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Abstract 

A novel nonparametric concavity point analysis-based method for splitting clumps of convex objects in 

binary images is presented. The method is based on finding concavity point-pairs by using a variable-size 

rectangular window. The concavity point-pairs can be either connected with a straight split line or with a line 

that follows a path of minimum or maximum intensity on an accompanying grayscale image. Using straight 

lines can result in non-smooth contours. Therefore, post-processing steps that remove acute angles between 

split lines are proposed. Results obtained with images that have clumps of biological cells show that the 

method gives accurate results.   
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1. Introduction 

In digital imaging domain, it is often observed that the objects in an image clump together. This might occur 

due to high density of objects in an image area or objects being extremely close to each other that due to 

optical projections the objects in the image appear to be touching each other and forming clumps [1]. In some 

application domains, the objects in a scene being imaged might actually overlap and form clumps, for 

example, the image of objects moving on a conveyor belt [2]. Our target application area is microscopic 

imaging of biological cell cultures, where clumping of cells occurs naturally. This is because some cell types, 

such as yeast cells, and many different bacteria have the tendency to grow in clumps.  

In these imaging applications and also in many applications in the field of computer vision, see for 

example [3] and [4], accurate automated image analysis requires that the clumps are split into their constituent 

objects. For example, it is necessary to extract single cells from an image in order to study the dynamics of 

single-cell gene expression [5]. As the objects forming clumps usually have similar intensity values and often 

inconspicuous edges, the general image segmentation methods fail to separate the individual objects from the 

clump. Therefore, in high-throughput automated image analysis involving such images, a post-processing step 

of clump splitting is typically performed after the initial segmentation. 



Many of the clump splitting methods found in the literature assume the objects in the image to be convex, 

see for example [3, 6-11]. Using this assumption they try to find specific points, called concavity points, on 

contour segments where the object ceases to be convex. Clump splitting is then achieved by joining pairs of 

such points. When the clumps are complex, it is common for these methods to suffer from under-splitting. 

Another problem with these methods is that they depend on several user-defined parameters to get the pair for 

a concavity point. This causes their performance to degrade since it is difficult or even impossible to optimize 

the parameters to get high overall split accuracy when the image set is large with varying object sizes, shapes 

and the extent of their overlap. Another important issue that is not addressed well in earlier methods is the fact 

that there tends to be some holes within the clump when the number of objects in the clump increases. Under-

splitting occurs if they are not taken into account while finding the split lines. Moreover, none of the earlier 

methods take due advantage of the intensity values of the image in order to split the clumps more accurately. 

Here in this paper, we present a comprehensive method for splitting clumps based on the concavity point 

analysis, taking the aforementioned issues into account. We propose a new method for the detection of 

concavity points. The method uses the definition of convexity to find the maximum curvature points from 

concave region of the contour. We also propose a novel method which uses variable-size rectangular window 

to search for the best concavity point-pair. With this technique the dependency on the user-defined parameters 

is reduced along with an increase in the segmentation accuracy. Also, we have incorporated the prominent 

corner points on the contour of holes inside clumps to get the complete set of split lines.  

Moreover, we have developed an algorithm to follow the minimum/maximum intensity path between two 

points, to be used for the images where the intensity values can be used as a clue to split the clump. In 

addition, we present a post-processing technique to be employed in the case when the intensity values cannot 

be used for finding the split line. It removes the residual objects or the ones that do not conform to the objects 

presumed in the image based on a priori knowledge about the object shapes.  

The rest of the paper is organized as follows: In Section 2, we present a review of state-of-the-art clump 

splitting methods. Section 3 presents the proposed method whereas Section 4 describes the proposed post-

processing technique. In Section 5, we present and discuss the quantitative and qualitative results obtained by 



applying the proposed method and two other methods reviewed in Section 2 on the synthetic images of cell 

populations as well as on cell microscopy images. Section 6 concludes the paper. 

 

2. Review of concavity point analysis-based methods 

The concavity point analysis-based methods mostly utilize a general step-wise procedure, such as, 

detecting concavity points, finding candidate split lines and choosing the best split lines [3, 6-13]. An 

alternative approach is to use concavity points to segment the object contour and to fit ellipses to the contour 

segments to split the clumps [14-16]. Here, we highlight the deficiencies of those concavity point analysis-

based methods which by far produce the best results to the best of our knowledge. Moreover, most of these 

deficiencies have been rectified in the method proposed in this paper.  

The method by Kumar et al. [8] fails to find all concavity points when there are multiple concavity points 

in a concavity region. Moreover, its expression for saliency, a feature used to shortlist candidate split lines, 

gives a highly nonlinear relationship between the depth of concavity and the length of split lines. This results 

in long invalid split lines when allowing a reasonable length split line for a concavity point with less 

concavity depth. Also, the directional vector used to give the orientation of a concavity region is defined in 

such a way that in many cases it does not match the perceived orientation of the concavity. This method is 

modified by us in [6] to achieve improvement in the problematic areas. However, it suffers from parameter 

dependency and also results in over-splitting along with producing objects irrelevant to the actual objects 

present in the image. 

The method by Wang in [3] uses polygonal approximation to smooth the object contour. This may 

deform the shape of the objects, and can even result in a loss of concavity points which have small concavity 

depths. The method picks some significant concavity points as candidate points and splits the clump from 

them. However, as the objects are split, some of those significant concavity points disappear, causing loss of 

potential split lines between them and some non-significant points. To make a split line the method poses the 

requirement that the concavity region of the second concavity point should lie within the cone formed by the 

extension of the vertices of the first concavity point towards it. However, using the cone can be misleading in 

cases where the angle between the vertices is small or there are two concavity points in the cone. In the latter 

case, the method prefers the concavity point with higher degree. However, the length of the split line is a 



much more significant parameter to decide between the split lines. The method performs morphological 

opening of holes through a minimum distance path found between the corner of the hole and a point on the 

object contour. However, not all the corner points of a hole should have a split line through them, also the 

minimum distance path may not yield the optimal split line. 

The approach used by Liang in [9] for detection of concavity points causes invalid concavity points since 

thresholding the angle near concavity alone is not a good criterion without considering the depth of the 

concavity. It accepts the shortest possible path of lowest possible gray values provided that the ratio of the 

length of the large and the small object contours is less than a predefined threshold. However, this may lead to 

false split lines because a path of lowest possible gray values between a concavity point and a contour point is 

not optimal unless it is found using some directional search. 

The method in [13] finds concavity points on the basis of distance between potential concavity point-

pairs, from inside and along the contour, and not on the basis of concaveness. However, sometimes a point 

that is somewhat further is the best pair for a concavity point rather than the nearest point. The method then 

finds a split path in the intensity patch formed by a rectangular window between concavity points. However, 

such a split path based on image intensity is usually a curve which tends to go outside that window, and 

therefore a directional search is needed to find the path. The method in [12] uses watershed segmentation to 

get initial clump splitting and then eliminates false split lines resulting due to over-splitting. Then it applies 

concavity point analysis-based clump splitting which is similar to the method in [8] and has many of the same 

issues. 

The methods based on concavity points and ellipse fitting [14-16] start with performing polygonal 

approximation of the contour and then detect concavity points by using the angle between the vertices or the 

changing angle of tangents to the contour. The concavity points are used to segment the contour and ellipse 

fitting is performed on those contour segments. However, these methods are typically computationally 

complex and parameter-dependent [8, 17]. Moreover, the ellipse fitting is not able to split complex clumps 

into individual objects because of the absence of contour segments inside the clumps and due to unknown 

number of objects in the clump. Moreover, when the image set contains objects of varying shapes and sizes, 

these methods may not be able to perform accurately. 



 

3. Method 

This section describes the proposed novel clump splitting method, the steps of which are delineated by the 

flowchart in Figure 1. The method operates on binary images obtained after initial segmentation; however, 

intensity values of the image can also be used as additional information for finding the split lines. The method 

attempts to separate all the individual objects in a clump at once. However, it is iterative in the sense that it 

repeats clump splitting on the objects that could not get split in the initial phase. The advantage of performing 

splitting at once, besides being faster, is that a concavity point can have more than one split line through it, 

whereas when each split line is considered one by one, once a split line is drawn then another potential split 

line may be lost. This happens because the objects get separated and the two points involved in that split line 

do not exist anymore so as to be considered as pairs for some other concavity points.  

FIGURE 1 

     

3.1. Image Pre-processing 

Sometimes there exist holes within the clumps of objects which are formed due to the clustering of several 

objects together, Figure 2(a) shows an example of such a case. In order to accurately split such clumps, 

prominent points on their contour (for example, blue squares in Figure 2(b)) should be paired with other such 

points or the concavity points (for example, red squares in Figure 2(a)) to form the split lines. All such holes 

and their corresponding prominent points should be found in the very beginning so that during the pair-search 

for a particular concavity point those points are also considered. The prominent points are found by analyzing 

the points on the contour segments of holes. Within a particular contour segment, the contour point having the 

largest distance from its corresponding imaginary local chord is the desired point provided that the midpoint 

of that chord lies on the background.  

FIGURE 2 

 

3.2. Concavity point detection 

The next step is to detect all those points on the contour of the clumped object which are the points of 

intersection of two touching objects. Since it is assumed in the later step that every obtained concavity point is 

valid, concavity point detection needs to be performed carefully such that no single point that is taken was a 



result of boundary irregularities. A predefined minimum concavity depth value is employed to serve this 

purpose. There are several methods [7, 9-11] in the literature that are used to detect the concavity points in 

clumped objects. However, they often fail to determine all the concavity points present in a clump. Here we 

develop a new technique which is very simple and effective, and is based on the definition of convexity. 

The idea is to take two contour points and imagine a line between them, see for example, blue or yellow 

lines in Figure 2(a) where green circle indicates the initial point of the line. Taking too distant or close points 

may cause failure in detection of valid concavity points. However, it is observed through experiments with 

different images that a line between the end points of a 20 pixels long contour segment is applicable to clumps 

of objects of any shape with the contour length greater than 20 pixels. If that entire line resides inside the 

object (such as blue lines in Figure 2(a)), the convexity of the object is assured along that segment of the 

contour. In contrast, if the line passes through the background (such as yellow lines in Figure 2(a)) then there 

lies a concavity point along that segment of the contour. In this latter case, the next step is to find the distance 

of each of the points on that contour segment with their respective imaginary local chords(such as red line in 

Figure 2(a)) such that the midpoint of the respective chord lies on the background, otherwise that particular 

point is ignored. The imaginary local chord is obtained by joining sixth adjacent contour point on either side 

of the current point. Finally the point which gives the maximum of the distance is selected as the concavity 

point provided the distance value is larger than or equal to 2 pixels (  being the distance between diagonal 

pixels).  

In the case of satisfying the convexity criterion, the third adjacent point to the previous first point is taken 

as the initial point, whereas if the convexity criterion is not satisfied, the third adjacent point to the previous 

second point is taken as the initial point of the next contour segment. Again a 20 pixel long contour segment 

is taken and the process is repeated until the starting point is reached. The concept is illustrated in Figure 2(a). 

 

3.3. Concavity point-pair search  

There are  possible split lines for a clump with N concavity points. Even if the intersecting lines and the 

lines passing through the background are omitted, the remaining split lines may not necessarily be all valid. 

Therefore, the preferred approach is to find the best split line or the concavity point-pair for each of the 



concavity point in the clump, rather than analyzing every possible split line. In a previous method in [6], we 

used different features to choose the best split line for every concavity point from the list of possible split 

lines. However, we observed that there are cases in which it is very difficult to decide between two 

possibilities of the best split lines because of using the same parameters for the whole image set.  

Thus in order to focus on finding only the best split lines individually for each concavity point and also to 

eliminate user-defined threshold values, we take into consideration the fact that the split lines should be found 

within a specific region along the directional vectors (purple arrows in Figure 3) associated with the concavity 

point. The directional vector should ideally bisect the region in the vicinity of the concavity point. This is 

realized by defining it as a vector with its tail on the midpoint of the imaginary local chord (red line in Figure 

2(a)), corresponding to that concavity point, and originating towards the concavity point. This concept leads 

us to start searching for the pair of a concavity point in the area along and on either side of its directional 

vector giving rise to a variable-size rectangular window as illustrated in Figure 3. 

FIGURE 3 

 

 

The idea is that first the directional vector associated with a concavity point is found. Then, two points 

are picked on the object contour, one on either side of the concavity point and both equally distant to it, and a 

line is formed between them. This line is then extended on either side using those two points along with the 

directional vector. The length of this line is referred to as width of the window w. The reason behind 

extending the line is that when the region around a concavity point is narrow and deep then the window 

formed by using the contour points would always be thin and at an undesired location, see for example, 

Figure 3(a). Thus formation of the window should be independent of how the contour progresses beyond the 

concavity point. Figure 3(b) illustrates the point where gradually increasing window width leads to the 

successful detection of the concavity point-pair (red window). 

 The other two corner points of the rectangular window are found at a distance h on the other side of the 

contour and in the direction of the directional vector using basic trigonometric relations. That distance h is a 

parameter which defines the length of the window and depends on the maximum length of the split line that is 

allowed in a certain image set. Once the coordinates of the four points are obtained, all the pixels within the 

rectangular area bounded by them constitute a rectangular window. This window is then used as a mask to 



search for the pair of the concavity point under consideration. The idea here is to use variable size window. 

Therefore, initially a small window width and a comparatively large window length are chosen based on the 

prior knowledge about the object size in the image set. The window width is gradually increased until a 

concavity point is found inside the window or the window width approaches its maximum value. 

The purpose of using small window width at the beginning is to avoid the case of having two concavity 

points inside the search window. Intuitively, split lines must be as short as possible; therefore, even if there 

exist two concavity points in the window, the concavity point having the smallest distance from the subject 

concavity point is accepted as its pair. If the window width reaches its maximum value and no concavity point 

is found inside the window, then the window length is iteratively increased until a concavity point is found 

inside the window or the maximum window length is reached.  

This whole process is repeated for every concavity point present in the clumped object and a list of the 

concavity point-pairs is formed. Next, any such concavity point is found that was left without being assigned 

a pair. Often the pairing concavity point for such a concavity point was discarded in the initial concavity point 

detection phase due to lack in concaveness or due to boundary irregularities. In such cases and in the case 

when there is only one concavity point in a clump, a line is drawn from that concavity point to a point on a 

segment of object contour in the direction of the directional vector associated with the concavity point. The 

point is chosen from a contour segment such that, among a certain number of points in that segment, it has 

maximum distance from its corresponding local chord provided the midpoint of the chord lies on the 

background. This point-pair is also added to the list of concavity point-pairs. 

During this whole process, the prominent points on the contour of the holes are also considered while 

searching the pairing point for a particular concavity point. However, there are cases in which the clumps are 

so complex that there are many such holes lying inside them. In such cases, often a split line is also realized 

by joining a pair of prominent points belonging to two different holes lying nearby. Therefore, like individual 

concavity points, the pairing points for all the prominent points of all the holes of an image are also found so 

that all valid split lines are identified.  

 



3.4. Split line formation  

Once the concavity points are obtained, there can be two different approaches for obtaining the split lines: 

making a list of concavity point-pairs, as described in the previous section, and joining them through straight 

lines, or finding a path of minimum/maximum intensity from a concavity point to a point in another concavity 

region or to an already drawn split line. The former approach is appropriate when the image intensity values 

cannot be used as conclusive evidence for determining the split path. Even though this approach may separate 

the clumps into their correct number of constituent objects, it may not give the correct individual object areas. 

Moreover, for some complex clumps straight lines can produce erroneous results, since for a given set of 

images long split lines may be allowed, but making such long straight lines may not match the underlying 

objects despite being algorithmically correct, see for example Figure 4(c).  

FIGURE 4 

 

Furthermore, this approach may lead to under-segmentation. This can be avoided by using an iterative 

procedure in which it is checked if the result of the first round of clump splitting yielded larger objects. A 

scaled value of the constraint for the smallest allowed object is used to decide if an object requires further 

processing. Clump splitting is then performed iteratively on such objects while maintaining that the over-

splitting is not achieved.    

When the original image has discernible intensity variations along the region where the objects seem to 

merge together, see for example Figure 4(a), then we should rather find the minimum/maximum intensity path 

to effectively split the clumps than opting for a straight line between concavity point-pairs. Here, we deduced 

an algorithm which finds the minimum/maximum intensity splitting path using the directional vector 

associated with the concavity point which guides the algorithm in the right direction and prohibit it from 

straying.  

FIGURE 5 

 

Here, we use a 3x3 mask centered at the current point, starting from the concavity point, to locate the 

next low/high intensity valued pixel in the intensity image. Depending on the direction of the directional 

vector associated with a concavity point, one of the four 3x3 search masks, illustrated in Figure 5(a), is used. 

For example, if the angle of the directional vector with respect to the horizontal line is in the range 0 < θ ≤ π/2 



then the top-right mask is used. Similarly, for the case, π/2 < θ ≤ π, the top-left mask is used and so on. Notice 

the equality and inequality condition while choosing the mask as otherwise the search might go in the wrong 

direction. Since the directional vector remains fixed, once a search mask has been chosen for a concavity 

point, it is used unchanged. Now, if this new point with lowest/highest intensity in the 3x3 neighborhood does 

not correspond to a background pixel in the binary image, then it is assigned the background pixel value and 

made the current point. The center of the mask is put on it and the procedure is repeated until a point is 

reached which corresponds to a background pixel in the binary image.  

The end point of the split line found in the procedure is compared with the points of all the concavity 

regions for the clumped object, and only if it is part of one of them or part of the image border then the line 

can be retained, otherwise it is discarded. This ensures that the line is made between the subject concavity 

point and a point on the concavity region in the direction of the directional vector or with a point at image 

border. In any case, the size of each objects resulting from this new line must be larger than the value for the 

smallest allowed object in the image, otherwise the line is discarded. In this way, the obtained split lines 

resemble a lot to the lines that an expert would draw. Consequently, it helps in splitting complex clumps more 

accurately with better realization of actual individual object areas. Figure 4(d) illustrates the case where the 

usage of intensity information results in accurate clump splitting, thus giving the actual object areas as 

compared to the ones obtained by splitting using straight split lines in Figure 4(c). Figure 5(b) shows an 

example of using the mask (top right mask in Figure 5(a)) to find the path of minimum intensity (black curve 

in Figure 5(b)) from a concavity point to another one, which is a curve rather than the straight line (red line in 

Figure 5(b)). Colors along the minimum intensity path refer to steps of the path finding procedure. 

 

4. Post-processing technique 

When the intensity information is not used, the clump splitting method described in the previous section 

defines mere straight lines between the concavity point-pairs without considering the relationship that can 

exist between the split lines. For example, sometimes there are two split lines through a particular concavity 

point making an acute angle between them, as shown in Figure 6(a). Moreover, sometimes the other two 

concavity points involved in those two split lines also share a split line between them which results in a 



triangular object in an image, as illustrated in Figure 6(b). If there is prior information about the object shapes 

and also the objects are known to have smooth boundaries, then both those cases lead to an output image with 

objects not corresponding to the topology of the underlying image objects. Moreover, in the latter case there is 

an extra object which is not in accordance with the shape of the objects actually present in the image. 

Therefore, we need to post-process the resulting image from the initial clump splitting to make the final split 

lines mimic the manually obtained split lines. 

FIGURE 6 

 

Here, we propose a post-processing technique to solve these cases. The process begins with finding the 

two cases by checking the degree of all the concavity points present in the object. The term degree is used 

here to specify the number of split lines passing through a concavity point. By going through the list of 

concavity point-pairs, such concavity points are found whose degree is two. Then the other two concavity 

points are taken which share the split lines with the first concavity point and it is checked if there exist a split 

line between them or they do not share any split line with any other concavity point. Once either of these 

conditions get fulfilled then a triangle is formed between the three points, if it was not already there, and the 

centroid of that triangle is found. After finding the centroid, the concavity point-pairs formed by those three 

concavity points are removed from the initial list and are replaced with three point-pairs each involving the 

centroid and one of the three concavity points. Figure 7 shows the output of the post-processing step for our 

example cases of Figure 6. 

FIGURE 7 

 

Sometimes it might also happen that a concavity point has three split lines passing through it, see for 

example Figure 8(a). In such a case, those three lines can be perceived as two pair of lines emerging from that 

concavity point. Then the pair of lines which give smaller of the two angles are analyzed. Associated with 

those two split lines are the two other concavity points. If the degree of only one of those two concavity points 

is two then the split line involving that concavity point is discarded from the list. If the degree of both the 

concavity points is two then the line involved in the wider of the two angles is discarded. If neither of the two 

concavity points have degree two then the normal post-processing is performed one after the other for the two 

pair of lines. Figure 8(b) shows the result of the post-processing applied on the image of Figure 8(a). 



FIGURE 8 

 

5. Results and Discussion 

5.1. Image acquisition and Benchmark image set generation 

Validation of image analysis methods is traditionally performed by comparison of results obtained by them 

with the ground truth created by manual analysis. Manual creation of ground truth, however, is time 

consuming, laborious and observer-dependent, especially in the case of high-throughput microscopic image 

analysis where we have very large sets of images. Therefore, the manual validation becomes impractical. 

Instead a benchmark set of synthetic images having varying properties mimicking the microscopic images, 

like the ones generated by SIMCEP tool [18] can be used.  

Here we use both real microscopy images as well as synthetic images to evaluate our method. We have 

two different test cases based on whether the intensity information is usable for splitting or not. For the case 

of utilizing image intensity for splitting, we use the microscopic images and the corresponding manually 

obtained ground truth results. For the other case we use benchmark synthetic image set for which the ground 

truth information is available. This can be considered in a way that the first set performs both qualitative and 

quantitative evaluation whereas the second set gives the quantitative measures of our method.  

For the first test case, Case I, we first acquired two sets of bright field images of the budding yeast 

Saccharomyces cerevisiae cells of varying sizes and shapes with a Leica TCS SP2 microscope. For each 

image, z-stacks comprising 20 images were captured using a 100X oil immersion objective (NA 1.40) but 

only one of them is included in the test image set. This image was selected by first finding the best in-focus 

image from these z-slices by using the Tenengrad method [19]. Generally, a slightly out-of-focus image is 

chosen because of its assistance in giving better segmentation accuracy. Therefore, the image just below 

(about 300 nm) the best in-focus slice was selected into the test image set. Segmentation of the images was 

carried out using the method from [20].  

Another set for Case I is obtained from Saccharomyces Cerevisiae Morphological Database (SCMD) 

[21]. The set contains fluorescent images of budding yeast S. cerevisiae which provides an ideal scenario for 

testing the method against varying object sizes. The image set contains more than 300 images but since the 

analysis is to be performed manually, due to unavailability of ground truth, we chose to use just the first 40 



images for obtaining quantification measures. Segmentation of the images is carried out by a local 

thresholding method that is based on the classic threshold selection method by Otsu [22]. 

TABLE 1 

 

For the second test case, Case II, that is to test and validate the proposed method, we used the benchmark 

set of synthetic images of cell populations with realistic properties generated with the SIMCEP simulation 

tool [18]. They were generated using the package of files, downloadable from: 

http://www.cs.tut.fi/sgn/csb/simcep/, and by varying the parameters. The entire set contains simulated images 

of cell populations with the corresponding ground truth images in which the cells are represented as binary 

markers which are used for validation. The idea here is to create such image set which contains images with 

cell clumps of varying sizes and complexity. Therefore, the generated images consist of overlapping nuclei 

with three different values of clustering probabilities. For each clustering probability we used eight different 

values for the amount of overlap and simulated 50 images (altogether 1200 images constituting 24 image 

sets), each of which contains 200 cells with approximately 10 cell clusters per image. Table 1 shows the 

necessary parameters and their values to be used for generating the image set.  

5.2. Performance evaluation parameters 

The quantitative performance evaluation is performed using precision and recall analysis. We obtained true 

positives (TP), false positives (FP), and false negatives (FN) and the precision (PR) and recall (RC) are then 

obtained by  

                  

                   (1) 

A high value of PR implies that a high percentage of the objects detected by the method are actually the 

objects of the ground truth image. It decreases once the method detects objects not actually there in the 

ground truth. On the other hand, a high value of RC specifies that a high percentage of the objects of ground 

truth image are detected by the method. Furthermore, we use F-measure (FM) [23] which can be obtained by                            

                                                   (2) 

and is considered to be a more robust measure of segmentation accuracy. 

 



5.3. Results and discussion 

The proposed method was applied on all the image sets of both the test cases. For Case I, that is, the case 

where image intensity is useful in splitting clumps, we performed manual analysis on all the image sets to 

obtain the TP, FP, and FN values and calculated the PR, RC and FM measures. The first two sets contained 

bright field microscopy images of yeast cells and the third set contained fluorescent microscopy images of 

yeast cells obtained from SCMD [21]. It is worth mentioning here that there is a difference between the 

images of the first set and the other two sets in that they provide the cases when the path of minimum and 

maximum intensity, respectively, is searched for between the two points to split the clumps. We additionally 

employed the non-intensity-based method (indicated by NI in Table 2) on these image sets to compare its 

performance with the one obtained by employing image intensity (indicated by I in Table 2). Table 2 lists the 

results for this test case.   

TABLE 2 

 

The results of applying the proposed method on a bright field microscopy image of yeast cells (an image 

from Set 1) are shown in Figure 9 whereas Figure 10 depicts the results of applying the proposed method on 

fluorescent microscopy image (an image from Set 3). The quantitative values of Table 2 manifest that the 

results obtained from the proposed method are accurate irrespective of whether or not the image intensity is 

used. Moreover, from Table 2, Figure 9 and Figure 10, it is clear that the proposed method gives better 

quantitative as well as qualitative results when the image intensity is used. However, it is also clear that the 

results from this approach depend on accuracy of the initial image segmentation. It is evident from both the 

Figures that the non-intensity-based method struggles in the situations when the clumps are either very 

complex or touch the image borders, causing some of the concavity points to be missed. However, its 

performance is still very promising in that it gives such quantitative measures which were not previously 

achievable. 

For the second test case, we evaluated the proposed method using the benchmark image set for which we 

have the binary images containing masks representing the cells in the ground truth. In addition, we also 

applied the method from Kumar et al. [8] as well as our previous method [6] on these images to compare the 

proposed method against them. The analysis was performed by measuring the performance parameters after 



applying these methods on the simulated images and comparing the results with the ground truth. The 

obtained performance parameters for 24 image sets are presented in detail in Table 3 where subscripts 1, 2, 

and 3 stand for proposed method, methods from Farhan et al. [6], and Kumar et al. [8] respectively. Each 

entry corresponds to the overall value for the set of 50 images (the number of cells is 10 000).  

It is clear from Table 3 that our method outperforms the other methods proving its significance in 

resolving complex clumps. Table 3 shows that the proposed method performs accurately when the probability 

and the amount of overlap are small. In this case, the main deviation in the results is caused by the amount of 

overlap. When it is around 0.3 there is not much difference between results for different probabilities of 

overlap. However, when the amount of overlap increases from 0.35 the increase in probability of overlap 

causes degradation in the performance of the method. Nevertheless, the F-measure for the worst case 

(probability of overlap = 0.6, amount of overlap = 0.5) is 0.91, against 0.81 for our modified method and 0.58 

for method by Kumar et al. The F-measure of 0.91can still be considered as high accuracy especially 

considering that accurate splitting of the clumps for such images with heavy overlapping is not always 

possible even for a human observer. Moreover, this performance may improve even further if image intensity 

can be used as the evidence of the split path as we have observed in the earlier case that the splitting of 

complex clumps is efficiently done when image intensity is used. Figure 11 shows a representative image 

from Case II and the result of applying the proposed method on it. It manifests the accuracy of our method in 

splitting complex clumps. However, it can also be seen that there is some artifact (top left quadrant of the 

Figure 11 (d)) which can be easily dealt with by using the image intensity information. 

TABLE 3 

 

It must be emphasized that, unlike the other methods, the proposed method does not need any user-

defined parameters, nor does it depend on predefined threshold values of features. For example, the method in 

[8] requires threshold values for concavity depth, Saliency, CC and CL alignment etc. Similarly, the method 

in [3] requires threshold values for angles and lengths to find the degree of concavities for their classification. 

Moreover, the method in [9] uses threshold values for angle of concavity, length of split line, ratio of the 

longest to the shortest contour of objects resulting from splitting etc. However, in our method, since the 

window size is varied until a pairing point is obtained, or in the case of using image intensity, only the 



directional vector of a concavity point is used to find its pair, so there is absolutely no need for any parameter 

values for point-pair selection.  We only applied a minimum object size constraint to prevent the method from 

splitting smaller objects. Therefore, before applying the split lines to a clump it is ensured that they do not 

result in a smaller object otherwise the lines are discarded.  The constraint also helps in deciding whether 

another phase of clump splitting is needed for larger non-convex objects. This constraint is obtained for every 

image set by looking at the size of the smallest allowed object in that set.  

One of the problematic cases is also the clumps touching the image borders. In many image processing 

applications objects that touch the image borders are removed as a preprocessing step. However, we did not 

remove them, because, when images have large clumps (see for example Figure 11 mid- and bottom-left), that 

would result in many valid individual objects (cells) being removed unnecessarily. Another reason that we 

included the objects touching the image border is to show the promising results achieved by our intensity-

based splitting. It is performing remarkably well in those areas where the concavity point is lost either due to 

complex clumps or due to being outside the image area because of having resulted from the objects touching 

the image border (see for example, in Figure 9 objects at bottom-right as well as in Figure 10 objects at top-

right and bottom left). Therefore, our method processes such objects, and in most cases, even when the 

image intensity is not used, is able to resolve individual objects from such clumps that are away from the 

image borders. However, in the case of not using image intensity, due to the incomplete information near the 

borders of the image, object splitting is sometimes not accurate in those parts. In certain applications it might 

be reasonable to remove any objects that touch the image border after the clump splitting step. However, for 

the sake of showing the raw results from the clump splitting method we have not done so here. 

FIGURE 9 

 

FIGURE 10 

 

 

FIGURE 11 

  



6. Conclusion 

We presented a novel non-parametric concavity point analysis-based clump splitting method which takes 

into account holes in the clumps and if possible the image intensity too to find the split lines. In the case of 

not utilizing image intensity, a rectangular window mask is used for finding the pairing points of a split line. 

This makes the method independent of user-defined parameters even if the image set is large and contains 

objects of variable sizes. A post-processing step using a priori knowledge about shape of the objects ensured 

that the final image contains objects conforming to the ones present in the actual image. Moreover, when the 

image intensity can be used as a clue for finding the split lines, a split line is obtained for every concavity 

point using its directional vector which guides the search for the splitting path of minimum/maximum 

intensity. The advantage of this approach is that it can accurately split complex clumps besides producing the 

output similar to the one obtained by a human observer.   

Quantitative and qualitative measures illustrate the outstanding performance of our method for diverse 

sets of images having clumps of varying objects sizes and the probability and amount of overlap. Although 

the method is non-parametric in nature, a minimum object size constraint is used for a particular image set to 

restrain the method from splitting smaller objects. Even though the target application of the method was 

microscopy images containing clumps of cells of convex shape, it can be applied to a wide range of 

applications with images containing clumps of any convex objects. 

 

7. Acknowledgements 

This work was supported by the Academy of Finland (application number 213462, Finnish Programme for 

Centre of Excellence in Research 2006-2011; application number 121830, Post-Doctoral Researcher's Project 

2008-2010). We are extremely thankful to anonymous reviewers for their critical evaluation and useful 

comments and suggestions which helped us improve the manuscript. 

 

References 

[1] O. Schmitt, M. Hasse, Radial symmetries based decomposition of cell clusters in binary and gray level 

images, Pattern Recognition 41 (6) (2008) 1905-1923. 



[2] D. Balthasar, T. Erdmann, J. Pellenz, V. Rehrmann, J. Zeppen, L. Priese, Real-time detection of arbitrary 

objects in alternating industrial environments, in: Proceedings of the12th Scandinavian Conference on 

Image Analysis, 2001, pp. 321–328. 

[3] W.X. Wang, Binary image segmentation of aggregates based on polygonal approximation and 

classification of concavities, Pattern Recognition 31 (10) (1998) 1503-1524. 

[4] G. Zhang, D.S. Jayas, N.D.G. White, Separation of touching grain kernels in an image by ellipse fitting 

algorithm, Biosystems Engineering 92 (2) (2005) 135-142. 

[5] R. J. Taylor, D. Falconnet, A. Niemistö, S.A. Ramsey, S. Prinz, I. Shmulevich, T. Galitski, C.L. Hansen, 

Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform, 

Proceedings of the National Academy of Sciences of USA 106 (10) (2009) 3758-3763. 

[6] M. Farhan, O. Yli-Harja, A. Niemistö, An improved clump splitting method for convex objects, in: 

Proceedings of the 7th International Workshop on Computational Systems Biology, 2010, pp. 35-38. 

[7] G. Fernandez, M. Kunt, J-P. Zryd, A new plant cell image segmentation algorithm, in: Proceedings of the 

8th International 7Conference on Image Analysis and Processing, 1995, pp. 229-234. 

[8] S. Kumar, S.H. Ong, S. Ranganath, T.C. Ong, F.T. Chew, A rule-based approach for robust clump 

splitting, Pattern Recognition 39 (6) (2006) 1088-1098. 

[9] J. Liang, Intelligent splitting in the chromosome domain, Pattern Recognition 22 (5) (1989) 519-532. 

[10] W. Wang, H. Song, Cell cluster image segmentation on form analysis, in: Proceedings of the 3rd 

International Conference on Natural Computation, 2007, pp. 833-836. 

[11] Q. Wen, H. Chang, B. Parvin, A Delaunay triangulation approach for segmenting clumps of nuclei, in: 

Proceedings of the 6th IEEE International Symposium on Biomedical Imaging, 2009, pp. 9-12. 

[12] Q. Zhong, P. Zhou, Q. Yao, K. Mao, A novel segmentation algorithm for clustered slender-particles, 

Computers and Electronics in Agriculture 69 (2) (2009) 118-127. 

[13] H. Wang, H. Zhang, N. Ray, Clump splitting via bottleneck detection and shape classification, Pattern 

Recognition 45 (7) (2012) 2780–2787. 

[14] X. Bai, C. Sun, F. Zhou, Splitting touching cells based on concave points and ellipse fitting, Pattern 

Recognition 42 (11) (2009) 2434–2446.  



[15] G. Cong, B. Parvin, Model-based segmentation of nuclei, Pattern Recognition 33 (8) (2000) 1383-1393.  

[16] S. Kothari, Q. Chaudry, M. D. Wang, Automated cell counting and cluster segmentation using concavity 

detection and ellipse fitting technique, in: Proceedings of the 6th IEEE International Symposium on 

Biomedical Imaging, 2009, pp. 795-798. 

[17] M. Farhan, Automated Clump Splitting for Biological Cell Segmentation in Microscopy using Image 

Analysis, M.S. Thesis, Tampere University of Technology, Finland, November 2009. 

[18] A. Lehmussola, P. Ruusuvuori, J. Selinummi, H. Huttunen, O. Yli-Harja, Computational framework for 

simulating fluorescence microscope images with cell populations, IEEE Transactions on Medical 

Imaging 26 (7) (2007) 1010-1016.  

[19] Y.  Sun, S. Duthaler, B.J. Nelson, Autofocusing in computer microscopy: selecting the optimal focus 

algorithm, Microscopy Research and Technology 65 (3) (2004) 139-149.  

[20] A. Niemistö, T. Aho, H. Thesleff, M. Tiainen, K. Marjanen, M-L. Linne, O. Yli-Harja, Estimation of 

population effects in synchronized budding yeast experiments, in:  Proceedings of the International 

Society for Optical Engineering, SPIE 2003. Image Processing: Algorithms and Systems II, 5014 (2003) 

448-459.  

[21] T. L. Saito, M. Ohtani, H. Sawai, F. Sano, A. Saka, D. Watanabe, M. Yukawa, Y. Ohya, S. Morishita, 

SCMD: Saccharomyces cerevisiae Morphological Database, Nucleic Acids Research 32 (2004) D319-

D322.  

[22] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, 

and Cybernetics 9 (1) (1979) 62-66.  

[23] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters 27 (8) (2006) 861-874. 

 

 

 

 

 



Figures 

Figure 1 – Flowchart delineating the steps performed by our clump splitting method.  

The different steps involved in getting the final clump split image. The input to the method consists of 

original intensity and its binarized image along with the binary images containing holes and labeled objects. 

 

Figure 2 – Image depicting the scenario of clump with holes. Directional vectors and concavity points are also 

highlighted. 

(a) A synthetic image with clump of objects having holes inside the clump. The process of finding concavity 

points on the left where all blue lines reside inside the object whereas yellow lines pass through the 

background indicating that the object ceases to be convex there. The points in such contour segments (for 

example, red squares) which give maximum distance from their local chords (red lines outside object contour 

in the top) are identified as concavity points. (b) Contour of the clumped object. Black and red arrows point 

towards the directional vectors associated with the object concavity point and prominent point of holes, 

respectively.  

 

Figure 3 – Variable-size rectangular window-based concavity point-pair search. 

Variable-size rectangular window-based concavity point-pair search. Orientation of directional vectors 

(purple arrows) associated with the top two concavity points. Rectangular window with varying width and 

length (shown with dashed blue, green and red lines) aligned in the same direction as the directional vector in 

order to search for the concavity point-pair. (a) Formation of window with points taken from object contour. 

(b) Formation of window irrespective of concavity region around the concavity point. 

 

Figure 4 – Illustration of the usage of image intensity for finding split lines. 

Illustration of the usage of image intensity for finding split lines. (a) Original bright field intensity image. (b) 

Segmented image. (c) Result of straight split lines. (d) Split lines obtained by employing image intensity. 

 

Figure 5 – Masks and procedure to find the minimum/maximum intensity path for splitting. 



Masks and procedure to find the min/max intensity path to get the split lines. (a) The angle formed by the 

directional vector associated with the particular concavity point is used to select the appropriate mask. Arrows 

inside indicate the range of angles corresponding to a particular mask. Black and red pixels are Don’t care. (b) 

Procedure to find minimum intensity path for an example case where the directional vector is such that the top 

right mask was used to search for the path of minimum intensity (black curve) instead of taking straight line 

(red). Colors along the minimum intensity path refer to steps of the path finding procedure. 

 

Figure 6 – Post-processing cases after initial clump splitting. 

Post-processing cases. (a) Object with two split lines making acute angle between them. (b) A triangle is 

formed between the three concavity points. 

 

Figure 7 – Result after post-processing for the case of two split lines through a concavity point. 

Result after post-processing. The objects of Figure 6(a) and (b) after the application of image post-processing. 

 

Figure 8 – Illustration of the case of three split lines through a concavity point and its post-processing. 

(a) A clumped object with the case of three split lines through a concavity point. (b) Resulting image after 

image post-processing. 

 

Figure 9 – Results of proposed clump splitting method for a bright field microscopy image containing clumps 

of yeast cells.  

(a) A bright field image of yeast cells. (b) Segmented image. (c) and (d) Resulting image after application of 

the proposed method with and without using image intensity. 

 

Figure 10 – Results of proposed clump splitting method for a fluorescence microscopy image containing 

clumps of yeast cells. 

(a) A fluorescent image of yeast cells clumped together (obtained from SCMD [21]). (b) Segmented image. 

(c) and (d) Resulting images after application of the proposed method with and without using image intensity. 



 

Figure 11 – Results of clump splitting method for a synthetic microscopy image containing clumps of cells. 

(a) A synthetic microscopy image generated from SIMCEP simulation tool with cell clustering probability = 

0.5 and amount of overlap = 0.45. (b) Segmented image provided by the tool itself. (c) Binary image 

containing masks representing cells in the ground truth. (d) Resulting image after application of the proposed 

method on the image in (b). 

 

Vitae:  

Muhammad Farhan received the degree of Master of Science (MSC in IT) with distinction in 2010 from 

Tampere University of Technology (TUT), Tampere, Finland. He has worked as a Research Assistant at the 

Department of Signal Processing, TUT in 2009-2010. Currently he is working as a Researcher and a PhD 

student at the same department. His research interests include signal and image processing, biomedical image 

analysis, and pattern recognition. 

Olli Yli-Harja received the degree of Doctor of Science (Technology) in computer science and applied 

mathematics in 1989 from Lappeenranta University of Technology, Finland. During 1988-1998 he was a 

research scientist at the Technical Research Centre of Finland, Helsinki University of Technology, and 

University of Helsinki. During 1998-2001 he was senior researcher at the Institute of Signal Processing in 

Tampere University of Technology and in 2005 a visiting scientist on University of Texas M.D. Anderson 

Cancer Center in Houston, Texas, USA. Currently he is a Professor in the Department of Signal Processing in 

TUT. His research interests include computational systems biology, image analysis, complexity and non-

linear filters. 

Antti Niemistö received the degree of Doctor of Science (Technology) in signal processing in 2006 from 

Tampere University of Technology, Tampere, Finland. He has been with the Department of Signal Processing 

at TUT since 1999. He visited The University of Texas M. D. Anderson Cancer Center in Houston, Texas, 

USA during 2003-2004. In 2007-2008 he was a Postdoctoral Fellow at the Institute for Systems Biology 

(ISB) in Seattle, Washington, USA. Currently he is a Research Fellow at the Department of Signal Processing 

in TUT. His research interests include biomedical image analysis and nonlinear signal and image processing. 

His current work focuses on developing image analysis methods for microscopy applications in cell and 

molecular biology, in particular for quantitative analysis of live cells in microfluidic devices. 

 



Author Biography 

Muhammad Farhan received the degree of Master of Science (MSC in IT) with distinction in 2010 from 

Tampere University of Technology (TUT), Tampere, Finland. He has worked as a Research Assistant at 

the Department of Signal Processing, TUT in 2009-2010. Currently he is working as a Researcher and a 

PhD student at the same department. His research interests include signal and image processing, 

biomedical image analysis, and pattern recognition. 

Olli Yli-Harja received the degree of Doctor of Science (Technology) in computer science and applied 

mathematics in 1989 from Lappeenranta University of Technology, Finland. During 1988-1998 he was a 

research scientist at the Technical Research Centre of Finland, Helsinki University of Technology, and 

University of Helsinki. During 1998-2001 he was senior researcher at the Institute of Signal Processing in 

Tampere University of Technology and in 2005 a visiting scientist on University of Texas M.D. Anderson 

Cancer Center in Houston, Texas, USA. Currently he is a Professor in the Department of Signal 

Processing in TUT. His research interests include computational systems biology, image analysis, 

complexity and non-linear filters. 

Antti Niemistö received the degree of Doctor of Science (Technology) in signal processing in 2006 from 

Tampere University of Technology, Tampere, Finland. He has been with the Department of Signal 

Processing at TUT since 1999. He visited The University of Texas M. D. Anderson Cancer Center in 

Houston, Texas, USA during 2003-2004. In 2007-2008 he was a Postdoctoral Fellow at the Institute for 

Systems Biology (ISB) in Seattle, Washington, USA. Currently he is a Research Fellow at the 

Department of Signal Processing in TUT. His research interests include biomedical image analysis and 

nonlinear signal and image processing. His current work focuses on developing image analysis methods 

for microscopy applications in cell and molecular biology, in particular for quantitative analysis of live 

cells in microfluidic devices.  

 

*Author Biography



Table 1 – Parameters to create benchmark synthetic image set from SIMCEP tool. 

Parameter settings for creation of benchmark image set containing clustered nuclei with increasing clustering 

probability and amount of overlap. 

Parameter Value 

Probability of clustering 0.4, 0.5, 0.6 

Amount of overlap 0.15, 0.2,…, 0.5 

Number of Image Sets 24 

Images per set 50 

Cells per image 200 

Total number of cells for 1 set 10 000 

  

Table 1



Table 2 – Performance parameters obtained from the proposed clump splitting method for microscopy 

images. 

Performance parameters for three image sets of Case I containing 740, 858 and 1242 total number of cells 

constituting clumps. (See text for abbreviations) 

Set TP FP FN PR RC FM 

Set 1_I 727 9 13 0.988 0.982 0.985 

Set 1_NI 726 15 14 0.979 0.981 0.980 

Set 2_I 841 6 17 0.993 0.980 0.987 

Set 2_NI 826 8 32 0.990 0.963 0.976 

SCMD_I 1219 18 23 0.985 0.981 0.983 

SCMD_NI 1198 21 44 0.982 0.964 0.973 

 

Table 2



Table 3 – Performance parameters obtained from the clump splitting methods for synthetic images. 

Performance parameters obtained after application of the proposed method (Subscript 1), Farhan et al. (Subscript 2) 

and Kumar et al. (Subscript 3) on 24 image sets generated from SIMCEP simulation tool each containing 10 000 

total number of cells with or without clumps. Text in column “Set” is interpreted as PN1ON2 where P = probability, 

0.N1 = probability of overlap, O = Overlap, 0.N2= Amount of overlap.  

Set PR1 RC1 FM1 FM2 FM3 Set PR1 RC1 FM1 FM2 FM3 

P4O15 0.999 0.995 0.997 0.985 0.858 P5O35 0.992 0.948 0.970 0.897 0.664 

P4O20 0.998 0.992 0.995 0.972 0.802 P5O40 0.990 0.923 0.955 0.871 0.633 

P4O25 0.996 0.986 0.991 0.951 0.761 P5O45 0.988 0.897 0.940 0.855 0.633 

P4O30 0.995 0.974 0.984 0.935 0.726 P5O50 0.988 0.880 0.931 0.835 0.606 

P4O35 0.994 0.960 0.977 0.909 0.698 P6O15 0.998 0.992 0.995 0.977 0.814 

P4O40 0.992 0.944 0.968 0.890 0.673 P6O20 0.998 0.988 0.993 0.960 0.754 

P4O45 0.990 0.922 0.954 0.870 0.664 P6O25 0.997 0.980 0.988 0.936 0.710 

P4O50 0.987 0.896 0.939 0.851 0.652 P6O30 0.994 0.957 0.975 0.912 0.689 

P5O15 0.998 0.993 0.995 0.982 0.842 P6O35 0.992 0.937 0.963 0.873 0.619 

P5O20 0.998 0.990 0.994 0.967 0.788 P6O40 0.990 0.906 0.946 0.854 0.603 

P5O25 0.997 0.984 0.990 0.948 0.729 P6O45 0.989 0.874 0.928 0.831 0.590 

P5O30 0.996 0.969 0.982 0.922 0.708 P6O50 0.988 0.842 0.909 0.812 0.583 

 

Table 3



Images, Images containing holes and Labeled Objects

1) Trace Contour

2) Detect and Refine concavity/hole prominent points

3) Extract Features for concavity/hole prominent points

Use Image Intensity

Find concavity regions 

of the clump
Find the best pairs 

and Draw line

Find and Draw lines 

for each concavity 

point

Apply Post-

Processing

All objects 

conform to a priori 

information

Clump 

Splitting 

Result
Identify remaining 

clumps and Split 

them

Yes No

Yes No

Loop for Each 

Labeled Object

End of Loop

Find and Draw split lines 

for un-paired hole 

prominent points

Combine results of 

all rounds of clump 

splitting

Figure 1



Figure 2a

http://ees.elsevier.com/pr/download.aspx?id=663811&guid=35da262c-3a3b-4dad-8d93-68a4f57f9e95&scheme=1


Figure 2b

http://ees.elsevier.com/pr/download.aspx?id=663812&guid=c77fe3b0-6dee-46ea-813d-10bc6fafd5bc&scheme=1


Figure 3a

http://ees.elsevier.com/pr/download.aspx?id=663813&guid=eb402ef9-9e30-4a0b-831e-6427ba68c87b&scheme=1


Figure 3b

http://ees.elsevier.com/pr/download.aspx?id=663814&guid=01c9af5f-4562-443e-8897-ebd0c8f860fc&scheme=1


Figure 4a



Figure 4b



Figure 4c



Figure 4d



Figure 5a

http://ees.elsevier.com/pr/download.aspx?id=663819&guid=568860eb-ef03-4e51-ad9e-d153671ce8d9&scheme=1


Figure 5b

http://ees.elsevier.com/pr/download.aspx?id=663820&guid=7f644bff-f161-4a09-bac2-2a5cc27179e4&scheme=1


Figure 6a



Figure 6b



Figure 7a



Figure 7b



Figure 8a



Figure 8b



Figure 9a

http://ees.elsevier.com/pr/download.aspx?id=663827&guid=3b17c346-8127-41ea-a966-fd1fe6a05d9a&scheme=1


Figure 9b



Figure 9c

http://ees.elsevier.com/pr/download.aspx?id=663829&guid=e7f5adf8-62e2-4293-995f-250e3c63aa1a&scheme=1


Figure 9d

http://ees.elsevier.com/pr/download.aspx?id=663830&guid=cf71beb9-f60b-4f34-907e-ffe4bcbdc3a6&scheme=1


Figure 10a



Figure 10b



Figure 10c

http://ees.elsevier.com/pr/download.aspx?id=663833&guid=99ec62be-2968-47d0-953a-a11113ec7441&scheme=1


Figure 10d

http://ees.elsevier.com/pr/download.aspx?id=663834&guid=188b6bc4-b076-4c5f-a988-ad4ce119dbbe&scheme=1


Figure 11a

http://ees.elsevier.com/pr/download.aspx?id=663835&guid=3f7bac3d-14f1-476f-8e6d-6b5605d9f744&scheme=1


Figure 11b



Figure 11c

http://ees.elsevier.com/pr/download.aspx?id=663837&guid=fd963b6d-aaea-4af5-9b3e-d507d42ed0b6&scheme=1


Figure 11d

http://ees.elsevier.com/pr/download.aspx?id=663838&guid=12280a50-733b-48b0-9aa2-4427d42459ac&scheme=1



