
Complexity analysis of adaptive binary
arithmetic coding software implementations

Evgeny Belyaev1, Anton Veselov2, Andrey Turlikov2 and Liu Kai3

1Tampere University of Technology, Korkeakoulunkatu 10, 33720 Tampere, Finland
{evgeny.belyaev@tut.fi}

2Saint-Petersburg State University of Aerospace Instrumentation, Bolshaya
Morskaya 67, 190000 St. Petersburg, Russia

{felix,turlikov}@vu.spb.ru
3School of Computer Science and Technology, Xidian University, NO.2 Taibai South

Road, MailBox 161, 710071 Xi’an, China
{kailiu@mail.xidian.edu.cn}

Abstract. This paper is dedicated to the complexity comparison of
adaptive binary arithmetic coding integer software implementations. Firstly,
for binary memoryless sources with known probability distribution, we
prove that encoding time for arithmetic encoder is a linear function of a
number of input binary symbols and source entropy. Secondly, we show
that the byte-oriented renormalization allows to decrease encoding time
up to 40% in comparison with bit-oriented renormalization. Finally, we
study influence of probability estimation algorithm for encoding time
and show that probability estimation algorithm using “Virtual Sliding
Window“ has less computation complexity than state machine based
probability estimation algorithm from H.264/AVC standard.

Key words: binary arithmetic coder, range coder, probability estima-
tion, complexity analysis

Introduction

Adaptive binary arithmetic coding is included in well known image and video
compression standards and state of the art codecs like JPEG [1], JPEG2000 [2],
H.264/AVC [3], Dirac [4] etc. Arithmetic coders implemented in these codecs
are based on Q-coder [5] which is multiplication free adaptive binary arithmetic
coder with bit renormalization and look-up tables used for probability estima-
tion. Q-coder was introduced in 1988 and since that time the relative computa-
tional complexity of different arithmetical operations changed significantly. For
example, table look-up operation takes more CPU clock cycles than a multipli-
cation [7]. Thus, these changes should be considered for designing of a new video
compression standards (especially for High Efficiency Video Coding (HEVC) [8])
or state of the art codecs.

In this paper we compare adaptive binary range coder introduced in [6] with
arithmetic coder from H.264/AVC standard. At first, we show that the byte-



2 E. Belyaev, A.Veselov, A.Turlikov and Liu Kai

oriented renormalization allows to decrease encoding time up to 40% in com-
parison with bit-oriented renormalization. Then we investigate the influence of
probability estimation algorithm for encoding time and show that using look-up
table free “Virtual Sliding Window“ (VSW) algorithm [14] allows to decrease the
encoding time up to 10% in comparison with probability estimation algorithm
from H.264/AVC standard.

Other actual topic for arithmetic encoding is complexity or power consump-
tion modeling which is needed for power-rate-distortion analysis. Previous works
[9, 10] use assumption that entropy encoder complexity is approximately pro-
portional to the output bit rate. In this paper we prove that in case of binary
memoryless sources with known probability distribution encoding time for bi-
nary arithmetic encoder is a linear function of a number of input binary symbols
and source entropy. If probability is not known, then encoding time is a linear
function of a number of input binary symbols and output bit rate.

The rest of this paper is organized as follows. Section 1 describes the main
idea of arithmetic encoding and its two integer implementations with different
renormalizations. Section 2 is dedicated to integer implementations of probabil-
ity estimation based on sliding window approximations. Section 3 introduces the
linear model for complexity of binary arithmetic encoder and show the compara-
tive results for described adaptive binary arithmetic coding software implemen-
tations.

1 Integer implementations of binary arithmetic encoder

Let us consider stationary discrete memoryless binary source with ones probabili-
ties p. In binary arithmetic encoding codeword for sequence xN = {x1, x2, ..., xN},
xi ∈ {0, 1} is represented as d− log2 p(xN ) + 1e bits of number

σ(xN ) = q(xN ) + p(xN )/2, (1)

where p(xN ) and q(xN ) are probability and cumulative probability of sequence
xN accordingly which can be calculated by using following recurrence formulas.
If xi = 0, then {

q(xi)← q(xi−1)
p(xi)← p(xi−1) · (1− p).

(2)

If xi = 1, then {
q(xi)← q(xi−1) + p(xi−1) · (1− p)
p(xi)← p(xi−1) · p.

(3)

In practice, integer implementation of arithmetic encoder is based on two
v-size registers: low and range (see Algorithm 1). Register low corresponds to
q(xN ), register range corresponds to p(xN ). The precision required to represent
registers low and range grows with the increase of N . For decreasing coding
latency and avoiding registers underflowing the renormalization procedure is
used for each output symbol (see lines 8–26 in Algorithm 1).



Complexity analysis of adaptive binary arithmetic coding 3

As an alternative to arithmetic coders, range coders use bytes as output
bit stream element and do byte renormalization at a time [16–18] (see lines 8–
15 in Algorithm 2). In this paper the binary range coder with Subbotin’s [19]
renormalization is analyzed.

Algorithm 1 Binary symbol xi encoding procedure in binary arithmetic coder
Input: xi, low, range, counter

1: len := range·p
2: len := max{1,len}
3: range := range − len
4: if xi =1 then
5: low := low+range
6: range := len
7: end if
8: while range < QUARTER do
9: if low ≥ HALF then

10: PUTBIT(1)
11: for i=1,...,counter do
12: PUTBIT(0)
13: end for
14: low := low − HALF
15: else if low < QUARTER then
16: PUTBIT(0)
17: for i=1,...,counter do
18: PUTBIT(1)
19: end for
20: else
21: counter := counter + 1
22: low := low − QUARTER
23: end if
24: low := low/2
25: range := range/2
26: end while

2 Integer implementations of probability estimation

2.1 Sliding window and its approximations

Algorithms of adaptive data encoding based on sliding window are widely known.
The probability of source symbol is estimated by analysis of special buffer con-
tents [11]. It keeps W previous encoded symbols, where W is the length of the
buffer. After encoding of each symbol the buffer’s content is shifted by one po-
sition, new symbol is written to the free cell and the earliest symbol in buffer is
erased. This buffer is called sliding window after the method of buffer content
manipulation.



4 E. Belyaev, A.Veselov, A.Turlikov and Liu Kai

Algorithm 2 Binary symbol xi encoding procedure in binary range coder
Input: xi, low, range

1: len := range·p
2: len := max{1,len}
3: range := range − len
4: if xi =1 then
5: low := low+range
6: range := len
7: end if
8: while (low ⊕ (low+range))<TOP ∨ (range<BOTTOM) do
9: if range<BOTTOM ∧ ((low ⊕ (low+range)))≥TOP then

10: range:= −low ∧ BOTTOM−1
11: end if
12: PUTBYTE(low·2−24)
13: range:=range·2−8

14: low:=low·2−8

15: end while

For binary sources probability of ones is estimated by Krichevsky-Trofimov [12]
formula

p̂t+1 =
St + 0.5
W + 1

, (4)

where St is the number of ones in the window before encoding symbol with the
number t.

The advantage of using the sliding window is the opportunity of precise eval-
uation of source statistics and fast adaptation to changing statistics. However,
the window has to be stored in the encoder and decoder memory, which is a se-
rious disadvantage of this algorithm. To avoid it the Imaginary Sliding Window
technique (ISW) proposed for a binary source [13] and for non-binary source [11].
The ISW technique does not require window content storage and estimates count
of symbols from source alphabet stored in the window.

Let us consider the ISW method for a binary source. Define xt ∈ {0, 1}
as source input symbol with number t, yt ∈ {0, 1} as symbol deleted from the
window after addition of xt. Suppose at every time instant a symbol in a random
position is erased from the window instead of the last one. Then the number
of ones in the window is recalculated by the following recurrent randomized
procedure.

Step 1. Delete a random symbol from the window

St+1 = St − yt, (5)

where yt is a random value generated with probabilities
Pr{yt = 1} =

St

W
,

Pr{yt = 0} = 1− St

W
.

(6)



Complexity analysis of adaptive binary arithmetic coding 5

Step 2. Add a new symbol from the source

St+1 = St+1 + xt. (7)

For implementation of ISW algorithm a random variable must be generated.
This random variable should take the same values at the corresponding steps
of encoder and decoder. However, there is a way to avoid generating a random
variable [14]. At step 1 of the algorithm let us replace random value yt with
its probabilistic average. Then the rule for recalculating number of ones after
encoding of each symbol xt can be presented in two steps.

Step 1. Delete an average number of ones from the window

St+1 = St −
St

W
. (8)

Step 2. Add a new symbol from the source

St+1 = St+1 + xt. (9)

By combining (8) and (9), the final rule for recalculating number of ones can
be given as follows:

St+1 =
(

1− 1
W

)
· St + xt. (10)

2.2 Probability estimation based on state machine

One way for implementation of probability estimation can be based on the state
machine approach. Each state of this machine corresponds to some probabil-
ity value. Transition from state to state is defined by the value of the input
symbol. This approach does not require multiplications or divisions for proba-
bility calculation. In addition, the fixed set of states allows to implement the
multiplication-free arithmetic encoding [5].

For example, let us consider state machine based probability estimation in
H.264/AVC standard [15]. Input symbols are divided into two types: Most Prob-
able Symbols (MPS) and Least Probable Symbols (LPS). State machine con-
tains 64 states and is based on equation (10). Each state defines probability
estimation for Least Probable Symbol. Set of probability values {p̂0, p̂1, ..., p̂63}
is defined as: 

p̂i = (1− γ)p̂i−1, where i = 1, ..., 63, p̂0 = 0.5,

γ = 1−
(

p̂min

0.5

) 1
63

, p̂min = 0.01875.
(11)

Probability estimation for symbol xt+1 is calculated as

p̂t+1 =
{

(1− γ)p̂t + γ, if xt =LPS,
max{(1− γ)p̂t, p̂62}, if xt =MPS.

(12)



6 E. Belyaev, A.Veselov, A.Turlikov and Liu Kai

2.3 Probability estimation based on virtual sliding window

Probability estimation using “Virtual Sliding Window“ [14] is also based on
equation (10), but it does not use state machine for probability calculation. For
this algorithm probability estimation that xi+1 is equal to one is defined as

p̂i+1 =
si

22w
, (13)

where 22w is a window length and si is a virtual sliding window state which is
recalculated by the following rule:

si+1 =


si +

⌊
22w − st + 2w−1

2w

⌋
, if xi = 1

si −
⌊

si + 2w−1

2w

⌋
, if xi = 0.

(14)

For stationary memoryless sources window length expansion increases the
probability estimation precision and improves compression rate. For arbitrary
source window length expansion may reduce estimation precision. Therefore, op-
timal window length selection is a complex problem because statistical properties
of a binary source are unknown. In [14] the following simple heuristic algorithm
of window length selection is proposed. Let us define L = {22w1 , 22w2 , ..., 22wl}
as a set of window lengths. The output of the binary source is encoded and then
window length is selected from the set L. During encoding probability estima-
tions p̂i(w1), p̂i(w2), ..., p̂i(wl) are calculated. After encoding, bit stream length
estimation is calculated by equation: R̂(wk) =

∑
i r̂i(wk), where

r̂i(wk) =
{
− log2 p̂i(wk), if xi = 1,
− log2 (1− p̂i(wk)), if xi = 0,

(15)

and window length w∗ is assigned by equation

w∗ = arg min
k

R̂(wk). (16)

Thus, compression gain is reached by assigning specific window length selected by
statistical properties of corresponding source. Therefore, Virtual Sliding Window
provides better compression efficiency [14] in comparison to adaptation mecha-
nism in H.264/AVC standard [15].

3 Computation complexity analysis

From Algorithm 1 follows, that lines 1–8 are used for each input binary symbol.
On the other hand, amount of using of lines 9–25 is in direct proportion to
number of bits in the output bit stream. Let use define N as a number of the



Complexity analysis of adaptive binary arithmetic coding 7

input binary symbols, R as a size of the output bit stream. Therefore encoding
time for binary arithmetic coder Tarith includes two main parts:

Tarith = αarith ·N + βarith ·R, (17)

where αarith is the computation complexity of lines 1–8 per one input binary
symbol, βarith is the computation complexity of lines 9–25 per one output binary
symbol.

Using the reasoning described above, encoding time for binary range coder
(see Algorithm 2) can be written as:

Trange = αrange ·N + βrange ·
1
8
·R, (18)

where αrange is the computation complexity of lines 1–8 per one input binary
symbol, βrange is the computation complexity of lines 9–14 per one output byte.

It is known [20], that redundancy of integer implementation of arithmetic
encoder depends on the number of bits for probabilities representation τ and bit
size v of registers low and range. Therefore, the size of the output bit stream

R ≈ N ·
(
h(p) + 2 · (τ + log e) · 2−(v−2)

)
, (19)

where h(p) is entropy of binary memoryless source with ones probabilities p,
v ≥ τ + 2.

Equations (17), (18) and (19) show, that if probability of ones is known, then
for given arithmetic coder implementation encoding time is the linear function
of a number of input binary symbols and source entropy h(p).

Values αarith, βarith, αrange and βrange depend on processor architecture.
For simplification let us assume that αarith ≈ βarith ≈ αrange ≈ βrange and
v � τ , then from (17), (18) and (19) follows that

Tarith − Trange

Tarith
≈

7
8
· h(p)

1 + h(p)
∈ [0, ..., 0.4375] . (20)

Figure 1 shows the encoding time for 108 input binary symbols using Proces-
sor Intel Core 2 DUO, 3GHz. These results show that byte-oriented renormaliza-
tion allows to decrease encoding time up to 40% in comparison with bit-oriented
renormalization. In addition this figure shows that proposed linear model is fits
for encoding time representation for Algorithms 1-2.

In real applications the probability of ones is not known. In this case for
input binary symbol xi the probability estimation of ones p̂i is calculated and
used in line 1 of Algorithms 1-2 instead p. In this case, the size of output bit
stream can be calculated as

R ≈
N−1∑
i=0

ri, (21)

where

ri =
{
− log2 p̂i, if xi = 1,
− log2 (1− p̂i), if xi = 0,

(22)



8 E. Belyaev, A.Veselov, A.Turlikov and Liu Kai

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Source entropy H(p)

Ti
m

e, 
m

s

Algorithm 1
Algorithm 2
Linear model for Algorithm 1
Linear model for Algorithm 2

Fig. 1. Encoding time for N = 108 in case when probability is known

Equations (17), (18) and (21) show, that the encoding time for adaptive
binary arithmetic coder is the linear function of a number of input binary symbols
and the output bit rate which depends on precision of the probability estimation
p̂i.

Figure 2 shows the encoding time for Algorithm 1 in case of binary arith-
metic encoder with probability estimation using state machine (as in H.264/AVC
standard) and “Virtual Sliding Window“ with parameters w = 4 and w = 8.
This figure shows that both probability estimation algorithms require additional
computation complexity. At the same time, “Virtual Sliding Window“ allows to
decrease the encoding time up to 10% (for w = 8) in comparison to probability
estimation algorithm from H.264/AVC standard.

4 Conclusion

In this paper we have proved that in case of binary memoryless sources with
known probability distribution encoding time for binary arithmetic encoder is a
linear function of a number of input binary symbols and source entropy. We have
shown that the adaptive binary arithmetic encoder implementation based on
byte-oriented renormalization and probability estimation using “Virtual Sliding
Window“ has significantly less computational complexity than binary arithmetic
encoder from H.264/AVC standard. Therefore, it is more preferable as an entropy
encoding method for future video compression standards or state of the art
codecs.



Complexity analysis of adaptive binary arithmetic coding 9

700

900

1100

1300

1500

1700

1900

2100

2300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Source entropy H(p)

Ti
m

e, 
m

s

Algorithm 1 + State machine (H.264)
Algorithm 1 + VSW (w=4)
Algorithm 1 + VSW (w=8)
Algorithm 1 (probability is known)

Fig. 2. Encoding time for N = 108 in case of binary arithmetic encoder with probability
estimation using state machine and “Virtual Sliding Window“

This work is supported by the Russian Foundation for Basic Research, project
10-08-01071-a and by the project of NSFC International Young Scientists.

References

1. ITU-T and ISO/IEC JTC1, “Digital Compression and cod- ing of continuous-tone
still images“, ISO/IEC 10918-1 ITU-T Recommendation T.81 (JPEG), 1992.

2. ITU-T and ISO/IEC JTC 1, “JPEG 2000 Image Coding System: Core Coding
System, ITU-T Recommendation T.800 and ISO/IEC 15444-1“ JPEG 2000 Part 1,
2000.

3. Advanced video coding for generic audiovisual services, ITU-T Recommendation
H.264 and ISO/IEC 14496-10 (AVC), 2009.

4. H. Eeckhaut, B. Schrauwen, M. Christiaens, J. Campenhout “Speeding up Dirac’s
entropy coder“, Proc. 5th WSEAS Int. Conf. on Multimedia, Internet and Video
Technologies, pp. 120–125, 2005.

5. W.B. Pennebaker, J.L. Mitchel, G.G. Langdon, R.B. Arps, “An overview of the
basic principles of the q-coder adaptive binary arithmetic coder“, IBM J. Research
and Development. V.32. pp.717–726, 1988.

6. E. Belyaev, “Low bit rate video coding based on three-dimensional discrete pseudo
cosine transform“, International Conference on Ultra Modern Telecommunications,
2010.

7. A. Said, “Comparative analysis of arithmetic coding computational complexity“,
Hewlett-Packard Laboratories Report, HPL-2004-75, 2004.

8. High Efficiency Video Coding, http://www.h265.net/



10 E. Belyaev, A.Veselov, A.Turlikov and Liu Kai

9. X. Lu, Y. Wang, and E. Erkip, “Power efficient H.263 video transmission over wire-
less channels“, International Conference on Image Processing, pp. 533-536, 2002.

10. Z. He, Y. Liang, L. Chen, I. Ahmad, D. Wu, “Power-rate-distortion analysis for
wireless video communication under energy constraints“, IEEE Transactions on
Circuits and Systems for Video Technology, vol.15, pp.645-658, 2005.

11. B. Ryabko, “Imaginary sliding window as a tool for data compression“, Problems
of Information Transmission, pp. 156-163, 1996.

12. E. Krichevski and V. Trofimov, “The performance of universal encoding“, IEEE
Transactions on Information Theory, vol. IT-27, pp. 199-207, 1981.

13. T.Leighton and R.L.Rivest, “Estimating a probability using finite memory“, IEEE
Transactions on Information Theory, vol. IT-32, pp. 733-742, 1986.

14. E. Belyaev, M. Gilmutdinov, A. Turlikov, “Binary arithmetic coding system with
adaptive probability estimation by Virtual Sliding Window“, Proceedings of the 10th
IEEE International Symposium on Consumer Electronics, pp.194–198, 2006.

15. Marpe D., Schwarz H., Wiegand T., “Context-based adaptive binary arithmetic
coding in the H.264/AVC video compression standard“, IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol.7. pp.620–636, 2003.

16. Schindler M.A., “Byte oriented arithmetic coding“, Proceedings of Data Compres-
sion Conference, 1998.

17. D. Vatolin, “Data compression methods“, Dialog-MIFI Publisher, Moscow, 2002.
(in Russian)

18. P. Lindstrom, M. Isenburg, “Fast and Efficient Compression of Floating-Point
Data“, IEEE Transactions on Visualization and Computer Graphics, Vol.12, Iss.5,
pp.1245 – 1250, 2006.

19. D.Subbotin, “Carryless Rangecoder“, 1999. http://search.cpan.org/src/

SALVA/Compress-PPMd-0.10/Coder.hpp.
20. B.Y. Ryabko, A. N. Fionov, “An efficient method for adaptive arithmetic coding

of sources with large alphabets“, Problems of Information Transmission, vol.35, No.
4, pp. 95–108, 1999.


