
Resource Conflict Detection in
Simulation of Function Unit Pipelines

Pekka Jääskeläinen, Vladimı́r Guzma, and Viljami Korhonen

Department of Computer Systems
Tampere University of Technology

P.O. Box 553
FIN-33101 Tampere

Finland
{pekka.jaaskelainen,vladimir.guzma,viljami.korhonen}@tut.fi

Abstract. Processor simulators are important parts of processor design toolsets
in which they are used to verify and evaluate the properties of the designed pro-
cessors. While simulating architectures with independentfunction unit pipelines
using simulation techniques that avoid the overhead of instruction bit-string inter-
pretation, such as compiled simulation, the simulation of function unit pipelines
can become one of the new bottlenecks for simulation speed. This paper evaluates
several resource conflict detection models, commonly used in compiler instruc-
tion scheduling, in the context of function unit pipeline simulation. The evaluated
models include the conventional reservation table based-model, the dynamic col-
lision matrix model, and an finite state automata (FSA) basedmodel. In addition,
an improvement to the simulation initialization time by means of lazy initializa-
tion of states in the FSA-based approach is proposed. The resulting model is faster
to initialize and provides comparable simulation speed to the actively initialized
FSA.

1 Introduction

Processor simulators possess different level of accuracy depending on their purpose.
Functional instruction set simulation is mainly used for program verification and de-
velopment in cases which do not require detailed modeling oftiming. More accurate
cycle-based simulators can produce cycle counts and utilization statistics for directing
processor design space exploration – a process of finding themost suitable proces-
sor architecture for the applications at hand. In automateddesign space exploration of
application-specific processors, the number of examined candidate architectures can
reach thousands, thus the time it takes to produce the utilization data and cycle counts
for each explored architecture can have a dramatic effect onthe total exploration time.

Structural hazards are situations in which multiple operations or instructions try to
use the same processor resource simultaneously. Commonly,structural hazards result
in processor stall cycles in which the processor waits mostly idle for the hazard to re-
solve. Cycle-accurate simulators detect these stall cycles and model them accurately.
At minimum, the stall cycles should be counted and added to the total cycle count. On
the other hand, some architectures are unable to handle all types of structural hazards



gracefully in hardware. In such cases, the detection of structural hazards during simula-
tion is considered part of the program verification process.One example of this type of
architecture is the TMS320C64x, a popular clustered VLIW architecture from Texas In-
struments. This architecture handles certain types of structural hazards with exceptions,
thus often resulting in program termination [1].

Simulation of statically scheduled architectures with simplified control logic con-
centrates on simulating the data transports between function units and register files, the
functionality of operations in function units, and the function unit latencies. Our results
show that in this type of simulators, especially if the simulation overhead of instruc-
tion decoding phase is avoided, structural hazard detection can become the bottleneck
for simulation speed. This effect is emphasized when simulating architectures that have
multiple pipelined function units with shared pipeline resources.

This paper evaluates several common models to detect function unit pipeline re-
source conflicts during compiler instruction scheduling, and applies them to processor
simulation. The explored models include the conventional reservation table (CRT), the
dynamic collision matrix (DCM) and an finite state automata (FSA) based model [2].
Finally, an improvement to the simulation initialization time by means of lazy initial-
ization of states in the FSA-based approach is proposed and evaluated. Using the lazily
initialized model, our benchmarks show significant improvements to the actively ini-
tialized FSA model initialization time with very little overhead to the simulation time.

The rest of paper is organised as follows. Section 2 analysesexisting solutions
for improving processor simulation speed. Section 3 gives brief overview of common
book keeping methods for structural hazard detection in compiler instruction schedul-
ing which are applied in this paper to processor simulation.Section 4 describes our
test setup, followed by Section 5 with results from the executed benchmarks. Section 6
concludes the work and outlines future research directions.

2 Related Work

Several research papers discuss the techniques to avoid theinstruction bit string in-
terpretation overhead during simulation. These techniques are commonly referred to
as “compiled simulation”. For example, Shade is a simulatorwhich includes a tech-
nique for translating the simulated instructions dynamically to host instructions during
simulation and caching the translated instructions for later execution [3]. However, the
presented work is a simulator with functional accuracy, as detecting structural hazards
and other microarchitectural details required for cycle-accuracy are not discussed. In
addition to the dynamic translation, the paper describes a methodology to flexibly ad-
just the selection of traces to produce from simulation, as it is noted that the production
of traces is very expensive when compared to the simulation itself.

JIT-CCS technique applies just-in-time (JIT) compilation, common in virtual ma-
chines, to instruction set simulation. This technique removes the limitation of translat-
ing simulator not capable of simulating self-modifying code [4]. Use of JIT techniques
for simulation is explored also in DynamoSim, which improves the simulator flexibil-
ity by combining interpretive and compiled techniques by compiling only parts of the
simulation that benefit the most [5]. The paper also extends the scope of the simulation



compilation from basic blocks to traces to exploit better the instruction-level parallelism
capabilities of the host processor in order to achieve higher simulation speed.

The growing trend of multiprocessors in desktop machines isexploited in processor
simulation in [6]. Multiple processor cores are taken into use by compiling the simu-
lation code in other available host processor cores while simulating the application in
one. This method hides the compilation overhead of dynamic translation, which is very
beneficial especially when simulating smaller applications.

FastSim uses the idea of compiled simulation in detailed out-of-order microarchi-
tectural simulation [7]. The main contribution of the paperis a technique to “memoize”
microarchitectural configurations and “fast-forward” theactions to the processor state
when the simulation enters a previously executed microarchitectural configuration. The
idea is extended in [8] which introduces a language for easier implementation of this
type of “fast-forwarding” simulators.

Pees, Hoffman, and Meyr present an architecture description language LISA, which
allows generating compiled processor simulators for several architectures automatically
[9, 10]. The resulting simulators are cycle-accurate thanks to the capabilities of the lan-
guage to allow detailed modeling of pipeline resources usedby the instructions.

An interesting simulation speedup technique worth noting is “token-level simula-
tion” [11] and “evaluation reuse” [12]. The principle of these techniques is to simulate
the program first in functional level for obtaining the basicblock traces. Using the basic
block traces, the accurate cycle count is produced by evaluating the effects of each ba-
sic block to the processor pipeline state but without simulating the actual functionality
again since it has already been performed in the previous faster pass. This technique
seems very promising for speeding up the collection of the total cycle counts but does
not produce cycle-accurate simulation for exact timing or debugging features such as
cycle-stepping, due to the separation of the functional andtiming simulation.

Notable speedups to functional simulation are achieved in [13] by combining fast
host native execution of selected functions of the simulated program with more de-
tailed, but slower, instruction set simulation of platform-specific functions. The pro-
posed method is targeted to accelerate functional simulation used in cross-platform
software development while our work addresses cycle-accurate processor simulation.

Literature covering techniques for speeding up and retargeting processor simulation,
in general, is widely available. However, avoiding the bottlenecks in cycle-accurate
simulation of architectures with independent function unit pipelines seems to be rarely
discussed. Overall, it was hard to find publications addressing the problem of detecting
structural hazards during simulation effectively while taking in account the trade-offs
in simulation setup time. This paper considers structural hazard detection models in the
context of simulating architectures with independent function unit pipelines that share
hardware resources. The work is potentially applicable to awider range of processor
simulators that require any kind of structural hazard detection.

3 Structural Hazard Detection in Processor Simulation

Processor resource usage models have been traditionally used in instruction schedulers
of compilers. In instruction scheduling, the model is askedwhether an instruction can



cycle
resource0 1 2

r1 1 0 0
r2 0 1 0
r3 0 1 1

Fig. 1.Conventional Reservation Table.

be placed to a given cycle without causing structural hazards. This question is often
referred to as “a contention query” [2]. Contention queriesare done similarly in cycle-
accurate processor simulators, except that the cycle parameter of the query is limited to
the currently simulated one.

An important issue to notice while adapting the resource usage models to proces-
sor simulation is that at the worst case, the contention query is done every time before
an instruction is simulated. In addition, for each successfully executed instruction, the
“compound resource usage model” that stores the function unit or processor resource
usage state must be updated to reflect the resource usage of the newly executed instruc-
tion. Finally, for each simulated cycle the compound resource usage model must be
updated to reflect the passing of simulation time. These three operations required from
the resource usage models, later referred to as “conflict check”, “operation issue”, and
“cycle advance”, must be fast, as the instruction functionality itself can be often simu-
lated with relatively low number of host cycles with compiled simulation techniques.

Initialization time of the resource conflict model is important in such automated pro-
cessor design space exploration algorithms which also explore the function unit pipeline
resources. In case the application used to evaluate the explored architecture is short, the
initialization time can become the bottleneck for the totalsimulation time. On the other
hand, in case the design space exploration does not vary the structure of function units,
the resource conflict model for each function unit used in exploration can be computed
once and reused later using model caching. In this case the model initialization time is
less relevant.

Next sections present a brief overview of common methods forkeeping book of
occupied pipeline resources during processor simulation or instruction scheduling and
their simulation runtime complexity.

3.1 Conventional Reservation Table

Conventional Reservation Table (CRT)is a matrix with one dimension representing the
machine resources and the other one representing cycles [2,14, 15]. A resource usage
is marked by storing 1 in the matrix element at the position defined by the cycle and the
resource. An example of a reservation table for an operationthat uses three resources
and has a latency of three cycles is shown in Fig. 1.

When using CRT for function unit (FU) pipeline resource modeling, the simulator
keeps book of the occupied resources at each cycle of the simulation in a per FUcom-
pound reservation table. Resource conflicts are detected by comparing the compound



cycle
operation0 1 2

O1 1 1 0
O2 0 0 0

Fig. 2.Collision Matrix for OperationO1.

reservation table to the resource usage pattern of the candidate operation. In case there
are overlapping resource usages between the candidate operation’s reservation table and
the global reservation table, a structural hazard is detected.

The CRT model can be implemented with a bit matrix using host machine words
to store the bits. In this kind of implementation the conflictcheck can be implemented
as an AND operation between the corresponding words of the compound reservation
table and the reservation table of the issued operation. In case the result of any of the
AND operations is nonzero, a conflict is detected. This checkis potentially quite fast,
especially if there are less cycles in the reservation tablethan bits in the host machine
word, in which case only one AND operation for each reservation table row is required.
However, the worst case complexity of the resource conflict check isO(rc) wherer is
the number of resources andc denotes the number of cycles in the longest operation in
the function unit.

Operation issue can be implemented similarly as the conflictcheck, by using the OR
operation to merge the resource usages of the issued instruction to the global reservation
table. Cycle advance is implemented by left shifting the reservation table once to reflect
the freeing of resources as the simulation time passes.

3.2 Dynamic Collision Matrix

Another approach to the conflict detection problem is to store conflict information di-
rectly to a matrix instead of the resource usage patterns that are needed to compute it.
In this approach, acollision matrix(CM) is computed for each operation in the FU. A
collision matrix contains rows for each operation and as many columns as there are cy-
cles in the longest latency operation in the FU. The elementMi j in a conflict matrix of
operationOk is 0 only if the operationOi (the i:th row in the CM) doesnot cause a re-
source conflict when issuedj cycles (thej:th column in the CM) after issuing operation
Ok [14].

Figure 2 presents a collision matrix of an imaginary operationO1 in a function unit
with two operations. From the matrix it is easy to see that after executingO1, one cannot
executeO1 again for the first two cycles, butO2 can be freely executed, as all elements
in its row contain 0, denoting “no conflict”.

TheDynamic Collision Matrix (DCM)model, proposed in [2], uses aglobal colli-
sion matrixwhich can be used to keep book of the pipeline resource state of the sim-
ulated function unit, similarly to the compound reservation table in case of CRT. The
improvement of DCM in comparison to CRT is that instead of needing to loop through
the matrix elements, the conflict check is now a single table look-up withO(1) complex-



start
0 0 0 0 0 0

0 0 0 0 0 0

ADD
1 1 1 0 0 0

1 1 1 0 0 0MUL
1 1 0 0 0 0

1 1 0 0 0 0

NOP

1 0 0 0 0 0

1 0 0 0 0 0

NOP

NOP

Fig. 3. Finite state automaton of valid operation sequences in an FU.

ity. Operation issue still requires a loop that ORs the corresponding bits in the issued
operation with the DCM. The cycle advance implementation isalso similar to CRT: a
left shift of the matrix. The loops required for operation issue and cycle advance can be
optimized similarly as CRT, using host machine words to store the bits. Complexity of
these two operations is dependent on the count of operationsin the function unit, the
worst case beingO(oc) whereo is the number of operations andc number of cycles in
the longest operation in the function unit.

3.3 Finite State Automata

One popular structural hazard detection scheme is to construct a Finite State Automa-
ton (FSA) [16] that contains information of all non-conflicting operation execution se-
quences in the function unit. In the FSA-based approach, each state includes a collision
matrix (as described in the previous section) that stores information of all the operations
that are possible to issue without conflicts while at that state. The collision matrix of the
target state when issuing an operation is computed by left shifting the collision matrix
of the starting state and ORing it with the collision matrix of the issued operation [14].
Left shifting the collision matrix simulates a cycle advance, which assumes that at most
one operation can be started per cycle in the function unit. Cycles in which no new op-
erations are issued are modeled by issuing a “no operation” (NOP), a pseudo operation
with an all-zeros collision matrix. In some architectures,such as the traditional VLIW,
NOP is not a pseudo instruction but issued like any other function unit operation.

Figure 3 illustrates an example automaton for a function unit with two operations:
ADD and MUL. For example, in the automaton, it is apparent that after executing ADD,
it is possible to execute both ADD and MUL, but after executing MUL three idle cycles
are needed before issuing new operations.

Conflict check using FSA requires minimal computation; a single table look-up to
the transition table of the FSA. In case the transition tableprovides a valid destination
state id for the operation, the tested operation is possibleto issue without conflicts,
otherwise a hazard is detected. Similarly, updating the function unit state in operation
issue is a constant operation: the target state obtained in conflict check is simply stored
to a variable representing the current state of the functionunit. The state update includes
also the cycle advance simulation, and in case of an idle cycle, extra functionality of
issuing a NOP is required. Thus, all model operations: conflict check, operation issue,
and cycle advance happen in constant time using the FSA.

A disadvantage of the FSA-based model is that their initialization time can grow
long due to the potentially large number of states in the automaton that need to be built



start
0 0 0 0 0 0

0 0 0 0 0 0
?

MUL

ADD

Fig. 4. The lazy FSA before issuing any operations.

based on the operation resource usage patterns. An algorithm for building a minimum
automata from instruction resource vectors is presented indetail in [17]. Briefly, the
algorithm starts by initializing the start state with the all-zeros conflict matrix. Then it
tries to “issue” all possible operations at that state, creating possibly new target states,
issues all possible operations at the newly created states and so on, until there are no
unhandled states left. Therefore, the worst case complexity of initialization of the func-
tion unit FSA is the case when all possible states are produced. Each state in the FSA is
identified by its conflict matrix. Therefore, the maximum number of states is the number
of different permutations of the conflict matrix, which isO(2co) wherec is the number
of cycle columns ando the number of operation rows in the conflict matrix.

The potential “state explosion” for complex function unit pipelines leads to an op-
timization to the FSA-based approach evaluated in this paper. One of the evaluated
models is an FSA-based model in which the states are built “lazily” the first time they
are entered, hoping to reduce the initialization time. The optimization is derived from
the observation that in many cases only the minority of the FSA states are visited by the
simulated program, thus, the construction time for the unused states is wasted.

The time to initialize a new state consist of first generatinga new collision matrix
for the state using the starting point state and the collision matrix of the issued oper-
ation. The size of the matrix depends on the complexity of thefunction unit pipeline,
as described in the previous section. In addition to the initialization overhead, there is
some overhead from finding whether a state with the created collision matrix is already
found in the state machine, in which case the transition mustbe made to that state in-
stead of the newly created one. Overhead of this look-up grows as a search algorithm
dependent function of the count of already created states.

The lazy FSA is initialized to contain the all-zeros starting point state. All state
transitions from the state are initialized to point to a pseudo uninitializedstate. Every
time an operation that causes a transition to theuninitializedstate is issued, a concrete
target state is created, if it does not exist already, of which transition table entries are set
to point to theuninitializedstate. An example of lazy FSA in action is shown in Fig. 4
which shows how the lazily initialized version of the FSA in Fig. 3 looks initially.
Figure 5 shows the FSA after issuing the MUL operation.

4 Test Setup

We evaluated different models for function unit resource conflict detection during sim-
ulation by implementing them in a simulator for Transport Triggered Architectures
(TTA) [18]. TTA is an architecture that resembles VLIW and includes function units



start
0 0 0 0 0 0

0 0 0 0 0 0 ?

ADD

1 1 1 0 0 0

1 1 1 0 0 0

MUL ADD

MUL

Fig. 5. The lazy FSA after issuing MUL.

with independent pipelines [19]. The main difference of TTAto VLIW in the simula-
tion point of view is the programmer-controlled interconnection network which adds
some extra complexity to the simulation. However, it is important to note that the re-
sults are not at all TTA-specific, but applicable to all processor architectures that require
structural hazard modeling. TTA was used as an architecturetemplate for this bench-
mark merely because this work was conducted as part of a project developing a codesign
toolset for TTA-based application specific processors [20].

The experiments were divided to synthetic benchmarks and full program bench-
marks. Synthetic benchmarks evaluated the models separately from the rest of the sim-
ulator to isolate their contribution to the simulation speed. The purpose of full program
benchmarks was to give some perspective on how much the choice of the resource con-
flict model affects the actual total simulation speed. In this benchmark we evaluated
the different models when used as part of a compiled simulator engine that simulated a
whole TTA processor running nontrivial test programs.

In the synthetic benchmarks, the model initialization times were evaluated by ini-
tializing each model 1000 times in a row and measuring the total wall-clock time spent
in the initialization routine. The model simulation speed was measured by simulating
sequences of operations and by measuring the total wall-clock time it took to simulate
the operation sequence. The synthetic simulation benchmark included a conflict check,
an operation issue, and a cycle advance for each simulated operation, thus mimics a pro-
gram with average of one operation execution per cycle. Eachoperation in each function
unit was executed in round-robin fashion in successive cycles with total of 4· 109 op-
eration executions. All the resource conflicts reported by the models were caught and
ignored without producing notable additional overhead to the simulation benchmark.
Each test in the synthetic benchmark was executed three times in a row and the average
wall clock time was measured.

The different models were evaluated with the following function unit resource usage
patterns:

MUL A single-operation function unit that implements integer multiplication with la-
tency of 3. The operation uses three pipeline resources as illustrated in Fig.1. This
function unit was picked in order to evaluate how the different models perform in
case the simulated function unit hasa very small number of opcodes.

ALU An arithmetic-logic unit with 18 integer operations. Latency of half of the oper-
ations is one cycle, two cycles for the other half.

FPU Function unit that models a floating-point unit. Its pipeline matches the one of
MIPS R4000 floating-point unit, as described in [21]. The unit includes eight floating-



point operations that share eleven different pipeline resources. The double precision
floating point operations range from a simple “absolute value” operation (latency
of two cycles) to a long latency “square root” operation (latency of 112 cycles).

In the full program benchmarks, the impact to the actual experienced simulation
speed was measured by testing each model in a compiled simulation engine. The bench-
marked programs along with their total cycle counts are listed in Table 1. In order to
create a realistic test machine for the benchmark, we used the architecture description
language of our TTA-based codesign toolset [20] to define a TTA with the resources
listed in Table 2. All benchmarked programs were using fixed point arithmetic so the
floating point unit was not used in this benchmark.

Table 1.Benchmarked programs and their total cycle counts.

application description total cycles [Mcycles]

Video decoding EEMBC DENBench [22] MPEG-4 Decode: ’graphic’ 375
Audio decoding Tremor [23] Ogg vorbis decoder: a 40 KB sample 304

Table 2.Relevant components in the simulated TTA-processor.

resource quantity
ALU 2
MUL 2
32-bit registers 32
Register file read ports 4
Register file write ports 2
Transport buses 4

The measurements were made in a 3.4GHz Pentium 4 CPU with 2 GB of RAM.
The operating system was Ubuntu Linux 7.10, with GNU GCC compiler version 4.1.2-
16ubuntu2. The compiler optimization switch used to compile the models was ’-O3’.

In the full program simulation benchmark, a simulation codein C++ language was
generated and compiled to host native code with the above mentioned GCC compiler
and optimization switch.

The evaluated conflict detection models are the following:

none A model without conflict detection used in the full program simulation bench-
mark. This model simulates only the operation latency, but does not detect if there
are conflicting pipeline resource usages between the started operations. This model
could be used in quick design space exploration.



Table 3.The number of created states in the active FSA model.

FU # of states
MUL 3
ALU 4
FPU 2109

CRT The conventional reservation table model.
DCM Dynamic collision matrix model.
active FSA Uses an FSA for conflict detection. The FSA is fully constructed before

starting the simulation. The used construction algorithm is similar to the one pre-
sented in [24].

lazy FSA Like “active FSA”, but the FSA is not fully constructed before starting the
simulation. Initialization routine includes initializing the collision matrices of func-
tion unit operations, and the creation of the initial state.Other states are created
when they are visited for the first time during simulation.

The number of states in FSA affects the initialization time for the actively initial-
ized FSA-based simulation model. The number of states for each function unit pipeline
model are listed in Table 3. These numbers provide an indication of the complexity of
the evaluated function unit pipelines. The FPU with 2109 states is an example of how
the number of states grow dramatically when the complexity increases. On the other
hand, simple function units can be simulated with a very low number of states.

5 Results

The results from the synthetic model benchmarks and full program simulation bench-
marks are presented in the following sections.

5.1 Synthetic Model Benchmarks

The initialization times for each of the models are given in Table 4. Table 5 shows the
simulation times which do not include the model initialization time.

The initialization numbers for CRT are not very interestingas our architecture de-
scription format (ADF) uses resource vectors, a structure very close to the reservation

Table 4.Average model initialization times [µs].

CRT DCM active FSA lazy FSA
MUL 10 (1X) 10 (1X) 30 (3X) 30 (3X)
ALU 70 (1X) 200 (2.9X) 330 (4.7X) 230 (3.3X)
FPU 3510 (1X) 143 000 (41X) 285 000 (81X) 143 000 (41X)



Table 5.Model simulation times [Moperations per second].

CRT DCM active FSA lazy FSA
MUL 9.7 30.6 40.0 32.9
ALU 14.7 4.7 40.3 34.8
FPU 1.8 2.7 33.2 32.2

table to describe the pipeline resource usages. The conversion from the ADF format to
the optimized CRT structure produces only very negligible overhead.

The interesting part of this benchmark is how large overheadthe rest of the models
inflict on top of building the CRT. The ratio number is provided for easier comparison
because DCM uses CRT for its initialization, and both of the FSA models include the
overhead of the DCM model initialization because of the needto construct the operation
collision matrices. This is apparent in the results. For example, the lazy FSA initializa-
tion time is roughly equal to the DCM initialization time because they both need to
initialize the operation conflict matrices and an additional all-zeros conflict matrix: the
global collision matrix in case of DCM, and the collision matrix of the initial state in
case of the lazy FSA.

The effect of “state explosion” to the model initializationtime is substantial in case
of the FPU: creating all the states actively doubles the initialization time when compared
to the lazy initialization.

The simulation time benchmark results, shown in Table 5 emphasize the speed ad-
vantage of theO(1) complexity FSA models. CRT and DCM, the models that require
table traversal in simulation show gradual slowdown as the complexity of the simulated
function unit grows. The active FSA detects resource conflicts 2.7 to 18.4 times faster
than the CRT and 1.3 to 12.3 times faster than the DCM. The slowdown of the lazy
FSA in comparison to the active FSA is at worst 18% and at best only 3%. Our analysis
of the code revealed that most of the slowdown is not caused bythe initialization of the
states lazily, but due to the additional comparison that checks whether the target state
is the uninitialized state. These kind of small overheads are significant when the actual
detection code is only a single array look-up.

5.2 Full Program Simulation Benchmarks

The main purpose of the full program simulation benchmarks was to show that the
choice of the conflict detection model makes a difference in ahighly-optimized simula-
tion engine in real simulated programs. The results supportthis assumption, as shown
in Table 6. For easier comparison, the table includes the relative speed normalized to
the model with no conflict detection.

It can be seen that the overhead of conflict detection in FSA models is significantly
smaller than in other models. No major difference was found between the lazily and
actively initialized FSAs.

It was suprising to note that the DCM model with its constant time conflict detection
was actually slower than the traditional CRT model in real simulation, although the



Table 6.Simulation speed with different models [Mcycles per second].

none DCM CRT active FSA lazy FSA
Video decoding 4.88 (1X) 1.17 (0.24X) 1.79 (0.37X) 3.51 (0.72X) 3.48 (0.71X)
Audio decoding 3.96 (1X) 1.08 (0.27X) 1.53 (0.39X) 2.96 (0.75X) 2.96 (0.75X)

synthetic benchmarks showed different results. This was due to the fact that there was
less than one operation per cycle in the simulated programs,thus the cycle advance
simulation overhead become more dominant.

The DCM cycle advance speed was slower than in CRT since the matrix shifted in
a cycle advance was larger for the function units in the simulated architecture. For ex-
ample, the ALU has more operations (rows in the DCM) than shared pipeline resources
(rows in the CRT).

5.3 About the Effect of Model Initialization Time to the Total Simulation Time

How much the FU resource conflict detection model initialization affects the total sim-
ulation time depends on the type of simulator and its implementation. Naturally, the
relative contribution to the total simulation time is smallin case other parts of the sim-
ulation initialization are complex. For example, in a straightforward implementation of
compiled simulation, the simulation model along with the simulated program is com-
piled to host native code before running the simulation, which is often a lengthy process.
In addition, in case the simulated program itself runs for a long time, the simulation ini-
tialization time loses relevance on every simulated cycle.

For our co-design toolset we have implemented a simulation engine that is opti-
mized for fast initialization time at the expense of simulation speed [18, 20]. This en-
gine is used in automated design space exploration in which relatively short kernels of
crucial algorithms are simulated with a large number of candidate architectures. In this
setting, the initialization time is important, as can be seen in Figure 6. The figure shows
the relation between the function unit model initialization time and the total simulation
time as a function of the length of the simulation in cycles for the FSA-based models.
The data for the graph was produced by simulating a machine with two function units
as complex as the FPU model used in the benchmarks, which is a realistic scenario in
design space exploration of instruction set extensions that share pipeline resources. For
example, it can be read from the figure that in simulations as long as 200 000 cycles,
the model initialization time still consists almost 40% of the total time for the active
FSA, while for the lazy FSA this number is much lower, at about23%. The difference
diminishes radically as the simulation length increases.

6 Conclusion

In this paper, simulation models for detecting function unit pipeline resource conflicts
in simulation of architectures with independent function unit pipelines were evaluated.



0 200 400 600 800 1000 1200 1400

Simulation length (Kcycles)

0

10

20

30

40

50

60

70

80

90

100

F
U

 m
o
d
e
l 
in

it
ia

li
z
a
ti

o
n
 t

im
e
 i
n
 r

e
la

ti
o
n
 t

o
 t

o
ta

l 
s
im

u
la

ti
o
n
 t

im
e
 (

%
)

Lazy FSA

Active FSA

Fig. 6. Relation between model initialization time to the total simulation time.

The evaluated models included the traditional resource vector based approach, the dy-
namic collision matrix model, and a model that uses an finite state automaton (FSA) to
quickly detect the resource conflicts.

In addition, an improvement to the FSA-based approach was proposed. In this “lazy
FSA” model, the states are not constructed at simulation initialization time, but at the
time they are used the first time, thus reducing the simulation initialization time in case
of complex resource usage patterns in the simulated function unit.

The different models were implemented and benchmarked using three different test
function units with resource usage patterns of varying complexity and with operations
with both short and long latencies. The performed experiments show that the proposed
“lazy FSA” approach, due to its reasonable initialization time combined with good sim-
ulation speed, is a suitable default model for function unitresource conflict detection in
a processor simulator.

In the future, we plan to evaluate more techniques for speeding up the simulation
of statically scheduled architectures with simplified control logic. Producing a very fast
simulator especially for TTAs is quite challenging as it is not a traditional instruction
set architecture, thus cannot be easily mapped to the host instruction set by means of
compiled simulation. In addition, its architecture is veryclose to its microarchitecture,
thus, even a functional simulator is forced to model quite low level details. However,
techniques aiming to combine the speed of functional simulation with the accuracy of
cycle-level simulation or the use of processor state “memoization” could be interesting
to adapt for our case [7, 11].



Acknowledgement

This work has been supported in part by the Academy of Finlandunder project 205743
and the Finnish Funding Agency for Technology and Innovation under research funding
decision 40441/05.

References

1. Texas Instruments: TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide.
(December 2007) http://www-s.ti.com/sc/techlit/spru732.

2. Ramanan, V.J., Govindarajan, R.: Resource usage models for instruction scheduling: two
new models and a classification. In: ICS ’99: Proceedings of the 13th international confer-
ence on Supercomputing, New York, NY, USA, ACM Press (1999) 417–424

3. Cmelik, B., Keppel, D.: Shade: a fast instruction-set simulator for execution profiling. In:
Proc. SIGMETRICS ’94, Nashville, Tennessee, United States, ACM (May 1994) 128–137

4. Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, H., Hoffmann, A.: A universal
technique for fast and flexible instruction-set architecture simulation. In: Proc. DAC ’02,
New Orleans, Louisiana, USA, ACM Press (Jun 2002) 22–27

5. Poncino, M., Zhu, J.: Dynamosim: a trace-based dynamically compiled instruction set sim-
ulator. In: Proc. ICCAD ’04, San Jose, CA, USA, IEEE/ACM (Nov2004) 131–136

6. Qin, W., D’Errico, J., Zhu, X.: A multiprocessing approach to accelerate retargetable and
portable dynamic-compiled instruction-set simulation. In: CODES+ISSS ’06: Proceedings
of the 4th international conference on Hardware/software codesign and system synthesis,
New York, NY, USA, ACM Press (2006) 193–198

7. Schnarr, E., Larus, J.R.: Fast out-of-order processor simulation using memoization. In: Proc.
ASPLOS-VIII, San Jose, California, United States, ACM (Oct1998) 283–294

8. Schnarr, E.C., Hill, M.D., Larus, J.R.: Facile: a language and compiler for high-performance
processor simulators. In: Proc. PLDI ’01, Snowbird, Utah, United States, ACM (Jun 2001)
321–331

9. Pees, S., Hoffmann, A., Meyr, H.: Retargeting of compiledsimulators for digital signal
processors using a machine description language. In: Proc.DATE ’00, Paris, France, ACM
(Mar 2000) 669–673

10. Pees, S., Hoffmann, A., Meyr, H.: Retargetable compiledsimulation of embedded processors
using a machine description language. ACM T. Des. Autom. Electron. Syst.5(4) (2000) 815–
834

11. Kim, J.K., Kim, T.G.: Trace-driven rapid pipeline architecture evaluation scheme for asip
design. In: Proc. ASPDAC ’03, Kitakyushu, Japan, ACM (Jan 2003) 129–134

12. Kim, H.Y., Kim, T.G.: Performance simulation modeling for fast evaluation of pipelined
scalar processor by evaluation reuse. In: Proc. DAC ’05, SanDiego, CA, USA, ACM (Jun
2005) 341–344

13. Gao, L., Kraemer, S., Leupers, R., Ascheid, G., Meyr, H.:A fast and generic hybrid simula-
tion approach using C virtual machine. In: CASES ’07: Proceedings of the 2007 international
conference on Compilers, architecture, and synthesis for embedded systems, New York, NY,
USA, ACM Press (2007) 3–12

14. Davidson, E.S., Shar, L.E., Thomas, A.T., Fatel, J.H.: Effective control for pipelined com-
puters. In: COMPCON75 Digest of Papers, IEEE (Feb 1975) 181–184

15. Faraboschi, P., Fisher, J.A., Young, C.: Instruction scheduling for instruction level parallel
processors. In: Proc. IEEE. Volume 89., Washington, DC, USA, IEEE (2001) 1638–1659



16. Thomas H. Cormen, Charles E. Leiserson, R.L.R.: Introduction to Algorithms. The MIT
Press, Cambridge, Massachusetts, London, England (1999)

17. Proebsting, T.A., Fraser, C.W.: Detecting pipeline structural hazards quickly. In: Conference
Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, Oregon (1994) 280–286

18. Jääskeläinen, P.: Instruction Set Simulator for Transport Triggered Architectures. Mas-
ter’s thesis, Department of Information Technology, Tampere University of Technol-
ogy, Tampere, Finland, P.O.Box 553, FIN-33101 Tampere, Finland (Sep 2005)See
http://tce.cs.tut.fi/.

19. Corporaal, H.: Microprocessor Architectures: from VLIW to TTA. John Wiley & Sons,
Chichester, UK (1997)

20. Jääskeläinen, P., Guzma, V., Cilio, A., Takala, J.: Codesign toolset for application-specific
instruction-set processors. In: Proc. Multimedia on Mobile Devices 2007. (2007) 65070X–1
– 65070X–11

21. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 3rd edi-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2003)

22. EEMBC: Denbench 1.0 software benchmark databook. PDFSee
http://www.eembc.org/TechLit/Datasheets/denbench db.pdf.

23. The Xiph Open Source Community: Tremor - the reference ogg vorbis decoder. WWWSee
http://xiph.org/vorbis/.

24. Bala, V., Rubin, N.: Efficient instruction scheduling using finite state automata. Int. Journal
of Parallel Programming25(2) (1997) 53–82


