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Abstract: We present a multipolar tensor analysis of second-harmonic
radiation from arrays of noncentrosymmetric L-shaped goldnanoparticles.
Our approach is based on the fundamental differences in the radiative
properties of electric dipoles and higher multipoles, which give rise to
differences in the nonlinear response tensors for the reflected and trans-
mitted second-harmonic signals. The results are analyzed by dividing the
tensors into symmetric (dipolar) and antisymmetric (higher multipolar)
parts between the two directions. The nonlinear response isfound to be
dominated by a tensor component, not resolved earlier [Kujala et. al, Phys.
Rev. Lett.98, 167403, (2007)], which is associated with chiral symmetry
breaking of the sample and which also contains a strong multipolar con-
tribution. The results are explained by a phenomenologicalmodel where
asymmetrically-distributed defects on opposite sides of the particles give
rise to dipolar and quadrupolar second-harmonic emission.
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1. Introduction

The optical properties of metal nanoparticles are dominated by plasmon resonances which arise
from collective oscillations of conduction electrons [1].The resonances depend sensitively on
the size and shape of the particles and on their dielectric environment. For particles organized
in an array on a substrate, the mutual ordering of the particles also plays an important role,
and the resonances can be further influenced by Wood anomalies [2, 3] or waveguide modes
[4]. The resonances are associated with strong local electromagnetic fields near the particles.
Such locally-enhanced fields are particularly interestingfor nonlinear optical effects that scale
with a high power of the field [5, 6, 7, 8, 9, 10]. Nanoscale variations in the fields, material
properties, and nonlinear sources lead to strong gradientsin these quantities, which may in turn
be favorable for nonlinearities due to higher multipole (magnetic-dipole, electric-quadrupoles,
etc.) effects [11]. However, the precise role of different multipolar contributions to the nonlinear
responses of nanoparticles has not been explored in detail.

#97124 - $15.00 USD Received 6 Jun 2008; revised 6 Oct 2008; accepted 7 Oct 2008; published 13 Oct 2008

(C) 2008 OSA 27 October 2008 / Vol. 16,  No. 22 / OPTICS EXPRESS  17198



One needs to distinguish between two different types of multipoles when discussing the non-
linear responses of nanostructured materials. The first type arises from the light-matter interac-
tion Hamiltonian and corresponds to microscopic multipolemoments on the atomic or molec-
ular level. Such multipoles can enable second-order nonlinear effects from centrosymmetric
materials [11], which are forbidden within the electric-dipole approximation of the light-matter
interaction. In addition, the role of magnetic interactions in the nonlinear response of thin films
of chiral molecules has been discussed extensively [12, 13,14, 15, 16].

The second type of multipoles arises from Mie scattering theory [17]. The standard Mie
theory is based on a dipolar microscopic interaction, and effective multipoles arise from size
and retardation effects. Usually, the optical responses ofparticles that are small compared to
the wavelength can be described in terms of electric dipolesonly [1]. However, when the par-
ticle size approaches the wavelength, the dipolar picture may no longer provide a complete
description, and higher multipoles should also be considered. Both microscopic and effective
multipoles, however, lead to similar radiation patterns inthe far field.

The contribution of multipoles to the linear optical responses of metal nanoparticles has been
discussed in the literature [18, 19, 20, 21, 22, 23, 24, 25]. For example, metallic nanoshells can
be driven selectively into dipolar and quadrupolar oscillation patterns [18]. Size-dependence
of multipolar plasmon resonances from elongated silver nanoparticles has also been studied
[19], and predictions of the multipolar character of chargedensity distributions in triangular
nanoprisms have been published [23]. Nonlinearities driven by propagating surface plasmon
polaritons have also been discussed in terms of multipolar effects [26].

Magnetic resonances are becoming important also for metamaterials, with a negative index
of refraction [27, 28, 29, 30, 31]. The nonlinear propertiesof split-ring resonators have been
demonstrated, and a new mechanism proposed to explain the results [32, 33]. Both second- and
third-harmonic responses from such resonators were enhanced near the magnetic resonance.
The second-harmonic (SH) response was explained by assuming that the fundamental field
drives both the magnetic resonance, which gives rise to a strong magnetic field, and the velocity
of electrons. The coupling between the magnetic field and theelectron motion through the
Lorentz force then gives rise to dipolar SH radiation. The magnetic excitation therefore acts as a
kind of a local-field effect, whereas the fundamental couplings between the radiation fields and
the resonances occur through dipolar mechanisms. The local-field aspect is further emphasized
by the fact that the split-ring resonators can also be discussed in terms of plasmon resonances
of different orders [34].

A first-principles microscopic theory of the nonlinear properties of nanoscale particles of
arbitrary shape is still lacking, although SH (hyper-Rayleigh) scattering from particles of high
symmetry has been discussed [35, 36]. Conventional approach usually relies on phenomeno-
logical description of the nonlinear response, but the results suggest that both microscopic and
Mie-type multipole effects can be important. Experimentalevidence of such effects has also
been reported [37]. In addition, retardation effects in hyper-Rayleigh scattering from 20-80 nm
gold and silver spheres [38, 39, 40] have been observed. The responses from the smallest par-
ticles could be explained using the dipolar picture. The responses of larger particles, however,
required the inclusion of quadrupolar contributions associated with retardation effects due to
nonlocal excitation of surface nonlinearities.

While no true first-principles microscopic theory of the nonlinear properties of nanoscale
particles exists yet, the concept is clear – one needs to keeptrack of the nanoscale variations in
the electromagnetic fields, material properties, and nonlinear sources and then integrate the non-
linear responses over the entire structure. There are several phenomenological treatises along
these lines on SH scattering [41, 42, 43, 35, 36], in particular, for particles of high symmetry. In
practice however, precisely modeling the microscopic and macroscopic nonlinear responses of
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arbitrarily-shaped and arranged nanoparticles, even on a phenomenological level, is exception-
ally difficult. There is some progress in numerical work, though. Recently, numerical results
for second-harmonic generation (SHG) from two-dimensional periodic structures, based on the
Fourier modal method [44], have been demonstrated [45]. Although the nonlinear response
was described in a greatly simplified way, the results were inqualitative agreement with the
experiment of Ref. [46] regarding the role of particle ordering.

We have recently provided direct evidence of significant multipolar emission in SHG from
an array of L-shaped gold nanoparticles [47]. The evidence is based on the different radiative
properties of electric-dipole sources vs. magnetic-dipole and electric-quadrupole sources in two
opposite directions. By relying on the dependence of the excitation of different types of sources
on the polarization of the fundamental field, and comparing the transmitted and reflected SH
signals, we found that the higher-multipole effects accounted for up to 20% of the amplitude of
the emitted SH field. The sample investigated had earlier been shown to exhibit chiral symmetry
breaking due to its small-scale defects [48] and the strongest multipole effects were associated
with signals that arise from this symmetry breaking.

In this Paper, we present a more complete multipolar tensor analysis of the SH response of
the sample investigated in Ref. [47]. Our analysis separates the dipolar and higher-multipolar
parts of all in-plane components of the nonlinear response tensor [49]. In addition to reaffirming
the earlier result [47], we find that the nonlinear response is dominated by one tensor compo-
nent, not resolved earlier, which is associated with chiralsymmetry breaking and exhibits a
strong multipolar contribution to the response. The results are interpreted by a phenomeno-
logical model where dipolar and quadrupolar SH emission arises from interference between
retarded SH wavelets emitted from non-equivalent defects located at laterally opposite sides of
the particles.

2. Theoretical background

Traditionally, macroscopic second-order responses are described using the susceptibility tensor
χ (2), which connects the driving fields and the nonlinear source polarization. The tensor is
obtained by assuming that the material is homogeneous on a scale larger than molecules (or
atoms) but smaller than wavelength and by averaging the molecular responses over such scale.
The nanoscopic local electric fields are assumed to be proportional to the macroscopic fields,
differing only by a material-dependent local-field factor [50]. Moreover, the different multipolar
orders are described by different susceptibilities [13].

In nanostructures including ordered arrays of nanoparticles (such as the ones discussed in
this paper) the electromagnetic fields, material properties, and nonlinear sources can, however,
vary over the scale of a wavelength or less [51, 52]. The nonlinear responses must then be
integrated over the entire structure. Whereas this can be done phenomenologically for struc-
tures of high symmetry, it is presently intractable for morecomplicated geometries. Moreover,
higher multipoles such as magnetic dipoles, electric quadrupoles, etc. may also contribute to
the macroscopic response.

To avoid the nanoscale difficulties, we have introduced a macroscopic nonlinear response
tensor (NRT), which operates on the level of input and outputfields [49]. In the NRT formalism
for SHG, the input is the vector amplitude of the exciting field and the output is that of the
frequency-doubled field. Formally, the NRT tensor relates aspecific polarization component of
the SH field to components of the fundamental field:

Ei(2ω) = ∑
jk

Ai jkE j(ω)Ek(ω), (1)

which bears resemblance to the expression for the SH source polarization in the susceptibil-
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xy

Fig. 1. An array of L-shaped particles and the associated coordinate system.

ity formalism [50]. However, important conceptual differences are that the measurable signal
field, and not the nonlinear source, appears on the left-handside of Eq. (1), and that the NRT
implicitly includes the contributions from all different multipolar nonlinear sources.

The NRT is therefore a convenient way to describe the measurable optical responses with-
out worrying about the electromagnetic field distribution and material inhomogeneities in
the nanoscopic structures or the complicated interactionsand interferences occurring on the
nanoscale. A major limitation of the NRT is that it is specificto a given experimental geom-
etry, rather than to the sample itself. This can be used to ouradvantage, though. Comparison
of NRTs determined under different experimental conditions provides valuable insight to the
physical processes at the nanoscopic level [47].

A particularly relevant experimental geometry for the NRT formalism is when an essentially
two-dimensional sample is placed at normal incidence with respect to the exciting fundamental
beam. We can then use the same coordinate basis to describe both the sample and the polar-
ization states of the exciting and signal beams. This geometry thus allows us to apply electric-
dipole-like selection rules to determine the allowed polarization combinations of the input and
output fields.

In the present Paper, we apply the NRT formalism to a regular array of L-shaped nanoparti-
cles on a substrate. The shape suggests a set of in-plane coordinate axes, where thex-axis bisects
the arms of the L (c.f. Fig. 1). This structure belongs to theC1h symmetry group, for which the
only symmetry operation is reflection through thexz-plane. The in-plane NRT components and
whether they are allowed (for the ideal L-shape) are listed in Table 1.
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Fig. 2. Illustration of the differences in radiative properties of (a) electric dipolep, (b)
magnetic dipolem and (c) electric quadrupole Q. Vectorsk, E, andB are the wavevector,
electric field, and magnetic field, respectively.

The NRT formalism can be connected to multipole effects by considering the far-field emis-
sion patterns of different multipole sources. We measure coherent SH signals, which dominate
the response of the surface-like samples used and give rise to strong signals only in the trans-
mitted and reflected directions. The radiated far fields of anelectric dipole, a magnetic dipole,
and an effective electric quadrupole formed from a pair of spatially-separated electric dipoles
are shown in Fig. 2. The radiative properties of the various multipoles in the transmitted and
reflected directions are seen to lead to opposite interference effects in the two directions. More-
over, we may expect the strength of the various types of sources to depend on the polarization
of the driving field. The response will then exhibit polarization-dependent interference effects,
allowing us to distinguish the different multipolar contributions to the overall SHG response,
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even when the absolute signal levels cannot be calibrated.
To quantify the relative importance of different multipoles to the SH response, we assume

that each NRT component consists of two parts—symmetric (s)and antisymmetric (as)—which
transform differently with the choice of detection arm:

AT, R
i jk = As

i jk ±Aas
i jk , (2)

where superscripts “T” (+ sign) and “R” (- sign) refer to the transmitted and reflected directions.
Thus,

As
i jk =

1
2

(

AT
i jk +AR

i jk

)

, Aas
i jk =

1
2

(

AT
i jk −AR

i jk

)

. (3)

The symmetric part originates from the electric dipole, whereas the antisymmetric part is at-
tributed to magnetic-dipolar or electric-quadrupolar origins (cf. Fig. 2).

Our experiments are thus based on comparing the relative values of the NRT components in
the reflected and transmitted directions. In order to determine them for each direction separately,
we note that at normal incidence thex- andy-polarized SH signals are

Ei(2ω) = AixxE
2
x (ω)+AiyyE

2
y (ω)+2AixyEx(ω)Ey(ω); i = x,y, (4)

where the factor of 2 in the last term accounts for the degeneraciesAiyx = Aixy.
In order to relate both the relative phases and magnitudes ofx- andy-polarized SH sources

(componentsAx jk andAy jk), we detect both mixed and purex- andy-polarized signals. There-
fore, because we measure intensity rather than electric field, the model function we use to
describe the SH signals becomes:

Iδ (2ω) =
∣

∣(Axxxsinδ +Ayxxcosδ )E2
x (ω)+ (Axyysinδ +Ayyycosδ )E2

y (ω) +

2(Axxysinδ +Ayxycosδ )Ex(ω)Ey(ω)
∣

∣

2
, (5)

where the angleδ describes the azimuthal orientation of the analyzer with respect to thex-
axis of the sample. We emphasize that Eq. (5) forms the basis for determining the relative
complex values of the NRT components for each detection direction separately. Although the
absolute phase of the components remains unknown, their relative magnitudes are determined
unambiguously, which provides important information regarding the origin of the nonlinear
response.

3. Experimental

Our sample consists of an array of L-shaped metal nanoparticles, prepared using electron-beam
lithography [46]. The linewidth of the L’s is∼ 100 nm, the arms are∼ 200 nm long, and the
gold layer is 20 nm thick. The particles are covered with a 20 nm layer of fused silica. They are
arranged in a regular array on a fused silica substrate, withan array spacing of 400 nm and an
active area of 1×1 mm2. The sample is strongly dichroic [48], see Fig. 3.

Our experimental setup is shown in Fig. 4. A train of femtosecond pulses from a Nd:Glass
laser system (Time-Bandwidth Products GLX-200; 200 fs pulse duration, 1060 nm center
wavelength, 350 mW average power, 82 MHz repetition rate), is chopped and weakly focused
onto the sample with a spot size of∼ 200µm. The polarization of the fundamental beam is
controlled with a half wave plate (HWP) and a quarter wave plate (QWP). The HWP is used to
set the azimuthal angle of the initial linear polarization,and the QWP, mounted in a motorized
rotation stage, modulates the polarization continuously.We can thus excite the sample with
different elliptical polarization states while observingthe SH responses, which is beneficial for
increasing the reliability of the data analysis [53].
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Fig. 3. Measured optical density of our sample. Note thatx-polarization is in resonance
with the fundamental wavelength of our laser, 1060 nm.

Figure 4(b) depicts the experimental geometry [47]. We musttilt the sample slightly off-
normal with respect to the fundamental beam (α < 2◦) to be able to detect the reflected SH
signal without compromising its polarization state. Onlys-polarized (normal to the plane of
incidence) SHG is detected, which guarantees that differences in transmission and reflection
cannot arise from interference between dipole sources directed along the normal to the sample
(z) and along the in-plane direction (e.g.,x). These dipole sources would interfere differently
for p-polarized (in the plane of incidence) detection [12]. To distinguishx- andy-polarized
contributions to SHG, we rotate the sample about its surfacenormal while maintaining the
analyzer fixed normal to the plane of incidence. We detect theSH intensity as a function of
the fundamental field polarization with a photo-multipliertube connected to a lock-in amplifier
referencing the chopper frequency.

The NRT components are extracted from the measurement data by nonlinear least-squares
optimization [54]. Thex-, y-, andx+ y-polarized SH datasets from a given measurement arm
are combined and fitted simultaneously to Eq. (5). Simultaneous fitting is performed to decrease
both the dependence of the fit result on initial values assigned to the fit variables and the relative
importance of any one individual dataset to the combined-fitresult.

As individual data sets have not been mutually calibrated for signal intensities, we assign to
each a real scaling coefficient representing polarization-dependent losses in the optical setup.
In order to fit multiple data sets to the same function we need to keep careful track of the angles
of the waveplate axes with respect to the reference axis and the sample’s azimuthal rotation
angle. The model function then reconstructs the electric field componentsEx andEy (in the
sample frame) by applying appropriate coordinate transformations to the Jones matrices [55]

(a) (b)

Fig. 4. (a) Experimental setup. P = polarizer; H = half wave plate; Q = quarter wave plate;
VISF = long-wavelength pass filter; S = the sample; IRF = short-wavelength pass filter; A
= analyzer; and PMT = photo-multiplier tube. (b) The experimental geometry.
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representing the effects of the waveplates on the fundamental field.
Before the actual measurements, we addressed possible sources of errors and uncertainties

that might affect our results. First, the array period is sub-wavelength for both the fundamental
and SH wavelengths in free space. However, the period is larger than the SH wavelength in the
substrate. Therefore, some SH light may be emitted into the substrate, but at such a large angle
that it cannot escape the substrate, which leaves only the zeroth diffraction order to contribute
to the propagating SH signals. In addition, our technique isnot based on absolute signal levels
and is therefore not compromised by possible emission into the substrate.

Although our incidence angle is very close to normal and onlys-polarized light is detected,
the polarization of the fundamental beam can contain a smallz-(sample normal) component.
The effect of this possibility was studied by repeating measurements at an incidence angle of
approximately 2α (cf. Fig. 4). We found no change in the features of the obtained lineshape,
implying that for shallow incidence angles, the SH responsedoes not have an appreciablez-
dependence. The sensitivity to the alignment of the analyzer was tested by rotating it±1◦ away
from s-polarization, which resulted in no appreciable change in the lineshape, only a slight
decrease of the overall magnitude. As we have measured optical activity at the fundamental
wavelength from similar samples [56], we also tested for polarization effects at the SH wave-
length by illuminating the sample with linearly-polarizedlight at the SH wavelength. It was
found that the polarization was virtually unchanged at the SH wavelength, thereby excluding
the possibility of optical activity.

4. Results

The experimental data and their simultaneous fits to the six in-plane NRT components are
shown in Fig. 5. It can be immediately seen that the experimental data contains differences
between the transmission and reflection arms, which alreadyprovides qualitative evidence of
multipole contributions to the response. The experimentaldata and fit results have been nor-
malized to the maximum intensity in each plot in order to accommodate differences in the light
collection efficiencies of the two detection arms, as well asany polarization-dependent losses.
These slight differences have no influence on the interpretation of our results because our tech-
nique does not rely on absolute signal intensities. Note, however, that the absolute levels of the
various signals are very different. In particular, the absolute signal intensities in Figs. 5(e) and
5(f) are significantly weaker than those in Figs. 5(a)-(d). The absolute signal level in Fig. 5(f)
is close to the noise level of the detector in the weakest parts of the signal. Note that the noisy
signals are not necessary to solve the NRT components, however, they are seen to have overall
compatibility with the other data sets.

Table 1. In-plane NRT components for (ideal) L-shaped nanoparticles and experimental
values extracted from Eq. (5)

Transmission Reflection
Allowed Value Magn. Value Magn.

Axxx YES 1.00 1.00 1.00 1.00
Axyy YES 0.64-0.35i 0.73 0.44-0.39i 0.59
Axxy

1 NO 0.22-0.05i 0.23 0.15-0.10i 0.18
Ayxx NO 0.15-1.42i 1.43 -0.06-0.83i 0.83
Ayyy NO -0.01+0.13i 0.13 -0.04+0.20i 0.20
Ayxy

1 YES -0.49-0.24i 0.55 -0.27-0.11i 0.29
1 The degeneraciesAixy = Aiyx have been omitted.
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Fig. 5. Measured lineshapes. Asterisks: transmission SH data; circles: reflection SH data.
Solid and dashed lines are fits to Eq. (5) in transmission and reflection geometries, respec-
tively. The starting linear polarization wasp for (a), (c), and (e), ands for (b), (d), and (f).
QWP values 135◦ and 225◦ correspond to left- and right-hand circular polarizations, re-
spectively. Estimations of the relative uncertainties dueto detector noise are indicated with
the symbol size, except for those measured in reflection geometry (dashed line) in plots (e)
and (f), where the uncertainties are indicated with the errorbars.

The fitted values of the NRT components relative toAxxx are shown in Table 1.Axxx has
been normalized to unity in both directions for reasons to beexplained shortly. The valuesAxyy

andAxxy, are seen to exhibit quantitative but not qualitative differences compared to Ref. [47]
where those components were determined from a single measurement (Note that the definitions
of Axxy between Ref. [47] and present work differ by a factor of two).We attribute the differ-
ences to the fact that we used more data in the fitting, forcingthe same set of coefficients to
describe more than one experiment, therefore de-emphasizing the relative importance of any
single data set. Considering that the same set of coefficients describes six different measure-
ments, the overall fit quality is very good. In transmission,the SH responses are dominated by
a symmetry-forbidden component,Ayxx, which is also resonant at the fundamental wavelength.
We remind that both allowed and forbidden components can have dipolar and higher-multipolar
contributions. However, chirality is closely connected tomultipole effects. Hence, large compo-
nents associated with chiral symmetry breaking could also have a strong multipolar character.

To assess the importance of the higher-multipole contributions, we note that the data sets have
been fitted to Eq. (5) for each direction separately. To separate the symmetric and antisymmet-
ric parts, we need an additional assumption that connects the results in the two directions. We
therefore assume that the componentAxxx, which is allowed for the ideal structure and has a
plasmonic resonance at the fundamental wavelength of 1060 nm, is of purely electric-dipole
origin. This component must then be equal for both directions and is normalized to unity. The
relative differences with the remaining coefficients for the transmitted and reflected directions
can then be taken as a measure of the importance of higher-multipole contributions. We de-
fine the multipolar contributionγ of a given component as the ratio of the magnitudes of its
antisymmetric and symmetric parts:

γi jk =

∣

∣

∣

∣

∣

Aas
i jk

As
i jk

∣

∣

∣

∣

∣

. (6)

We acknowledge that assumingAxxx to be of purely dipolar origin is not completely justified
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at present and that it may also include some higher-multipolar character. We therefore also
analyzed our data under the conditions where each tensor component was separately assumed
to have only dipolar character. In addition to the earlier mentioned physical grounds for using
Axxx as the purely dipolar component, we found that this choice also minimizes theγ ratio of
the other NRT components.

Table 2. Multipolar contributions of NRT components.

As Aas γ (%)
Axxx 1.00 0.00 0
Axyy 0.54-0.37i 0.10+0.02i 15
Axxy 0.19-0.08i 0.03+0.02i 20
Ayxx 0.04-1.12i 0.10-0.30i 28
Ayyy -0.03+0.17i 0.01-0.03i 21
Ayxy -0.38-0.17i -0.11-0.07i 31

5. Phenomenological interpretation

The results of Table 2 show that the largest relative multipolar contributions occur for the
symmetry-allowed componentAyxy (γyxy = 0.31) and the symmetry-forbiddenAyxx (γyxx =
0.28). However, the symmetry-forbidden component has clearly the largest absolute value of
the multipolar contribution. This suggests that the highermultipolar contributions are closely
associated with chiral symmetry breaking of the sample. A possible source of such symmetry
breaking is asymmetrically distributed structural defects that remove the reflection symmetry of
the sample with respect to thexz-plane. In the following, we present a simple phenomenological
model that shows how dipolar elementary sources associatedwith non-equivalent defects at op-
posite lateral sites of the particles [Fig. 6(a)] may give rise to dipolar and effective quadrupolar
sources that are forbidden for ideal particles.

Fig. 6. (a) Visualization of L-shaped particle where laterally opposite sides have non-
equivalent defects. (b) Example of an effective quadrupoleformed from two displaced
opposite dipoles.

To illustrate the basic idea of the model, we first consider a system of two dipoles with their
dipole moments pointing in opposite directions along they-axis, i.e.,p1 = −p and p2 = p,
where p = py. In addition, we assume that that the dipoles are separated by a small vector
a = axx+ ayy+ azz, and consider emission in the directionk = kz parallel to thez-axis [Fig.
6(b)]. Such a system cannot give rise to dipolar emission. Instead, the system acts as an effective
quadrupole source. In the dyadic notation, this quadrupoleis proportional to

Q ∝ ap+ pa, (7)
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from which it follows that the nonzero components of the quadrupole moment tensor in this
geometry areQxy = Qyx = pax, Qyy = 2pay, andQzy = Qyz = paz.

The electric field emitted by such a source into the far field indirectionk = kz is then pro-
portional to

EQ ∝ i(k·Q) = i(k·a)p+ i(k·p)a, (8)

which in the present geometry reduces to

EQ ∝ i(k·a)p = ikazpy= ikQzyy. (9)

This result is seen to depend on the retardation of the two dipolar sources along the direction
of emission, i.e., onaz. Note that the directions of emissionk = kz have opposite signs. As a
consequence, the emitted wavelets will have opposite phases in the two directions (Fig. 2).

We next consider the situation that is relevant to our experiment and where the laterally
opposite sides of the L have non-equivalent defects [Fig. 6(a)]. We assume that the defects act as
localized dipolar sources of SH radiation. To understand the origin of the forbiddenAyxx signal,
we consider they-polarized parts of the sources. Because the defects are non-equivalent, their
dipole momentsp1 andp2 can be unequal. In addition, the sources can be localized at different
z positions on the particles. To be specific, we take the sources to be localized atz= ±az/2.
The total far field emitted by such dipolar sources is then proportional to

E ∝ p1exp(−ikaz/2)+ p2exp(ikaz/2), (10)

which fully accounts for the phases of the two wavelets. In the spirit of the multipole approach,
we expand the exponential to lowest order with respect to thesmall separation to obtain

E ∝ p1 + p2 +(p2− p1)ikaz/2, (11)

whose second term clearly behaves as emission from an effective quadrupole where the two
dipoles are mutually retarded. For an ideal L shape with reflection symmetry with respect to
thexz-plane, the forbidden SH signals would be associated with equal and oppositey-polarized
sources (p1 = −p2) at equal heights (az = 0). Therefore, neither dipolar nor quadrupolar ef-
fects can give rise to forbidden signals from symmetric samples. In the presence of symmetry
breaking, on the other hand, both dipolar and quadrupolar signals can exist simultaneously.

We emphasize that in the above phenomenological model, the elementary SH wavelets arise
from localized dipolar sources distributed to different locations on the particles. The variations
in such localized sources, however, must be in agreement with the overall symmetry proper-
ties of the sample. Surface defects on the particles providea particularly obvious mechanism
for such localized sources. Asymmetric distribution and/or orientation of such defects on the
opposite sides of the particles can give rise to mutually imbalanced local sources whose in-
terference leads to forbidden signals. Consequently, the localized sources modify the values
of the NRT components and give rise to their parts with dipolar and quadrupolar characters.
In our experiment, the excitation of the SH sourcesp1 and p2 depends on the polarization of
the fundamental field, which thereby accounts for the polarization-dependent interference be-
tween dipolar and multipolar emission. In the above discussion we have emphasized the use
of the phenomenological model in accounting for the forbidden signals and their dipolar and
quadrupolar parts. However, depending on the properties ofindividual defects, they can also
contribute to the allowed signals. Such contributions and their dipolar and multipolar parts can
easily be accounted for with the same approach.

6. Conclusions

We have presented a comprehensive multipolar tensor analysis of second-harmonic radiation
from a regular array of noncentrosymmetric L-shaped gold nanoparticles. Our measurements
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were based on fundamental differences in the radiative properties of electric dipoles and higher
multipoles in two opposite directions. For coherent SH signals, these differences result in oppo-
site interference effects in the reflected and transmitted signals. Such effects were described by
expressing the components of the nonlinear response tensorof the sample as a sum of symmet-
ric and antisymmetric parts between the two directions, which correspond to the dipolar and
higher-multipolar parts of the tensor component, respectively.

In addition to reaffirming our earlier results regarding theimportance of multipole contribu-
tions, we found that the nonlinear response is dominated by atensor component associated with
chiral symmetry breaking in the sample. This tensor component also exhibits a strong multi-
polar character. The close relation between the chiral symmetry breaking and strong multipole
effects was explained by a phenomenological model where dipolar and quadrupolar SH emis-
sion arises from interference between the retarded SH wavelets emitted by defects located at the
two opposite sides of the particle. The facts that a symmetry-forbidden coefficient is strongest
in magnitude and has a strong multipolar contribution thus corroborate the interpretation that
one of the major contributors to the optical response of the present sample is structural defects,
which break the symmetry and make multipolar contributionsto the SH response important.
However, the role of defects need not be limited to forbiddensignals, and their dipolar and
quadrupolar contributions to the allowed signals can be explained by a similar approach.

We note that in the present work we were able to resolve the dipolar and multipolar con-
tributions in the emission of SH radiation. In the future, itwill be important to address the
role of higher-multipole contributions also at the fundamental frequency. In addition, it will
be interesting to correlate the magnitude of higher-multipole effects to the surface quality of
the samples once systematic variation of the quality becomes possible. Finally, for the present
sample, the laser was resonant with one of the plasmonic resonances of the sample, which can
give rise to complicated phases of the determined tensor components. Our technique properly
determines the relative complex values of the tensor components, but not their absolute phases.
It will therefore be important to determine of the various multipole contributions to the nonlin-
ear response also under off-resonant conditions, where thephase relations are expected to be
simpler.
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