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Variable Step Size Time Integration Methods for
Transient Eddy Current Problems

Frank Cameron, Robert Piché and Kimmo Forsman
Tampere University of Technology, P.O. Box 692, 33101 Tampere, Finland

Abstract—For transient eddy current problems
modelled as differential-algebraic equations (DAEs) a
time integration method suitable for ordinary differen-
tial equations (ODEs) will not necessarily work. We
present two Runge-Kutta methods that are suitable
for the time integration of the classes of DAEs to which
eddy current problems belong. Both methods have er-
ror estimators and hence allow variable step sizes. In
tests our variable step size integrators were competi-
tive with fixed step size integrators, in particular with
Crank-Nicolson.

Index terms— Eddy currents, Electromagne-
tic transient analysis, Integrodifferential equations,
Runge-Kutta methods

I. INTRODUCTION

Common numerical approaches for solving nonlinear
transient eddy current (EC) problems yield, after spatial
discretization, a system of N equations of the form

SOy = Ry, t)y+1£(t), y(to) =yo (1)

In (1) y(¢) is the vector of states (i.e. degrees of freedom),
y' = dy/dt and f(t) is a driving term. The choice of
an appropriate time integration method for (1) depends
on the properties of S (see Table I). EC problems are
challenging because S is singular and thus (1) is not an
ODE but rather a system of differential-algebraic equa-
tions (DAEs).

Depending on how it is formulated, an EC problem may
belong to class C» or to class Cs. If the objects are station-
ary and the only source of nonlinearity is caused by the
permeability p = p(|H|), H-oriented formulations (im-
plying the tangential continuity of the magnetic field H)
belong to class C3 and B-oriented formulations (imply-
ing the normal continuity of the magnetic flux density B)
to class Cy. If the conductivity o also is nonlinear then
practically all formulations belongs to class Cjs, see e.g.
[1]-[3]. Problems with moving objects will in general be-
long to Cs, i.e. S will depend on t.

Time integration methods designed for ODEs may not
be appropriate for DAEs, in particular they may lose or-
der. A time integration method is of order p if the local
error depends asymptotically on the time step size h as
O(hPt1). Let p(C;) be the order of a method for C;. Then
it is known that p(Cy) > p(C2) > p(Cs3). With regards to
order, a method designed for C5 should also be suitable
for 02 and 01.
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An important issue in time integration is whether the
step size h is constant or variable. With variable h one has
the advantage of being able to control the error incurred
in computing the time integration. Variable h schemes
however are more difficult to design and implement.

Nicolet and Delincé [4] raised the issues of the DAE na-
ture of EC problems and variable vs. constant . The time
integration methods they proposed were only suitable for
class Cs problems. We wish to solve class C's problems. In
addition the variable h scheme proposed by Nicolet and
Delincé has the lowest possible order. Our purpose is to
design and implement variable step size time integration
methods for class C5 whose order is higher than that of
Nicolet and Delincé.

II. RUNGE-KUTTA METHODS

We use time integration methods from the Runge-Kutta
(RK) family. An s stage RK method is specified by an
s x s matrix A and s x 1 vector b. Starting from the
initial condition yo at to the ith stage of an RK method
is defined by

Y; = Yo + hz CL,’jY;- . (2)
=1

The RK method is applied by substituting Y; for y and
Y} for y' in (1) and solving the resulting equation set.
When all stages have been computed the state is updated
using

yi=Yo+h> bY]. (3)
=1

To find Y;,i=1,2,...,s when A is full we must solve
a set of N -s equations. There are several ways of avoiding
having to solve this large set: (a) restrict A to be lower
triangular, (b) use a triangular approximation to A [5],
or (c) factorize A using a Jordan or Schur decomposition
and rewrite the equations to be solved [6, sec IV.8]. We
have chosen option (a) since it is the easiest to implement.

TABLE 1
CLASSES OF EQ. (1).

Class  Properties of S(-) Type
C1 constant, nonsingular ODE
Co constant, singular DAE
Cs depends on y, t, singular DAE



An embedded pair of RK methods is typically used to
estimate the error in y. Such a pair uses the same A

matrix but different advancing vectors b and b. Assuming

b yields the more accurate RK method, i.e. the method
with higher order, then an estimate of the local error in
y from (3) is

e= hi(bi — b)Y . (4)

The local error is the error produced in one time step
by a time integration method assuming exact initial con-
ditions. The global error is the difference at any time
between the exact value of y and the estimate of y pro-
vided by a time integration method. Thus global error
takes into account the accumulation of error as we move
step by step.

The errors discussed here are solely those due to time
integration, i.e. we do not consider errors due to the spa-
tial discretization.

We have designed two embedded pairs using the theory
of Kvaerng [7] and Jay [8]. For the first pair

6—32 0 0 0

1 3v2 6 — 32 0 0

T 6| 30-18/2 24v2-36 6-3vZ 0
2v2+1  —24+42 1 6 —32

()
The b and b vectors are equal to the 2nd and 4th rows of
A respectively. For the second pair

0 0 0 0

1 801792 801792 0 0

~ 2088000 970833 315375 801792 0
590875 1953125 —1257792 801792

(6)
The b and b vectors are equal to the 3rd and 4th rows
of A respectively. For both (5) and (6) it can be shown

that the b and b methods have orders of O(h?) and O(h?)
respectively for class Cs.

Method (5) has 4 implicit stages, i.e. 4 nonzero diagonal
elements, while (6) has 3 implicit stages. Depending on
the EC problem in question, this difference may be signif-
icant since each implicit stage implies a set of (non)linear
equations to be solved. However, methods where the first
row of A is zero have the disadvantage that for class Cs
they are not “self-starting”: either the first step must be
done using another RK method or y’ at to must be given.

Although (4) only estimates the error of the lower order
method, we are free to update y with either the lower or
higher order methoAd. We update y with the higher order
method, i.e. using b. We shall call the RK method based

n (5) Cam1l and that based on (6) Cam?2.

Both the b and b methods of (5) are L-stable. The b
and b methods of (6) are A-stable and have asymptotic
stability function values of roughly 0.81 and 0.41 respec-
tively. Hairer and Wanner’s book [6, sec IV.3] describes
these stability measures.

With variable step size methods we cannot choose the
time instants at which y is computed. So it is useful to
have interpolators to compute y at any desired time in-
stants. With RK methods we can use the stage values
Y;, i =1,2,...,s to design interpolators that are com-
putationally cheap. We have designed RK interpolators
of order O(h?) for both (5) and (6). Aside from their
use in computing output at desired time instants the in-
terpolators can be used to predict starting values for the
non-linear equations.

III. CRANK-NICOLSON, MIDPOINT AND TRAPEZOID

There are actually several methods in the literature, dif-
fering slightly from one another, that are called “Crank-
Nicolson”. We discuss two RK methods that can be inter-
preted as Crank-Nicolson methods: (a) the implicit mid-
point rule and (b) the trapezoid rule. To see the difference
between these two methods consider (1) without a driving
term and with constant S. For the first step the implicit
midpoint rule yields

S-(y1—yo) = gR<2(Y1 +YO)> - (y1 + ¥o) (7)

while the trapezoid rule yields

S-(y1—yo) = g (R(YI)YI + R(Yo)yo) (8)

The nonlinear R is clearly handled differently by the two
methods. If S depended on y it would also be handled dif-
ferently. While both methods have order O(h?) for class
C1, only the trapezoid rule is O(h?) for classes C and Cs.
As our EC problems belong to either Cy or C'3 we have
not used the midpoint rule.

IV. ERROR CONTROL

The step size h is adjusted to maintain an error measure
€ below a certain level. The error measure we have used
is a root-mean-square expression,

N | 5 1/2
( Z( |yl|—|—y,) ) ’ (9)

=1

where e; is the local error estimate from (4), r is a user-
requested relative tolerance and v; is a “threshold” value
for component ;. We adjust A to maintain € < 1.

Threshold v; represents a value that is “small” but
nonzero for y;. If v; were absent, problems would occur in
(9) when y; ~ 0. Thus far we have used previous runs to
get estimates for v;. We are working on a procedure that
automatically estimates v; using a few RK steps before
the actual run starts.

The basic rule for the controller that adjusts h is as
follows: if € < 1 then increase h else if € > 1 then reduce
h. We have implemented Gustafsson’s PI-controller [9] for
adjusting h.
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Fig. 1. The test system.

V. TESTS

Our test system (Fig. 1) consisted of a driving coil, a
non-conducting iron yoke and a conducting, non-magnetic
plate. The current in the coil is constant and we assume
constant permeability for iron, g, = 1000, and constant
conductivity o = 2.0 - 107 S/m for the conducting plate.

We imposed movement on the plate: it starts below
the yoke from rest, moves through the gap between the
poles and finishes above the yoke. Figure 1 shows the
plate at five different positions along its path of move-
ment. As intuition would suggest the eddy currents in
the plate reverse their direction of circulation as the plate
moves through the gap.

For this test system we used the H-oriented hybrid for-
mulation presented in [10] and [3]. In this formulation
only the magnetic and conducting regions are modelled
(i.e. included in the domain Q) and thus the movement
of the plate is easily realized. Whitney edge elements are
used for approximating the magnetic field H and thus a
state y; is the circulation of H along edge ¢ of the mesh.
The test system is a linear time-varying problem since pu
and o are constant. After taking symmetry into account
our spatial discretization has 451 nodes and 1549 tetrahe-
dra and y has 597 states.

We conducted two simulations that differed in the mo-
tion imposed on the plate (Fig. 2). In both simulations
we estimated the response in four different ways:

Case 1 fixed h, Trapezoid rule

Case 2 fixed h, b method from (5)
Case 3 variable h, Cam1 from (5)
Case 4 variable h, Cam2 from (6)

In Case 2 since b only needs the first two stages we did
not use the entire A of (5), but only first two rows. We
computed global accuracy based on the total ohmic power
losses in the conducting plate:

1
P= /—curlH -curl H = y" Dy, (10)
o
Q.

where the domain Q. includes all conducting parts of the
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Fig. 2. The plate position for simulations 1 and 2.
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Fig. 3. The power response for simulation 1. Solid line: exact

solution, +: points computed by Case 4, dashed line: Case 4 RK
interpolator.

system. The matrix D is defined by

1
di; =/ —curlw; - curl wy,
Q.0
where w; is the edge element basis function associated
with edge i. The accuracy we used is

-1

Accuracy = Ppag - (Ir}sax | Pegact(ti) = Pest(ti) | ) (11)
In (11) P4z is the largest power observed, P.g is an
estimate computed from one of the four Cases and P4t
is obtained using a very small step size h.

Figure 3 shows the power response for the first simu-
lation. The dotted vertical line shows the time when the
plate is directly in the gap between the poles. The work-
accuracy diagram for the four different cases is Fig. 4.
Figures 5 and 6 are the corresponding figures for the sec-
ond simulation. In the second simulation the plate almost
stops when it is directly in the gap between the poles.

As Nicolet and Delincé [4] point out, it is difficult to
compare fixed and variable step size methods. The re-
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Fig. 4. Work vs. accuracy for simulation 1. O: Case 1, *: Case 2,
O: Case 3, +: Case 4.
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Fig. 5. The power response for simulation 2. Solid line: exact

solution, O: points computed by Case 3, dashed line: Case 3 RK
interpolator.

sults one gets are very much dependent on the simulation
parameters: the input, the length of the simulation, what
error criteria are used and so on. Nonetheless we can make
some observations based on the above results:

e The variable step methods are better than the fixed
step methods when higher accuracies are demanded.

e Cam?2 (6) performs better than Caml1 (5).

e The variable step methods are better than the fixed
step methods in simulations where there are periods
of “fast” and “slow” dynamics.

e The RK interpolators work well in providing points
between the times when the RK methods compute
the states y.

The final observation is based on the power responses
produced by interpolators corresponding to Caml and
Cam?2 shown in Figures 3 and 5. These responses lie al-
most on top of the exact power response even though they
correspond to runs with relatively low accuracy.
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Fig. 6. Work vs. accuracy for simulation 2. O: Case 1, *: Case 2,
O: Case 3, +: Case 4.

VI. CONCLUSION

We have developed two variable step size Runge-Kutta
methods for the classes of DAEs to which eddy current
problems belong. In addition both RK methods have cor-
responding RK interpolators that can cheaply compute
state values at any desired time. Comparing variable step
size integrators and fixed step size integrators in terms of
CPU time and accuracy is difficult; the quantitative re-
sults one gets will depend on the nature of the simulation,
on the accuracy measures used and so on. However in
qualitative terms a variable step size integrator has some-
thing a fixed size integrator can never have: a facility for
controlling error due to time discretization. We should be
willing to pay some CPU time for this facility.
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