
Hindawi Publishing Corporation
International Journal of Digital Multimedia Broadcasting
Volume 2010, Article ID 470813, 15 pages
doi:10.1155/2010/470813

Research Article

RTSP-based Mobile Peer-to-Peer Streaming System

Jani Peltotalo,1 Jarmo Harju,1 Lassi Väätämöinen,1 Imed Bouazizi,2 and Igor D. D. Curcio2

1 Department of Communications Engineering, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland
2 Nokia Research Center, P.O. Box 1000, 33721 Tampere, Finland

Correspondence should be addressed to Jani Peltotalo, jani.peltotalo@tut.fi

Received 1 June 2009; Revised 12 November 2009; Accepted 6 January 2010

Academic Editor: John Buford

Copyright © 2010 Jani Peltotalo et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-to-peer is emerging as a potentially disruptive technology for content distribution in the mobile Internet. In addition to
the already well-known peer-to-peer file sharing, real-time peer-to-peer streaming is gaining popularity. This paper presents an
effective real-time peer-to-peer streaming system for the mobile environment. The basis for the system is a scalable overlay network
which groups peer into clusters according to their proximity using RTT values between peers as a criteria for the cluster selection.
The actual media delivery in the system is implemented using the partial RTP stream concept: the original RTP sessions related
to a media delivery are split into a number of so-called partial streams according to a predefined set of parameters in such a way
that it allows low-complexity reassembly of the original media session in real-time at the receiving end. Partial streams also help
in utilizing the upload capacity with finer granularity than just per one original stream. This is beneficial in mobile environments
where bandwidth can be scarce.

1. Introduction

Peer-to-Peer (P2P) streaming applications are gaining more
and more users around the world. These applications allow
end-users to broadcast content throughout the Internet in
real-time without the need for any special infrastructure,
since the user’s device, together with all other peers, col-
lectively forms the infrastructure. Furthermore, dedicated
servers are no longer required since every peer can serve data
to other peers. This is in contrast to a service like YouTube
[1] which still requires content to be uploaded to a central
server first. Some of the currently existing P2P streaming
applications, such as Octoshape [2] and SopCast [3], are
suitable to be used in a mobile environment but still there
are many issues to be solved before an optimized solution for
mobile devices can be realized [4].

With real-time P2P streaming there is no need to
download the entire media file before playback can be
started. Decoding can be started as soon as enough data
is buffered in the peer. This avoids long startup times, and
eliminates the need to store the entire content on the mobile
device which still has a relatively small amount of internal

memory compared to the increasing size of the actual media.
In live streaming, video of an ongoing event, like a football
match, is delivered as a stream in real-time. After an initial
buffering period, the user starts to watch the stream from
a certain location and all peers consume data in the same
time window. With a Video-on-Demand (VoD) streaming
the user searches a video from some catalogue, and after a
certain amount of initial buffering the user starts to play the
video from the beginning.

In order to increase the robustness and to accommodate
the limited up- and download bandwidth between peers in
the network, the original multimedia session needs to be split
into smaller parts, which can be reassembled at the receiving
peers into the original media representation. This paper
presents an effective real-time P2P streaming system where
original Real-time Transport Protocol (RTP) [5] sessions
related to a media delivery are split into a number of so-called
partial streams according to a predefined set of parameters.
This approach allows low-complexity reassembly of the
original media session in real-time at the receiving end.

The structure of the remainder of this paper is as follows.
The related work is discussed in Section 2. Then, a short

2 International Journal of Digital Multimedia Broadcasting

overview of the system is given in Section 3. Detailed descrip-
tions of the overlay network and the media delivery are given
in Sections 4–8. After that, results from the performance
experiments are presented in Section 9. Interesting areas for
further work are discussed and highlighted in Section 10.
Finally, Section 11 concludes this paper.

2. Related Work

Many P2P file sharing applications make use of multiple
source distribution. A file is first partitioned into pieces or
chunks, typically of equal size. A peer then connects to the
seeder or leecher peers, and requests the missing pieces of
the file in a random order. The difference between a seeder
and a leecher peer is that the former has a complete copy of
the file while the latter has only a partial copy. For example,
with BitTorrent [6] the complete multimedia file can be
partitioned into blocks of 256 KB which are then selected
by the interested peers and requested according to a rarest-
first piece selection algorithm. This approach is not at all
suitable for streaming applications as it does not consider the
delay problem. Users may experience long download delays
of possibly several days. It also assumes that the full content
is known and available at the source peers, which does not
necessarily apply to streaming applications as the stream may
be live.

A P2P multimedia streaming solution based on the
BitTorrent protocol is proposed in [7]. The rarest-first chunk
downloading policy is replaced by a policy where peers
first download chunks that will be consumed in the near
future. The tit-for-tat peer selection policy is also modified
to allow free tries to a larger number of peers to let
peers participate sooner in the multimedia distribution.
Another P2P streaming system based on a P2P file sharing
implementation was proposed already in [8]. However, the
data partitioning based on fixed byte ranges is not suitable
for streaming a continuous media, which is of variable bit
rate nature.

In P2P content distribution, an overlay network is created
at the application layer in order to transfer the actual content
among peers in the network. A random mesh-based overlay
architecture, like in [9, 10], provides flexibility for handling
peer departures, but good general connectivity between peers
is not usually achieved. There have been many studies about
how to organize peers in an efficient and scalable way. In
[11] receivers are organized into a hierarchy of bounded-size
clusters and the multicast tree is built based on that. In [12]
peers are organized into a directed acyclic graph to enable
peers to obtain locality awareness in a distributed fashion.
To improve the file sharing performance of the BitTorrent
protocol, an overlay network where peers are grouped into
clusters according to their proximity is proposed in [13].
Even though some solutions have proven their functionality
with wired connections, those might not be suitable for the
mobile environment.

Preliminary results of the mobile P2P system described
in this paper have been published in [14]. In the following
sections more information about the system is given by
explaining in detail the extended Real Time Streaming

Protocol (RTSP) [15] messages used for signalling and
providing more results from the experiments.

3. General System Overview

The architecture of the system is designed to be scalable
and efficient for real-time streaming services in the mobile
environment. The system supports both live and VoD
streaming services. Location awareness in terms of peer
proximity has been exploited to reduce delay, and thus, to
improve the scalability of the system.

Peers are grouped into clusters according to their prox-
imity in order to efficiently exchange data between peers. For
VoD streaming services, the clusters could be constructed
for example, based on the interest level for certain pieces
of data, so that the peers watching the same part of a
video at the same time belong to the same cluster. In live
streaming services a cluster can be formed only based on
the proximity of peers, because all peers are interested in
the same data pieces within the same time window. Clusters
will also help with scalability issues of peer maintenance.
Peers inside a cluster are considered to be close to each other
and thus communication between peers can be done more
efficiently.

All overlay network operations in the system are imple-
mented using extended RTSP messages. All RTSP methods
are extended to include an additional RTP2P-v1 tag in the
Require header field. This tag makes it possible for the
receiving peer to detect that support for the real-time P2P
extensions is needed. Additionally, all RTSP messages will
include a Peer-Id header field to indicate the source of
a message. The most important new header field is called
overlay and it is used widely in the overlay network
operations. The usage of the Overlay header field and
other additional header fields depending on the message
type are explained in Sections 4 and 7. The syntaxes of the
Peer-Id and Overlay header fields in Augmented Backus-
Naur Form (ABNF) [16] are given below:

Peer-Id = "Peer-Id:" SP id CRLF id = 1*DIGIT

Overlay = "Overlay:" SP operation CRLF
operation = "backup" | "create" | "join_bcl" |

"join_neighbor" |"join_peer" | "leave" |
"new_peer_id" | "remove" | "split" |
"update"

The RTSP Uniform Resource Locator (URL) is formatted
according to the ABNF syntax shown below. The host and
port parts are defined in [17, Section 3.2]. The service-id
specifies the service and the stream-id specifies the RTP
session. Like in [15], it is also possible to use the asterisk
character instead of the URL meaning that the request does
not apply to any particular resource:

rtsp_URL = "rtsp://" host [":" port] ["/" [service-id
["/" stream-id]]]

service-id = 1*DIGIT
stream-id = 1*DIGIT

Peers exchange actual media data between each other
using RTP. The system is using time-based chunking, which

International Journal of Digital Multimedia Broadcasting 3

Cluster 2 Cluster 3

CL

CL

BCL

BCL

SDS

CL and
original
source

Support
node

BCL

Cluster 1

Data connection
Neighboring cluster connection
Overlay update

Figure 1: Overlay architecture.

creates multiple partial streams from an original RTP session.
This implements multisource streaming in a way that each
sender sends bursts of data from a different partial stream.
Multisourcing will help to cope with the dynamics of mobile
peers and distributes bandwidth usage in the system more
flexibly and evenly. The original data stream source generates
also RTP timestamps and sequence numbers for the RTP
delivery. Timestamps and sequence numbers are delivered
unchanged within the streaming service. This is done for
allowing RTP packets from multiple partial streams being
reassembled in the correct sequence order at each peer for
local playback. The RTP time line is known system-wide, so
the timestamps can be used to uniquely identify individual
packets within a streaming service.

4. Overlay Network Architecture

The architecture of the overlay network with three clusters
sharing a certain streaming service, such as a live stream
channel or a VoD movie, is presented in Figure 1. It should
be noted that for every different streaming service such
an overlay network is maintained separately. The Service
Discovery Server (SDS) is a central nonmobile server con-
taining information about cluster hierarchy and the available
streaming services in the system.

When a peer wants to join the P2P overlay network, a
peer identifier (ID) is first requested from the SDS using
an RTSP OPTIONS message with a new peer id tag in the
Overlay header field. Because the peer does not have a peer
ID yet, it must set the value to minus one in the OPTIONS
message. A unique peer ID is then returned by the SDS using
a 200 OK message with a New-Peer-Id header field. The

syntax of the New-Peer-Id header field in ABNF is given
below:

New-Peer-Id = "New-Peer-Id:" SP id CRLF
id = 1*DIGIT

The cluster concept is implemented with the help of
Cluster Leaders (CLs). There is one CL assigned to each
cluster with the possibility for one or more Backup Cluster
Leaders (BCLs). CLs are used to manage peers inside the
cluster and to connect new arriving peers. Each ordinary peer
must perform periodical keep alive messaging to inform its
existence to the CL and all other peers from which it has
received RTP packets. The latter is done to avoid unnecessary
data transmission because RTP uses User Datagram Protocol
(UDP) and the sending peer does not otherwise know that
the receiving peer is still in the network. A new arriving peer
can select a suitable cluster according to its best knowledge
of locality using Round Trip Time (RTT) values between CLs
and itself.

In addition to RTT measurements, location awareness
could be also based on, for example, IP level hop count,
geographic location or some combination of these three
mentioned metrics. IP level hop count is not alone suitable
for proximity metric, since with Virtual Private Networks
(VPNs) or other tunneling techniques one hop might actu-
ally consist of a large number of hops and the distance could
be quite long. Nor does small IP level hop count guarantee
small delay, because it does not take connection speed into
account. Geographic location is also little problematic in IP
level point of view. Even if peers are geographically close to
each other, the IP level routing path could circulate through
distant router. Hence, only RTT values are used in our system
for proximity checks.

4 International Journal of Digital Multimedia Broadcasting

CLs are nodes with suitable capabilities, such as a high
throughput access network connection, enough memory
and CPU power, and long-expected battery lifetime. One
cluster should contain only a limited number of peers in
order to sustain system scalability. The CL collects statistical
data of the peers participating in a cluster. This statistical
data contains information about service join time, reception
buffer position, missing RTP packets, and upstream and
downstream connections, and can be used to make the
decision of the best peer from which to start downloading
data. Statistical information can be used to, for example,
filter out candidate source peers which already have many
upstream connections or lots of missing RTP packets. Service
join time can be used to estimate the behavior of the peer. If
the peer has joined to the service very long time ago, it is
most likely a stable peer which will provide data in the future
also. On the other hand, without extra information about the
expected battery lifetime with mobile devices, long service
joining time can also mean short-expected battery lifetime.

The CL is a functional entity in the network and may
also participate as an ordinary peer at the same time, by
receiving and sending media data. Thus, the CL can be seen
as a functional extension of an ordinary peer. The CL will
inform the SDS currently at ten seconds intervals about
changes in the cluster by sending an OPTIONS message with
an update tag in the Overlay header field in order to
maintain an up-to-date cluster list at the SDS. The updated
cluster information will be expressed using an Extensible
Markup Language (XML) [18]. To decrease the amount
of data delivered in the network, all XML fragments are
compressed using deflate compression mechanism from
the zlib data compression library [19].

While joining the selected cluster, a peer receives an
initial list of peers from which the actual media data can
be acquired. Naturally, the corresponding CL inserts joined
peers into its peer list, and if the amount of peers is very large,
the CL can return only a subset of peers. Proximity testing
in the peer selection is optional since the cluster selection
procedure guarantees that peers are reasonably close to each
other. Anyway, a peer which finally selects its sources for the
stream, needs to test a certain amount of peers until suitable
ones are found. The peer can later receive updates of the peer
list while performing periodical keep alive messaging to the
CL, which ensures that the peer list can be kept up-to-date
during the streaming service.

The peer’s contact information, that is, all information
needed for contacting the peer, could include also a cluster
ID, so that peers can prioritize connections within their own
cluster. However, there should always be data connections
between peers that are located in different clusters. This
ensures that clusters do not become separate islands having
only one incoming connection from other clusters, which
would form a single point of failure that could cause
problems later on when that peer leaves the streaming
service.

4.1. Service Creation and Initial Cluster. The message
exchange during service creation is presented in Figure 2.
When a peer wants to create a service, an ANNOUNCE

Original data
source

SDS

ANNOUNCE

200 OK

CL

Waiting
for peers

Figure 2: Creation of the service and the initial cluster.

message will be sent to the SDS. A Client-Port header
field indicates the port number to be used in the overlay
communication. The service is described using the Session
Description Protocol (SDP) [20]. Two new SDP attributes,
service-type and stream-info are used to signal the ser-
vice information. The service-type attribute defines the
type for the service, and the stream-info attribute defines
the identifier for the RTP session and parameters to be
used in the RTP session partitioning explained in Section 7.
The syntaxes for the service-type and stream-info
attributes and the Client-Port header field in ABNF are
given below:

service-type-line = "a=service-type:" type CRLF
type = "live" | "vod"

stream-info-line = "a=stream-info:" id";" piece-size";"
nb-of-partials ";" CRLF

id = "id=" 1*DIGIT
piece-size = "piece-size=" 1*DIGIT
nb-of-partials = "nb-of-partials=" 1*DIGIT

Client-Port = "Client-Port:" SP port CRLF
port = 1*DIGIT

As a response to the successful session creation, a 200
OK message is sent by the SDS. The message contains the
Cluster-Id and Service-Id header fields to describe the
IDs for the initial cluster and the newly created service,
respectively. A 301 Moved Permanently message can also
be sent if the SDS has been moved to another location. In a
redirection case the Location header field must be present
informing the new location of the SDS. Any other message
type must be interpreted as a failed session creation. The
syntaxes of the Cluster-Id and Service-Id header fields
in ABNF are given below:

Cluster-Id = "Cluster-Id:" SP id CRLF
id = 1*DIGIT

Service-Id = "Service-Id:" SP id CRLF
id = 1*DIGIT

There are two possibilities for creating the initial cluster
and selecting a CL for it: (a) the first peer joining the service

International Journal of Digital Multimedia Broadcasting 5

CL BCL SDS New CL

GET PARAMETER
(ping)

OPTIONS (cluster update)

200 OK/
301 Moved Permanently

alt
CL[200 OK]

[301 Moved
Permanently] OPTIONS (cluster join)

200 OK

Figure 3: Uncontrolled CL departure.

will be assigned as a CL by the SDS, and (b) the original data
source will be the first CL in the service. The latter possibility
uses more resources from the original data source and
therefore the original data source should be released from
the CL responsibilities when possible. However, the latter
possibility also guarantees that the initial cluster remains
operational because the first joining peer might depart from
the service quite quickly. Hence, the alternative (b) is used in
our system.

When the service is successfully created, the original data
source becomes CL for the initial cluster, which is illustrated
by the dashed line without message type in Figure 2, and
starts to wait for other peers to join the service. When new
peers are joining the service, BCLs are assigned by the CL
by using an OPTIONS message with a backup tag in the
Overlay header field. If a peer accepts the BCL assignment,
it sends a 200 OK message, and if not, it will send a 403
Forbidden message.

The service is updated and removed by using an
ANNOUNCE message. If some part of the information have
changed, the SDS updates the information in the database.
To remove a service, the stop time in the SDP t-line should
be set smaller than the prevailing system time, which means
that the service has been stopped and the SDS can remove
the service from the database. To a successful service update
or removal the SDS will respond with a 200 OK message,
otherwise the SDS will return 400 Bad Request or 404
Not Found messages.

4.2. Cluster Leader Departure. When the CL leaves the
network it needs to be replaced by one of the BCLs. If a
cluster does not have an active CL, new peers cannot be
accepted into the network. However, this does not affect the
data streaming connections between existing peers because
the streaming and overlay connections are independent. New
peers cannot be discovered by normal peers during the
cluster leader change, but this should not be an issue because
peers should have knowledge about more peers than they are
using.

The message exchange in the event of an uncontrolled CL
departure is presented in Figure 3. When the BCL does not
get a response to its periodical GET PARAMETER message, it
concludes that the CL has left from the cluster and contacts
the SDS using an OPTIONS message with an update tag in
the Overlay header field to replace the old CL. The source
of the first received OPTIONS message will be assigned as a
new CL, illustrated by the dashed line without message type
in the figure, and the new arriving peers can normally start
using the new CL. All other BCLs will receive a 301 Moved
Permanently message with the information about the new
CL and will send an OPTIONSmessage with the join bcl tag
in the Overlay header field to the new CL and will continue
in the BCL role. If the original CL has not left the cluster but
has had connectivity issues, it is redirected to the new CL by
the SDS. In this case the old CL becomes a BCL.

When a peer notices that the CL is not available, it tries
to connect to the known BCLs. If the BCL has replaced the

6 International Journal of Digital Multimedia Broadcasting

CL Peer BCL SDS

OPTIONS (cluster split)
OPTIONS (cluster create)

200 OK

New CL
200 OK

REDIRECT
OPTIONS (cluster join)

200 OK

200 OK

Figure 4: Successful cluster splitting procedure.

old CL, it accepts the connection with a 200 OK message,
otherwise it sends a 301 Moved Permanently message
with the Location header field indicating the location of the
last known CL. It should be noticed that the CL departure is
not an atomic operation and takes some time, and therefore
there can be short times when any one of the BCLs does not
know the correct CL of the cluster. If none of the BCLs in the
list respond, the peer sends a query to the SDS and asks for a
new cluster which it can join.

4.3. Cluster Splitting and Merging. When the cluster grows
too large to be handled by a single CL, the cluster should
be split into two separate clusters. The existing CL assigns
one of its BCLs to become a new CL for the new cluster,
and redirects a number of existing peers to the new cluster.
The message exchange in the successful cluster splitting
procedure is presented in Figure 4.

Cluster splitting is performed by using an OPTIONS
message with the split tag in the Overlay header field.
After receiving this message, the BCL will inform the SDS
that wants to become the CL of a new cluster by sending an
OPTIONS message with a create tag in the Overlay header
field. To a successful cluster creation, the SDS will respond
with a 200 OK message, which contains a Cluster-Id
header field to describe the ID for the new cluster. Otherwise,
the SDS will return a 400 Bad Request message if the
request message format is not valid, or a 404 Not Found
message if the service is not available anymore. After a
successful cluster creation, the BCL will become the CL of the
new cluster, and replies to the splitting CL by sending a 200
OK message, otherwise it must send a 400 Bad Request
message to the splitting CL and wait for further instructions.

The splitting CL then sends a REDIRECT message, with
the location of the new CL in the Location header field
to those peers that should change the cluster. The redirected
peers will then join the new cluster by sending an OPTIONS

SDS CL #1

REDIRECT
OPTIONS

(cluster join)

Peer CL #2

200 OK
200 OKOPTIONS

(cluster removal)

OPTIONS (cluster join)

200 OK

200 OK

Figure 5: Successful cluster merging procedure.

message to the new CL. After a successful cluster join, that
is, the peer received a 200 OK message from the new CL,
the peer will send a 200 OK message to the splitting CL.
Otherwise, the peer will send a 400 Bad Request message
to inform that it is not possible to join to the new cluster.

The overlay connections between the CLs are created
after a successful splitting by sending an OPTIONS message
with a join neighbor tag in the Overlay header field
and a 200 OK message. This connection is subsequently
used to exchange cluster information expressed using XML
fragments between neighboring clusters.

Merging of two clusters must be done when a cluster
becomes too small. If the amount of peers is too small, a new
joining peer will get a very small list of data sources which
makes the functionality less reliable when one of these peers
leaves the service. The message exchange in the successful
cluster merging procedure is presented in Figure 5.

The merging is started by the CL, when the amount of
peers in the cluster drops below some predefined threshold,
by sending a REDIRECT message to all peers in the cluster.
Peers will then join the new cluster, selected by the merging
CL from its neighbor clusters, by sending an OPTIONS
message to the new CL. After a successful cluster join, the
peer will send a 200 OK message to the merging CL. If the
redirected peer does not receive any response from the new
CL or it receives a 400 Bad Request message, it must send
a 400 Bad Request message to the merging CL to inform
that it is not possible to join to the new cluster and wait for
further instructions.

After all peers in the cluster have confirmed the cluster
change, the merging CL will remove the cluster by sending
an OPTIONS message with a remove tag in the Overlay
header field to the SDS. This message is optional, because
the cluster is removed also automatically if a keepalive
message has not been received during a certain interval. To
a successful cluster removal, the SDS will respond with a
200 OK message. Otherwise, the SDS will return a 400 Bad
Request message if the request message format is not valid,
or a 404 Not Found message if the cluster is not available
anymore. The merging CL itself then must send a cluster join
message, that is, an OPTIONS message with a join bcl tag in

International Journal of Digital Multimedia Broadcasting 7

the Overlay header field, to a known neighbor and join as a
BCL.

All overlay network connections are maintained by
sending GET PARAMETER and 200 OK messages between
peers as keep alive messages. Keep alive messages between
neighboring CLs are exchanged at 20 seconds intervals and
are used to exchange information about neighboring clusters.
Keep alive messages between the CL and the BCL are used to
deliver cluster information to the BCL and these messages are
sent at 30 seconds intervals.

5. Partial RTP Streams

In order to have unique sending slots for each of the sources,
a partial RTP stream concept is introduced in this paper.
First, every RTP session, such as video, audio or subtitle
streams of the entire multimedia session is split into smaller
pieces along the time axis. Each of the pieces has a fixed
duration TP which is expressed in time. The start time is
aligned with the start time of the RTP time base, that is, the
start of the first piece is located at the origin of the RTP time
line. One of the benefits of taking time as a unit is that all
packets can remain intact at the RTP layer. Segmentation at
the RTP packet level is not required for creating the partial
streams. This significantly reduces the complexity of the
implementation.

In the second step, RTP packets belonging to each of the
RTP sessions are assigned to N partial streams according to
(1), where i denotes the index of the partial stream (0 ≤
i < N) and tRTP denotes the RTP timestamp as carried
in the RTP data packet. The algorithm allows assigning
every RTP packet in the session to a partial RTP stream
without having to maintain the state in the peer itself. Only
by examining the RTP timestamp in combination with the
constant parameters is sufficient to identify the partial stream
the RTP packet is assigned to. Assuming a timeline of a single
RTP session, this process is illustrated in Figure 6, where
TC = N ∗ TP is used to denote the cycle time:

i = floor
(
tRTP

TP

)
mod N. (1)

Note that the piece size TP should be selected in such a
way that it is large enough to contain at least one RTP packet
on average. If it is chosen too small, not every piece will
have data, which may in the extreme case lead to an empty
partial stream. On the other hand, larger cycle times lead
to longer startup times, since a complete cycle needs to be
buffered before seamless playback can be guaranteed. In one
particular type of partitioning, every piece would start with
an intracoded picture. This would facilitate independent
decoding of partial streams in the presence of packet loss
due to the fact that a partial stream is not being received.
This could for instance easily be achieved by aligning the
pieces with group-of-picture (GOP) boundaries. Enhanced
robustness will also be achieved by assigning key (RTP)
packets to multiple partials. Key packets could for instance
be Instantaneous Decoding Refresh (IDR) picture data or
other data that would help error concealment. Duplicate RTP

packets would simply be removed upon reception and would
therefore not affect the basic algorithm or its complexity.

The number of partial streams, N , can vary per RTP
session. For instance it may not be very useful to partition
an audio stream into lower bit rate partial streams if the bit
rate of the entire RTP audio session is already in the order of
magnitude of a single partial RTP video stream. This also has
the additional advantage that the audio is received either in
its entirety or not at all, thereby reducing annoying audible
artifacts in the case of partial stream loss.

The number of partial streams does not necessarily
need to be constant throughout the P2P network within a
particular streaming service. As a matter of fact it is possible
to vary N at every forwarding peer in the network. However,
choosing the same N throughout the network simplifies the
design of the partitioning functionality.

6. Media Delivery Mechanism

All peers in the streaming network are forming a non-
hierarchical mesh structure. Peers are connected to several
other peers and are receiving data from and sending data to
multiple other peers. An example mesh layout can be seen in
Figure 1.

A peer may request the delivery of one or more partial
streams from another peer. A partial stream is the smallest
granularity for media streaming, that is, a peer may not
stream a fraction of a partial stream. The number of partial
streams can be tuned to achieve the target bit rate of a partial
stream. Each peer in the network should have enough uplink
bandwidth to be able to stream at least a single partial stream.

In this kind of streaming network, where most of the
peers are from the same cluster, some kind of intelligence to
avoid loops is needed. Such loops occur when a sender starts
receiving its own data via a number of intermediate peers in
the mesh network. To avoid loops, an algorithm based on
streaming path in the form of list of ancestors is used. The
path for the data stream in the application level containing
peer IDs which have forwarded the stream is delivered using
the contributing source (CSRC) list in the RTP packets. This
list is then used to avoid accepting connections from peers
who are already in the list and for dropping connections if a
peer notices that it is in the list.

Figure 7 illustrates media delivery among four peers.
Arrows between each peer denote an active RTP session, and
the direction defines the data flow direction. A sourcing peer
can send multiple partial streams to a particular receiving
peer. This allows for a smaller granularity of rate adaptation
between two individual peers in the network. These multiple
partial streams could either be streamed in a single RTP
session or separate RTP sessions. Peers in the figure are
numbered and colored. The smaller the number is, the earlier
the peer has joined the network; in this case peer number
one is the original source. Different colors in the peers buffers
show the origin of the received data. For simplicity, the value
four is used for the number of partials for each peer.

In order to receive a complete stream, a peer must receive
all partial streams; in this example, partials 0, 1, 2, and 3.

8 International Journal of Digital Multimedia Broadcasting

TC = N × TP = 24

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47

Time

Timestamp
TP = 6

RTP packet

· · ·
· · ·
· · ·

· · ·

2 5 26 29

8 11 32 35

14 17 38 41

20 23 44 47

· · ·
· · ·
· · ·

· · ·
Partial 2 (i = 2)

Partial 1 (i = 1)

Partial 0 (i = 0)

Partial 3 (i = 3)

Figure 6: RTP stream partitioning.

3

0, 2

0, 2
4

1

3

0 1

5

2

3

1 2

1, 3
0, 1, 2, 3

Figure 7: Partial RTP stream delivery.

Peer number two is receiving all partials from the original
data source, that is, peer number one, and is forwarding
partials to peers number three, four, and five. Peer number
four is also receiving partials from peer number three, and
peer number five from peers number three and four. All
incoming packets for all of the partial streams that constitute
a particular RTP session are added to a separate buffer
pool. This buffer pool maintains the information about the
destination peer to which the incoming packets need to be
forwarded. Every incoming packet is examined and assigned
to one of the outgoing queues. In case the peer is playing back
the received streams locally, the local player is considered to
be a destination as well.

Packets destined for a particular receiving peer are
transferred from the buffer to the outgoing RTP queue as
soon as they have been received. In case of local playback, that
is, the receiving peer is decoding and rendering the received
RTP session, the packets are also forwarded internally to
the media player. Buffering is needed to recover from peer
departures and consequential missing data. The peer can
ask a replacement peer to send the missing data from its
buffer. There is also a possibility that a peer does not have
certain part of the buffer available because of bad network
conditions, for example, insufficient bandwidth. These parts
might be later downloaded if needed. Because of the missing
data, the playback is interrupted during this period and it
depends on the used codec how missing data will affect
on Quality of Experience (QoE). Data will most probably
not come in order or in time from all sources as the delay
could vary very much between different sources, so the buffer
is also needed to collect all the data from different partial

Reception buffer

Playback buffer in media player Missing

Playback point

Network delay

Live
source

Buffering delay

Total delayTimeline

Figure 8: Data buffering.

streams and arrange the data in order before passing it to the
local media player.

When all partial streams are received almost at the same
time, the buffering delay can be reduced and the data can
be passed earlier to the media player. However, the situation
may change during time, and a constant buffer delay is
currently used in the implementation. Data buffering is
presented in Figure 8. The playback buffer is the buffer
located in the media player. When peers consume media, the
reception buffer is simultaneously shared with other peers.
The total delay from content generation to receiver playback
is the sum of the network delay, buffer delay, and media
player playback delay.

In addition to the reception buffer, data storage via
caching should be used in a VoD streaming service. When
using caches, the VoD data can be distributed away from
the original data source. This helps relieving the network
load from the original data source, as new peers joining
the network are able to download VoD content from
multiple sources instead of relying on the original data
source. Caching could be implemented in many ways, in the
simplest model all peers store all data they have consumed.
If a peer does not have enough storage capacity, the data
belonging to a specific partial stream could be cached instead.
Alternatively, a peer can limit the amount of cached data
by applying a sliding time window. In the former case, an
algorithm based on peer IDs could be used to determine
which partial stream should be stored. This kind of partial
caching requires that the amount of peers in a streaming
service is reasonably high. To ensure data availability from
multiple peers in every situation, support nodes, which

International Journal of Digital Multimedia Broadcasting 9

Peer SDS CL

DESCRIBE (service list)

Selected
CL

Other
peers

200 OK

Choosing
service

DESCRIBE (service info)

200 OK

GET PARAMETER (ping)

200 OK

loop

[Until suitable
CL is
discovered]

OPTIONS (cluster join)

200 OK

loop

[For every
peer
connection]

SETUP

200 OK

PLAY

200 OK

RTPloop

[Data
transfer]

TEARDOWN

200 OK

OPTIONS (cluster leave)

200 OK

Figure 9: Peer in a service.

10 International Journal of Digital Multimedia Broadcasting

act as stream relay nodes, could be used to store all the
data. Such relay nodes simply store the data and pass it
to other network participants. It should be noted that a
support node also consumes upload bandwidth from other
peers, but with a high throughput network connection
it provides more bandwidth to others than it consumes.
The currently existing simple VoD implementation uses
the simplest caching model, which is of course not the
most optimal one, but it enabled a fast proof-of-concept
implementation.

7. Peer Operation in a Service

Figure 9 shows the message exchange in case a peer is
participating in a particular service. For getting a list of all
available services a DESCRIBE message is sent to the SDS.
The service list information obtained in the 200 OK message
contains only general information of the services to decrease
the message size and the information is expressed as XML
fragments. If a user wishes to search services with a wildcard
string, a search element could be used to deliver the wildcard
string to the SDS. If there are not available services, the SDS
will respond with a 404 Not Found message.

To be able to join to a particular service, more detailed
service information must be retrieved from the SDS using a
DESCRIBE message with an RTSP URL specifying the service.
A 200 OK message contains only a partial list of the available
clusters, in case a large number of clusters has been created.
The response uses multipart MIME [21], because it must
deliver both the SDP of the service and the initial cluster list
in XML format. If the service is not available anymore, a 204
No Content message will be sent by the SDS.

After obtaining the CL list from the SDS, the peer makes
contact with several CLs until a suitable CL is discovered. For
this purpose, the peer sends a GET PARAMETER message to
the CL and starts the RTT counter. The peer stops the RTT
counter when it receives a 200 OK message and compares the
RTT value to some predefined upper limit. The first CL with
an RTT value below the limit is then selected as the CL for
the service.

The peer joins the selected cluster by sending an OPTIONS
message with a join peer tag in the Overlay header field
to the CL of the cluster. In the 200 OK message, an initial
peer list is received in XML format if some peers have already
joined the cluster. Otherwise, a Cluster-Id header field is
used to describe the ID for the cluster. The initial peer list is
a random subset of the total peer set, if there are lots of peers
in the cluster.

The peer tries to request data from other peers in the
list order using a SETUP message. This message handles
the configuration of the UDP port numbers for the RTP
reception using the Transport header field. If there are
fewer peers than the target number of partial streams, the
peer continues requesting again from the beginning of the
list, so that it will receive more than one partial stream from
a single peer. If a certain peer is not responding, it will be
removed from the internal known peer list, so that the peer
does not try to reconnect again. The peer which is receiving
the requested stream, that is, audio or video stream, will

respond with a 200 OK message to indicate that it might be
possible to get the stream data from the peer.

Setting up of the partial RTP streams is done by
sending a PLAY message to the peer which is receiving the
requested stream. Splitting of the original RTP session into
partial streams is explained in Section 5, and these partial
stream parameters are signaled using a Partial-Stream
header field. The format of a Partial-Stream header field
in ABNF is given below:

Partial-Stream = "Partial-Stream:" SP partial-stream-
info
CRLF

partial-stream-info = id ";" piece-size ";"
nb-of-partials ";"

id = "id=" 1*DIGIT
piece-size = "piece-size=" 1*DIGIT
nb-of-partials = "nb-of-partials=" 1*DIGIT

If the peer is able to send the requested partials, it will
respond with a 200 OK message. If the peer noticed a loop,
it will response with a 400 Bad Request message, and if
the peer cannot send the requested partials, it will respond
with a 404 Not Found message. After the 200 OK message,
data delivery from the requested peer using RTP is started.
If the interval between two consecutive RTP packets is more
than the predefined maximum allowed delay, the receiving
peer should conclude that the sending peer is not capable of
delivering the data in time and it should change the sender
for the partial in question.

A peer can depart from the network in two ways. In a
controlled departure, the peer informs its neighbors and the
CL that it is leaving the network. The peer sends an OPTIONS
message with a leave, tag in the Overlay header field to
the CL, and a TEARDOWN message to all of its data delivery
neighbors. Neighbors, which were sending data know that
they can terminate the RTP session. Also peers that were
receiving data know that they will not be able to receive more
data from that peer, and can search for a replacement. The
TEARDOWN message will also be sent when a peer notices
that there is a loop in the data delivery for some partial
stream.

An uncontrolled peer departure is noticed both by the
CL and a peer which sends data to the departed peer after
connection keep alive messages, that is, GET PARAMETER
messages, have not been received within some time interval
X . Currently, keep alive messages are sent at 30 seconds
intervals towards the CL and at 15 seconds intervals towards
the peer which sends the data. If the sending peer does
not receive keep alive message within 30 seconds interval
it concludes that the receiving peer has departed and
terminates the RTP session. Similarly, if the CL does not
receive any message from the peer within 45 seconds interval
it concludes that the receiving peer has departed and removes
the peer from the cluster because of inactivity. A peer
which is receiving data from the departed peer will notice
uncontrolled departure after it has not received any RTP
packets since Y seconds. The value Y should be defined so
that it is possible to get data from a replacement peer within
the reception buffer duration in order to avoid interruption.
This is basically the same situation when the sending peer

International Journal of Digital Multimedia Broadcasting 11

is not capable of delivering the data in time and currently
Y is calculated according to (2). This value consists of
time between two pieces belonging to the same partial RTP
stream, the normal network delay TN , that can be calculated
from RTSP request-response pairs, and a small extra time TE
given to peers to patch packets that might still be forwarded
in the network:

Y = TP ∗ (N − 1) + TN + TE. (2)

To request data from a replacement peer from a certain
starting point, a Packet-Range header field can be included
into a PLAY message to signal the play-after value using RTP
sequence numbers. The Packet-Range header field can also
be used to signal the current playback position when the
peers are seeking a new playback position in a VoD service.
The format of a Packet-Range header field in ABNF is given
below. The two different use cases can be distinguished by the
minus sign used in the former case:

Packet-Range = "Packet-Range:" SP range-specifier CRLF
range-specifier = 1*DIGIT ["-"]

In the VoD service, two other additional header fields are
required for the seeking operation. The desired seek time in
milliseconds will be signaled using a Seek header field. A
Fast-Send header field will be used to inform the sender
to send a specified amount of data (in milliseconds) as fast
as possible to be able to fill up the reception buffer and start
playback with as small delay as possible. The formats of the
Seek and a Fast-Send header fields in ABNF are given
below:

Seek = "Seek:" SP seek-time CRLF
seek-time = 1*DIGIT

Fast-Send = "Fast-Send:" SP fast-send-time CRLF
fast-send-time = 1*DIGIT

8. Implementation

The architecture of the real-time P2P streaming (RTP2P)
application is presented in Figure 10. The RTP2P application
is implemented using C++ and it consist of ten different
software components. The principle in the figure is that the
higher layer uses all components that are immediately below
it, so, for example, the Graphical User Interface (GUI) uses
Service, Common, and Media Player components.

The GUI is implemented using the gtkmm framework
[22] for the Linux desktop environment and the maemomm
framework [23] for the Nokia N800 Internet Tablet. Cur-
rently three different media players, VLC [24], MPlayer [25],
and GStreamer [26], are needed in the application. This
is necessary because any single player cannot offer all the
features required for our application. VLC is used to stream
RTP packets locally to the RTP2P application in the case of
the original data source. The original data source only listens
to the local socket, and receives RTP packets generated by
the VLC and can forward those further using the multisource
streaming concept explained in Sections 5 and 6. MPlayer is
used for the media playback on the client applications. It is

Graphical user interface

Service

Streaming
Overlay

XML RTSP

Common

SDP

RTP

Media
player

Figure 10: Architecture of the RTP2P streaming application

Figure 11: Graphical user interface.

also possible to use VLC for the media playback, but with
MPlayer it is possible to achieve a better synchronization
with multiple elementary streams by using RTCP sender
reports. GStreamer is used to create an RTP stream from the
camera of the N800 device. The needed RTP operations are
provided by the GNU ccRTP library [27]. In addition, the
Boost libraries [28] are utilized for threading time and file
system operations.

Other proprietary software components, that is, Service,
Overlay, Streaming, XML, RTSP, Common, and SDP, form
the basis for the peer operation. The SDP component is
based on the GNU oSIP library [29] and is used to parse the
streaming service description expressed in the SDP format.
The Common component contains definitions and function-
alities which are widely used by other components including,
for example, threading and socket operations. The XML
component is based on the Expat XML parser [30] and it is
utilized for parsing cluster and service information expressed
in the XML format. The RTSP component contains RTSP
message creation and parsing and also the base functionality
for RTSP operations, which are enhanced and utilized by
Streaming and Overlay components. The Streaming compo-
nent includes sender and receiver functionalities to handle
P2P RTSP communications and RTP reception and sending
operations for the streaming service. The functionality of
the cluster leader and all RTSP overlay communication are
included in the Overlay component. The Service component
contains the functionality needed to join, create, and manage
streaming services.

Figure 11 presents the GUI in a Nokia N800 device. The
GUI consist of three parts: (a) the main application view

12 International Journal of Digital Multimedia Broadcasting

Nokia N800

Nokia N800

Nokia N800

Nokia E90

Nokia E90

Nokia E90

Base station

Internet 10.8.0.0/24

Monitor

Original
data

source

VPN
server

Service
discovery

server

Nokia N800 Nokia E90

Figure 12: Test setup for evaluating the operation of the system in the mobile environment.

with Main, Info and Player tabs, (b) Create, Connect, List
and Preferences dialogs launched from the drop down menu,
and (c) Toolbar buttons at the bottom to start and stop the
selected service at the receiving end, and the service in the
original data source. The List dialog is used to obtain the
service list from the SDS which is then shown in the Main
tab. Information about the sourced service is also shown in
the Main tab. The Info tab is used to show detailed service
information about the sourced service and the service that
is currently received by the peer. The Player tab shows the
sourced stream in the original data source and the currently
received stream by the peer. The Connect dialog is used to
enter an IP address or a domain name for connecting to
the SDS. The Create dialog is used for creating new services.
Service name, type and description are given by the user, as
well as the file to be sourced in case of stored content. The
content can also be captured directly from the camera. The
Preferences dialog can be used to adjust some attributes, for
example, port numbers for the network traffic and the level
of debug messaging.

9. Performance Evaluation

The test setup for evaluating the operation of the system
in the mobile environment is presented in Figure 12. Four
Nokia N800 Internet Tablets with HSDPA network connec-
tion provided by the Nokia E90 were used together with a
PC acting as an SDS. In some test cases, also another PC was
acting as an original data source. During the tests a special
application was used to monitor streaming connections
between peers. As most normal consumer connections, also
mobile connections are suffering from Network Address
Translation (NAT) based connection limitations because
Internet Service Providers (ISPs) do not want that users use
the relatively small mobile bandwidth for hosting services
or using P2P technologies. To avoid connection limitations,
a workaround with VPN solution was utilized. Every entity
with a restricted network connection first creates a connec-
tion to the VPN server and gets the desired free connectivity
through the VPN tunnel. A more permanent solution could
be implemented using NAT traversal to overcome these
restrictions.

0

2

4

6

8

10

12

14

0 100 200 300 500 700600400

Overlay size

Overlay join
Buffering
Total time

T
im

e
sp

en
t

(s
)

Figure 13: Overlay joining time and an initial buffering time as a
function of overlay size; maximum cluster size 30 peers.

Tests have shown that the system performs well over
mobile connections with ten seconds initial buffering time.
The buffer size in our application is also ten seconds due to
the RTP usage and is relatively small compared to the buffer
sizes of existing solutions reported in [4].

Because the amount of available mobile devices was
limited, a laboratory network environment with 17 desktop
PCs (Intel Core2Duo E6550, 4 GB DDR2, running CentOS
Linux, kernel 2.6.18 PAE) has been utilized to test the system
functionality with a larger amount of peers. 16 hosts were
used to run 40 peers in each host together with one host
acting both as an SDS and as an original data source. The
connectivity between all devices was provided by a 1 Gbps
switch. The length for one live streaming service was roughly
one hour and all forthcoming figures present average values
from five different live streaming services. The maximum
cluster size was set either to 30 or to 70 peers, and peers were
started in 40 cycles with a 5 s starting interval: first one peer
was started at each host, then a second one and so on.

International Journal of Digital Multimedia Broadcasting 13

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 500 700600400

Overlay size

Sent RTSP bytes
Received RTSP bytes

Tr
affi

c
p

er
p

ee
r

(B
/s

)

(a)

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 500 700600400

Overlay size

Sent RTSP bytes
Received RTSP bytes

Tr
affi

c
p

er
p

ee
r

(B
/s

)

(b)

Figure 14: The amount of sent and received RTSP data, (a) maximum cluster size 30 peers, and (b) maximum cluster size 70 peers.

9.1. Steady Network. In this test scenario all peers stayed
steadily in the service from the joining time to the end
of the service. The streaming service joining time, that is,
the overlay joining time plus the initial buffering time, as
a function of the overlay size is presented in Figure 13.
From the figure we can see that the initial buffering time
remains almost constant regardless of the number of peers
in the network. The increase in overlay joining time could
be minimized by improving the current cluster selection
algorithm.

The amount of sent and received RTSP data in bytes
per peer as a function of overlay size is shown in Figure 14.
The combined bit rate of the original RTP sessions is about
112 kbps, encoded using FFmpeg’s [31] H.263+ video, and
AAC audio codecs. Hence, the RTSP signalling overhead
is quite minimal compared to the actual media data. The
reason for the larger amount of RSTP data sent is caused
by the relatively large cluster status information messages
transmitted to the SDS by the CLs. The main difference
between Figure 14(a) and Figure 14(b) is the slight increase
in the RTSP signalling data after 300 peers with the
maximum cluster size of 30 peers. This is caused by the
larger (and increasing) amount of clusters and cluster status
information messages. Similar effect might take place also
with the maximum cluster size of 70 peers when the amount
of peers is increased above the currently used maximum
value.

9.2. Network with Leaving and Rejoining Peers. To simulate
even a more realistic situation and the churning caused by
the real mobile nodes, a timer functionality that is able to
randomly shut down and restart nodes was used. After a peer
had joined to the service, it stayed randomly from 30 s to
10 min in the service and then left the service and joined back
after 10 s. This allowed us to test the network in more realistic
situations where peers are leaving and data connections are
failing.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 500 700600400

Overlay size

Sent RTSP bytes
Received RTSP bytes

Tr
affi

c
p

er
p

ee
r

(B
/s

)

Figure 15: The amount of sent and received RTSP data with leaving
and rejoining peers; maximum cluster size 70 peers

The amount of sent and received RTSP data in bytes
per peer as a function of the overlay size is presented in
Figure 15. If we compare these values to the corresponding
values in the steady state scenario, we can see that the values
follow the same trend, but the replacement peer searching
and peer rejoining messages cause small overall increase to
the signalling data.

10. Future Developments

In the current overlay implementation, a cluster change is
controlled by the CL. Peer-controlled cluster change, where
a peer changes the cluster after acquiring knowledge about a
new cluster which would serve its data requirements better,

14 International Journal of Digital Multimedia Broadcasting

would make the system more scalable and will increase the
overall performance.

Clusters are currently loosely connected together
between the neighboring CLs to share some peer infor-
mation. A clearer cluster group structure with a Cluster
Group Leader (CGL) is worth studying. The CGL could
collect the information about all clusters within the cluster
group and send cluster update messages to the SDS, instead
of separate update messages from individual CLs. This
organization into an n-level hierarchical structure could
increase network scalability and reduce the overlay joining
time since the cluster search time would be reduced from
O(n) to O(log(n)). As a drawback, the complexity of the
system and the overlay maintenance will be highly increased.

More advanced implementation level support for VoD
streaming such as better caching mechanism and support
for other Video Cassette Recording (VCR) functionalities like
fast-forward and rewind, in addition to the currently existing
seek functionality will definitely pose different requirements
compared to the live streaming case. Mechanisms for han-
dling packet losses is an important research area in peer-to-
peer streaming. Different error robustness techniques, such
as simple retransmission, Forward Error Correction (FEC)
and network coding, need to be studied to find out the
benefits and drawbacks of those techniques, when used in
addition to the current mechanism which is based on peer
replacement before the reception buffer underflows.

One interesting research area is the usage of Multiple
Description Coding (MDC) [32] or Scalable Video Coding
(SVC) [33] in the real-time P2P streaming as is proposed also
in [10]. A single stream is divided into several descriptions
and each of the descriptions is then forwarded separately to
the network. With this approach, the current partial stream
could be replaced by one description without affecting
the clustered overlay network architecture. However, our
partial stream concept has much lower complexity (than
MDC or SVC), which has enabled a fast proof-of-concept
implementation. Our design allows an easy replacement of
the partial stream concept with MDC or SVC as soon as their
implementations become publicly available.

11. Conclusions

The effective real-time P2P streaming system for the mobile
environment presented in this paper is an alternative solution
to traditional client-server-based streaming applications. A
scalable overlay network which groups peers into clusters
according to their proximity is created and maintained using
extended RTSP messages by the cluster leaders with the help
of a service discovery server. Furthermore, the actual media
delivery is implemented using a partial RTP stream concept.
RTP sessions are split into a number of partial streams in
such a way that it allows reassembling the original media
session in real-time at the receiving end.

The first laboratory tests together with the tests in the
mobile environment have shown that the current implemen-
tation performs well and offers very low initial buffering
times. More advanced laboratory tests with different latencies

and throughputs between peers are still needed to highlight
system bottlenecks and usability issues.

Acknowledgments

The authors would like to thank Joep van Gassel, Alex
Jantunen and Marko Saukko for their valuable work as part
of the development team. This work was partially supported
by TEKES as part of the Future Internet program of Finnish
Strategic Centre for Science, Technology and Innovation in
the field of ICT (TIVIT).

References

[1] “YouTube—Broadcast Yourself,” May 2009, http://www.
youtube.com/.

[2] “Octoshape,” May 2009, http://www.octoshape.com/.
[3] “SopCast,” May 2009, http://www.sopcast.org/.
[4] J. Peltotalo, J. Harju, A. Jantunen, et al., “Peer-to-peer stream-

ing technology survey,” in Proceedings of the 7th International
Conference on Networking (ICN ’08), pp. 342–350, April 2008.

[5] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson,
“RTP: A Transport Protocol for Real-Time Applications,”
Internet Engineering Task Force, RFC 3550, July 2003,
http://www.rfc-editor.org/rfc/rfc3550.txt.

[6] B. Cohen, “Incentives build robustness in BitTorrent,” in
Proceedings of the Workshop on Economics of Peer-to-Peer
Systems (P2PECON ’03), pp. 116–121, June 2003.

[7] P. Shah and J.-F. Paris, “Peer-to-peer multimedia streaming
using BitTorrent,” in Proceedings of the 26th IEEE International
Performance, Computing, and Communications Conference
(IPCC ’07), pp. 340–347, April 2007.

[8] X. Jiang, Y. Dong, D. Xu, and B. Bhargava, “GnuStream: a
P2P media streaming system prototype,” in Proceedings of the
International Conference on Multimedia and Expo (ICME ’03),
pp. 325–328, July 2003.

[9] X. Zhang, J. Liu, B. Li, and T.-S. P. Yum, “CoolStream-
ing/DONet: a data-driven overlay network for peer-to-peer
live media streaming,” in Proceeding of the 24th Annual
Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM ’05), vol. 3, pp. 2102–2111, March 2005.

[10] N. Magharei and R. Rejaie, “PRIME: peer-to-peer receiver-
drIven MEsh-based streaming,” Proceedings of the 26th
IEEE International Conference on Computer Communications
(INFOCOM ’07), pp. 1415–1423, May 2007.

[11] D. A. Tran, K. A. Hua, and T. Do, “ZIGZAG: an efficient
peer-to-peer scheme for media streaming,” in Proceedings of
the 22nd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM ’03), vol. 2, pp. 1283–
1292, March 2003.

[12] J. Liang and K. Nahrstedt, “DagStream: locality aware and
failure resilient peer-to-peer streaming,” in Proceedings of
the 13th Annual Multimedia Computing and Networking
Conference (MMCN ’06), pp. 224–238, January 2006.

[13] J. Yu and M. Li, “CBT: a proximity-aware peer clustering
system in large-scale BitTorrent-like peer-to-peer networks,”
Computer Communications, vol. 31, no. 3, pp. 591–602, 2008.

[14] J. Peltotalo, J. Harju, M. Saukko, et al., “A real-time peer-to-
peer streaming system for mobile networking environment,”
in Proceedings of the INFOCOM and Workshop on Mobile Video
Delivery (MoVID ’09), April 2009.

International Journal of Digital Multimedia Broadcasting 15

[15] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time Stream-
ing Protocol (RTSP),” Internet Engineering Task Force, RFC
2326, April 1998, http://www.rfc-editor.org/rfc/rfc2326.txt.

[16] D. Crocker and P. Overell, “Augmented BNF for Syntax Speci-
fications: ABNF,” Internet Engineering Task Force, RFC 2234,
November 1997, http://www.rfc-editor.org/rfc/rfc2234.txt.

[17] T. Berners-Lee, R. Fielding, and L. Masinter, ““Uniform
Resource Identifier (URI): Generic Syntax,” Internet Engi-
neering Task Force, RFC 3986, January 2005, http://www.rfc-
editor.org/rfc/rfc3986.txt.

[18] W3C, Extensible Markup Language (XML) 1.0, World Wide
Web Consortium (W3C), 4th edition, 2006.

[19] “zlib,” May 2009, http://zlib.net/.
[20] M. Handley and V. Jacobson, “SDP: Session Description

Protocol,” Internet Engineering Task Force, RFC 2327, April
1998, http://www.rfc-editor.org/rfc/rfc2327.txt.

[21] K. Moore, “MIME (Multipurpose Internet Mail Extensions)
Part Two: Message Header Extensions for Non-ASCII Text,”
Internet Engineering Task Force, RFC 1522, Sepember 1993,
http://www.rfc-editor.org/rfc/rfc1522.txt.

[22] “gtkmm—C++ Interfaces for GTK+ and GNOME,” May
2009, http://www.gtkmm.org/.

[23] “maemomm—C++ bindings for the Maemo API,” May 2009,
http://maemomm.garage.maemo.org/docs/index.html.

[24] “VLC Media Player,” May 2009, http://www.videolan.org/vlc/.
[25] “MPlayer—The Movie Player,” May 2009, http://www.

mplayerhq.hu/.
[26] “GStreamer: open source multimedia framework,” May 2009,

http://www.gstreamer.net/.
[27] “GNU ccRTP—GNU Telephony,” May 2009, http://www.gnu.

org/software/ccrtp/.
[28] “Boost C++ Libraries,” May 2009, http://www.boost.org/.
[29] “The GNU oSIP Library,” May 2009, http://www.gnu.org/

software/osip/osip.html.
[30] “The Expat XML Parser,” May 2009, http://expat.sourceforge.

net/.
[31] “FFmpeg,” May 2009, http://www.ffmpeg.org/.
[32] V. K. Goyal, “Multiple description coding: compression meets

the network,” IEEE Signal Processing Magazine, vol. 18, no. 5,
pp. 74–93, 2001.

[33] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the
scalable video coding extension of the H.264/AVC standard,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103–1120, 2007.

