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Abstract. An accurate inertial measurement unit (IMU) is a necessity when

considering an inertial navigation system capable of giving reliable position and velocity

estimates even for a short period of time. However, even a set of ideal gyroscopes and

accelerometers does not imply an ideal IMU if its exact mechanical characteristics (i.e.

alignment and position information of each sensor) are not known.

In this paper, the standard multi-position calibration method for consumer grade

IMUs using a rate table is enhanced to exploit also the centripetal accelerations caused

by the rotation of the table. Thus, the total number of measurements rises, making the

method less sensitive to errors and allowing use of more accurate error models. As a

result, the accuracy is significantly enhanced, while the required numerical methods are

simple and efficient. The proposed method is tested with several IMUs and compared

to existing calibration methods.

Keywords: Multi-position calibration, inertial measurement unit, rate table, centripetal

acceleration
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1. Introduction

An inertial measurement unit (IMU) is the part of an inertial navigation system

that provides the measurement data. A typical IMU consists of accelerometers and

gyroscopes measuring accelerations and angular velocities which have to be numerically

integrated to get the position estimates. Consequently, inertial measurement systems

are very sensitive to measurement errors, which we can significantly decrease by means

of calibration.

We classify the measurement errors of the IMU into two different categories:

(i) The errors caused by the unknown mechanical characteristics of the IMU.

• An uncalibrated IMU is assumed to provide us with specific force and angular

rate measurements in an orthogonal basis. In practice, an IMU never yields

measurements in an orthogonal basis as such. This is due to inevitable

imperfections in the manufacturing process of the IMU.

• The accelerometers are assumed to measure the specific force of a single point of

the IMU. Because of the physical size of the accelerometers, they will measure

the specific forces of different points. This is sometimes called the ”size effect”

[1, 2].

To compensate for these effects, one needs to find the measurement axes of the

sensors and the locations of the accelerometers with respect to a chosen point.

These errors will be present regardless of the quality of the employed sensors.

(ii) The errors caused by individual sensors within the IMU.

• There are both stochastic and deterministic errors present in the data given

by a single sensor. The purpose of calibration is to compensate for the most

significant deterministic error sources. The most commonly encountered error

sources include bias, scale factor and cross-correlation errors. In addition,

consumer grade gyroscopes are typically sensitive to linear accelerations [1].

1.1. Background

Multi-position calibration is a well-known and a widely employed calibration method.

It is based on the idea of keeping the IMU in different positions with respect to the

local gravitational acceleration and the angular rate of the Earth [1, 3, 4]. With several

independent measurements, it is possible to find the most important error terms of the

IMU. Due to the relatively large gravitational acceleration (≈ 9.80 m/s2), this method

can be applied to practically any set of three accelerometers. However, the extremely

small angular rate of the Earth (≈ 4.17 × 10−3 ◦/s) limits the use of this method only

to the very accurate and expensive gyroscopes. With consumer grade gyroscopes, the

required reference signals must be obtained by another means.

Considering the calibration of accelerometers, the majority of the proposed methods

are based on the basic idea of the multi-position calibration method: In every position,

the magnitude of the specific force should be equal to the local gravitational acceleration
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[3, 5–12]. While the exploited calibration methods and sensor error models have been

essentially the same, much progress is achieved in making the required calibration

equipment less expensive and thus more suitable for calibration of consumer grade

accelerometers [5, 7, 9, 10]. The calibration of redundant sensor configurations is

considered in [8, 9].

The basic problem of the calibration methods relying on the gravitational

acceleration is the limited magnitude of the reference signals. In practice, also the

amount of linearly independent measurements is limited in order to keep the method

simple. To overcome these limitations, also some dynamic calibration methods have

been suggested. These include the use of a three-dimensional vibration generator [20]

and the centripetal accelerations caused by a pendulum [21]. The method considered in

[20] gives a possibility to consider also frequency-dependent errors, but requires costly

equipment. In the method considered in [21], the rotation radii must be provided and

the reference angular rates are computed by numerically differentiating the angle data

of the pendulum given by an encoder.

In addition to gyroscope-based inertial measurement units, it is possible to design

a gyroscope-free IMU (or GF-IMU). It is based solely on a number of accelerometers

mounted on a rigid body. Recent discussion of GF-IMU design can be found from

[13–16]. A typical calibration procedure for a GF-IMU is based on the multi-position

calibration [14, 16–18] and possibly to a dynamical test making it possible to determine

also the locations of the accelerometers [18]. The main motivation for developing such an

instruments has been the lack of affordable and reasonably accurate gyroscopes [14, 15].

The disadvantages include the inherently larger size of any reasonably accurate GF-IMU

as compared to gyroscope-based IMUs and the degraded measurement accuracy due to

indirect measurement of the angular velocity. Furthermore, at the present moment, there

are several gyroscopes of fair price-quality ratio available from many manufacturers. In

addition to typical ”yaw-rate gyros”, there is a growing number of devices measuring

also the other two directions when mounted on the same circuit board.

Some methods to calibrate consumer grade gyroscopes are considered in [5, 9, 21].

In [9], the required rotations are performed on a rate table operated by hand. Because of

this, the true angular rate is unknown and an additional rotations with known rotation

angle are required to determine the scale factors. In [5], the calibration is based on multi-

position calibration performed on a rate table with known angular rates. Similarly in

[21], the numerically computed angular rates of the pendulum can be directly exploited

in the calibration. In these studies, the exploited sensor error model has been essentially

the same, where g-sensitivity of the gyroscopes is not taken into account.

A totally different kind of an approach is to calibrate the IMU while on the move,

using additional information acquired for example, from a GPS system. These methods

are well exploited for example, in [1, 2, 4, 22, 23] and are not considered here.
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1.2. Goal of this study

We consider the calibration of IMUs performed on a low cost rate table.

Methodologically, the most relevant sources of this work are [5, 21]. Both consider the

calibration of consumer grade IMUs containing three accelerometers and gyroscopes. We

will combine the basic ideas of these studies and make some important generalizations

and additions to the methods considered therein.

We propose a method that is based on multi-position calibration generalized to

exploit the large range of centripetal accelerations caused by different rotation rates of

the rate table. As a result,

• the amount of measurement data increases and the calibration procedure becomes

less sensitive to errors,

• we can exploit more accurate error models than the ones used in the referred studies,

• it is possible to calibrate the IMU for a certain dynamical range.

The basic idea of the proposed calibration method is to compensate simultaneously

for a number of different error sources instead of seeking every modeled error term

separately. That is, we will not give a specific meaning to each parameter within the error

model, but rather concentrate on compensating for them. The gain of this approach

will realize below as somewhat simpler mathematical treatment and more importantly,

efficient calibration method based on well-known and widely exploited mathematical

tools. If considered necessary, it is just a question of interpretation to distinguish specific

error terms from the computed results (as will be discussed later on).

Formally said, the proposed calibration method is based on affine [24] inputs:

The reference accelerations contain a constant gravitational acceleration term and

a centripetal acceleration term, which is a linear function of the rotation radii.

Correspondingly, we model the errors of the accelerometer and gyroscope triads as affine

functions. That is, the calibrated output of the sensor triad is modeled by a constant

term added to a linear function of the raw sensor output.

Although one is in many cases well aware of the exact type of the sensors within

the IMU, the proposed method is also well suited for situations where this is not true.

As the calibration methods does not require any specific prior knowledge of the sensors

or their locations and directions within the IMU, it can be considered as a black box.

In order for any kind of a calibration method to be useful in practice, it should

contain some kind of checks with which one can reliably make sure that the calibration

was successful. Along with some standard tools for controlling the quality of the

calibration, we introduce a new kind of a control quantity. This is the rotation radius

needed to exploit centripetal accelerations. As it could be a difficult task to measure this

externally with adequate accuracy, we leave it for the calibration routine to determine.

This value is then used as a control quantity, whose approximate value we can easily

measure independently from the calibration routine.

We will focus especially on the calibration of consumer grade inertial sensors. The

practical issues of the actual calibration procedure, such as the accuracy of the reference
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data, are emphasized. Throughout the paper, we assume that the IMU is stable over

time. This is to say, the effect of temporal instability is assumed to be negligible as

compared to the other error sources. While this might sound like a major disadvantage

for a calibration method consumer grade sensors with known problems with temporal

stability, it actually is not: The possible temporal instability can be compensated by

occasionally comparing the output of the sensors when they are known to be in the

same position.

1.3. Some remarks

Before going on, let us introduce a few central terms. In this context, error model is a

bijective relation between the raw and the calibrated output of the sensors. Construction

of this relation includes both calibration and compensation. Calibration means that a

certain change in the raw output of a certain sensor is related to a certain change in the

input [1]. Compensation stands for correcting a number of deterministic errors present

in the measurements [1].

This text is organized as follows: In section two, the error models for an

accelerometer and a gyroscope triad are presented. The calibration setup will be

discussed in section three. The calibration procedure and the underlying formalism are

presented in section four. Test results are discussed in section five before the conclusions

in section six. Some technical details considering the accuracy of the rate table are

discussed in appendices A and B.

2. Error models

In this section, we will derive the error models mapping the raw output of the sensors

to the calibrated output of the IMU. The aim is to find such a mapping for a certain

IMU that minimizes the difference between the actual input and the calibrated output

of the IMU (the exact meaning of this is explained later on). The raw output of the

IMU is assumed to be a set of AD-converted voltages, naturally expressed as bits. Thus,

there is no need to convert the measurements into some more meaningful units prior

to applying the constructed error model. Observe that the error model also takes the

deterministic errors caused by the interface electronics of the IMU into account. Hence,

the calibration should be performed with the same interface electronics as used in the

actual measurements.

The calibrated accelerometer and gyroscope outputs given by the IMU are expressed

as real-valued vectors a ∈ R
3 and ω ∈ R

3, respectively. Vectors a and ω are both given

in the standard (orthogonal & right-handed) basis, defined by the calibration system

(as will be discussed in section three). The raw accelerometer and gyroscope outputs

of the sensors can be readily interpreted as real-valued vectors â ∈ R
3 and ω̂ ∈ R

3,

respectively. Vectors â and ω̂ are given in a basis characteristic to a certain sensor triad

within a certain IMU.
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Now, let Sa ∈ R
3×3 be a diagonal matrix containing the scale factor errors, M a ∈

R
3×3 a skew-symmetric matrix containing the misalignment and cross-coupling errors,

ba ∈ R
3 the bias vector and wa ∈ R

3 normally distributed, zero-mean measurement

noise. Then, a commonly exploited (e.g. [1, 23]) error model for the accelerometers is‡

â = Saa+M aa+ ba +wa. (1)

In a similar fashion, a commonly exploited ([1, 23]) error model for the gyroscopes is

ω̂ = Sωω +Mωω +Bωa+ bω +wω, (2)

where Bω describes the g-dependency of the gyroscopes [1].

Keeping (1) in mind, consider equation

â = Aa+ b, (3)

where â ∈ R
3, A ∈ R

3×3, a ∈ R
3 and b ∈ R

3. It is not hard to see that (3) is actually

the deterministic part of (1), where A contains the scale factors, misalignment and

cross-correlation terms for each individual sensor along with other possible corrections

which can be represented as a constant matrix. Vector b ∈ R
3 contains the constant

bias terms of each sensor. Correspondingly for the gyroscopes, consider equation

ω̂ = Cω + d+Ea, (4)

where ω̂ ∈ R
3, C ∈ R

3×3, ω ∈ R
3, d ∈ R

3 andE ∈ R
3×3. In (4)C has a similar meaning

than A in (3), d contains the constant bias terms and E takes the g-dependency of the

gyroscopes into account.

While (3) and (4) are in a convenient form considering the calibration, they are not

in a convenient form to be readily exploited by the inertial navigation system. For that,

we need to explicitly solve a and ω from the equations, which yields

a = A−1 (â− b) (5)

ω = C−1 (ω̂ − d−Ea) . (6)

In order to (5) and (6) make sense, matrices A and C must be invertible, which are

necessary conditions for the error models to be bijective relations.

As the formed error models (3) and (4) are clearly affine, they obviously can not

compensate for nonlinear errors present in a real situation. However, the constructed

error models will be able to compensate for the major error sources of a typical IMU

like the misalignment error, scale factor error and constant bias error. Notice that the

actual heading of each sensor and the order in which they are given in â and ω̂ will not

matter as longest as the measurement axes are not in the same plane. Thus, it is also

possible to consider a certain IMU as a black box without further knowledge about the

contents of the IMU.

‡ As we are dealing with real measurement data, there will always be some errors present that are

unaccounted for. For the sake of readability, we decided not to include an error term in each approximate

equation, but to overload the usage of equals sign a bit: We use equals sign also in situations, where it

strictly speaking should not be used. We are, however, sure that the exact meaning of each equation

becomes evident from the context.
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3. Calibration system

In this section, the practical issues concerning the calibration system are discussed. In

addition to general design rules, some remarks of the constructed calibration system are

discussed to get an overall idea of the attainable level of accuracy.

As consumer grade gyroscopes are typically not sensitive enough to measure Earth’s

angular rate, reference signals must be provided by another means. For this, a rate table

with a user-controlled angular rate is used (see figure 1) [5, 8, 9]. While calibrating

the gyroscopes, it is also convenient to provide accelerometers a number of reference

measurements. This is done by using the accelerations created by the rotation along

with the gravitational acceleration present in the measurements [21].

While concentrating on consumer grade sensors, the reference signals are not

required to be exactly known. Hence, it is safe to drop out a number of factors like

Earth’s angular rate, Coriolis force (caused by the rotation of the Earth) and the

changing rotation radius as a function of the angular rate (only open-loop sensors are

subject to this). The effects of these will be negligible as compared to the overall

accuracy of the sensors [26].

Driving motor

1

3

5

−ω ‖ −g

x
x

x

yy

y

z
z

z

Figure 1. Schematic drawing of a rate table, where three different IMU positions (1,

3 and 5; see figure 2) are displayed.

For the calibration system, the critical requirement is that the driving motor of the

rate table is able to maintain a constant angular rate for a predetermined time (typically,

a few seconds). There are several important reasons for this:

• mean angular velocity over a longer period of time can be easily measured (see

below) with an accuracy superior to the accuracy of a momentary value [26]

• the effects of the vibration present in a low-cost rate table can be significantly

reduced by taking the mean of the output over a longer period of time

• inherent delays in any inertial sensor do not affect the measurements.

In the constructed system, the realized angular rates are measured using an analog

optical fork sensor, the output of which is recorded with a sampling frequency f = 20
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kHz. In addition, a plate is attached to the rotating table cutting off the optical signal

once per a revolution. Measurement error of this kind of a device is analyzed in appendix

A. With k = 10, for example, any mean angular velocity up to 1000 ◦/s can be measured

with an accuracy better than 5 × 10−4 degrees per second. That is, with an accuracy

that makes the neglected rotation of the Earth the limiting factor. The error in the

reference accelerations are analyzed in appendix B. With the given level of accuracy in

the angular rates, the accuracy of the reference accelerations is in practice characterized

by the size of the IMU, which is discussed in the next section.

The rate table should be mounted horizontally in such a way that the gravitational

acceleration will be perpendicular to the plane of the table. Fortunately, the system

is not very sensitive to small mounting errors, since even an easily observed mounting

error of 1◦ will only cause ≈ 1.5 mg error in the value of the gravitational acceleration.

Moreover, other error components cancel out when the measurement data is averaged

over several full revolutions of the table. In the constructed calibration system, the

mounting error was less than 0.1 degrees. Thus, in practice, the error in the gravitational

acceleration is caused only by the limited accuracy of the externally measured reference

value.

To cover all six degrees of freedom, it is required that the IMU is rotated in more

than one position. The minimum amount of different positions is three, with every axis

of the IMU pointing once out of the plane. In this context, we will consider that the IMU

can be positioned in total of six different positions. This amount of positions was chosen

to cover positive and negative axis of each sensor. These positions are demonstrated

in figure 2 along with the directions of the reference measurements g (gravitational

acceleration), ac (centripetal acceleration) and ω (angular velocity).

1 2 3

4 5 6
x

x

x

x
x

x

y
y

y

y

y

y z

z

z

z

zz

ac

g ω

Figure 2. Six IMU positions shown by the directions of each orthogonal axis of the

calibrated IMU along with the reference measurements. Dot in a circle represents a

vector toward the reader and a cross in a circle represents a vector away from the

reader.

As suggested by figure 2, all of the six IMU positions are interpreted in such a way

that certain axes of the calibrated IMU are collinear with the directions of the reference
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measurements. Because of this, the coordinates of the calibrated measurements are

actually defined by the calibration system rather than the IMU. Notice that it is only

assumed that the different IMU positions are orthogonal with respect to each other,

with no requirements for the absolute positions. In the constructed calibration system,

the jig used to attach the IMU to the rate table is constructed using precision tools.

Thus, the orthogonality of different positions will not be an issue.

For future reference, let us denote the total number of angular rates used to calibrate

gyroscopes by N . Respectively, let the total number of angular rates used to calibrate

accelerometers be M . With a total of six different positions, we have 6×N and 6×M

measurements per single axis of the IMU. Notice that M and N represent the set of

rotation rates one plans to use in the computations, which is generally different than the

set of actual rotation rates. In practice this could, for example, mean that one wishes to

find several calibration functions, each of which is optimized to certain range of inputs.

4. Calibration procedure

In this section, details of the calibration procedure are discussed. To give an overview

of the calibration procedure, let us first state the recipe for it as follows:

(i) Gather the needed data by rotating the IMU with a number of different angular

rates for all six positions seen in figure 2.

(ii) Construct a set of numerical equations for the calibration parameters according to

(3) and (4).

(iii) Solve the constructed, generally overdetermined and hence an approximative set of

equations.

(iv) Conduct a reality check for the computed results by comparing a number of control

quantities against known reference values.

As step one is already clear, we will now discuss steps 2, 3 and 4 in detail.

4.1. Step two: constructing the needed equations

Recall the discussion about the physical size of the IMU in section 1 and appendix B.

There are two ways the physical size of the IMU will affect the output of an accelerometer

located at a point different than the chosen origin of the IMU:

• tangential acceleration caused by the angular acceleration and

• centripetal acceleration caused by the angular velocity.

As the calibration procedure exploits only constant angular rates, the observed

tangential acceleration will be zero. Thus, we do not need to take this into account

while constructing the needed equations. Furthermore, in a typical situation, the effects

of tangential acceleration are difficult to compensate for, since the angular acceleration

is unknown.
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Table 1. Reference measurements for the accelerometers and gyroscopes when

rotating the IMU in the six positions.

Reference measurements

Acceleration Angular rate

Position x y z x y z

1 −g −ω
2
1,jr1 0 ω1,j 0 0

2 g ω
2
2,jr2 0 −ω2,j 0 0

3 0 g −ω
2
3,jr3 0 −ω3,j 0

4 0 −g ω
2
4,jr4 0 ω4,j 0

5 −ω
2
5,jr5 0 −g 0 0 ω5,j

6 ω
2
6,jr6 0 g 0 0 −ω6,j

Centripetal acceleration caused by nonzero δr seen in appendix B is, however,

observed. Thus, in general, each accelerometer has a unique rotating radius for each of

the six positions of the IMU. For a ”small-sized” consumer grade IMU, it is sometimes

reasonable to assume that the effects caused by δr are negligible as compared to other

sources of error. That is, the error estimates given in appendix B give values smaller

than the expected errors in the calibrated sensors. When this is the case, we will only

need one radius for each position. However, given a certain IMU, it is a task far form

trivial to specify these externally with adequate accuracy. Thus, we leave these for the

calibration routine to determine. This way, we do not need to commit to the location of

the actual origin of the IMU in any way. Instead, we can leave it up to the calibration

routine to specify the location of an origin minimizing the error caused by ignoring the

size of the IMU. In the following treatment, it is assumed that the IMU is small. The

presented methods can be readily generalized to the situation where this is not the case.

From figure 2, one will end up with the reference measurements seen in table 1. In

the table, g is the local gravitational acceleration, ωi,j angular velocity of step j while

the IMU is in position i and ri rotation radius for position i.

Now, let us denote the reference acceleration of the step j ∈ [1, . . . ,M ] of the

position i ∈ [1, . . . , 6] by ai,j (ri) and the respective measurements âi,j. By recalling (3)

and defining a 3× 9 matrix

Ra (i, j, ri) =







aT
i,j (ri) 0T 0T

0T aT
i,j (ri) 0T

0T 0T aT
i,j (ri)






, (7)

we get an equation
[

Ra (i, j, ri) −I
]

x = âi,j (8)

for vector x ∈ R
12 containing the elements of A and b in row-wise order. Matrix I

is a 3 × 3 identity matrix. Clearly, (8) is now a nonlinear equation because of the

terms ri in the coefficient matrix. When considering a single measurement âi,j, (8) is
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underdetermined with only 3 independent measurements for 18 unknowns. By stacking

equations (8) for all i and j, one will get a system with a total of 3× 6×M equations

for 18 unknowns. From this, it is clear that M must be at least 1 to have a well posed

problem. In practice, with several error sources unaccounted for, M should be larger

thus making the resulting nonlinear equation overdetermined.

For the gyroscopes, let us first define a 3× 9 matrix

Rω (i, j) =







ωT
i,j 0T 0T

0T ωT
i,j 0T

0T 0T ωT
i,j






(9)

containing the reference measurements. With a treatment similar to the previous

paragraph and recalling (4), one will end up with an equation
[

Rω (i, j) −Ra (i, j, ri) −I
]

y = ω̂i,j (10)

for vector y ∈ R
21 containing the elements ofC, E and d in row-wise order. Again, when

considering a single measurement ω̂i,j , (10) is underdetermined with only 3 independent

measurements for 21 unknowns. In this case, by stacking equations (10) for all i and j,

we end up with a system with a total of 3 × 6 × N linear equations for 21 unknowns.

The fact that (10) is linear is based on the assumption that (8) is already solved, giving

access to parameters ri.

4.2. Step three: solving the constructed equations

In the previous section we constructed equations for the calibration functions we were

looking for. As seen above, the equation for the accelerometers is nonlinear. Hence, we

will have to use a nonlinear optimization routine to find out an optimal solution in some

sense.

Let us denote the nonlinear system for the calibration parameters of the

accelerometer triad in a form z = h (x). Now we can write its residual p (x) as

p (x) = h (x)− z. (11)

A typically used criteria for an optimal solution is the minimum of the quadratic form

‖p (x)‖2:

x̃ = argmin p (x)T p (x) . (12)

We will exploit Gauss-Newton to solve this nonlinear optimization problem [27].

For this, we will need the Jacobian of the function h (x), which we can compute using

(8) and table 1. The algorithm goes as follows [27]:

(i) Choose x0 and a suitable end criteria δ. Set n = 0.

(ii) Compute Jn = d
dx
h (xn).

(iii) Compute xn+1 = xn −
(

JT
nJn

)

−1
Jn [h (xn)− z].

(iv) If ‖xn+1 − xn‖ ≥ δ, set n = n+ 1 and continue from step 2.
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A suitable stopping criterion is the step length ‖xn+1 − xn‖ < δ.

As seen from the algorithm above, one must provide an initial guess x0. For a

general nonlinear optimization problem, this is a nontrivial task having a great effect

on the solution speed and possibly on the ”optimal” result obtained [27]. When this

was tested using the test data considered later in this text, the choice of initial guess

(provided that JT
nJn is nonsingular) did not have any influence on the given solution

or the solution speed. In each case, the optimization routine found the solution after a

few iterations.

In case of the gyroscopes, an approximative solution can be achieved simply by

computing a least squares solution for y. When constructing the equation, needed

ai,j (ri) can be provided by the known reference signals. Provided, of course, that the

rotation radii are already known.

In some cases, one might have better knowledge about the reliability of the

measurements or even knowledge about the correlation of different measurements. There

is no problem in using readily available generalizations of the presented solution schemes

to these situations [27]. In fact, as the proposed method is based on averaging the

collected data, the variance of each measurement could be readily estimated as well.

4.3. Step four: control quantities

In any practical situation, one should have some confidence about how successful the

calibration was, before a particular IMU can be considered as ready to be used. For

this, one can readily compute a number of control quantities right after the actual

computation is done.

For an overall view about the sensitivity of the method to measurement errors,

one can compute the condition numbers for the constructed matrices. For general non-

square matrices, it is defined to be the condition number of the product of the transpose

of the matrix and the matrix itself [28]. If reasonable values for the rotation radii are

available before the computation, this check can be done before the actual computation

takes place. Similarly, it is also possible to estimate the sensitivity of a particular IMU

to measurement errors by computing the condition numbers of A and C.

For a quantity describing how well the calibration function of the accelerometers

fits the measurement data, one can estimate the standard deviation sa of the residual

(11) as follows [29]:

sa =

√

p (x)T p (x)

(3× 6×M)− 1
. (13)

This can be computed for the gyroscopes as well (sg), by replacing p (x) with the residual

of (10) and M by N .

In case of accelerometers, matrix JT
nJn evaluated at the optimum can be used

to estimate the covariance matrix of the standard errors of the computed parameters

[10, 30]. This gives a possibility to compute confidence intervals for the estimated
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parameters, if considered necessary. For the gyroscopes, this can be achieved by

analyzing the coefficient matrix of the normal equations.

All of the control quantities provided above are standard methods in measurement

science, which can be readily used to gain information about the calibration and

goodness of fit. They can be readily used to compare different measurements, but to gain

useful information about the absolute accuracy, knowledge of the actual sensors within

the IMU is required. In typical situations this is acceptable, but this is not the case

considering the black box situation. In this case, the computed rotation radii provide a

suitable method to decide whether the calibration was successful or not: Consider, for

example, that the value of the gravitational acceleration is given in units of g instead of

m/s2. As such, this is only going to scale the computed parameters differently, and will

be visible only if the specifications of the used sensors are known. However, this error

will be immediately seen in the values of the computed rotation radii.

5. Test results

The proposed calibration method was tested with a total of eight hand-made IMUs. All

IMUs were constructed in the same way, where each individual sensor was supposed to

measure parallel to x, y or z direction seen in figure 1. The test results are divided

into three parts. The first part shows the differences in the calibration characteristics.

The second part shows the actual difference between a calibrated and uncalibrated IMU

as seen by the error models. Finally, the third part shows the differences in actual

measurements. While a real navigation test is not included, the difference made by the

calibration is clearly shown by the provided results.

The calibrations were performed using a 16-bit AD-converter to store the signals

given by the IMU. 12 g accelerometers [31] were used along with 300 o/s gyroscopes [32].

For the accelerometers it holds that M = 30 (recall that M is the number of the used

angular rates to calibrate the accelerometers) and N = 10 for the gyroscopes. The used

rotation rates were designed to follow approximatively the following plan: (30−300) o/s

with 30 o/s increments (up to 1 g), (1−3) g with 0.25 g increments, (3−6) g with 0.5g

increments and (6−12) g with 1 g increments (depending on the actual rotation radius).

The size of the IMU was confirmed not to cause significant errors by simulations, and

thus it was possible to use the approximation δr ≈ 0.

5.1. Comparison between different IMUs

Let us next present a few characteristics (described in the section 4.3) of each test is

collected to table 2.

Because the measurements are expressed in bits, the most natural unit of

parameters sa and sg seen in table 2 would also be bits. For clarity, however, they

are converted to more meaningful units using the rule: 100 bits correspond 50 mg for

the accelerometers and 1.6 ◦/s for the gyroscopes. These values are based on the scale
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Table 2. Calibration characteristics of a total of eight hand-made IMUs.

IMU Accelerometers Gyros

sa r1 r2 r3 r4 r5 r6 sg

1 30.7 23.8±0.28 26.6±0.32 24.9±0.30 25.7±0.31 24.5±0.29 25.9±0.31 0.32

2 33.7 23.8±0.31 26.7±0.35 24.8±0.32 25.6±0.33 24.6±0.32 25.8±0.33 0.33

3 33.2 23.7±0.31 26.6±0.34 24.9±0.32 25.7±0.33 24.6±0.31 25.9±0.33 0.34

4 32.9 23.8±0.30 26.7±0.34 24.9±0.32 25.7±0.33 24.6±0.31 25.8±0.33 0.40

5 31.0 23.8±0.29 26.5±0.32 24.9±0.30 25.7±0.31 24.4±0.29 25.8±0.31 0.33

6 31.0 23.7±0.28 26.7±0.32 24.9±0.30 25.7±0.31 24.5±0.29 25.9±0.31 0.37

7 32.9 23.7±0.30 26.8±0.34 24.9±0.32 25.5±0.33 24.5±0.31 25.8±0.32 0.31

8 33.2 23.7±0.31 26.7±0.34 24.8±0.32 25.7±0.33 24.5±0.31 25.7±0.33 0.32

Radii ri are expressed in centimeters.

Standard deviations sa and sg are expressed in mg and ◦/s, respectively.

± signs indicates 95% confidence intervals of the radii estimated using sa

√

trace

(

(

JT
nJn

)

−1
)

[30].

factors of the sensors reported in [31] and [32].

From table 2, it is noted that the overall characteristics of the all eight IMUs are

close to each other. Knowing that the IMUs are constructed by hand and that the

computed radius is just an approximative value for any realistic IMU, the computed

radii are consistent, with a typical confidence interval of ±3.1 mm. The typical values

for sa and sg for noncalibrated sensors are not displayed, since the constant bias alone

would cause them to be in the order of 0.1 g and 1 ◦/s, respectively

5.2. Comparison of the calibration functions

In this section, the computed error models of the IMU number 1 are discussed in detail.

This gives a possibility to compare them against the situation where no calibration can

be done. In this case, the values are taken directly from the specifications of the sensors.

For clarity, the numerical values represented here are converted to standard units; i.e.

voltages, g and degrees / second. Notice, however, that the proposed method does not

require this to be done.

In table 3, the parameters for the calibrated output of the accelerometers are shown.

In case no calibration is done, matrix A is a diagonal matrix having values −6.667 at the

diagonal and b is a vector consisting of values bi = −2.350 (i.e. the used accelerometers

are set to show zero when placed on the desk). Notice that there is a significant difference

between the scale factors given by the manufacturer and the computed ones. This is

explained by the fact that the used datalogger had, for some reason, a tendency to

underestimate voltages. This does not affect the other results considered in this section:

this is why the calibration should be done using the same datalogger that is used to

store the data in action. The parameters for the calibrated output of the gyroscopes

are shown in table 4. In case no calibration is performed, the scale factor is ±166.667
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Table 3. Numerical example of the calibration function (3).

A [g/V] b [V]

−6.929 0.048 −0.160 −2.351

−0.132 −7.005 −0.052 −2.369

−0.024 0.160 −7.020 −2.350

Table 4. Numerical example of the calibration function (4).

C [◦/s/V] E [◦/s/g] d [V]

−208.5 −1.652 −1.953 −0.152 0.024 0.137 −2.574

1.051 −207.6 −0.601 0.194 −0.051 −0.163 −2.464

2.553 −0.526 208.4 −0.013 −0.043 0.027 −2.475

depending on the sensor and bias value bi = −2.500. As one could expect, the large

difference in the scale factors is observed also here.

To give an overall idea about the error models, the diagonal elements of the matrices

A and C correspond to the scale factors of each individual sensor. Provided, of course,

that the sensor readings are picked up in a ”correct” order. Minus sign in the scale

factor simply means that the sensor is upside down. The off-diagonal parameters are

caused by the misalignment and the cross-correlation of the sensors. If the off-diagonal

terms are interpreted as a consequence of the geometrical alignment error alone, we can

easily compute the corresponding error angles: by normalizing each column vector of A

and C, each element of the resulting six vectors is the sine of the respective error angle.

For instance, the elements of the first column vector of A correspond to angles −88.89◦,

−1.09◦ and −0.20◦. The first angle indicates that the corresponding sensor was aligned

at an angle 178.89◦ with respect to the corresponding axis of the IMU.

This kind of a geometrical interpretation can not be made for the matrix E

representing the dependency of the measured angular rate from the linear acceleration

seen in table 4. In this particular case, all the elements of the respective matrix are close

to each other indicating that the magnitude of the coupling between linear acceleration

and measured angular rate is about the same for all axes.

5.3. Comparison of the measurement accuracy

In this section, the gain of the calibration procedure performed to the IMU number 1

is discussed. Notice that the accuracy tests are performed on the same rate table that

was used to calibrate data. This was the only possibility to generate accurate reference

accelerations up to 12 g and reference angular rates up to 300 ◦/s, since we did not have

the possibility to exploit high accuracy reference sensors. However, the angular rates

and accelerations used to demonstrate the accuracy were not used in the calibration.

Furthermore, the accuracy tests and the calibration routine were run as two separate

events. The run-to-run variation of the sensor bias was taken into account by averaging
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Table 5. Results of the accuracy test performed for the accelerometers of the IMU

number 1. The Expected values are the reference accelerations computed with the

known values of the rotation radii.

Expected [g] Measured acceleration [g]
Proposed method Six-position method

x y z x y z x y z

−1.000 −0.007 0.000 −0.991 0.014 −0.013 −1.003 −0.002 0.006

1.000 0.007 0.000 1.008 0.043 0.003 0.998 0.012 0.008

0.000 1.000 −0.007 0.015 1.020 −0.020 0.009 0.995 −0.004

0.000 −1.000 0.007 0.013 −0.978 0.012 −0.002 −1.000 0.019

−0.007 0.000 −1.000 0.005 0.037 −1.004 −0.003 0.018 −0.992

0.007 0.000 1.000 0.038 0.037 0.990 0.025 0.011 1.002

−1.000 −9.096 0.000 −1.007 −9.095 0.135 −1.061 −9.099 0.117

1.000 10.172 0.000 0.988 10.174 0.118 1.024 10.129 0.164

0.000 1.000 −9.517 −0.071 1.004 −9.483 −0.055 1.018 −9.472

0.000 −1.000 9.840 −0.061 −0.998 9.866 −0.100 −1.058 9.881

−9.371 0.000 −1.000 −9.358 −0.196 −1.040 −9.376 −0.144 −0.960

9.921 0.000 1.000 9.927 −0.191 0.957 9.922 −0.293 0.894

the output before the accuracy test took place.

In case of the accelerometers, the used sensor error model is identical to the ones

used before. Only the calibration method has changed from the basic six-position

calibration method to the proposed method. The accuracy of these two methods are

compared against the reference accelerations. The positions used for the six-position

calibration are the ones used in the proposed method, while the rate table was not

rotating. In case of the gyroscopes, we use an error model different from the ones used

in the referred studies. Namely, the g-dependent bias is also taken into account. In this

case the calibration method is basically the same than the one seen for example, in [5].

The accuracy of the two models are compared against the reference angular rates. The

results corresponding to the two choices of error models were both computed using the

same measurements.

In table 5, the calibrated results of the accelerometer triad are compared to the

reference signals in all six positions seen in figure 2 while the rate table was rotated at

two different angular rates. The angular rates were selected in such a way that both ends

of the accelerometers dynamic range were covered. The reference signals are seen at the

left and the output of the accelerometer triad using the proposed calibration method at

the center. The results given by the standard six-position calibration method are seen

at the right.

The results given by the standard six-position calibration method are somewhat

better whenever the total reference acceleration is close to 1 g. This is expectable

since this method uses acceleration up to 1 g, whereas the proposed method uses the

whole dynamic range of the accelerometers. With higher accelerations, the proposed
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Table 6. Results of the accuracy test performed for the gyroscopes of the IMU number

1. The Expected values are the reference rotation rates.

Expected [◦/s] Measured angular rate [◦/s]
Proposed method Method by Syed et al. [5]

x y z x y z x y z

30.2 0.0 0.0 30.3 0.1 −0.1 30.3 0.3 −0.1

−30.0 0.0 0.0 −30.2 0.0 0.0 −30.1 −0.2 0.0

0.0 −29.9 0.0 −0.2 −29.7 0.1 −0.3 −29.7 0.1

0.0 29.9 0.0 −0.2 29.9 0.1 −0.1 29.8 0.0

0.0 0.0 29.9 0.4 0.2 30.2 0.6 0.1 30.2

0.0 0.0 −29.9 0.4 0.2 −29.8 0.3 0.3 −29.9

305.8 0.0 0.0 306.4 −0.9 −0.5 306.4 −1.0 −0.5

−305.7 0.0 0.0 −305.3 −0.8 −0.3 −305.4 −0.7 −0.3

0.0 −305.6 0.0 −0.2 −305.3 0.7 −0.2 −305.3 0.7

0.0 305.6 0.0 −0.1 306.0 0.8 −0.2 306.0 0.8

0.0 0.0 305.7 −0.7 0.0 305.2 −0.8 0.1 305.1

0.0 0.0 −305.6 −0.4 0.1 −306.0 −0.3 0.0 −306.0

calibration method gives a better overall accuracy. This can be verified by computing

the value sa for the standard six-position calibration method, which gives sa = 80.2

mg against a typical value of 32 mg obtained with the proposed method. Hence,

the proposed calibration method gives better results than the standard six-position

calibration, when considering the whole dynamic range of the sensors. One reason for

this is that the six-position calibration method relies on extrapolation when applied to

sensors with a range exceeding 1 g. Secondly, small alignment errors are not necessarily

observable due to the limited sensitivity of the sensors.

For the gyroscopes, more specific calibration results can be found in table 6. The

reference and measured angular rates for each six positions are tabulated for two angular

rates at the both ends of the dynamic range. The reference angular rate is seen at the

left, proposed calibration (with g-dependency) output of the gyroscope triad at the

center and output of the method proposed in [5] (without g-dependecy) at the right.

In this case, the overall performance of the two calibration functions are close to

each other. This is quantified by the value sg = 0.33 ◦/s for the method where g-

dependency is not considered. This is larger than the corresponding value sg = 0.32 ◦/s,

but considering the variation in these values between different IMUs, this is hardly

a significant difference. This is explained by the fact that during the test the total

acceleration acting upon the IMU was at most 1.2 g, because rotations rates up to

300 ◦/s do not cause centripetal accelerations larger than 0.7 g with the given radii.

As table 4 proposes, the difference of the methods should not be that dramatic in

these kind of circumstances. Angular velocity of [0.0 1110.3 0.0]T ◦/s, on the other

hand, causes a total acceleration of ≈ 10 g. In this case the angular velocity given

by the proposed method is [−3.6 484.0 0.5]T ◦/s, and the angular velocity given by
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the method proposed by [5] is [−5.1 484.2 0.9]T ◦/s. Obviously, the y-components are

useless in both cases because the rate exceeds the range of the used sensors. In the other

components, however, there is a clear improvement over the method proposed in [5].

6. Conclusions

With the methods described in this paper, it is possible to enhance the overall accuracy

of an IMU to a better level than the standard six-position calibration would allow. In

the conducted experiments for accelerometers, for example, the standard deviation of

the residual error is 32.0 mg against the value of 80.2 mg acquired using the standard

calibration. In case of the gyroscopes, it is demonstrated that under low accelerations,

the results are comparable to known calibration methods (residual error 0.32 ◦/s vs.

0.33 ◦/s). Under high accelerations, the proposed method can significantly increase the

accuracy. This can be achieved without detailed knowledge about the sensors within the

IMU, as longest as it is capable of measuring general rotations and accelerations. For

example, the IMU could include sensors with different dynamic ranges thus causing the

scale factors to be different for each axis. One does not need to know this beforehand,

as the proposed method does not require any prior knowledge about the parameters

to be computed. Using the provided control quantities, it can be easily verified if the

calibration process was successful or not. The proposed method also allows one to

compute error models specialized in a certaing range of inputs, expanding the use of

sensors with a fixed range without need for recalibration.

As the focus is on consumer grade IMUs, the used reference angular rates must be

provided by a rate table of some sort. However, the design requirements for this are

fulfilled without costly and precise equipment, because the calibration process uses only a

set of constant angular velocities. A rate table provides a way to perform more complete

calibration routines using also the centripetal accelerations as reference accelerations.

The rotation radii do not need to be known, as the provided solution method can solve

for these along with the actual calibration parameters.

The calibration functions presented here are not the only possible choices, but

examples of accurate, but still simple calibration functions. One can also use a

different error model important in a particular application, as the total amount of the

measurements gives a possibility to do this. While the proposed method is based on

the use of affine functions, use of non-affine calibration functions could also be possible

at least when good initial guesses are available. Another interesting point is how to

exploit redundant sensor configurations. Basically, the proposed method can be readily

generalized to these situations, since we would only need to consider rectangular matrices

A, C and D instead of the square ones considered here. This will, however, introduce

questions about the uniqueness of the solution, which need to be examined first.

While the provided calibration functions compensate for the main error sources

(scale factor, misalignment, cross correlation and bias errors) of consumer grade IMUs,

they are simple enough to be used in any INS. This is because only simple matrix
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multiplications and vector additions are required, and these can be applied directly to

the raw data. However, as the method is based on a relatively simple calibration process,

it cannot compensate for more complicated error sources such as run-to-run variations

of the biases. When these kind of corrections are necessary, they can be applied to the

calibrated output of the IMU.
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Appendix A. Error analysis of the measured mean angular velocity

Before going on, observe that the rotation angle θ is known to be exactly 2πk, where

k ∈ N is the number of revolutions. This follows from the type of the measurement

explained in section three, and it plays a central role in the error analysis.

The measured average angular rate ω̂avg and the true average angular rate ωavg

satisfy

δωavg = ω̂avg − ωavg, (A.1)

where δωavg is the error in the measured mean angular velocity. Similarly for the rotation

time T , it holds that

δT = T̂ − T. (A.2)

Now, since the mean angular velocity over a certain time period is defined as

ωavg =
θ

T
, (A.3)

δωavg can be written as

δωavg =
θ

T + δT
−

θ

T
= −

θδT

T (T + δT )
. (A.4)

From (A.3) we know that

T =
θ

ωavg

=
2πk

ωavg

(A.5)

holds.

In order to quantify δωavg, we need to quantify δT . For this, we need to assume

that

• internal delay of the optical fork sensor is a constant and

• clock drift of the AD-converter is negligible.
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Provided that these assumptions are correct and that the sampling frequency of the AD

converter is f , it holds that

δT =
tǫ
f

, − 1 < tǫ < 1. (A.6)

That is, the error in the rotation time is at most the time between two adjacent samples

given by the AD converter.

Putting these together and taking absolute values, we get

|δωavg| =
|θ| |δT |

|T | |T + δT |
<

|ωavg|

f
∣

∣

∣

2πk
ωavg

+ tǫ
f

∣

∣

∣

. (A.7)

When it holds that 2πkf > |ωavg| (which will be the case for any reasonable choise of f

and ωavg), (A.7) can be further reduced to

|δωavg| <
ω2
avg

2πkf − |ωavg|
. (A.8)

Appendix B. Error analysis of the measured acceleration

Let us use similar notation as in Appendix A, now treated as vectors. That is, the

computed reference acceleration â and the true reference acceleration a satisfy

δa = â− a, (B.1)

where δa is the error in the measured centripetal acceleration. In the following, zero

angular acceleration is assumed, α ≡ 0. Hence, the acceleration of an arbitrary point r

fixed to the rate table is

a = r̈ + ω × (ω × r) . (B.2)

Notice that r describes the position of the origin of the IMU and the position of a

certain sensor with respect to the origin of the IMU is denoted by δr. These vectors

rotate with the rate table.

Putting these together, δa can be written as

δa = â− a

= r̈ + δ̈r + (ω + δω)× [(ω + δω)× (r + δr)]

− r̈ − ω × (ω × r) , (B.3)

where δ̈r ≡ 0 holds. Exploiting the properties of the cross product, it is possible to

derive the following upper limit for ‖δa‖:

‖δa‖ ≤ ‖ω‖2 ‖δr‖+ 2 ‖ω‖ ‖r‖ ‖δω‖

+ 2 ‖ω‖ ‖δr‖ ‖δω‖+ ‖r‖ ‖δω‖2 + ‖δr‖ ‖δω‖2 . (B.4)

Assuming that ‖δr‖ / ‖r‖ and ‖δω‖ / ‖ω‖ are small and using the notation from

Appendix A, we have

δa

a
=

δa

ω2
avgr

≤
δr

r
+ 2

δωavg

ωavg

+O

(

δr

r

δωavg

ωavg

,
δω2

avg

ω2
avg

)
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+ O

(

δr

r

δω2
avg

ω2
avg

)

(B.5)

(B.5) contains terms caused by the physical size of the IMU (δr) and by the

measurement error of the angular velocity (δωavg). Typically, the first term dominates

and thus, as an overall ”rule of thumb”,

δa ≈
δr

r
a. (B.6)

In practice, this estimate has a tendency to be quite pessimistic. This is because in (B.4),

the worst case requires a certain direction for the measurement axis of the respective

sensor in addition to orthogonality of δr and ω.


