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Abstract. We discuss shape reconstruction methods for data presented in

various image spaces. We demonstrate the usefulness of the Fourier transform
in transferring image data and shape model projections to a domain more

suitable for shape inversion. Using boundary contours in images to represent
minimal information, we present uniqueness results for shapes recoverable from

interferometric and range-Doppler data. We present applications of our meth-

ods to adaptive optics, interferometry, and range-Doppler images.

1. Introduction. It is an early lesson in mathematics that many problems are
considerably easier to handle by transferring the variables and functions to another
domain via, e.g., the Fourier transform (FT). Here we show that this principle can
be used in reconstructing the shape (and dynamics) of a body from data presented
in various image spaces. Shape reconstruction can actually be seen as a form of
model-based image processing, or de-noising with strong prior constraints: from
noisy images, we determine a model of the object seen in them, and this model
can be used to reconstruct the original images (compare Figs. 1 and 2). Such
an interpretation does not even necessitate a unique object model (for viewing
geometries other than those of the original images).

Our approach is applicable to any shape modelling from images; here we use
images obtained with astronomical instruments as our application examples. Image-
resolved astronomical data are usually presented as pixel image fields defined by
generalized projection operators [7]. Such images are obtained by, e.g., adaptive
optics or radar.

The viability of shape reconstruction from the boundary curves of object pro-
jections in optical images was investigated in [8, 9]. For completeness, we show
below that the shape can also be uniquely defined from the boundary contours of
its range-Doppler images under some mild conditions, and that the uniqueness re-
sults of optical images can be extended to interferometric images. The boundary
extraction methods have the advantage that they are independent of both the scat-
tering model of the target and the often erroneous interior pixel intensity values.
On the other hand, they can be problematic as the image boundaries are not always
clearly defined due to blurring and other imaging errors.

2010 Mathematics Subject Classification. 68U05, 68T45, 65D18, 52B10, 49N45, 65J22, 85-08.
Key words and phrases. Inverse problems, three-dimensional polytopes, generalized projec-

tions, image analysis, adaptive optics, interferometry, radar.

1 c©2014 American Institute of Mathematical Sciences

http://dx.doi.org/10.3934/ipi.2014.8.xx


2 Matti Viikinkoski and Mikko Kaasalainen

An efficient way to use pixel values is to make a continuous (complex-valued)
image function of a pixel field or a model projection via the Fourier transform. As
we show below, this explicitly retains most of the weight on the image boundary
curves as well. We present analytical Fourier transforms of projected images in
Sect. 2. We describe the FT reconstruction method in Sect. 3, and discuss its
advantages. Applications in adaptive optics, interferometry, and range-Doppler
radar (with uniqueness results) are discussed in Sect. 4, and we sum up in Sect. 5.

2. Fourier transforms of images of polyhedral models. Let us first consider
the usual approach of fitting the pixel values directly without FT. The model rep-
resentation is a polyhedron that is projected onto some projection plane (ξ, η) ∈ R2

via a linear transformation [7, 8]. Let P : R3 → R2 be the operator for this linear
mapping. Then the projection PTi of each facet Ti is assigned a brightness factor
Bi depending on the visibility, attitude, and surface scattering or radiation flux
model of the facet. The scattering model S(µµ0, α) is typically dependent on the
cosines µ and µ0 between the surface normal and, respectively, the viewing and
illumination directions, and on the angle α between the latter two [7]. Since the
projection cosine µ is traditionally taken as a fixed factor in S, we write

Bi =

{
Si(µ, µ0, α)/µ, µµ0 > 0,
0, otherwise.

As far as their role in Bi is concerned, models of thermal surface radiation flux
are essentially similar to the scattering models, except that they have a time-lag
component as discussed below.

For each point on the projection, we assign a factor I(ξ, η) ∈ {0, 1}, a piecewise
constant integer function encoding the visibility and illumination (VI) condition of
the point (ξ, η). This constitutes the generalized projection or image mapping. In
principle, one could determine the exact projection polygons inside which I(ξ, η) = 1
by considering all intersections due to occluding facets [8]. In practice, this is
unnecessarily laborious, so we use the separate projections of the original polyhedron
facets. Each facet is checked for VI as a whole by ray-tracing (using the centroid
of the facet), and the level of resolution can be controlled at will by dividing a
facet into subfacets; for example, the radar imaging process usually requires greater
accuracy than the thermal infrared. Thus we approximate, for each facet Ti,

Ii =

{
1, i is VI,
0, otherwise.

Two polygons in a plane (a facet projection of a polyhedral shape model and
a pixel frame) overlap, if any of their boundary lines intersect, or if any vertex of
either is inside the other. For such cases, one finds all the intersection points, if
any, and thus determines the boundary lines of the overlap polygon. The sum of
the areas of all the overlap polygons inside a pixel frame, each multiplied by the
factors Bj Ij of the corresponding facet, then determine the model intensity Pmod

i

of the pixel. The derivatives w.r.t. the vertex coordinates of the polyhedron, and
hence the parameter gradients for efficient optimization, follow directly from this.
We find the solution that minimizes ‖P obs−Pmod‖, where P obs/mod are the vectors
that contain the observed and modelled pixel intensities. Since each feasible facet-
pixel overlap pair must be checked, this is essentially an N2 process, although the
number of function-value computations is smaller than in the N2 process of the FT
sampling below.
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We remark that it is possible just to sample the Bi at various points on the
surface (or the image plane), and then use these samples to produce the model
pixel intensities. However, though fast in computing the forward problem, this is
not efficient in shape reconstruction. This is because now there are no analytical
partial derivatives with respect to parameters only related to the position in the
image plane (such as model size and offset factors, unless there is a significant
point-spread function), and other shape parameters have derivatives only through
the orientation of the local model surface patches.

Consider now doing the computations in the Fourier-transformed domain, the
plane (u, v) ∈ R2. For practical purposes, we define our (two-dimensional) Fourier
transform of some function f(ξ, η) somewhat differently from the standard form:

(1) F(u, v) :=

∫
R2

f(ξ, η)e−2πı(uξ+vη)dξdη.

The point here is that any integral transform that has the same basic properties
as FT is suitable for our purposes, so constants and normalizations used in the
definition are irrelevant. Indeed, some completely different transforms may be just
as good, but we have found the FT approach to converge very well. Also, interfer-
ometric data are typically samples of a Fourier transform, given in the frequency
(u, v)-plane, so the FT approach is ideal for such cases.

Letting T be the set of facets forming the polyhedron, the transform integral can
be written, by Green’s theorem, as

F(u, v) =
∑
Ti∈T

∫ ∫
PTi

Bi I(ξ, η)e−2πı(uξ+vη) dξdη

=
∑
Ti∈T

Bi
∑
j

1

2πı

∫
Γij

(
v

u2 + v2
e−2πı(uξ+vη) dξ − u

u2 + v2
e−2πı(uξ+vη) dη

)
:=
∑
i

Bi
∑
j

Iij(u, v),

(2)

where Γij are the boundary line segments defining the VI part of the projected facet
PTi, oriented counterclockwise. In practice, these are the edges of entire projected
facets (or subfacets) included in the sum depending on their Ii. The facet factor Bi
can also include the intrinsic lightness (albedo) of the local surface, and this can be
left as a a free parameter (or a function over the surface). For (u, v) = (0, 0), the
Fourier transform is the total brightness of the image:

(3) F(0, 0) =
∑
Ti∈T

∫ ∫
PTi

Bi I(ξ, η) dξdη =
∑
i

Bi
∑
j

∫
Γij

ξ dη,

i.e., the last sum is the area of the VI part of PTi.
For a line segment Γij with end points (a, b) and (c, d), Iij(u, v) can be written

in a closed form by substituting the line equations so that we have

(4) Iij(u, v) =
1

4π2(u2 + v2)

(b− d)u− (a− c)v
(a− c)u+ (b− d)v

(e−2πı(au+bv) − e−2πı(cu+dv)).

The summation over Iij(u, v) can be reordered and speeded up by noting that each

polygon edge in the interior is shared by two polygons, so a new factor B̃ can be
taken to be the difference between the two Bi, and the edge term is computed only
once. Note that this explicitly shows why most of the information in the image is
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indeed from the limb and shadow boundary curves discussed in [8, 9]. The values of

B̃ for interior edges are usually close to zero (indeed, they vanish for the geometric
scattering Bi = const.), so most of the weight is on the boundary edges. From the
above expression, it is obvious that the integral has continuous partial derivatives
with respect to the projected vertices, which are linear combinations of the original
vertices of the facet. Thus the Fourier transform has continuous partial derivatives
with respect to the facet vertices.

3. Fourier transform method for model reconstruction. Our approach is
largely independent of shape representations. For their effectiveness and simplicity,
we prefer octantoids [9]. An octantoid is a surface given by p ∈ R3 that can be
parametrized in the form

(5) p(θ, ϕ) =


x(θ, ϕ) = ea(θ,ϕ) sin θ cosϕ,
y(θ, ϕ) = ea(θ,ϕ)+b(θ,ϕ) sin θ sinϕ,
z(θ, ϕ) = ea(θ,ϕ)+c(θ,ϕ) cos θ,

where a, b and c are conveniently expressed as linear combinations of the (real)
spherical harmonic functions Y ml (θ, ϕ), with coefficients alm, blm and clm, respec-
tively. Note that (θ, ϕ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π, are coordinates on the unit
sphere S2 parametrizing the surface but not describing any physical directions such
as polar coordinates. As usual, the Laplace series for a, b, c are useful for keeping
the number of unknowns small and the surface smooth; separate vertex parameters
can be used as well, but this usually necessitates heavy regularization. The draw-
back of this is its globality: one might want less smoothness regularization in some
regions than in others. When more local control is desired (e.g., a feature clearly
visible in fly-by images or in radar), the representation (5) may be expanded with
spherical splines or spherical wavelets to provide local detail without affecting the
global shape.

The representation (5) is convenient for asteroid shapes, as asteroids are often
geometrically starlike or close to it. This indicates that we can use the deviation
from starlikeness as a regularization measure. For this effect, we define

(6) γ =
∑
l,m

l(b2lm + c2lm).

In many cases, we can explicitly set b = c = 0 for starlike shapes, but it is often
useful to employ γ instead as this gives more room for shape adjustment. The
parametric representation (5) using a finite number of spherical harmonics is global
in the sense that a change in each parameter will affect shape globally. This has a
strong regulating effect, which is usually beneficial as the available data are often
incomplete and noisy.

We can now write the FT reconstruction procedure as follows:

1. For each data image Di and observation geometry Ei, the two- dimensional
Fourier transform FDi(u, v) of Di is sampled at a set of points {(uij , vij)},
j = 1 . . . Ni, on the spatial frequency plane. For pixel images, the transform
can be computed by Eq. (2) when considering each pixel as a polygon, or by
using fast Fourier transform functions for chosen grid points (but the time
spent for FDi(u, v) is irrelevant as most of the computations are for the trial
models).

2. The shape parameters alm, blm, and clm are initialized such that Eq. (5)
represents a sphere approximately equal in size to the target.

Inverse Problems and Imaging Volume 8, No. 3 (2014), X–XX



Shape reconstruction from images 5

3. For each observation geometry Ei, the Fourier transform FMi(u, v) of the
corresponding projection image Mi of the model is calculated as described in
the previous section, together with the partial derivatives of FMi(u, v) with
respect to the shape parameters.

4. An objective function χ2 is formed, with the square norm of the complex-
valued FT fit error:

χ2 =
∑
i

Ni∑
j=1

∥∥∥FDi(uij , vij)− e2πı(oxi uij+oyi vij)Ti(uij , vij)FMi(uij , vij)
∥∥∥2

+ λγ2

where (oxi , o
y
i ) is the offset between the data image Di and the model image

Mi, and, by the convolution theorem, Ti is the Fourier transform of the point-
spread function of the imaging system. The regularization term γ corresponds
to Eq. (6). Additional regularization measures are also possible, e.g., local
convexity, gravitational slope or the inertia tensor [8, 9]. Usually γ is the best
choice, as the physical regularization methods tend to restrict the shape too
severely during the initial convergence.

In addition, the intensity level of each data and model image must be
normalized. Often it is enough to divide both model Mi and data image Di

by their respective mean intensities. Equivalently, writing

χ2 :=
∑
ij

∥∥∥Di(uij , vij)− M̃i(uij , vij)
∥∥∥2

+ λγ2,

we have (cf. [6])

χ2
rel =

∑
ij

∥∥∥∥∥Di(uij , vij)〈‖Di‖〉
− M̃i(uij , vij)

〈‖M̃ i‖〉

∥∥∥∥∥
2

+ λγ2,

where the mean 〈·〉 is taken over {(uij , vij)}, j = 1 . . . Ni. However, sometimes
it is better to allow the intensity level of each Mi to be a free parameter and
use χ2; this is useful in the case where the mean intensity of Di is corrupted
by excessive noise in the image background (this is typical for range-Doppler
images). This causes the χ2

rel-based solution to have a slightly wrong size
to compensate for the “diluted” normalized intensity level inside the actual
object region of Di.

5. The shape parameters alm, blm and clm, spin vector direction, and the offsets
(oxi , o

y
i ) as well as the possible intensity level factors Ci minimizing χ2 are de-

termined with a suitable method such as the Levenberg-Marquardt algorithm.

The crux of the idea is that the Fourier transform of the plane-projected mesh of
a model polytope is simple to compute analytically, and the partial derivatives with
respect to vertex coordinates exist and can be straightforwardly given in a closed
form. Since F−1F = I, FT retains all the information in the original image. We
can list some particular advantages of the FT approach:

• The FT method algorithm is simpler than direct pixel fitting, and it converges
robustly

• Information at any point in the frequency plane comes from all points in the
image plane, which increases robustness

• FT sampling can be used to filter the image information at different frequency
(i.e., resolution) scales

• Point-spread functions can easily be taken into account
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The downside of the FT method is increased computation time and complexity as
we move from the sparse boundary curve to the two-dimensional Fourier transform
of the projection image. For image fields with N relevant pixels, the boundary
curve approach pertains to essentially

√
N boundary elements and is basically an N

process, whereas the FT method is N2. In all methods, much of computing time is,
of course, spent on the same ray-tracing computations. In any case, the polyhedral
and Fourier computations are trivially parallel. Each facet or each point on the
(u, v)-plane can be considered separately, so the computations can be implemented
very effectively on a graphics processing unit.

4. Applications.

4.1. Adaptive optics images. The resolution of even the best telescopes is not
limited by their optics but by the Earth’s atmosphere. The incoming wavefront
is distorted by the atmospheric turbulence causing speckle patterns in the image.
In effect, the angular resolution of a single telescope is limited to 0.5 arcseconds,
making image-resolved imaging of asteroids nearly impossible. Adaptive optics
tries to correct the atmospheric distortion with a help of a computer-controlled
deformable mirror. The effects of the atmosphere are mitigated by the means of a
reference star. The degradation of the wavefront from a known star is analyzed, and
the mirror is adjusted to counter the effect. Further, the raw image obtained this
way can be post-processed with various image-processing algorithms. With adaptive
optics, disk-resolved imaging with angular resolution approaching the diffraction
limit becomes possible. However, the improved precision comes at a cost. The
most reliable information in the adaptive optics image is the boundary curve, as
the the interior contains artefacts caused by the imaging process. In addition, the
boundary extraction methods will often introduce artefacts of its own, especially if
the boundary pixels are fuzzy. Thus, using the image field, the boundary extraction
may be bypassed altogether, and even the raw image can be used directly without
separate image-processing.

As an example, we consider the large main-belt asteroid 41 Daphne. We used 14
adaptive optics images obtained from the Very Large Telescope array at ESO, with
pixel size of approximately 0.01 arcseconds. This corresponds to 7− 12 kilometers
per pixel, as the geocentric distance varies between images. Each image is trans-
formed to the frequency plane and sampled on a rectangular grid consisting of 8064
points. In addition, we included several lightcurves, which mostly refined the spin
state solution. Interestingly enough, they had no discernible effect to the actual
shape solution as the available AO images seem to constrain the shape adequately.
The solution is similar to the one in [8] obtained with image boundaries. The ade-
quacy of AO data can also be seen in the curve in [8] depicting the lightcurve fit as
the weight of AO data is increased: the lightcurve fit does not decrease much along
the curve.

Our model consists of a triangular mesh with 1568 facets, with vertex locations
defined by 243 shape parameters. The highest degree of spherical harmonics in the
reconstruction is nine. In addition to the shape parameters and the direction of the
rotation axis, we also determined optimal offset parameters for each image, since
the object’s location on the image plane is unknown. The light-scattering model
used in the reconstruction is not important since most of the information is on
the boundaries. We chose the standard combination of the Lommel-Seeliger and
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Figure 1. Examples of the adaptive optics images of the asteroid
Daphne.

Lambert laws [6]:

Bi = C µ
(i)
0

(
1

µ(i) + µ
(i)
0

+ 0.1

)
,

where C is a free constant for each image for adjusting the intensity level of the
model to match that of the data. More complicated scattering models such as
Hapke can be used, but this has no effect on the result as the interiors of the object
are not reliable in the images in any case. In Fig. 1 we show some of the adaptive
optics images. Projections of the reconstructed model are presented in Fig. 2. It
is interesting to note that the non-convex details visible in the AO images (Fig. 1)
are also apparent in the reconstructed model, so the result could indeed be seen as
a form of image processing as well.

4.2. Interferometry in the thermal infrared: Heat diffusion equation and
its inversion model. The advances in ground-based thermal infrared interfer-
ometry are now making it possible to obtain angular resolution approaching the
milliarcsecond range; i.e., corresponding to tens of pixels across typical 100-km
size class targets in the main belt. Each antenna pair in the array making up the
interferometer samples the two-dimensional Fourier transform of the plane-of-sky
thermal flux density [13]. Since the observable is already in the form of a Fourier
transform, this data type is especially suitable for the FT approach of the inverse
problem.

After enough Fourier transform samples are obtained, the Fourier transform may
in principle be inverted to a form a dirty image, from which the actual final thermal
image is reconstructed as a pixel field with the aid of various iterative algorithms
and prior assumptions [13]. However, in the case of asteroids, we can use the
mathematical model of the target as a very strong prior constraint, so the image-
forming step can be discarded altogether and the raw Fourier data used directly
for reconstructing the three-dimensional model. This is beneficial especially in the
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Figure 2. Reconstructed model of Daphne from adaptive optics
images. Viewing directions correspond to the AO images shown
in Fig. 1; in this sense, these images are results of model-based
image processing. Shading is exaggerated with the Lambert law
for clearer illustration.

cases where the Fourier plane is too sparsely sampled to form the image. In this
sense, asteroids are particularly suitable for interferometric observations. We will
discuss the practical aspects of the interferometric inversion procedure elsewhere,
and present the main theoretical points here.

Thermal-range interferometry differs from optical wavelengths in that the radi-
ation of the surface cannot be described as simply as with light-scattering models.
However, we note here an uniqueness result concerning the optical-equivalent re-
gion, meaning optical wavelengths or other domains where the boundary curves of
the image of the radiating target are the same as those in the optical region. This
is the case with, e.g., zero thermal inertia, when the surface releases the received
radiation energy immediately.

Theorem 4.1. The uniqueness theorems obtained with image boundaries in [8] are
valid for interferometry (or image fields) in the optical-equivalent case.

Proof. This is an immediate corollary of F−1F = I: due to F−1, full coverage of
the (u, v)-plane data at different viewing geometries uniquely produces a full set
of (ξ, η) images for which the uniqueness results are derived. Note that one does
not need to produce images (and extract the boundaries) from the FT data by
F−1; the result applies to the (u, v)-data directly since no other model can match
the boundaries if the images are constructed (we assume that the light-scattering
model is correct). This applies to image field data directly, of course.
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The resolution provided by thermal-range inteferometers makes it possible to
build detailed 3D models of asteroids if the thermal radiation and conduction pro-
cess on the surface and in the subsurface layer can be modelled with sufficient
accuracy. Several models for asteroid heat radiation exist, with varying complexity
[4].

As the facets in the polyhedral mesh of the model are usually much larger than
the diurnal thermal skin depth, it is reasonable to assume that heat is conducted
only in the direction of the facet normal. Hence it is enough to solve the one-
dimensional heat diffusion equation with a radiation boundary condition for each
facet, with shadowing and mutual heating between facets taken into account.

Calculating the heat flux of an polyhedral model consists of solving the heat
diffusion equation numerically for each facet and for each time step. For even
moderately-sized models, with the shadowing and the diurnal solar radiation vari-
ation taken into account, it can be prohibitively expensive computationally.

An elegant alternative approach to the finite difference-method is the Fourier-
series method [1, 11] briefly described below in view of our application. As the
fast Fourier transform is computationally cheap, the Fourier-series approximation is
much faster than the finite-difference method for solving the diffusion equation. The
downside is that the approximation originally pertains to moderate heat variations,
and the mutual heating of facets must be ignored. However, even in this case
the Fourier-series approximation will still provide good initial values for the finite-
difference method decreasing the computation time.

From the point of view of the inverse problem, the Fourier-series method, though
an approximation, is nevertheless quite adequate for describing the observed radia-
tive flux (thermal brightness) on the object’s surface. This is because, again, the
bulk of the information comes from the boundary of the target (a heated surface
patch vs. cold background). Just as in the adaptive optics case, the accuracy of
the model of the interior intensity distribution is not crucial.

4.2.1. Diurnal cycle and Fourier series. We present here the main points of the
Fourier-series thermal approach. We define the insolation factor ins(µ0, p) for a
point p on the surface [10] as

ins(µ0, p) =

{
µ0, p is illuminated,
0, otherwise.

This is obviously a cyclic function of φ, the rotation angle of the asteroid around its
axis (when the asteroid is effectively stationary during one rotation; i.e., its rotation
period is much smaller than the orbital one), so it can be expanded as a Fourier
series:

(7) ins(µ0, p) =
∑
n

dn e
inφ.

For a convex body, the function ins(µ0, p) is continuous. If the minimum and
maximum limits of φ for µ0 ≥ 0 are, respectively, φrise and φset for a point p, we
have

(8) dn(p) =
1

2π

∫
ins(µ0, p) e

−ınφ dφ =
1

2π

∫ φset(p)

φrise(p)

µ0(p, φ) e−ınφ dφ.

The coefficients dn(p) can be readily computed analytically to any order n.
For a nonconvex body, we check the interval [φrise, φset] for facets rising above the

local horizon and blocking the Sun at some φ (dividing the interval into N epochs).
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10 Matti Viikinkoski and Mikko Kaasalainen

0 50 100 150 200 250 300 350 400
100

150

200

250

300

350

400

Angle

T
em

pe
ra

tu
re

 

 
FD, Γ = 50
FFT, Γ = 50
FD, Γ = 600
FFT, Γ = 600

Figure 3. Comparison of two solutions of the diffusion equation
for two different values of thermal inertia

Then we write the Fourier integral as above to obtain dn(p), when the integrand
is zero between shadow epochs φin and φout (this creates derivatives w.r.t. shape
parameters). Since the integration limits φin and φout are approximate, one can
just as well compute the integral by taking the FFT of the values of ins(µ0, p) of
2M equidistant epochs distributed inside [0, 2π]; this gives the Fourier coefficients
up to order 2M−1. The derivatives of dn w.r.t. parameters can also be computed
simply by taking the FFT of the derivatives of ins(µ0, p). In fact, one can use FFT
for convex bodies as well for an approximation. Now ins(µ0, p) is discontinuous for
some p, so the Fourier representation is more approximative than in the convex
case.

4.2.2. Heat diffusion equation and IR flux. The heat diffusion equation (with den-
sity ρ, heat conductivity K, specific heat capacity cp, and temperature T ) is given
by

(9) ρcp
∂T

∂t
= K

∂2T

∂ξ2
,

where the vertical direction ξ in the surface material is aligned with the direction
of the surface normal.

This can be solved analytically with a suitable boundary condition, a periodic
ansatz, and by assuming that the temperature variation ∆T is small compared to
the mean temperature T0. Then we can linearize equations and solve for ∆T as a
Fourier series [1, 11]. We define damping factors Ψn and phase lags ∆φn by

(10) Ψn = (1 + 2Θn + 2Θ2
n)−1, ∆φn = sgn(n) arctan

Θn

Θn + 1
,

where

Θn =

√
ρcp

4εσT 3
0

√
1

2
|n|K ω, T 4

0 = (1−A)Fo/εσ,
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Figure 4. Simulated thermal infrared flux images of an asteroid.

and ω is the rotation rate of the asteroid, ε the material emissivity at thermal
wavelengths, A the albedo (lightness, 0 ≤ A ≤ 1, of the surface material), σ the
Stefan-Boltzmann constant, and Fo the solar flux at the asteroid. Then the radiated
IR flux at a point pi (the centroid of facet i) per surface area is

(11) Bi = C εσT (t)4|ξ=0 ' C (1−A)Fo
∑
n

Ψn dn(pi, t) e
i[nω(t−t0)−∆φn].

The assumption ∆T/T � 1 does not always hold. This is dependent on the
thermal inertia Γ, which is defined as

Γ =
√
Kρcp.

Thermal inertia measures how resistant the surface is to diurnal temperature changes;
an object with a high thermal inertia is cooler with smaller diurnal temperature
variations than an object with relatively small thermal inertia. It follows that for
objects of low thermal inertia ∆T/T � 1 no longer necessarily holds, and the FFT
solution deviates from the numerical finite-difference solution of the diffusion equa-
tion [4]. This is illustrated in Fig. 3. However, in our simulations this discrepancy
between the solutions has an indiscernible effect to the final shape solution. The
shapes of the thermal curves are essentially same for the two methods, and the
largest temperature differences do not matter in the inversion.

The Atacama large submillimeter array (ALMA) is an interferometer array in
the Chilean desert. The maximum spacing between the antennas is 16 kilometers,
making possible the resolution of 5 milliarcsecond at infrared wavelengths. Even if
the detail present in many radar images is unattainable by the thermal infrared ob-
servations, a thermal map of an asteroid surface is enough for shape reconstruction,
as we demonstrate here.

To generate the simulated data, we considered a hypothetical asteroid at the
heliocentric distance 1.5 AU, with a thermal inertia of 100 Jm−2Ks−

1
2 and the

albedo 0.1. The pixel size of the instrument is assumed to be 10 milliarcseconds
which, taking into account the distance of the target from the Earth, corresponds
to approximately 10 kilometers per pixel. The plane-of-sky projections of observed
thermal flux of the model asteroid are illustrated in Fig. 4. The actual data are the
samples of the Fourier transforms of these projections. To avoid ‘inverse crime’, the
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Figure 5. Original model (left) and the shape reconstructed from
the thermal images shown in the previous figure.

data were generated with the finite difference method, and the FFT method was
used in the inversion. The original model and the reconstructed shape parametrized
by 108 parameters are shown in Fig. 5.

4.3. Range-Doppler radar. With planetary radar observations, spatial resolu-
tion of the scale of ten meters is possible (Arecibo and Goldstone radars) [12].
Unfortunately the power received by the radar is inversely proportional to the
fourth power of distance, severely restricting the range of possible targets. In range-
Doppler imaging the object is resolved in the range and in the frequency. A nonzero
radial velocity of a point on the surface of the object causes a frequency shift in
the reflected signal proportional to the velocity. Thus the frequency resolution of a
radar image depends on the apparent spin vector of the asteroid. Now the projection
mapping (x, y, z)→ (r,D) is [7]

r = (x cosϕ+ y sinϕ) sin θ + z cos θ,

D = ω sin θ (x sinϕ− y cosϕ),(12)

where the radar direction in a coordinate system fixed to the asteroid (the z-axis
aligned with the rotation axis) is (θ, ϕ), and the rotation rate of the asteroid is
ω. The image mapping of this, unlike the previous ones, is many-to-one. The
many-to-one mapping property and the depth vs. width plane makes visual image
interpretation tricky; ridges and craters visible in the radar image are not necessarily
physical features, but could also be artefacts due to the peculiar way the image is
formed. For the scattering law we use a simple cosine law [12]:

Bi = C [µ(i)]n.

The specularity of the surface is measured by the exponent n.
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We next state a uniqueness theorem on radar-based shape determination, based
on boundary contours. In practice, the boundary curve method for radar images
is not as simple to implement as for adaptive optics images. The uniqueness result
here is not so much a prescription for reconstruction as a statement on the mini-
mal information content of radar images (indeed, noisy radar images have most of
their information on a boundary curve). It also shows formally what is apparent
numerically: that the many-to-one mapping of the radar image is no hindrance to
obtaining shape details.

For other uniqueness results on radar, see [7]. For details of the terminology
and definitions of silhouettes and shape reconstruction see [8]. As in the other
uniqueness results on shape reconstruction, we assume the geometry of the system
to be known; i.e., the rotation speed and the direction of the rotation axis are given.
By a free tangent we mean a tangent of a surface point that does not intersect any
other parts of the body (except as a possible tangent of some other point), and a
free direction on S2 means that a half-line in that direction from a surface point
does not intersect the body either.

The nearest radar image boundary ρ is the boundary of the radar image closest to
the radar direction; i.e., the curve ρ(D) = min r|D, where r is the range of an image
pixel from the radar and D is the Doppler width, Dmin ≤ D ≤ Dmax. Note that
ρ(D) can be discontinuous. The nearest boundary is usually the clearest feature of
a radar image, and if we use just ρ(D), we can disregard both pixel brightnesses
and scattering models. The data and inverse problem model are thus robust. We
also normalize, as in [7],

D̃ :=
D

sin θ
,

and assume that the radar image plane (r, D̃) is defined for all directions ω =
(θ, φ) ∈ S2; i.e., that the limits at θ → 0 and θ → π exist, even though in these
directions D = 0 for all image points and the image contracts to a line in r.

Definition 4.2. A direction pair is given by the direction ω = (θ, φ) on S2 and its
image Sω = (kπ+π/2−θ, φ+π), where k = 0, 0 ≤ θ ≤ π/2, and k = 1, π/2 < θ ≤ π.
The pair is one-to-one and symmetric: S−1 = S.

Theorem 4.3. The shape of a body for which each surface point has at least one
direction pair consisting of a free tangent (either of its two directions) and a free di-
rection is uniquely reconstructable from the nearest radar image boundaries obtained
at radar directions covering the whole of S2.

Proof. The nearest boundary ρ(D̃) of a radar image in the direction ω defines part of
a silhouette in the plane whose normal is Sω (hence the many-to-one mapping causes
no ambiguity in this construction). The part occluded by the body is obtained at the
opposite radar direction −ω (the silhouette planes Sω and S(−ω) coincide). Since
the images are obtained at all ω ∈ S2, and each point on the surface is thus mapped
onto at least one silhouette plane by the assumption of the theorem, the body can
be reconstructed as in [8] by taking the intersection of the cylinder continuations of

the silhouettes in R3 (this also takes care of possible discontinuous ρ(D̃) since each
surface point is covered by at least one image boundary).

Remark 1. The set R of bodies reconstructable from radar boundaries is a subset
of the set T of bodies reconstructable from their silhouettes (these are tangent-
covered bodies; i.e., each surface point has at least one free tangent [8]). The set C
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Figure 6. Simulated radar images. The range r increases from
left to right, and the Doppler frequency D is measured vertically.
The nearest boundary ρ(D) is the leftmost boundary of each image.

of convex bodies, reconstructable from integrated brightnesses on S2, is obviously
a subset of R. Thus we can arrange the sets of bodies reconstructable from various
image boundary data in the sequence

C ⊂ R ⊂ T ⊂ G,

where G is the set of bodies reconstructable from their edge and shadow boundaries
[8].

Among natural bodies such as asteroids, the set R is not much smaller than T
or G (for example, a curved banana is in R). In other words, the radar boundary
data define a typical shape almost as well as adaptive optics boundary data. The
pixel brightnesses can be used to determine concave details (valleys and craters
not visible in silhouettes). As Fig. 6 shows, there is much more information in full
radar images than just the boundary. Indeed, the body that created those images
is clearly not in T . However, general uniqueness results on such data (as well as
full optical image fields) are difficult, and perhaps impossible, to prove.

As real observed data sets are currently unavailable to us, we have to rely on
simulations to test our reconstruction algorithm. In Fig. 6 simulated radar images
are shown, obtained from the model in Fig. 7 (left) with added Gaussian blurring
and noise. Our reconstructed model uses 108 shape parameters, and for each radar
image, the optimal offset on the plane and the scaling parameter are also determined
during the optimization process. The goal here was to produce an intermediate-
resolution model rather than a high-resolution one. In principle, the latter could
be achieved by adjusting the individual vertices of the model after determining the
function series, but usually the noise level sets limits for this; we will discuss this
aspect elsewhere.
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Figure 7. Original model (left) and the reconstructed model
(right) from simulated radar images.

5. Discussion. We have completed the series of papers describing the theory and
solution procedures of inverse problems of generalized projections. In [5, 6], the so-
lution of shape and spin reconstruction from integrated brightnesses was presented
with uniqueness results, and the general concept of generalized projections was in-
troduced in [7] with uniqueness results on some radar observation types. Boundary-
curve solutions for images and the corresponding uniqueness theorems, special types
of interferometric data, and the methods for combining data from different source
types were discussed in [8, 9]. Here we have introduced an efficient way of solving
the inverse problems of various image types with the Fourier transform approach,
and presented uniqeness results on general interferometry and radar data.

Now we have practical and efficient theoretical and computational methods at our
disposal for all the data types associated with generalized projections in astronomy:
photometry (integrated brightnesses), adaptive optics or stellar occultations (images
and their boundaries), radar, and interferometry. We plan to combine these into a
general software package for data analysis.
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