

value multiplied by a high value or a low value 

multiplied by a low value) and thus produce a higher 

value for the variance when the terms in the scalar 

product are added together. If 𝑋𝑖 is a non-influential 

input, the high and low values of  f(𝑿1
m) and f(𝑿3i

m) are 

randomly associated, thus resulting in a lower value for 

the nominator. 

The total order sensitivity indices are: 

 

STi
= 1 −

V[E(𝒀|𝑋~i)]

V(𝒀)

= 1 −

1
𝑁

∑ f(𝑿2
m)N

m=1 f(𝑿3i
m) − f̂2

2

1
𝑁

∑ f2(𝑿2
m)N

m=1 − f̂2
2

 

(38) 

 

The explanation for Eq. (38) is that as values for 

𝑋~i are the same and only the input 𝑋i is randomly 

varied, if 𝑋i is influential, the values in the product 

f(𝑿2
m)f(𝑿3i

m) will be randomly associated and produce 

a lower value in the latter term. But taking into 

consideration that this low value is subtracted from 

one, a high value will be the result, thus indicating that 

this input is meaningful, and vice versa. 

At the expense of increased computational costs 

increasing sample size N results in better sensitivity 

index estimates, the described method requires N(2+k) 

model runs. 

3.3 Interpreting Sensitivity 
Indices from a Condition 
Monitoring Perspective 

Sensitivity indices are used to rank parameters 

according to their sensitivities for model verification 

purposes (Saltelli et al. 2008, pp. 166-167): 

 

 Inputs with the lowest total order sensitivity 

indices (near zero) causing the least variance 

to the output can be fixed at a value between 

their examined bounds without compromising 

the accuracy of the model. 

 Inputs with the highest first order sensitivity 

indices should be a priority in model 

verification, because their correct values will 

reduce the variance in output Y the most. 

 

Model parameter interactions can be studied too. 

The interactions mean that the effect of parameter 

changes on the output is different if the parameters are 

changed together as opposed to individually changing 

them and summing their effects. The differences 𝑆Ti
−



 

𝑆i and 1 − ∑ 𝑆i
k
i=1  are direct measures of the 

interactions. They are zero for perfectly additive 

models but nonzero for non-additive models. 

GSA results are useful for fault detection purposes. 

The sensitivity indices of fault parameters indicate if 

the fault can be detected, and at which output. 

4 Global Sensitivity 
Analysis of the Single Axis 
Mock-up 

The sensitivity of the system for parameter 

changes and leakage faults is studied in this section, 

both in transients and in steady state. The main 

objective was to extract information from the 

sensitivities for fault detection purposes. 

The valve control signal was a step signal to 25 % 

opening. Only the extending movement of the cylinder 

was examined because we wanted to limit the range of 

the study. Moreover, the asymmetry of the cylinder 

might affect the results in retraction. The sample size N 

in both analyses was 10000, with a fixed 1-millisecond 

simulation step size. The examined outputs were 

pressures A, B and velocity. 

4.1 Sensitivity for Parameter 
Changes 

The sensitivity of the SAM for seven varying 

parameters (k = 7) and their respective ranges are 

examined (Table 1:) using the model in Eq. (19). 

 

Table 1: Single Axis Mock-up parameters deviated in 

the GSA. 

Parameter Explanation Lower 

bound 

Upper 

bound 

offset Spool deviation 

from actual 

position 

-5 % 5 % 

QN,PA Nominal flow 

rate in notch PA 

15 

L/min 

35 

L/min 

ΔpN,PA Nominal pressure 

difference in 

notch PA 

5 bar 40 bar 

QN,BT Nominal flow 

rate in notch BT 

15 

L/min 

35 

L/min 

ΔpN,BT Nominal pressure 

difference in 

notch BT 

5 bar 40 bar 

Beff Effective bulk 

modulus 

300 

MPa 

1200 

MPa 

b Viscous friction 

coefficient 

2000 

Ns/m 

5000 

Ns/m 

 

The parameters are assumed to be uniformly 

distributed. The lower and upper bounds are chosen so 

that they are reasonable. For instance, the nominal flow 

rate of the valve is 24 L/min, thus a 15-35 L/min range 

is suitable. The nominal pressure differences are 

chosen so that most valve types fall within the range. 

Valve offset is a calibration error or a deviation caused 

by a valve fault. The constant parameters that were 

identified, measured or taken from manufacturer data 

are listed in Appendix 2. 

The first order indices in steady state (Fig. 5:), 

including errors bounds calculated with a re-sampling 

method (bootstrapping), Archer et al. (1997), show 

how much variance in pressures and velocity is caused 

by individual parameters alone. The effective bulk 

modulus causes minor output variance. This is entirely 

intuitive because Beff is a parameter that affects the 

natural frequency of the system and only has an effect 

on pressures or velocity in transients. This can be 

verified by setting either one of the pressure 

differential equations to zero to find the steady state 

pressures. Viscous friction coefficient b has 

insignificant magnitude, as indicated by the negligible 

sensitivity index b. 

 

 
Fig. 5: The first and total order sensitivity indices in 

steady state. 

 

Table 2: The ranking of parameters according to their 

first order indices. 

Ranking pA pB v 

1 ΔpN,BT ΔpN,PA ΔpN,PA 

2 QN,BT QN,PA QN,PA 

3 ΔpN,PA ΔpN,BT offset 

4 QN,PA QN,BT ΔpN,BT 

5 offset offset QN,BT 

6 Beff Beff Beff 

7 b b b 

 

Table 2: ranks the parameters from Fig. 5:. It 

shows that the pressure variance is mostly captured by 

nominal pressure differences and flow rates. Notch BT 

parameters cause the most variance to pressure pA, 

where as notch PA parameters are responsible for most 

of the variance to pressure pB. The reason becomes 

clear from the steady state pressures: 

 



 

𝑝ssA =
𝐹ext𝐴A𝐴B𝐾vBT

2 + 𝐴B
3𝐾vPA

2 𝑝S + 𝐴A
2𝐴B𝐾vBT

2 𝑝𝑇

𝐴A
3𝐾vBT

2 + 𝐴B
3𝐾vPA

2  (39) 

 

𝑝ssB =
−𝐹ext𝐾vPA

2 𝐴B
2 + 𝐴A𝐴B

2𝐾vPA
2 𝑝S + 𝐴A

3𝐾vBT
2 𝑝T

𝐴A
3𝐾vBT

2 + 𝐴B
3𝐾vPA

2  (40) 

 

The steady state Eq. (39) can be derived by setting 

the pressure differential Eq. in (8) and (9) to zero and 

solving both for velocity. Then equating the resulting 

equations, replacing pB with pA calculated from the 

steady state motion equation of the piston, in Eq. (19), 

and finally solving for pA and assuming that the friction 

force is included in the external force 𝐹ext gives Eq. 

(39). Equation (40) is obtained likewise. 

A difference in the steady state pressure equations 

is that in Eq. (39) 𝐹ext is multiplied by flow coefficient 

𝐾vBT
2  and by 𝐾vPA

2  in Eq. (40). Therefore, it is clear that 

parameters in notch BT affect pressure A more than 

pressure B. Similarly, parameters in notch PA cause 

more variance to pressure B. The nominal pressure 

differences are more influential than nominal flow rate 

because nominal pressure differences are varied along 

a wider range. 

The sensitivity indices show that valve offset is 

influential on steady state velocity, which is obvious 

since the offset affects valve opening. The ranks for 

rest of the parameters affecting velocity are fairly 

intuitive. 

For a measure of interactions between parameters, 

we sum up the first order indices of each parameter for 

each output. The results are presented in Table 3:. The 

interactions among parameters are negligible for each 

output, which means that the total order indices (Fig. 

5:) do not differ remarkably from the first order 

indices. The unexplained part is five to seven percent 

in each output, which could be caused by estimation 

errors in the calculations. Increasing sample size could 

possibly reduce this. 

 

Table 3: Parameter interactions in steady state. 

Output Interaction measure: 1 − ∑ Si
k
i=1  

pA 0.0763 

pB 0.0507 

v 0.0713 

 

For computation of sensitivity indices in 

transients, an area plot is illustrative and the amount of 

interactions between parameters is visible. A general 

rule of thumb for reading the area plot is that the bigger 

the area of the parameter, the larger its effect is. Figure 

6 presents interpolated first and total order indices for 

pressure A computed at time instants 0.05, 0.10, 0.20, 

0.30, 0.5, 0.75, 1.0, 2.0, 3.0 and 4.0 seconds. 

The first order indices in Fig. 6: show a sensitivity 

drop at 0.10 seconds to about 0.30 seconds. 

Particularly, the indices of valve nominal parameters in 

notch PA and the nominal flow rate of notch BT drop 

significantly. The figure shows that these are more 

significant parameters, especially at the beginning of 

the motion. After about a second all indices reach their 

steady state level. 

 

 
Fig. 6: Area plot of pressure A first and total order 

sensitivity indices. 

 

The total order indices (Fig. 6:) drop similar to the 

first order indices. This indicates that the interactions 

between parameters are negligible. A difference 

between the first and total order indices is the influence 

of the somewhat larger effective bulk modulus. 

Exact magnitudes are difficult to see from the area 

plot. Hence, the total order indices at selected time 

instants are gathered to Table 4:. We can see that 

effective bulk modulus Beff has some impact on the 

system at time instants 0.20 and 0.30 seconds, even 

though its effect is smaller than the effects of nominal 

pressure differences and flow rates. This behaviour is 

expected because the system is in transient. What is 

interesting is that valve offset is very influential on 

pressure A few hundreds of a second into the 

experiment but loses its effect towards steady state. 

However, at no point is it more sensitive than the 

nominal parameters of notch PA. 

 

Table 4: Pressure A total order sensitivity indices. 
Time 

[s] 

offset QN,PA ΔpN,PA QN,BT ΔpN,BT Beff b 

0.05 0.169 0.440 0.434 0.001 0.000 0.022 0.000 

0.10 0.089 0.383 0.526 0.004 0.004 0.028 0.000 

0.20 0.011 0.209 0.383 0.178 0.189 0.088 0.000 

0.30 0.002 0.188 0.294 0.256 0.268 0.036 0.000 

0.50 0.001 0.192 0.307 0.270 0.278 0.001 0.000 

0.75 0.003 0.184 0.294 0.283 0.289 0.000 0.000 

1.00 0.003 0.181 0.287 0.290 0.297 0.000 0.000 

4.00 0.006 0.164 0.263 0.313 0.326 0.000 0.000 

 

Other first and total order indices in transients are 

shown in Appendix 3. The pressure B first order 

indices behave opposite to pressure A indices. 

Specifically, the indices increase in the first few tenths 

of a second. The first order indices of velocity also 

behave differently; there is an increase in notch BT 

parameter indices and a decrease in notch PA 

parameter indices. The total order index of effective 

bulk modulus Beff causes remarkable variance to 

pressure B, and the most variance to velocity at the 

beginning of the analysis. As time progresses, the 

effective bulk modulus loses its influence. 



 

4.2 Sensitivity for Leakages 

The analysis is carried out by studying the effects 

of internal leakage and external leakages in chambers 

A and B on pressures and velocity. The simultaneously 

varied parameters and their ranges are presented in 

Table 5:. 

 

Table 5: Leakage sensitivity analysis parameters. 

Parameter Explanation 

Lower 

bound 

[m3/s 

Pa-1/2] 

Upper 

bound 

[m3/s Pa-

1/2] 

Kint Internal 

leakage flow 

coefficient 

0 5.27*10-9 

KextA External 

leakage A flow 

coefficient 

0 5.27*10-9 

KextB External 

leakage B flow 

coefficient 

0 5.27*10-9 

 

The upper bounds were chosen so that each 

leakage flow rate is 1 L/min with a pressure difference 

of 10 MPa, approximately 2.5 % of valve flow rate. 

The leakage flows were modelled as turbulent and 

were added to the model at this stage. The flow 

equations (41)-(43) for internal leakage and external 

leakages A and B where the tank pressure is assumed 

to be zero are: 

 

𝑄int = 𝐾int√𝑝A − 𝑝B (41) 

 

𝑄extA = 𝐾extA√𝑝A (42) 

 

𝑄extB = 𝐾extB√𝑝B (43) 

 

Fig. 7: shows the first and total order effects of 

leakage faults on pressures and velocity in steady state. 

The first and total indices are approximately the same, 

the only difference being the effect of internal leakage 

on pressure A. This indicates only a minor amount of 

interactions between the leakage parameters Kint, KextA 

and KextB. 

 

 
Fig. 7: The first and total order effects of leakages in 

steady state. 

External leakage A causes remarkable variance to 

pressures A and B, and velocity. For explanation, 

consider the changes that occur as a consequence of 

external leakage A. When the leakage appears, it leads 

into a pressure drop in chamber A and a velocity 

decrease. As a consequence, the resistive pressure B 

drops. Pressure B is more sensitive to external leakage 

A than its own leakage because of the asymmetrical 

cylinder, the loading condition and the extending 

movement. 

Consider the effects of external leakage B. That 

leakage reduces pressure B, which causes a mild 

increase in velocity (Fig. 7:). The influence on velocity 

is small, as external leakage B only lowers the motion-

resistive pressure, and does not directly affect the 

driving pressure A. However, the results show that 

external leakage B, of course, (indirectly) affects 

pressure A through the motion equation. In this system, 

with its characteristics by the loading condition, the 

effect of external leakage B on pressure A was actually 

larger than on B. 

Finally, look at the procedure when an internal 

leakage occurs. At first the internal leakage reduces 

pressure A and increases pressure B causing the 

velocity to decrease. However, the situation changes as 

time progresses since the increased flow into chamber 

B increases steady pressure B. Therefore, the pressure 

A also increases to balance. Finally, the velocity 

continues to drop, and internal leakage is clearly the 

most responsible for the variance in velocity (Fig. 7:). 

The influence of internal leakage on pressure B is 

minor, but could be larger in retraction. The leakage 

parameters are ranked to Table 6:. 

 

Table 6: The ranking of leakage parameters 

according to their total order indices. 

Ranking pA pB v 

1 Kint KextA Kint 

2 KextB KextB KextA 

3 KextA Kint KextB 

 

The first order indices as a function of time for 

pressure A are presented in Fig. 8:. The external 

leakage A and internal leakage are the most influential 

leakages in the beginning, but as time progresses, and 

the flow-resistive pressure in chamber B develops, the 

external leakage B causes more and more variance to 

pressure A. At the same time the effect of external 

leakage A decreases and the effect of internal leakage 

increases. 

 



 

 
Fig. 8: Pressure A first and total order sensitivity indices. 

 

The first order indices are shown with numerical 

figures in Table 7:. 

 

Table 7: Pressure A first order sensitivity indices. 

Time [s] Kint KextA KextB 

0.05 0.5141 0.4858 0.0000 

0.10 0.4987 0.4994 0.0032 

0.20 0.0908 0.8804 0.0000 

0.30 0.3687 0.5042 0.1255 

0.50 0.0928 0.6583 0.2454 

0.75 0.1465 0.5928 0.2572 

1.00 0.1552 0.5715 0.2695 

4.00 0.2380 0.4145 0.3443 

 

The total order indices are similar to the first order 

indices of Kint and KextB, with the index of KextA 

behaving differently. In the beginning, its influence 

increases as opposed to the decrease in first order 

indices, which flags interaction of external leakage A 

with other parameters. The total order indices are in 

Table 8:. 

 

Table 8: Pressure A total order sensitivity indices. 

Time [s] Kint KextA KextB 

0.05 0.4421 0.4872 0.000 

0.10 0.3915 0.5107 0.0035 

0.20 0.0098 0.9012 0.0264 

0.30 0.6019 0.3660 0.1402 

0.50 0.2219 0.5498 0.2718 

0.75 0.2872 0.4882 0.2793 

1.00 0.2944 0.4709 0.2906 

4.00 0.3674 0.3385 0.3568 

 

The first and total order sensitivity in transients for 

pressure B and velocity are in Appendix 4. In short, 

internal leakage causes the most variance to pressure B 

in the first tenth of a second; it is almost solely 

responsible for the variance. As time progresses, the 

influence of internal leakage decreases and the effects 

of external leakage A and B increase. The total order 

indices regarding pressure B and velocity are the same 

as the first order indices proving that there is no 

interaction between parameters. Throughout the 

analysis, the influence of external leakage B on 

velocity is nonexistent. As time progresses, internal 

leakage causes somewhat more variance to velocity, 

whereas external leakage A causes somewhat less. 

5 Conclusions and 
Future Work 

A generic Global Sensitivity Analysis-based 

approach that can be applied systematically to verify 

the model parameter sensitivities used for the model-

based fault detection was presented in this paper. The 

GSA was applied to a valve-controlled asymmetrical 

hydraulic cylinder driving a 1-DOF manipulator joint 

to study its model parameter sensitivities. The studied 

parameters were the nominal flow rate and nominal 

pressure difference in the pressure and return notch of 

the valve, effective bulk modulus, valve spool offset 

and viscous friction coefficient. The sensitivity 

analysis was restricted to the extending motion. 

Nominal flow rate and nominal pressure difference 

in the pressure notch of the valve were shown to be the 

most sensitive parameters to pressure or velocity 

responses regardless of whether the system was at 

steady state or transient. The second most sensitive 

parameters were the nominal flow rate and nominal 

pressure difference in the return notch. The effective 

bulk modulus was the third most sensitive parameter 

which was sensitive in transient pressure and velocity 

responses. The fourth most sensitive parameter was the 

valve offset which was sensitive in the steady state and 

transient velocity responses. The sensitivity of viscous 

friction was negligible throughout the analysis. 

These results prove that flow coefficients should 

be identified to be as accurate as possible, since they 

had the largest sensitivity indices, and so the most 

effect on system outputs. Moreover, the identification 

of effective bulk modulus should be a second priority 

to facilitate model-based fault detection. 

A leakage fault sensitivity analysis was also 

carried out to show the outputs from which the external 

leakage A, B and internal leakage could be best 

detected. The analysis proved that all leakage types can 

be detected with almost equal quality from the cylinder 

piston side pressure during transients or steady state 

during extension. From rod side pressure, all but the 

internal leakage in steady state and the external leakage 

B in transient are easily detectable. The rod side 

pressure was observed to be especially sensitive to 

internal leakage in transients. External leakage B was 

shown to be difficult to recognize from velocity in 

transients and steady state, so pressures are a prime 

candidate for detecting leakages.  

The sensitivity indices can capture intuitively 

sensitive parameters and parameters whose sensitivity 

is more difficult to see. Whether the model is simple or 

complex, it is beneficial to systematically rank the 

parameters according to sensitivities since it decreases 



 

the work needed in identifying parameters. The results 

of this part 1 will be used in part 2 where a scheme for 

detecting and isolating certain leakage and valve faults 

from a hydraulic system operating in various operating 

conditions is devised. 
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Appendix 1 - System 
Components 
 

Table 9: The components in the SAM test bed. 

Part Model and specifications 

Cylinder ∅80/45-545 

4/3-

directional 

valve 

Bosch Rexroth servo solenoid 

4WRPEH 6 C3B24L-

2X/G24K0/A1M (24 L/min @ 3.5 

MPa) 

Restrictor 

valve 

Tognella needle valve FT257/2-38 

(30 L/min @ 40 MPa) 

Pressure 

transmitter 

Trafag 8891.74 (0-25 MPa) 

Pressure 

transmitter 

Druck PTX 1400 (0-25 MPa) 

Angle 

encoder 

Heidenhain 376 886-0B (0.007 

°/pulse) 

 

Appendix 2 - Nomenclature 
and SAM Parameters 
 

Parameter Explanation Value 

AA Piston area π*(0.080)2/4 

[m2] 

AB Piston rod area AA - π*(0.045) 

2/4 [m2] 

b Viscous friction 2500 Ns/m 

dr Damping ratio 1 

FS Static friction 4000 N 

FC Coulomb’s friction 1000 N 

J(θ) Moment of inertia 

matrix 

- 

K Gain from control 

signal to spool 

position 

0.1 

KvPA,leak Leakage flow coeff. 

in notch PA 

1.9*10-12 

m3/(sPa1/2) 

KvBT,leak Leakage flow coeff. 

in notch BT 

1.7*10-12 

m3/(sPa1/2) 



 

KvPB,leak, 

KvAT,leak 

Leakage flow 

coefficients in 

notches PB and AT 

1*10-12 

m3/(sPa1/2) 

L Load distance from 

the boom joint 

1.9 m 

LB Boom length 4.5 m 

Li1 Distance between 

upper cylinder joint 

and boom joint 

0.30 m 

Li2 Distance between 

lower cylinder joint 

and boom joint 

1.04 m 

Li3 Distance between 

lower and upper 

cylinder joints 

0.84 m 

mB Boom mass 297 kg 

mL Left load mass 494 kg 

mR Right load mass 0 kg 

offset Valve offset from 

center position 

0 

pS Supply pressure 10 MPa 

QN,PA, 

QN,BT, 

QN,PB, 

QN,AT 

Nominal flow rate 

in notch PA, BT, PB 

and AT 

24 L/min 

R(θ) Torque arm matrix - 

rB Boom height 0.2 m 

V0A, V0B Volumes in A and B 

chambers 

2*10-4 m3 

vs Veloc. of min. frict. 0.01 m/s 

xmax Stroke 0.545 m 

α1 + α2 See Fig. 3: 0.415 rad 

ΔpN,PA, 

ΔpN,BT, 

ΔpN,PB, 

ΔpN,AT 

Nominal pressure 

differences in notch 

PA, BT, PB and AT 

3.5 MPa 

θ Joint angle 0.728 rad, cyl. 

retracted 

σ0 Friction coeff. 0 4*106 N/m 

σ1 Friction coeff. 1 2*(σ0*mredu)1/2 

ωn Spool natural freq. 2*pi*20 rad/s 

 

Appendix 3 - Sensitivity Indices 
of SAM 
 

 
Fig. 9: First and total order indices of parameters on 

pressure B. 

 

 
Fig. 10: First and total order indices of parameters on 

velocity. 

 
Appendix 4 - Leakage Fault 
Sensitivity Indices of SAM 
 

 
Fig. 11: First and total order indices of leakage parameters 

on pressure B. 

 

 
Fig. 12: First and total order indices of leakage parameters 

on velocity. 

 


