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Abstract

This paper investigates a global optimization algorithm for the calibration

of stochastic volatility models. Two GARCH models are considered, namely

the Leverage and the Heston-Nandi model. Empirical information on option

prices is used to minimize a loss function that reflects the option pricing error.

It is shown that commonly used gradient based optimization procedures may

not lead to a good solution and often converge to a local optimum. A concur-

rent approach where several optimizers (“particles”) execute an accelerated

random search (ARS) procedure has been introduced to thoroughly explore

the whole parameter domain. The number of particles influences the solu-

tion quality and computation time, leading to a trade-off between these two

factors. In order to speed up the computation, distributed computing and
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variance reduction techniques are employed. Tests show that the concurrent

ARS approach clearly outperforms the standard gradient based method.

Key words: Finance, GARCH, option pricing, accelerated random search,

distributed computing

1. Introduction

The literature on quantitative and statistical finance and economics has

greatly improved the performance of option pricing models by enriching the

return process and return volatility process. In this respect the family of gen-

eralized autoregressive conditional heteroskedasticity (GARCH) models cap-

tures the stylized facts of stock markets well, and these models are important

tools in derivative pricing and risk management (see for example [1, 2, 3, 4, 5],

and [6] and the references therein). In addition to option pricing, Bollerslev

et al. [7] describe several empirical applications based on financial data.

Whereas many current papers aim to improve the volatility models for

better option pricing performance, the goal of this paper is very different.

The aim is to examine optimization algorithms for the calibration of GARCH

models, i.e. given observations of option prices the goal is to find the best

parameters of the GARCH models to fit the data. In particular, a global

optimization method to calibrate two GARCH models using information on

option prices is introduced. When using optimization techniques to find

model parameters that minimize the error between the model prices and

market prices of options, the success of the calibration can substantially

depend on the optimization algorithm, and the calibration performed with

an unsuitable algorithm can lead to parameter instability. In fact, as will
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be demonstrated, the optimization method used to calibrate a model can

become as crucial as the model itself.

Using two widely recognized GARCH specifications, namely the Leverage

and the Heston-Nandi model, and a large set of option data, the performance

of a concurrent method based on accelerated random search (ARS) is exam-

ined and compared to a standard gradient based search method. Whereas

for the Heston-Nandi model a closed-form option pricing formula exists, the

Leverage specification requires computationally expensive Monte Carlo sim-

ulations, in which case standard deterministic gradient based methods often

do not yield appropriate results as the derivatives of the pricing error can be

difficult to calculate due to Monte Carlo errors.

Quite extensive literature exists where stochastic volatility models are cal-

ibrated based on empirical information on option prices using the non-linear

least squares (NLS) approach (see for example [1, 8, 9, 10] and the references

therein). Some stochastic optimization algorithms have been examined with

GARCH models using maximum likelihood estimation (MLE) (see [11]), but

only little heed has been paid to the efficiency of the optimization algorithms

in the non-linear least squares (NLS) calibration procedure using empirical

option data, even though it may be preferable to use the NLS approach rather

than MLE for the purpose of option valuation, i.e. to estimate the parameters

directly using information on option prices (see for example [1]). In fact, in

most papers only the minimization problem to be solved is posed, but the ap-

plied optimization routines are not considered or even mentioned. Whereas

with MLE local optima can be overcome by running the calibration multiple

times with different parameter initial values, this is not necessarily possible
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with NLS as it is computationally more expensive than MLE, especially if no

closed-form solutions are available for option prices. Therefore, fast global

optimization algorithms are crucial when calibrating volatility models using

option data.

Depending on the underlying model it is possible that several local and/or

global optima exist, and thus the application of commonly used optimization

routines might not lead to the global optimum, and instead get trapped in

a local optimum. As the main contribution, local optimality is addressed by

using a concurrent approach in which each optimizer (“particle”) executes

an accelerated random search [12]. This approach requires the adjustment

of several parameters such as the number of particles and the number of it-

erations used during the optimization procedure, and the number of option

price simulation paths (in case of the Leverage model). Those parameters

influence the computation time and also the solution quality. In order to re-

duce the computation time distributed computing has been applied together

with the empirical martingale methods described by Duan and Simonato [13]

and antithetic variates.

The remainder of this paper is organized as follows. The considered

GARCH models, the data set, the estimation methodology, and the opti-

mization procedure are described in Section 2. In Section 3 implementation

issues are depicted and simulation results presented. Conclusions and future

research topics are outlined in Section 4.
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2. Problem Formulation and Solution Algorithm

GARCH models were pioneered by Bollerslev [14] and Engle [15] and are

used for modeling financial time series that exhibit time-varying volatility

clustering, i.e. periods of swings followed by periods of relative calm. GARCH

models are useful in situations where the volatility of returns is a central issue.

The family of GARCH models captures empirical properties well, and these

models are therefore important tools in asset pricing and risk management.

The success of GARCH models motivated their extension to option valuation

(see for example [1, 2, 3, 4, 5, 6] and [16] and the references therein).

This section describes the two specific GARCH models considered in the

numerical experiments, namely the Leverage and the Heston-Nandi model.

A loss function is introduced that describes the difference between empirical

and model option prices. In order to minimize this loss function the acceler-

ated random search (ARS) algorithm [12] has been used and will be briefly

outlined. At the end of this section the parameter restrictions of both pricing

models will be considered and implementation issues detailed.

2.1. Leverage Model

Under the physical probability measure, the logarithmic stock returns

and volatility follow

Rt ≡ ln

(

St

St−1

)

= r + λ
√

ht −
1

2
ht +

√

htzt, zt ∼ N(0, 1),

ht = β0 + β1ht−1 + β2ht−1(zt−1 − θ)2,

where St denotes the spot price at time t, λ > 0 is the price of the risk,

and r > 0 denotes the risk-free rate. Moreover, ht is the squared volatility,
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β0, β1, β2 > 0 are structural parameters, and θ > 0 represents the coefficient

of leverage. In a GARCH context, Duan [3] showed that a locally risk-neutral

valuation relationship is satisfied by a risk-neutral measure Q if

E
Q
t [exp(Rt+1)] = exp(r)

and

VarQ
t [Rt+1] = VarP

t [Rt+1] = ht,

respectively, where E
Q
t [·] and VarQ

t [·] are the conditional mean and variance

under the measure Q, respectively, and VarP
t [·] denotes the conditional vari-

ance under the original (physical) measure P. This implies that under the

risk-neutral measure,

Rt = r −
1

2
ht +

√

htz
∗

t , (1)

where z∗t ∼ N(0, 1) under Q (see also [1]). The above is satisfied if

zt = z∗t − λ.

Thus, when employing the Leverage model under the risk-neutral probability

measure, the volatility dynamic is given by

ht = β0 + β1ht−1 + β2ht−1(z
∗

t−1 − λ− θ)2

= β0 + β1ht−1 + β2ht−1(z
∗

t−1 − β3)
2, (2)

where β3 = λ + θ. The model prices of European call options can then be

determined by

C(t, St, ht; K, T, r, β) = exp{−r(T − t)}EQ
t [max{ST −K, 0}] , (3)

where T denotes the time to maturity, ST the spot price at maturity, K the

strike price, and β the vector of the structural parameters.
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A disadvantage of this model is the lack of a closed-form pricing formula,

and therefore Monte Carlo methods have to be applied to obtain the option

prices. For a given spot price S0 and spot volatility h0 the conditional expec-

tation is calculated by simulating (1) together with (2) iteratively. To speed

up the computation, distributed computing [17] has been used together with

the empirical martingale methods described by Duan and Simonato [13] and

antithetic variates. For estimating the model parameters more than one day

of option prices has been used, and hence the volatility of different dates has

been linked using historical time series of stock returns. In particular, to

update ht+1 from ht using the observed daily returns of the underlying stock,

R̃,

z∗t−1 =

(

R̃t−1 − r +
1

2
ht−1

)

/
√

ht−1

has been substituted into (2) (see also [1, on-line Appendix]).

2.2. Heston-Nandi Model

Under the physical probability measure, the return and volatility dynam-

ics of the Heston-Nandi model [18] are given by

Rt ≡ ln

(

St

St−1

)

= r + γht +
√

htzt, zt ∼ N(0, 1),

ht = β0 + β1ht−1 + β2(zt−1 − θ
√

ht−1)
2,

where γ represents the coefficient of relative risk aversion. Note that the

expected rate of return is proportional to the squared volatility rather than

volatility. Using the locally risk-neutral valuation relationship, it follows that

the volatility process under the risk-neutral probability measure is given by

ht = β0 + β1ht−1 + β2

(

z∗t−1 − β3

√

ht−1

)2

, (4)
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where z∗t−1 = zt−1 +
(

γ + 1
2

)√

ht−1 and β3 = γ + θ + 1
2
. This model has a

closed-form solution for determining option prices (see [18]).

2.3. Data and Methodology

In this study the model parameters are estimated using empirical in-

formation of option prices. Among others, Bakshi et al. [16] employ this

estimation methodology using loss functions and minimize the pricing error

of the daily cross-section of options. In this paper daily data of S&P 500

index call options traded at the Chicago Board Options Exchange, in partic-

ular mid-point bid-ask quotes, are used. The option prices are sampled every

Wednesday from January 3, 1990 till December 31, 1993, a total of 12,754

observations1. The data set has been divided into two subsets. The period

between January 3, 1990 and December 31, 1992 has been used exclusively

for in-sample calibration. The period from January 1, 1993 to December 29,

1993 has been used as an out-of-sample data set for evaluation of the fit.

The S&P 500 index values are not the closing values, but rather from the

moment when the option bid-ask quote is recorded. To price options for all

maturities and each trading day interest rates using data on daily treasury

yield curve rates for 1, 3, 6 and 12 months have been approximated. Divi-

dends are taken into account by calculating the present dividend values until

the maturity of each option, and then subtracting them from the spot prices

(see also [1, 16]).

There are different approaches to calibrate option pricing models. First,

by following [16] models can be estimated day by day using a daily cross-

1The data were graciously provided by Peter Christoffersen.
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section of option prices and treating the spot variance ht as a model param-

eter estimated from option prices. This approach is commonly employed by

practitioners who often estimate the coefficients on observed option prices by

static daily calibration. A second approach is to use multiple cross-sections

of options on a multi-day (year) sample by extracting the spot variance on

different dates using observations on stock returns. One may try to mini-

mize the overall squared option pricing error or use a likelihood-based ap-

proach. Multi-day data on option prices and returns is widely used in the

academic literature to compare different volatility characterizations, see for

example [1, 2, 19, 20, 21, 22] and the references therein.

Even though the practitioners often seem to rely on re-calibrations on

daily data and the use of large data samples may worsen the performance

of Newton methods, there are reasons for preferring a multi-day sample [23].

First, to capture the time variation in the underlying price and volatility

we need to use multi-day data. Second, structural parameters are assumed

constant, but the daily re-calibrations on single-day option data make the

given parameter estimates vary over time. Moreover, according to [24], “given

that the number of calibration constraints (option prices) is finite (and not

very large), there may be many Lévy triplets which reproduce call prices

with equal precision”, which suggest the use of multi-day data. Finally, the

academic literature uses multi-day data to assess the long-term performance

of the models.

Some exclusionary criteria are used to discard option data that could

make the calibration problematic, as is done for example in [1, 3, 16, 18, 25].

First, options with fewer than six days to maturity have been discarded be-
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cause these options may have liquidity related biases [16]. Second, options

whose price is less than $3/8 have been discarded for reasons of price dis-

creteness. Third, the options whose prices conflict with the lower bound of

the no-arbitrage rule

ĈBid ≥ max(0, St − PVDIV−Ke−r(T−t)),

have been discarded. Here, PVDIV denotes the present value of dividends

during the life of an option and T−t the time to maturity. Tables 1 (a) and (b)

describe the properties of the in-sample and out-of-sample data sets in more

detail.

Following [16], the literature has commonly used the actual dividend data

in this context. Another approach would be to estimate the dividend yield as

a structural parameter or to use the futures prices instead of the spot prices.

For both models four parameters have to be determined and there are, in

general, two methods that can be applied. Maximum likelihood estimation

aims at finding the parameter values matching the conditional density of

the returns. The second approach finds parameters using the non-linear

least squares approach that minimizes a loss function that characterizes the

mismatch between model and market prices of vanilla options. In this study,

the NLS approach is employed, and the goal is to determine the parameters

of the models in Sections 2.1 and 2.2, respectively, based on option prices by

minimizing the following loss function. Denote Ĉi,ti the true price of option i

at time ti, and Ci,ti = C(ti, Sti , hti; Ki, Ti, rti , β) the model price of option i at

time ti. Then the objective is to minimize the pricing error of all options with
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Table 1: The number of contracts of the in-sample and out-of-sample data sets are reported

by grouping the data into three groups based on maturity (trading days) and into six

groups based on moneyness (S/K).

(a) In-Sample Data

Moneyness Maturity (days to expiration)

S/K < 60 60 - 180 ≥ 180 Total

< 0.94 189 682 552 1423

0.94− 0.97 489 555 266 1310

0.97− 1.00 636 547 241 1424

1.00− 1.03 601 522 250 1373

1.03− 1.06 565 460 151 1176

≥ 1.06 987 986 497 2470

Total 3467 3752 1957 9176

(b) Out-of-Sample Data

Moneyness Maturity (days to expiration)

S/K < 60 60 - 180 ≥ 180 Total

< 0.94 2 155 138 295

0.94− 0.97 129 219 59 407

0.97− 1.00 247 237 53 537

1.00− 1.03 253 232 61 546

1.03− 1.06 233 204 38 475

≥ 1.06 535 539 244 1318

Total 1399 1586 593 3578

respect to the structural parameters, i.e. find the values of β, that minimize

RMSE =

√

1

NT

∑

t,i

(

Ĉi,t − Ci,t

)2

, (5)
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where NT =
∑T

t=1 Nt and Nt is the number of option prices in the sample at

time t, and the prices Ci,t are calculated according to (3) and the solution

in [18], respectively.

2.4. Accelerated Random Search (ARS)

The performance of commonly used (local) optimization methods usually

depends on the starting values for the parameters and the solution often

requires prohibitively many function evaluations. In order to overcome prob-

lems of local optimality and to thoroughly explore the variable domain, the

accelerated random search (ARS) algorithm [12] has been employed for min-

imizing (5). The ARS algorithm is for convenience outlined in the following.

Let D̃ denote a d−dimensional unit hypercube [0, 1]d, and let ‖ · ‖ denote

the 2-norm on D̃. Denote by B(x, τ) = {y ∈ D̃ : ‖x − y‖ ≤ τ} the closed

ball centered at x with radius τ . With the contraction factor c > 1 and

the precision threshold ρ > 0 given, the following steps are executed when

minimizing the objective function.

1. Set n← 1, τ1 ← 1 and generate a sample X1 from a given distribution

on D̃.

2. Given Xn ∈ D̃ and τn ∈ (0, 1], generate a sample Yn from a given

distribution on B(Xn, τn).

3. If f(Yn) < f(Xn), set Xn+1 ← Yn and τn+1 ← 1.

Else, set Xn+1 ← Xn and τn+1 ← τn/c.

If τn+1 < ρ, then τn+1 ← 1.

Increment n← n + 1, and go to Step 1.
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Step 3 implies that in case the new candidate Yn is not better than the current

Xn, the radius of the ball shrinks, and thus the search space shrinks. On the

other hand, if Yn delivers a better function value than Xn, the search space is

reinitialized to the whole domain D̃. Since the radius is decreased whenever

the new candidate is not better than the current candidate, the search space

will shrink quickly until sampling happens only in the neighborhood of a local

optimum. After a certain number of shrinks, the search space is reinitialized

to the whole space, and thus escape from local optima is possible.

This algorithm can be implemented in a concurrent framework so that

in every iteration M optimizers (“particles”) execute an ARS, each start-

ing with a different sample. Initially M samples are drawn from the search

domain, i.e. generate x1,1, . . . ,x1,M, where x1,i is a vector containing the re-

quired parameters, and τ is anM-vector of ones. In the nth step new sam-

ples yn,1, . . . ,yn,M are generated from the hyper-spheres B(xn,i, rn,i), where

xn,i denotes the ith particle, and rn,i is the corresponding radius. The con-

ditions (6) and (7) described in Section 2.5 must be checked for validity.

All particles j ∈ J ⊆M that do not fulfill the conditions are discarded and

replaced by new samples from the corresponding spheres B(xn,j, rn,j), j ∈ J .

In Step 3 the root mean squared errors for the current sample points

and the new candidate points are calculated and compared. Here the root

mean squared error corresponds to the objective function f(·) in Step 3 of

the ARS algorithm. The particles with the better, i.e. lower, RMSE are

kept, and Steps 2 and 3 are repeated for a given number of iterations I. The

best RMSE obtained during the simulation and the corresponding parameter

settings are finally used for calculating the out-of-sample errors.
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The ARS algorithm applies, similar to simulated annealing (SA) [26, 27]

and evolutionary algorithms (EA) [28, 29, 30], a neighborhood search strat-

egy. However, in contrast to SA and EA, ARS never accepts solutions that

are worse than the current solution. The solution improves or stays at least

the same from one iteration to another. ARS tries to overcome local opti-

mality by reinitializing the search radius to the whole variable domain while

SA and EA accept worse solutions in order to escape from local optima. SA

and EA restrict the search space to a set of neighboring solutions and the

algorithms stop after several unsuccessful improvement trials. ARS on the

other hand restarts the search similar to a multi-start optimization procedure

and continues the search until the predefined number of iterations has been

reached or some other stopping criterion has been met. Thus, ARS explores

the parameter domain better and is for this reason applied in this paper.

2.5. Parameter Restrictions

The parameters βi, i = 0, 1, 2, 3, of the Leverage model in (2) have the

following stationary restrictions that must be taken into account during the

optimization process:

βi ≥ 0, ∀i = 0, 1, 2, 3, β1 + β2(1 + β2
3) ≤ 1. (6)

Since there are four parameters to be adjusted the problem is of dimension

d = 4. The conditions on the parameters do not define a unit cube, so in

order to apply the ARS algorithm, each parameter must be scaled to the

unit interval so that D̃ = [0, 1]4. Since all parameters are bounded to be

non-negative, only the upper bounds need to be adjusted. Denote βu
0 , βu

1 , βu
2

and βu
3 the upper bounds for parameters β0, β1, β2, and β3, respectively.
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In the first step of the ARS algorithm M particles of the form x1,i =
[

β̃0, β̃1, β̃2, β̃3

]′

i
are uniformly drawn from the unit hypercube D̃, where the

subscript i denotes the parameters of the ith particle. Thus, the parameter

values that must be checked with respect to conditions (6) are βj = β̃jβ
u
j ,

j = 0, 1, 2, 3, for every particle. The upper bounds for the parameter values

are except for β0 implied by conditions (6):

• For βu
1 the conditions imply that β1 ≤ 1, and thus βu

1 = 1.

• Similarly, the conditions require β2 ≤ 1, and thus βu
2 = 1.

• For βu
1 and βu

2 the conditions demand that β1 + β2 ≤ 1, and thus βu
1

and βu
2 are not independent. Drawing β̃1 before β̃2 from the given

distribution implies that βu
2 = 1 − β1, and drawing first β̃2 from the

given distribution results in the upper bound βu
1 = 1− β2.

• The latter condition in (6) implies a dependency of the parameters β1,

β2 and β3. Thus, sampling at first β̃1 and β̃2 from D̃ implies that

βu
3 =

√

1−β1

β2

− 1.

An upper bound for β0 is not implied by the conditions. Computational ex-

periments showed that especially small values for β0 lead to good solutions.

Thus, βu
0 = 10−5 was used throughout the simulations. Assuming the param-

eters for every particle are sampled in the sequence β̃0 → β̃1 → β̃2 → β̃3, the

unscaled parameter domain is a cuboid D = [0, 10−5]× [0, 1]× [0, 1− β1] ×
[

0,
√

1−β1

β2

− 1
]

.

The parameter restrictions for the Heston-Nandi model are given by

βi ≥ 0, ∀i = 0, 1, 2, 3, β1 + β2β
2
3 ≤ 1, (7)
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which implies that bu
3 =

√

1−β1

β2

, and that there is no dependency of β1 and β2

as is in the Leverage model. Thus, an upper bound for β2 must be defined.

Experiments showed that also for this variable small values give good results,

and therefore simulations using βu
2 = 10−4 have been done. Assuming again

that the parameters for every particle are sampled in the sequence β̃0 → β̃1 →

β̃2 → β̃3, the cuboid is defined by D = [0, 10−5]×[0, 1]×[0, 10−4]×
[

0,
√

1−β1

β2

]

.

3. Numerical Experiments

The algorithm has been implemented in Matlab and tested on the data

set described in Section 2.3. The contraction factor c and the precision

threshold ρ of the ARS algorithm have been set to 2 and 2−20, respectively.

The simulations have been distributed over the 800-core PC grid at Tampere

University of Technology. For the Leverage model the calculations for each

particle at each step of the ARS iteration have been distributed on two

levels: the options are distributed, and the Monte Carlo price paths for each

option are distributed (Figure 1). For the Heston-Nandi model the price

path simulations are not needed and the computation is only distributed at

the option level.

The CPU time as well as the solution quality are dependent on the number

of particles used during the calibration, the number of iterations I of the ARS

algorithm, the number of options Nt in the data sample, and in case of the

Leverage model, on the number of price simulation paths P . The number of

particles influences the exploration of the parameter domain, i.e. the more

particles used, the higher the chance to find a good solution. As the number

of particles increases also the computation times increase, and a trade-off
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Figure 1: Leverage model: distributed computation for ith particle

between solution quality and computation time arises.

The number of iterations I determines the number of attempts of the

ARS algorithm to improve the current RMSEs of all particles. However,

with an increasing number of iterations it becomes harder to find further

improvements of the loss function. Thus, also the adjustment of I must be

considered. If improvements of the RMSE is not ”reasonable” compared to

the number of additional iterations, the total number of iterations should not

be further increased. For the Leverage model, the number of price simulation

paths also influences the computation time.

The following paragraphs explore in more detail the trade-off of the num-

ber of particles vs. solution quality and number of price simulation paths

vs. solution quality (Leverage model), respectively. In order to examine the
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influence of the number of particles on the RMSE, the number of iterations

and price simulation paths was fixed to I = 100 and P = 10000 (for the

Leverage model), respectively.

3.1. The Influence of Particle Number on Solution Quality

Since the Leverage and Heston-Nandi model include due to the sampling

of the particles (and in case of the Leverage model also due to the simulation

of the option price paths) random components, the optimization algorithm

was run three times for each parameter setting.

3.1.1. Leverage Model

The wall-clock computation time for the model calibration greatly de-

pends on the availability of computers for the distributed computing. Since

the grid uses the idle computers in the PC labs of Tampere University of

Technology, the capacity varied between and also within simulations. Thus,

the wall-clock time for the simulations varied strongly. For example, for 40

particles the time varied between 26 and 94 hours. Due to the setup of the

computing environment, the wall-clock time is not a good measure of per-

formance because it heavily depends on the amount of resources that can be

used and varies between different times of the day and also between differ-

ent weekdays. A detailed wall-clock time examination should be done in a

controlled environment where the number of working cores does not change.

The results of the simulations (Table 2) show that the RMSE (averaged

over three runs) is lowest when 30 particles were used, and the difference

to the other solutions is very small. The optimization runs with 60 parti-
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cles returned the best results in terms of the average out-of-sample errors

(OOSE).

Table 2: Leverage model: average RMSE after 100 iterations and average OOSE with

different numbers of particles

# Particles 10 20 30 40 50 60

avg. RMSE 1.7805 1.7760 1.7635 1.7811 1.7696 1.7915

avg. OOSE 2.2346 2.4323 2.3453 2.1251 2.2064 1.9280

Table 3 shows for each particle number the minimal RMSE and the cor-

responding OOSE attained during all three runs as well as the correspond-

ing parameter values with their standard errors in parentheses. The results

show that the lowest RMSE has been reached when using 60 particles. On

the other hand, the best out-of-sample error has been reached when using 40

particles. Noticeable is the magnitude of the parameter β2 which represents

the GARCH effect. The best value is about 0.02 which may indicate a weak

model identification [31].

The average RMSEs of all particles in every iteration are illustrated in

Figure 2. The figure shows that the graphs of the average RMSE have the

shapes of “steps” with the step height decreasing as the number of iterations

increases. The average RMSEs of all particle numbers are highest in the first

iterations, but quickly decrease until iteration 15. A further noticeable de-

crease of the average RMSE can be seen between iterations 35 and 55. After

iteration 60 the RMSE reduces only slightly and after iteration 90 the average

RMSE is about equal for all particle numbers. The figure indicates that 100

iterations are sufficient since the rate of improvement becomes insignificant
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Table 3: Leverage model: best parameter settings with different numbers of particles

# Particles min. RMSE min. OOSE β0 β1 β2 β3

10 1.4903 2.0400 1.2783e-6 0.9435 0.0388 0.5141

(8.2e-8) (4.1e-3) (3.7e-3) (4.8e-2)

20 1.4143 2.0965 1.8939e-6 0.8081 0.0885 1.0528

(6.4e-8) (5.5e-3) (5.8e-3) (5.3e-2)

30 1.4230 2.2732 2.6424e-6 0.7986 0.0892 1.0542

(1.1e-7) (7.1e-3) (7.4e-3) (6.5e-2)

40 1.1459 1.6807 7.6875e-7 0.9058 0.0223 1.7748

(4.2e-8) (3.5e-3) (1.3e-3) (7.9e-2)

50 1.3646 2.2216 2.1238e-6 0.8501 0.0481 1.3645

(1.0e-7) (5.4e-3) (4.2e-3) (9.3e-2)

60 1.1423 1.6980 8.0677e-7 0.8869 0.0226 1.9812

(4.1e-8) (4.0e-3) (1.2e-3) (8.5e-2)

after 90 iterations.

Figure 3 illustrates the relative improvement of the average RMSE from

one iteration to the next for all particle numbers. It can be seen that itera-

tions with several improvements and iterations with almost no improvements

are alternating. For example, until iteration 15 many improvements have

been found. Between iterations 20 and 30 only very small improvements

could be attained while after iteration 30 again higher improvements can be

seen. This phenomenon can be related to the search radius of the ARS algo-

rithm. This radius is reduced whenever no better solution has been obtained,

and until a better solution has been found, the old solution stays. If that

happens for several particles at the same time, the average RMSE changes
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only very slightly. Thus, between iterations 20 and 30, only very few improve-

ments have been found, and after iteration 30, after the search radius has

been reinitialized, the particles had more chances to find improved solutions.

On the other hand, the magnitude of the relative improvements decreases as

well. The improvements between iterations 1 and 15 are highest, while those

between iterations 30 and 60 are already lower. Finally the improvements

between iterations 75 and 100 are lowest (not taking into account the almost

zero-improvements in the remaining iterations). From this consideration it

seems reasonable to stop the algorithm after about 60 iterations.

0 20 40 60 80 100
1.5

2

2.5

3

Iteration

Avg.
RMSE

 

 

10 Particles
20 Particles
30 Particles
40 Particles
50 Particles
60 Particles

Figure 2: Leverage model: average RMSE vs. iteration number

3.1.2. Heston-Nandi Model

Since the Heston-Nandi model has a closed form option pricing formula,

Monte Carlo simulations are not necessary, and therefore only the number of
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Figure 3: Leverage model: relative improvement of average RMSE between iterations

iterations must be fixed (I = 100 has been used) while changing the number

of particles. The results obtained for the Heston-Nandi model are summa-

rized in Table 4 and show that the RMSE values do not change significantly

with the number of particles, but the OOSE decreases as the number of par-

ticles increases. The RMSE is in general higher for the Heston-Nandi model

than for the Leverage model. Note also that not always the lowest RMSE

implies the lowest OOSE. Table 5 shows the minimal RMSE and OOSE.

The average RMSEs over all particles in each iteration are illustrated

in Figure 4. A comparison with Figure 2 shows that the development of

the RMSE is for all particle numbers very similar. In the first 15 iterations

significant RMSE reductions can be observed while between iterations 15

and 30 almost no changes are visible. A further small improvement can
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Table 4: Heston-Nandi model: average RMSE after 100 iterations and average OOSE with

different numbers of particles

# Particles 10 20 30 40 50 60

avg. RMSE 1.9505 1.9530 1.9562 1.9526 1.9866 1.9473

avg. OOSE 2.9122 2.8685 2.7257 2.8053 2.7674 2.5714

be observed between iterations 30 and 50, but after iteration 60 the RMSE

stays approximately constant for all particle numbers. Figure 5 illustrates the

relative improvement of the average RMSE from one iteration to the next.

Also this illustration shows that after iteration 60 almost no improvements

could be achieved.
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Figure 4: Heston-Nandi model: average RMSE vs. iteration number model
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Table 5: Heston-Nandi model: best parameter settings with different numbers of particles

# Particles min. RMSE min. OOSE β0 β1 β2 β3

10 1.7478 3.0401 4.4388e-6 0.3153 8.9365e-6 253.3633

(1.1e-6) (8.7e-2) (1.5e-6) (33.3)

20 1.7758 2.7094 1.4968e-6 0.2726 1.7707e-5 177.1633

(1.2e-6) (7.5e-2) (1.3e-6) (11.9)

30 1.7290 2.7363 5.0699e-6 0.1999 8.7936e-6 277.7067

(1.2e-6) (0.1) (1.6e-6) (40.4)

40 1.7458 2.7904 4.9489e-6 0.3420 9.9591e-6 229.8892

(1.3e-6) (9.2e-2) (2.0e-6) (34.6)

50 1.5672 2.6616 9.4076e-7 0.7282 3.9952e-6 240.8244

(2.4e-7) (2.0e-2) (4.1e-7) (18.8)

60 1.3970 2.2835 1.7733e-7 0.6924 2.7526e-6 322.0671

(4.8e-7) (0.1) (5.0e-7) (59.7)

3.2. Influence of Price Simulation Path Number on Solution Quality

For the Leverage model the option prices must be calculated by Monte

Carlo simulations. The implications of the number of price simulation paths

on the objective function values are examined below. The number of particles

was set toM = 60. The number of iterations has been fixed to I = 100 while

the number of price simulation paths has been varied between P = 50 and

P = 10000. The results are summarized in Tables 6 and 7, respectively.

The results in Table 6 indicate that the lowest average RMSE was ob-

tained when using 1000 price simulation paths. The out-of-sample error is

lowest when 50 simulation paths are used, but the differences between the

out-of-sample errors for different price simulation path numbers are rather
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Figure 5: Heston-Nandi model: relative improvement of average RMSE between iterations

model

small. Table 7 shows the minimal RMSE and OOSE achieved during all

three simulation runs. The best results were achieved by the 5000 path case.

The average RMSEs for all price simulation path numbers are illustrated

in Figure 6. It can be seen that the 50 price path case has the highest

average RMSE. Figure 7 illustrates the relative RMSE improvement from

one iteration to the next. The major improvements are found during the

first 15 iterations, and between iterations 40 and 60.

3.3. Comparison to Standard Optimization Routines

For reasons of comparison, the GARCH models have also been calibrated

using a gradient based method (fmincon in Matlab’s optimization toolbox).

For this purpose different particle numbers have been used and each particle
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Table 6: Leverage model: average RMSE after 100 iterations and OOSE with different

numbers of price simulation paths

# Paths 50 100 500 1000 5000 10000

avg. RMSE 1.8489 1.8493 1.7843 1.7698 1.7971 1.7915

avg. OOSE 1.9180 2.2994 2.1939 2.2315 2.0095 1.9280

executes the optimization using fmincon. Since the number of iterations

has been limited to 100 for the ARS approach, the option MaxFunEvals

of fmincon has been set to 100 so as to compare the final results of both

optimization methods after an equal number of function evaluations. The

fmincon computations have been distributed at the particle level.

The initial guess for the solution required by fmincon has been obtained

in the same way as for the ARS approach for every particle. Constraints (6)

and (7) have been supplied as non-linear inequality constraints, the lower

parameter bounds have been set to [βl
0, β

l
1, β

l
2, β

l
3] = [0, 0, 0, 0], and the upper

bounds were adjusted to [βu
0 , βu

1 , βu
2 , βu

3 ]L = [10−5, 1, 1, 10] for the Leverage

model, and to [βu
0 , βu

1 , βu
2 , βu

3 ]HN = [10−5, 1, 10−4, 10] for the Heston-Nandi

model.

The resulting RMSEs of all simulation runs are summarized in Tables 8(a)

and 8(b). The results show that for both models fmincon delivers worse

results than the ARS optimization approach. The results for the Leverage

model (Table 8(a)) show that the average and minimal RMSE found by

fmincon reduce as the number of particles increases. However, for the Heston-

Nandi model the average RMSE does not continuously decrease with an

increasing number of particles (see Table 8(b)). Figure 8 shows the average
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Table 7: Leverage model: best parameter settings with different numbers of price simula-

tion paths

# Paths min. RMSE min. OOSE β0 β1 β2 β3

50 1.4700 1.6946 1.0667e-6 0.8835 0.0585 0.9630

(4.1e-8) (3.3e-3 ) (2.8e-3) (4.4e-2)

100 1.4641 2.4881 2.7314e-6 0.7557 0.0390 2.2115

(1.5e-7) (1.3e-2) (3.5e-3) (0.1)

500 1.3296 1.8864 1.2119e-6 0.8843 0.0352 1.4455

(5.8e-8) (4.3e-3) (2.6e-3) (9.0e-2)

1000 1.3466 2.1235 1.7916e-6 0.8573 0.0597 1.1023

(7.7e-8) (4.6e-3 ) (4.6e-3) (6.7e-2)

5000 1.1254 1.6754 5.4416e-7 0.9274 0.0132 2.1017

(5.5e-8) (3.5e-3) (9.0e-4) (0.1)

10000 1.1423 1.6980 8.0677e-7 0.8869 0.0226 1.9812

(4.1e-8) (4.0e-3) (1.2e-3) (8.5e-2)

RMSE values for both optimization algorithms and both models after an

equal number of function evaluations (see Tables 2, 4, and 8 for the data).

In general, when comparing the solution quality of the ARS approach and

fmincon, as summarized in Table 9 and illustrated in Figure 8, the ARS

approach should clearly be favored.
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Figure 6: Leverage model: average RMSEs with different price simulation path numbers
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Figure 7: Leverage model: relative Improvement of average RMSE between iterations with

different price simulation path numbers
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Table 8: Average RMSEs for Leverage and Heston-Nandi model with fmincon

(a) Leverage Model

#Particles 10 20 30 40 50 60

avg. RMSE 7.4405 5.9206 4.3440 3.6893 3.6459 3.3123

min. RMSE 5.1619 3.9771 3.4096 3.1463 2.9109 2.7620

(b) Heston-Nandi Model

#Particles 10 20 30 40 50 60

avg. RMSE 13.1037 10.4078 8.6576 9.3890 6.5176 7.9945

min. RMSE 10.5699 7.6385 6.3539 5.5625 5.1313 4.7738

Table 9: Summary of minimum RMSE reached by ARS and fmincon for Leverage and

Heston-Nandi model, respectively

# Particles 10 20 30 40 50 60

Leverage
ARS 1.4903 1.4143 1.4230 1.1459 1.3646 1.1423

fmincon 5.1619 3.9771 3.4096 3.1463 2.9109 2.7620

Heston-Nandi
ARS 1.7478 1.7758 1.7290 1.7458 1.5672 1.3970

fmincon 10.5699 7.6385 6.3539 5.5625 5.1313 4.7738
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4. Conclusions

In this paper a global optimization approach for the calibration of GARCH

models has been examined. The Leverage and the Heston-Nandi model have

been calibrated by minimizing a loss function using the accelerated random

search approach. The number of concurrent optimizers (“particles”) used

and, for the Leverage model, the number of price simulation paths have

been varied in order to investigate their effects on the solution quality and

computation time. A gradient based method, Matlab’s optimization routine

fmincon, has as well been used for the model calibration for comparison. The

computation has been sped up by applying distributed computing, empirical

martingale simulation, and antithetic variables.

The results show that the ARS optimization is a valid approach for cal-

ibrating GARCH models using information on option prices, and that the

solution quality is clearly better compared to the gradient based method

(fmincon). In general it can be concluded that the ARS approach has better

parameter domain exploration qualities than standard optimization routines

even if a multi-start procedure is applied with the latter. Although imple-

mented for the specific models considered in this paper, the parallel ARS

optimization method can easily be generalized and applied to a wide variety

of optimization problems.

The application of ARS to the maximum likelihood method for model

calibration should be considered in future research work. Also, since for the

Leverage model the computation time to obtain the RMSE for one parameter

set tends to become prohibitively high as the number of price simulation

paths increases, it would be reasonable to investigate the use of surrogate
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model based algorithms [32].
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[32] J. Müller, R. Piché, Mixture surrogate models based on Dempster-Shafer

theory for global optimization problems, Journal of Global Optimization

51 (2010) 79–104.

35




