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We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics

simulation data. The fields represent systems with increasing level of complexity, ranging from semi-

vesicles and vesicles to membranes characterized by coexistence of two phases, including also a protein-

membrane complex. We show that the 3D pressure field is distinctly different for curved and planar

bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein

modulates the tension and elastic properties of the membrane.
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Introduction.—The lateral pressure profile, or stress pro-
file, across a cell membrane results from the inhomoge-
neous nature of the interactions within a membrane. As
water, head groups, and acyl chains contribute through
different forces, one finds the emergence of a nonuniform
pressure profile inside a lipid bilayer. The profile has been
proposed to be coupled to membrane-protein structure and
functionality in a manner where changes in the pressure
profile affect protein activation [1,2] and/or association [3].
The moments of the pressure profile can be connected, e.g.,
to the mean and Gaussian bending elasticity [4].

While experimental studies of lateral pressure profiles
are rare and indirect [5,6], several computational studies
have shed light on pressure profiles of planar lipid bilayers
[7–10]. In these studies, a bilayer is divided into slabs
perpendicular to the membrane normal, and pressure is
calculated in each slab. However, this approach does not
work for vesicles, membranes with proteins, or heteroge-
neous bilayers, because in these physiologically relevant
cases the pressure profile can not be characterized by the
normal coordinate as in a planar bilayer; there is a 3D field
instead of a profile. Yet it has been shown that the work
exerted by the pressure profile when a protein conforma-
tional change takes place is significant, of the order of
10kBT [11,12], and that the lateral pressure profile aver-
aged over the whole membrane is modified by the inclusion
of a membrane protein [13]. Indeed, understanding the full
3D coupling for stress arising from protein-lipid interac-
tions is of profound importance and calls for elucidation.

Here, we calculate the full 3D pressure field for a
number of systems with varying degree of complexity
using molecular dynamics simulations. We define the 3D
pressure tensor and derive expressions for planar and
spherical symmetry. We apply the new methodology to
three cases: lipid vesicles, a membrane with an embedded

protein, and a bilayer with liquid-gel phase coexistence.
The membrane embedded protein, MscL, is of particular
interest as it is mechanosensitive, i.e., it gates in response
to membrane tension [14,15].
Theoretical background.—The pressure for an inhomo-

genous system is represented as a tensor PðrÞ that depends
on the location r. For a system consisting of pointwise
particles with n-body potentials Un the local pressure can
be defined as a sum of kinetic and configurational contri-
bution [8,10,16,17]:
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where Cjljk is a contour from the particle jl to the particle

jk, hji stands for summation over all n clusters in the
system, hk; li describes summation over all pairs of parti-
cles within a given n cluster, and mi, vi, and ri refer to the
mass, velocity, and location of atom i, respectively, and �
and � refer to the components. Equation (1) gives a con-
tinuous pressure field. To find the pressure tensor PV for a
volume element V, we have to take an average over the
volume element PV ¼ R

V PðrÞdr=V. Together with Eq. (1)
one finds the pressure tensor for volume V
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where fVðrÞ ¼ 1, if r 2 V, and zero otherwise. Each vec-
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tor rjljk ¼ rjk � rjl is divided into N parts and the contri-

bution of a given part � is added only if the contour goes
through V, i.e., if fV ¼ 1. For the contour we use the
Irving-Kirkwood (IK) contour [18], see the supplementary
material (SM) [19]. We call PVðrÞ as pressure field.

For a system with planar symmetry the local pressure
can be divided into planar pL and normal components pzz

via PðzÞ ¼ ðexex þ eyeyÞpLðzÞ þ ezezpzzðzÞ, where the

coordinate z is along the membrane normal. It follows
from planar symmetry that pLðzÞ ¼ pxxðzÞ ¼ pyyðzÞ de-

pends only on z. Furthermore, the surface tension of a
layer between z1 and z2 is given by [20] � ¼
�R

z2
z1
dz�ðzÞ. Traditionally, the integrand of this equation

�ðzÞ ¼ pLðzÞ � pzzðzÞ is referred to as the lateral pressure
profile. The first moment of �ðzÞ gives an example of a
connection to elastic properties of a layer between z1 and
z2 [4] via c0� ¼ R

z2
z1
dzðz� z0Þ�ðzÞ, where c0 denotes the

spontaneous curvature with respect to a pivotal plane z0,
and � the bending modulus.

For a system with spherical symmetry, e.g., a vesicle, we
divide the pressure tensor into tangential pT and radial prr

components PðrÞ ¼ ðe�e� þ e	e	ÞpTðrÞ þ ererprrðrÞ,
where r is the distance from the origin of the coordinate
system. From spherical symmetry, it follows that pTðrÞ ¼
p��ðrÞ ¼ p		ðrÞ depend only on r. A spherical surface

with radius R has a surface tension [20]


 ¼ �ð1=R2Þ
Z 1

0
drr2½pTðrÞ � prrðrÞ�: (3)

The pressure tensor for a system with cylindrical or ap-
proximately cylindrical symmetry, e.g., a membrane pro-
tein, is discussed in the SM [19]. The pressure tensor
becomes diagonal when the coordinate system aligns
with the physical surface.

Implementation.—We discretize Eq. (1) into cubes, typi-
cally with a linear dimension of 0.1–0.4 nm, allowing us to
calculate the average pressure over arbitrary volume ele-
ments. The local pressure tensor is calculated for each cube
using Eq. (2). The vector between two particles is divided
into N ¼ 100 segments in Eq. (2). Though increasing N
increases computational cost, the segments must be
smaller than the cube size.

For a system with spherical symmetry, the pressure
tensor is transformed in each cube from Cartesian coordi-
nates Pðx; y; zÞ to spherical ones P0ðr; �; 	Þ by applying a
transformation matrix T, i.e., P0 ¼ TPTT [21]. The aver-
age of the pressure tensor is calculated over spherical shells
P0ðrÞ ¼ hP0ðr; �; 	Þi�;	 to get pTðrÞ and prrðrÞ. A similar

approach for cylindrical symmetry is described in the SM
[19]. Here we refer to these averages as pressure profiles.

For the sake of validation, we also determined the pres-
sure profile in a vesicular system using a novel mean-field
boundary potential method [22]. The advantage of this
method is the freedom from ambiguity in the virial defini-
tion, Eq. (1). See the SM for details [19].

Simulated systems.—The GROMACS package [23] was
used for simulations. The coarse grained (CG) MARTINI

force field and attached simulation protocol [24–26] were
used to model the systems. The temperature was set to
323 K except in the phase coexistence simulation it was
273 K. Time scales are given in CG units. In addition to a
DPPC semivesicle, we studied a spherical DOPC vesicle
with different amounts of water inside to create two sys-
tems with different internal pressures. A tension-free
planar DOPC bilayer was modeled for comparison.
Further, we modeled a two-phase DPPC bilayer at a con-
stant area per lipid of 0:52 nm2. The constant area creates a
surface tension of 69 mN=m and forces the membrane into
a gel-liquid phase coexistence. Finally, a mechanosensitive
channel Tb-MscL (PDB: 2oar) was simulated in a DOPC
bilayer following [15]. A tension of 39 mN=m was applied
to keep MscL in the open state. More details are in [19].
Results.—We first compare the results obtained with the

new method to the results obtained independently with the
mean-field boundary approach. The comparison is made
for a semivesicle adsorbed on a boundary plane. Figure 1
depicts the tangential component pTðrÞ for the semivesicle
as a function of r calculated using both methods. We see
that the virial, Eq. (2), together with the IK contour gives
similar results as the force per area calculated from the
boundary. In the virial calculation the semivesicle is as-
sumed to be spherically symmetric. This is not exactly true
in our case, which leads to the small deviations between the
two cases. The results justify the use of the IK contour to
calculate local virials in three dimensions.
Because of its curved geometry, a vesicular membrane

has distinct properties compared to a lamellar membrane,
most noticeable with small radius of curvature. The effect
of curvature on the pressure profile across the membrane
has not been addressed before. The 3D virial decompo-
sition method allows such an analysis. In Fig. 2(a) the
results of this analysis, assuming spherical symmetry for
the vesicle, are shown. The pressure is set to zero outside
the vesicle, yielding the pressure difference �P ¼ PðrÞ �
Pout. The pressure profile for a planar, tensionless DOPC
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FIG. 1 (color online). The pTðrÞ for the DPPC semivesicle as a
function of r calculated using mean-field and virial methods.
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bilayer is shown for comparison, shifted horizontally such
that the negative peaks of the inner monolayer coincide.
Most striking differences are the magnitudes of the peaks
and the asymmetry in the pressure profile of a vesicle. The
asymmetry results from different packing properties [27]:
in the inner monolayer the headgroup peak is more pro-
nounced due to the negative curvature and tighter packing
of the headgroups, and vice versa for the outer monolayer.
The broader peaks reflect a less clear boundary between
hydrophilic and hydrophobic regions in a vesicle. The
results highlight the role of curvature and imply that the
pressure profile, and the associated elastic behavior are
distinctly different for small vesicles compared to large
unilamellar liposomes.

Pressure profiles between vesicles with different internal
pressures are compared in Fig. 2(b). The pressure differ-
ence is obvious from different bulk values inside the
vesicles. Furthermore, the increasing pressure inside a
vesicle increases the vesicle size and induces tension into
the bilayer quantified by Eq. (3). We approximate the limits
of 
 considering a minimal and maximal radius R given by
the intersections of water and hydrocarbon densities for
each monolayer (see Fig. 2). We find 
 � �ð1–6Þ mN=m
and
 � ð45–91Þ mN=m for the smaller and larger vesicle,
respectively. Comparing these tensions to the experimen-
tally determined gating tension of MscL [28] that is
�ð10–20Þ mN=m suggests that if incorporated into these
vesicles, the channel would be closed in the smaller one
and open in the swollen one.

Next, we analyze the stress profile of a DOPC bilayer
with an open MscL channel embedded. We assume cylin-

drical symmetry and take the average over angles, see the
SM [19]. Figure 3(a) presents �ðz; rÞ as a function of z
(normal coordinate of the bilayer) and r (distance from the
center of MscL in cylindrical coordinates). Figure 3(b)
shows the surface tension � for the monolayers and the
bilayer. The total tension of the system is ð38� 1Þ mN=m
as set by the barostat to keep the MscL channel in an open
state. However, the tension varies strongly with the lateral
position. In the protein region (r < 4 nm) the average
tension is 33� 1 mN=m whereas in the bilayer region
(r > 4 nm) it is 43� 1. This perturbing effect of the
protein is maintained across the entire membrane patch.
A slowly decaying stress field around the protein is not
observed.
Another conclusion drawn from Fig. 3(b) is that the

monolayers behave differently. The average tensions for
the lower and upper leaflets, protein region included, are
ð14� 1Þ mN=m and ð23� 1Þ mN=m, respectively. The
higher tension in the upper leaflet implies that it tends to
decrease the area more than the lower one. As a conse-
quence, emergence of spontaneous curvature in the bilayer
is anticipated. To quantify this, we calculate the first mo-
ment of the pressure profile, see Fig. 3(c). The average over
the bilayer region (r > 4 nm) gives �c0 ¼ ð�43� 6Þ �
10�13 J=m for the bilayer, while the average over the
whole system yields �c0 ¼ ð�151� 6Þ � 10�13 J=m.
Experimental values for � for different lipid bilayers vary
between ð0:1� 6Þ � 10�19 J [29]. The effect of an em-
bedded protein on � is unknown, but a recent simulation
study suggests that the area compressibility modulus is
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FIG. 2 (color online). Pressure profiles for DOPC bilayers and
vesicles. (a) For the bilayer, the solid line and dashed green line
stand for pL and pzz, respectively. For the vesicle, the solid line
and dashed black line correspond to pT and prr with �P �
�30 bar, in respective order. (b) Results for the vesicle with
�P � 130 bar. Solid line and dashed red line correspond to pT

and prr, respectively. Black lines are as in panel (a). Vertical
dotted lines show the location of intersections between acyl
chain and water density.
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FIG. 3 (color online). Pressure profile of a membrane-protein
system. (a) Horizontal axis is the distance from protein center,
vertical axis is the normal component of the bilayer (protein
center at z ¼ 0). The lower and upper leaflets are characterized
by z 2 ½�4;�1Þ nm and z 2 ½�1; 2� nm, respectively, and
color represents the local pressure (in units of bar). The approxi-
mate boundary of the protein region is presented with a full black
line (see the SM [19]). (b) Surface tension � as a function of
distance from the protein center r. (c) Product �c0 vs r. Pivotal
planes are located in z0 ¼ �2 nm and z0 ¼ 0 nm, for lower and
upper [see order in panel (a) leaflets], respectively.
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increased 22% due to inclusion of MscL [30]. Similar
behavior can be expected for �. Using experimental values
for �, we approximate spontaneous curvatures for the
whole system and the bilayer region, c0 ¼ ð�0:025Þ �
ð�1:5Þ ðnmÞ�1 and c0 ¼ ð�0:0072Þ � ð�0:43Þ ðnmÞ�1,
respectively.

Taken together, our results suggest that inclusion of
MscL in a symmetric bilayer causes additional stress in
the membrane and introduces a significant spontaneous
curvature. In real membranes the spontaneous curvature
would either lead to a curved membrane surface, and/or
redistribution of lipids between the two leaflets. Here, these
are not observed since the time scale of lipid flips-flops is
inaccessible and the periodic boundary conditions prevent
curving of the membrane.

Finally, we consider a DPPC bilayer in a state of gel-
liquid phase coexistence, serving as an example for phase
separated membranes. Figure 4 illustrates the liquid and
gel domains separated by a �1:5 nm thick transition re-
gion. The lateral pressure profiles are shown in Figs. 4(a)
and 4(b), for the liquid and gel phase, respectively. Planar
symmetry is assumed for the gel and liquid parts sepa-
rately. The pressure profile for the liquid phase is similar to
that of a homogeneous fluid bilayer as shown in Fig. 2(a).
In contrast, in the gel phase it is strikingly different, and is
closely reminiscent of the profiles found for bilayers with
large amounts of cholesterol [11]. Clearly, the pronounced
ordering of the acyl chains in a bilayer gives rise to the
complex peaked structure of the pressure profile, comple-
mented by its anisotropic nature in the gel phase.

The pressure field averaged over y and z coordinates
PðxÞ ¼ hPðx; y; zÞiyz is presented in Fig. 4(c). Both lateral

components are negative, as the bilayer is under stress,
inducing gel-liquid coexistence. Whereas pxxðxÞ and pzzðxÞ
are basically constant, pyyðxÞ is smaller in the gel than in

the liquid phase. This is due to the phase boundary lying
along the y direction, with an associated line tension.

Concluding remarks.—We have shown the prominent
role of 3D stress profiles inside membranes and

membrane-protein complexes. The pressure field is dis-
tinctly nonuniform both across the membranes and also
in the membrane plane. This is most evident at interfaces
that bridge membrane domains in different phases, and in
membranes rich in proteins where the pressure field and the
resulting membrane elasticity vary strongly in space. The
present results provide a novel view of the general inter-
play between membranes and proteins.
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FIG. 4 (color online). Pressure tensor components in (a) liquid
and (b) gel phases. (c) Pressure as a function of normal to the
phase boundary PðxÞ (see text). The pure liquid phase is located
between x ¼ 2–6 nm and the pure gel between 7.5–10.5 nm.
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