Resource Conflict Detection in
Simulation of Function Unit Pipelines

Pekka Jaaskelainen, Vladimir Guzma, and Viljami Koréio

Department of Computer Systems
Tampere University of Technology
P.O. Box 553
FIN-33101 Tampere
Finland
{pekka. j aaskel ai nen, vl adi m r. guzme, vi | j ami . korhonen}@ut . fi

Abstract. Processor simulators are important parts of processogrl¢solsets
in which they are used to verify and evaluate the propertiéseodesigned pro-
cessors. While simulating architectures with indepenfleamttion unit pipelines
using simulation techniques that avoid the overhead afintibn bit-string inter-
pretation, such as compiled simulation, the simulatioruatfion unit pipelines
can become one of the new bottlenecks for simulation spded pper evaluates
several resource conflict detection models, commonly usedmpiler instruc-
tion scheduling, in the context of function unit pipelinensilation. The evaluated
models include the conventional reservation table basedemthe dynamic col-
lision matrix model, and an finite state automata (FSA) basedel. In addition,
an improvement to the simulation initialization time by meaf lazy initializa-
tion of states in the FSA-based approach is proposed. Thkingsmodel is faster
to initialize and provides comparable simulation speedéodctively initialized
FSA.

1 Introduction

Processor simulators possess different level of accurapgmtling on their purpose.
Functional instruction set simulation is mainly used foognam verification and de-
velopment in cases which do not require detailed modelingnahg. More accurate
cycle-based simulators can produce cycle counts andaitidiz statistics for directing
processor design space exploration — a process of findinghdst suitable proces-
sor architecture for the applications at hand. In automdésign space exploration of
application-specific processors, the number of examinedidate architectures can
reach thousands, thus the time it takes to produce theattiliz data and cycle counts
for each explored architecture can have a dramatic effethit@total exploration time.
Structural hazards are situations in which multiple openstor instructions try to
use the same processor resource simultaneously. Comnstmigtural hazards result
in processor stall cycles in which the processor waits madke for the hazard to re-
solve. Cycle-accurate simulators detect these stall syatel model them accurately.
At minimum, the stall cycles should be counted and addeddddtal cycle count. On
the other hand, some architectures are unable to handigal of structural hazards

gracefully in hardware. In such cases, the detection otsiral hazards during simula-
tion is considered part of the program verification proc€sse example of this type of
architecture is the TMS320C64x, a popular clustered VLI'¢hdecture from Texas In-

struments. This architecture handles certain types oftstral hazards with exceptions,
thus often resulting in program termination [1].

Simulation of statically scheduled architectures withifred control logic con-
centrates on simulating the data transports between @ungtiits and register files, the
functionality of operations in function units, and the ftioa unit latencies. Our results
show that in this type of simulators, especially if the siaiidn overhead of instruc-
tion decoding phase is avoided, structural hazard detectia become the bottleneck
for simulation speed. This effect is emphasized when sitimgarchitectures that have
multiple pipelined function units with shared pipelinesasces.

This paper evaluates several common models to detect cunatiit pipeline re-
source conflicts during compiler instruction schedulinyj applies them to processor
simulation. The explored models include the conventioesd¢rvation table (CRT), the
dynamic collision matrix (DCM) and an finite state automd&8A) based model [2].
Finally, an improvement to the simulation initializatiame by means of lazy initial-
ization of states in the FSA-based approach is proposedwahgded. Using the lazily
initialized model, our benchmarks show significant improeats to the actively ini-
tialized FSA model initialization time with very little ovkead to the simulation time.

The rest of paper is organised as follows. Section 2 analgsissing solutions
for improving processor simulation speed. Section 3 givesf loverview of common
book keeping methods for structural hazard detection ingiteminstruction schedul-
ing which are applied in this paper to processor simulat®ection 4 describes our
test setup, followed by Section 5 with results from the exedtenchmarks. Section 6
concludes the work and outlines future research directions

2 Related Work

Several research papers discuss the techniques to avoidsthgction bit string in-
terpretation overhead during simulation. These techrsigue commonly referred to
as “compiled simulation”. For example, Shade is a simulatbich includes a tech-
nique for translating the simulated instructions dynathjda host instructions during
simulation and caching the translated instructions farlakecution [3]. However, the
presented work is a simulator with functional accuracy,eteding structural hazards
and other microarchitectural details required for cyaletmacy are not discussed. In
addition to the dynamic translation, the paper describegthadology to flexibly ad-
just the selection of traces to produce from simulationt &srioted that the production
of traces is very expensive when compared to the simulatiseif i

JIT-CCS technique applies just-in-time (JIT) compilaticommon in virtual ma-
chines, to instruction set simulation. This technique reesahe limitation of translat-
ing simulator not capable of simulating self-modifying edd]. Use of JIT techniques
for simulation is explored also in DynamoSim, which imprevke simulator flexibil-
ity by combining interpretive and compiled techniques bynpding only parts of the
simulation that benefit the most [5]. The paper also extemelstope of the simulation

compilation from basic blocks to traces to exploit betteritistruction-level parallelism
capabilities of the host processor in order to achieve higimeulation speed.

The growing trend of multiprocessors in desktop machinegjioited in processor
simulation in [6]. Multiple processor cores are taken inge oy compiling the simu-
lation code in other available host processor cores whileikiting the application in
one. This method hides the compilation overhead of dynamaistation, which is very
beneficial especially when simulating smaller applicagion

FastSim uses the idea of compiled simulation in detailedodutrder microarchi-
tectural simulation [7]. The main contribution of the pafgea technique to “memoize”
microarchitectural configurations and “fast-forward” theions to the processor state
when the simulation enters a previously executed micrao@atural configuration. The
idea is extended in [8] which introduces a language for easiplementation of this
type of “fast-forwarding” simulators.

Pees, Hoffman, and Meyr present an architecture desarifainguage LISA, which
allows generating compiled processor simulators for sdegchitectures automatically
[9, 10]. The resulting simulators are cycle-accurate tisankhe capabilities of the lan-
guage to allow detailed modeling of pipeline resources bgettie instructions.

An interesting simulation speedup technique worth notsggaken-level simula-
tion” [11] and “evaluation reuse” [12]. The principle of $etechniques is to simulate
the program first in functional level for obtaining the basliack traces. Using the basic
block traces, the accurate cycle count is produced by etmafutie effects of each ba-
sic block to the processor pipeline state but without sitidgthe actual functionality
again since it has already been performed in the previotsrfpass. This technique
seems very promising for speeding up the collection of thed tycle counts but does
not produce cycle-accurate simulation for exact timing elbutyging features such as
cycle-stepping, due to the separation of the functionaltenithg simulation.

Notable speedups to functional simulation are achieved 3 lpy combining fast
host native execution of selected functions of the simdlgtegram with more de-
tailed, but slower, instruction set simulation of platfesmecific functions. The pro-
posed method is targeted to accelerate functional sinonlatsed in cross-platform
software development while our work addresses cycle-ategrocessor simulation.

Literature covering techniques for speeding up and retagprocessor simulation,
in general, is widely available. However, avoiding the leotecks in cycle-accurate
simulation of architectures with independent functiont pipelines seems to be rarely
discussed. Overall, it was hard to find publications addnggbe problem of detecting
structural hazards during simulation effectively whil&itey in account the trade-offs
in simulation setup time. This paper considers structusabind detection models in the
context of simulating architectures with independent fiormcunit pipelines that share
hardware resources. The work is potentially applicable wadser range of processor
simulators that require any kind of structural hazard deiac

3 Structural Hazard Detection in Processor Simulation

Processor resource usage models have been traditionathiugstruction schedulers
of compilers. In instruction scheduling, the model is askéther an instruction can

cycle
resourcgO| 1 |2
r 1/ 0|0
ro 0110
r3 0111

Fig. 1. Conventional Reservation Table.

be placed to a given cycle without causing structural hazartis question is often
referred to as “a contention query” [2]. Contention quedesdone similarly in cycle-
accurate processor simulators, except that the cycle meawf the query is limited to
the currently simulated one.

An important issue to notice while adapting the resourcgesaodels to proces-
sor simulation is that at the worst case, the contentionygigesone every time before
an instruction is simulated. In addition, for each sucaghséxecuted instruction, the
“compound resource usage model” that stores the functi@roumprocessor resource
usage state must be updated to reflect the resource usagenavity executed instruc-
tion. Finally, for each simulated cycle the compound resewrsage model must be
updated to reflect the passing of simulation time. Thesetbperations required from
the resource usage models, later referred to as “confliakéh®operation issue”, and
“cycle advance”, must be fast, as the instruction functibnaself can be often simu-
lated with relatively low number of host cycles with complilemulation techniques.

Initialization time of the resource conflict model is impamt in such automated pro-
cessor design space exploration algorithms which als@exfhe function unit pipeline
resources. In case the application used to evaluate therexisrchitecture is short, the
initialization time can become the bottleneck for the tstatulation time. On the other
hand, in case the design space exploration does not varyrtiéuse of function units,
the resource conflict model for each function unit used inagbion can be computed
once and reused later using model caching. In this case tdelrimitialization time is
less relevant.

Next sections present a brief overview of common method«éeping book of
occupied pipeline resources during processor simulationstruction scheduling and
their simulation runtime complexity.

3.1 Conventional Reservation Table

Conventional Reservation Table (CR3 a matrix with one dimension representing the
machine resources and the other one representing cycle$, [I5]. A resource usage
is marked by storing 1 in the matrix element at the positidinge by the cycle and the
resource. An example of a reservation table for an operé#tianuses three resources
and has a latency of three cycles is shown in Fig. 1.

When using CRT for function unit (FU) pipeline resource modg the simulator
keeps book of the occupied resources at each cycle of théadiomnuin a per FUcom-
pound reservation tableResource conflicts are detected by comparing the compound

operationO| 1 |2
(o]} 14110
O, ||0j0]0

Fig. 2. Collision Matrix for OperatiorD;.

reservation table to the resource usage pattern of thedateddperation. In case there
are overlapping resource usages between the candidatdiop&reservation table and
the global reservation table, a structural hazard is detect

The CRT model can be implemented with a bit matrix using hasthime words
to store the bits. In this kind of implementation the conftibeck can be implemented
as an AND operation between the corresponding words of thgoand reservation
table and the reservation table of the issued operatiorada the result of any of the
AND operations is nonzero, a conflict is detected. This chegotentially quite fast,
especially if there are less cycles in the reservation tiae bits in the host machine
word, in which case only one AND operation for each reseovethble row is required.
However, the worst case complexity of the resource conflieck isO(rc) wherer is
the number of resources andlenotes the number of cycles in the longest operation in
the function unit.

Operation issue can be implemented similarly as the coofiietk, by using the OR
operation to merge the resource usages of the issued itigtrtacthe global reservation
table. Cycle advance is implemented by left shifting therestion table once to reflect
the freeing of resources as the simulation time passes.

3.2 Dynamic Collision Matrix

Another approach to the conflict detection problem is toestamflict information di-
rectly to a matrix instead of the resource usage patternateaneeded to compute it.
In this approach, aollision matrix(CM) is computed for each operation in the FU. A
collision matrix contains rows for each operation and asymwatumns as there are cy-
cles in the longest latency operation in the FU. The elerivgntn a conflict matrix of
operationOy is 0 only if the operatior®; (thei:th row in the CM) doesiot cause a re-
source conflict when issugatycles (thg:th column in the CM) after issuing operation
Ok [14].

Figure 2 presents a collision matrix of an imaginary opera®; in a function unit
with two operations. From the matrix it is easy to see tharafxecuting1, one cannot
executed; again for the first two cycles, b@, can be freely executed, as all elements
in its row contain 0, denoting “no conflict”.

The Dynamic Collision Matrix (DCM)Mmodel, proposed in [2], usesgobal colli-
sion matrixwhich can be used to keep book of the pipeline resource stake @im-
ulated function unit, similarly to the compound reservatiable in case of CRT. The
improvement of DCM in comparison to CRT is that instead ofdieg to loop through
the matrix elements, the conflict check is now a single tajw&dup withO(1) complex-

ADD

o, e (i
111000 110000
000000 100000
000000 100000

Fig. 3. Finite state automaton of valid operation sequences in an FU

ity. Operation issue still requires a loop that ORs the aoading bits in the issued
operation with the DCM. The cycle advance implementatioalss similar to CRT: a
left shift of the matrix. The loops required for operatiositie and cycle advance can be
optimized similarly as CRT, using host machine words toestbe bits. Complexity of
these two operations is dependent on the count of operdtiahg function unit, the
worst case bein@(oc) whereo is the number of operations anchumber of cycles in
the longest operation in the function unit.

3.3 Finite State Automata

One popular structural hazard detection scheme is to eangirFinite State Automa-
ton (FSA) [16] that contains information of all non-confiigy operation execution se-
qguences in the function unit. In the FSA-based approach, gtate includes a collision
matrix (as described in the previous section) that storfesrimation of all the operations
that are possible to issue without conflicts while at thaestBhe collision matrix of the
target state when issuing an operation is computed by léfirghthe collision matrix
of the starting state and ORing it with the collision matrbtiee issued operation [14].
Left shifting the collision matrix simulates a cycle advapahich assumes that at most
one operation can be started per cycle in the function umitlgs in which no new op-
erations are issued are modeled by issuing a “no operatd@P(), a pseudo operation
with an all-zeros collision matrix. In some architectures;h as the traditional VLIW,
NOP is not a pseudo instruction but issued like any othertfanainit operation.

Figure 3 illustrates an example automaton for a functiom with two operations:
ADD and MUL. For example, in the automaton, it is apparent #fi@r executing ADD,
it is possible to execute both ADD and MUL, but after exeagitiflUL three idle cycles
are needed before issuing new operations.

Conflict check using FSA requires minimal computation; agkdrtable look-up to
the transition table of the FSA. In case the transition tgite/ides a valid destination
state id for the operation, the tested operation is possibiesue without conflicts,
otherwise a hazard is detected. Similarly, updating thetfan unit state in operation
issue is a constant operation: the target state obtainezhiitiat check is simply stored
to a variable representing the current state of the function The state update includes
also the cycle advance simulation, and in case of an idleeggaitra functionality of
issuing a NOP is required. Thus, all model operations: attrfhieck, operation issue,
and cycle advance happen in constant time using the FSA.

A disadvantage of the FSA-based model is that their inii#ion time can grow
long due to the potentially large number of states in theraaton that need to be built

000000\ MUL
oooooo

Fig. 4. The lazy FSA before issuing any operations.

based on the operation resource usage patterns. An algdothbuilding a minimum
automata from instruction resource vectors is presentetbiail in [17]. Briefly, the
algorithm starts by initializing the start state with thezgdros conflict matrix. Then it
tries to “issue” all possible operations at that state, tanggossibly new target states,
issues all possible operations at the newly created states@on, until there are no
unhandled states left. Therefore, the worst case complekinitialization of the func-
tion unit FSA is the case when all possible states are pradicech state in the FSA is
identified by its conflict matrix. Therefore, the maximum rlaemof states is the number
of different permutations of the conflict matrix, which@§2°°) wherec is the number
of cycle columns and the number of operation rows in the conflict matrix.

The potential “state explosion” for complex function unipglines leads to an op-
timization to the FSA-based approach evaluated in this p&pee of the evaluated
models is an FSA-based model in which the states are budilylathe first time they
are entered, hoping to reduce the initialization time. Tpenoization is derived from
the observation that in many cases only the minority of tha Btates are visited by the
simulated program, thus, the construction time for the edistates is wasted.

The time to initialize a new state consist of first generatngew collision matrix
for the state using the starting point state and the coflismatrix of the issued oper-
ation. The size of the matrix depends on the complexity offtimetion unit pipeline,
as described in the previous section. In addition to théaliration overhead, there is
some overhead from finding whether a state with the creatéidion matrix is already
found in the state machine, in which case the transition ipeshade to that state in-
stead of the newly created one. Overhead of this look-up gsa search algorithm
dependent function of the count of already created states.

The lazy FSA is initialized to contain the all-zeros stagtipoint state. All state
transitions from the state are initialized to point to a keuninitialized state. Every
time an operation that causes a transition touhimitializedstate is issued, a concrete
target state is created, if it does not exist already, of tvlviansition table entries are set
to point to theuninitializedstate. An example of lazy FSA in action is shown in Fig. 4
which shows how the lazily initialized version of the FSA iigF3 looks initially.
Figure 5 shows the FSA after issuing the MUL operation.

4 Test Setup

We evaluated different models for function unit resourcefiict detection during sim-
ulation by implementing them in a simulator for Transporig@iered Architectures
(TTA) [18]. TTA is an architecture that resembles VLIW andludes function units

ADD
|I 111000 .
111000

Fig. 5. The lazy FSA after issuing MUL.

000000
000000

with independent pipelines [19]. The main difference of TIBAVLIW in the simula-
tion point of view is the programmer-controlled intercontien network which adds
some extra complexity to the simulation. However, it is impot to note that the re-
sults are not at all TTA-specific, but applicable to all pres@ architectures that require
structural hazard modeling. TTA was used as an architetdumplate for this bench-
mark merely because this work was conducted as part of agbasgeloping a codesign
toolset for TTA-based application specific processors.[20]

The experiments were divided to synthetic benchmarks algfogram bench-
marks. Synthetic benchmarks evaluated the models selydrata the rest of the sim-
ulator to isolate their contribution to the simulation spe€he purpose of full program
benchmarks was to give some perspective on how much theecbbibe resource con-
flict model affects the actual total simulation speed. Irs tiénchmark we evaluated
the different models when used as part of a compiled simuéatgine that simulated a
whole TTA processor running nontrivial test programs.

In the synthetic benchmarks, the model initialization meere evaluated by ini-
tializing each model 1000 times in a row and measuring thes tell-clock time spent
in the initialization routine. The model simulation speedswmeasured by simulating
sequences of operations and by measuring the total walktime it took to simulate
the operation sequence. The synthetic simulation bendhimeluded a conflict check,
an operation issue, and a cycle advance for each simulagzdtam, thus mimics a pro-
gram with average of one operation execution per cycle. Bpehation in each function
unit was executed in round-robin fashion in successiveesywiith total of 4 10° op-
eration executions. All the resource conflicts reportedigyrhodels were caught and
ignored without producing notable additional overheach® simulation benchmark.
Each test in the synthetic benchmark was executed three timgerow and the average
wall clock time was measured.

The different models were evaluated with the following ftioie unit resource usage
patterns:

MUL A single-operation function unit that implements integantiplication with la-
tency of 3. The operation uses three pipeline resourcetuardlted in Fig.1. This
function unit was picked in order to evaluate how the diffenmodels perform in
case the simulated function unit hasa very small number cbdes.

ALU An arithmetic-logic unit with 18 integer operations. Latgrof half of the oper-
ations is one cycle, two cycles for the other half.

FPU Function unit that models a floating-point unit. Its pipelimatches the one of
MIPS R4000 floating-point unit, as described in [21]. Thet imGludes eight floating-

point operations that share eleven different pipelineusses. The double precision
floating point operations range from a simple “absolute @ahperation (latency
of two cycles) to a long latency “square root” operationdtaty of 112 cycles).

In the full program benchmarks, the impact to the actual Bgpeed simulation
speed was measured by testing each model in a compiled siomgagine. The bench-
marked programs along with their total cycle counts aredish Table 1. In order to
create a realistic test machine for the benchmark, we usedrtthitecture description
language of our TTA-based codesign toolset [20] to define & With the resources
listed in Table 2. All benchmarked programs were using fixeithparithmetic so the
floating point unit was not used in this benchmark.

Table 1.Benchmarked programs and their total cycle counts.

| application || description || total cycles [Mcycles]

Video decoding|| EEMBC DENBench [22] MPEG-4 Decode: 'graphic’ 375
Audio decoding|| Tremor [23] Ogg vorbis decoder: a 40 KB sample 304

Table 2. Relevant components in the simulated TTA-processor.

resource quantity
ALU 2
MUL 2
32-bit registers 32

Register file read ports
Register file write ports
Transport buses

BN A~

The measurements were made in a 3.4GHz Pentium 4 CPU with 2f GaMd.
The operating system was Ubuntu Linux 7.10, with GNU GCC céenpersion 4.1.2-
16ubuntu2. The compiler optimization switch used to comilie models was '-O3’.

In the full program simulation benchmark, a simulation cod€++ language was
generated and compiled to host native code with the abovéioned GCC compiler
and optimization switch.

The evaluated conflict detection models are the following:

none A model without conflict detection used in the full prograqmalation bench-
mark. This model simulates only the operation latency, logischot detect if there
are conflicting pipeline resource usages between the dtapierations. This model
could be used in quick design space exploration.

Table 3. The number of created states in the active FSA model.

FU # of stateg
MUL 3
ALU 4

FPU 2109

CRT The conventional reservation table model.

DCM Dynamic collision matrix model.

active FSA Uses an FSA for conflict detection. The FSA is fully constedcbefore
starting the simulation. The used construction algoritersimilar to the one pre-
sented in [24].

lazy FSA Like “active FSA", but the FSA is not fully constructed begostarting the
simulation. Initialization routine includes initializirthe collision matrices of func-
tion unit operations, and the creation of the initial sté¢her states are created
when they are visited for the first time during simulation.

The number of states in FSA affects the initialization timethe actively initial-
ized FSA-based simulation model. The number of states fdr fmction unit pipeline
model are listed in Table 3. These numbers provide an indicatf the complexity of
the evaluated function unit pipelines. The FPU with 210%estés an example of how
the number of states grow dramatically when the complexityéases. On the other
hand, simple function units can be simulated with a very loimber of states.

5 Results

The results from the synthetic model benchmarks and fulljizom simulation bench-
marks are presented in the following sections.

5.1 Synthetic Model Benchmarks

The initialization times for each of the models are givenabl€ 4. Table 5 shows the
simulation times which do not include the model initializattime.

The initialization numbers for CRT are not very interestasgour architecture de-
scription format (ADF) uses resource vectors, a structerg elose to the reservation

Table 4. Average model initialization timegu§].

CRT DCM active FSA lazy FSA
MUL | 10 (1X) |10 (1X) 30 (3X) 30 (3X)

ALU | 70 (1X) | 200 (2.9X) 330 (4.7X) 230 (3.3X)
FPU | 3510 (1X)| 143 000 (41X)| 285 000 (81X)| 143 000 (41X)

Table 5. Model simulation times [Moperations per second].

CRT | DCM | active FSA| lazy FSA
MUL | 9.7 |30.6 | 40.0 32.9
ALU | 14.7|4.7 |40.3 34.8
FPU |18 |27 |33.2 32.2

table to describe the pipeline resource usages. The coondrem the ADF format to
the optimized CRT structure produces only very negligiblerbead.

The interesting part of this benchmark is how large overlteadest of the models
inflict on top of building the CRT. The ratio number is proviter easier comparison
because DCM uses CRT for its initialization, and both of te&Fnodels include the
overhead of the DCM model initialization because of the rieebnstruct the operation
collision matrices. This is apparent in the results. Fongxa, the lazy FSA initializa-
tion time is roughly equal to the DCM initialization time kmcse they both need to
initialize the operation conflict matrices and an additiaibzeros conflict matrix: the
global collision matrix in case of DCM, and the collision matof the initial state in
case of the lazy FSA.

The effect of “state explosion” to the model initializatibme is substantial in case
of the FPU: creating all the states actively doubles théiigation time when compared
to the lazy initialization.

The simulation time benchmark results, shown in Table 5 exsigle the speed ad-
vantage of thed(1) complexity FSA models. CRT and DCM, the models that require
table traversal in simulation show gradual slowdown as tmegdexity of the simulated
function unit grows. The active FSA detects resource cdrflic7 to 18.4 times faster
than the CRT and 1.3 to 12.3 times faster than the DCM. Thedddam of the lazy
FSA in comparison to the active FSA is at worst 18% and at b@gt3%. Our analysis
of the code revealed that most of the slowdown is not causeleoitialization of the
states lazily, but due to the additional comparison thatksevhether the target state
is the uninitialized state. These kind of small overheadssagnificant when the actual
detection code is only a single array look-up.

5.2 Full Program Simulation Benchmarks

The main purpose of the full program simulation benchmarks @ show that the
choice of the conflict detection model makes a differencetiighly-optimized simula-
tion engine in real simulated programs. The results sugh@tassumption, as shown
in Table 6. For easier comparison, the table includes traivelspeed normalized to
the model with no conflict detection.

It can be seen that the overhead of conflict detection in FSAeaisds significantly
smaller than in other models. No major difference was fouetivben the lazily and
actively initialized FSAs.

It was suprising to note that the DCM model with its constametconflict detection
was actually slower than the traditional CRT model in reaiidation, although the

Table 6. Simulation speed with different models [Mcycles per se¢ond

none DCM CRT active FSA | lazy FSA
Video decoding|| 4.88 (1X)| 1.17 (0.24X)| 1.79 (0.37X)| 3.51 (0.72X)| 3.48 (0.71X)
Audio decoding|| 3.96 (1X)| 1.08 (0.27X)| 1.53 (0.39X)| 2.96 (0.75X)| 2.96 (0.75X)

synthetic benchmarks showed different results. This wastdthe fact that there was
less than one operation per cycle in the simulated progrtms,the cycle advance
simulation overhead become more dominant.

The DCM cycle advance speed was slower than in CRT since théxrahifted in
a cycle advance was larger for the function units in the sited architecture. For ex-
ample, the ALU has more operations (rows in the DCM) thanesthpipeline resources
(rows in the CRT).

5.3 About the Effect of Model Initialization Time to the Total Simulation Time

How much the FU resource conflict detection model initidl@aaffects the total sim-
ulation time depends on the type of simulator and its impletatéon. Naturally, the
relative contribution to the total simulation time is smialcase other parts of the sim-
ulation initialization are complex. For example, in a graforward implementation of
compiled simulation, the simulation model along with theagiated program is com-
piled to host native code before running the simulation chiig often a lengthy process.
In addition, in case the simulated program itself runs faraltime, the simulation ini-
tialization time loses relevance on every simulated cycle.

For our co-design toolset we have implemented a simulatigine that is opti-
mized for fast initialization time at the expense of simiglatspeed [18, 20]. This en-
gine is used in automated design space exploration in wiidlively short kernels of
crucial algorithms are simulated with a large number of ¢deie architectures. In this
setting, the initialization time is important, as can besed-igure 6. The figure shows
the relation between the function unit model initializattome and the total simulation
time as a function of the length of the simulation in cyclestfee FSA-based models.
The data for the graph was produced by simulating a machitietwo function units
as complex as the FPU model used in the benchmarks, whictesliatic scenario in
design space exploration of instruction set extensiortsstiere pipeline resources. For
example, it can be read from the figure that in simulation®©ag ks 200 000 cycles,
the model initialization time still consists almost 40% béttotal time for the active
FSA, while for the lazy FSA this number is much lower, at ak#@fo. The difference
diminishes radically as the simulation length increases.

6 Conclusion

In this paper, simulation models for detecting functiontymipeline resource conflicts
in simulation of architectures with independent functiort gpipelines were evaluated.

100 ‘ — T o elazy FSA
4—a Active FSA

90
80
70f
\
60|
\
sof |
\

\

\

401 |
\

30
20

10

FU model initialization time in relation to total simulation time (%)

0

0 200 400 600 800 1000 1200 1400
Simulation length (Kcycles)

Fig. 6. Relation between model initialization time to the total slation time.

The evaluated models included the traditional resourctovéased approach, the dy-
namic collision matrix model, and a model that uses an finétesautomaton (FSA) to
quickly detect the resource conflicts.

In addition, an improvement to the FSA-based approach wasgsed. In this “lazy
FSA’ model, the states are not constructed at simulatidializiation time, but at the
time they are used the first time, thus reducing the simuiatiitialization time in case
of complex resource usage patterns in the simulated fumatid.

The different models were implemented and benchmarked disiee different test
function units with resource usage patterns of varying derity and with operations
with both short and long latencies. The performed expertsgimow that the proposed
“lazy FSA’ approach, due to its reasonable initializationg combined with good sim-
ulation speed, is a suitable default model for function tesburce conflict detection in
a processor simulator.

In the future, we plan to evaluate more techniques for speeaip the simulation
of statically scheduled architectures with simplified ¢cohlbgic. Producing a very fast
simulator especially for TTAs is quite challenging as it & a traditional instruction
set architecture, thus cannot be easily mapped to the h&istigtion set by means of
compiled simulation. In addition, its architecture is vetyse to its microarchitecture,
thus, even a functional simulator is forced to model quite level details. However,
techniques aiming to combine the speed of functional sitiurlavith the accuracy of
cycle-level simulation or the use of processor state “meat@n” could be interesting
to adapt for our case [7, 11].

Acknowledgement

This work has been supported in part by the Academy of Finlavtter project 205743
and the Finnish Funding Agency for Technology and Innovatioder research funding
decision 40441/05.

References

10.

11.

12.

13.

14.

15.

. Texas Instruments: TMS320C64x/C64x+ DSP CPU and InstruSet Reference Guide.

(December 2007) http://www-s.ti.com/sc/techlit/spra73

. Ramanan, V.J., Govindarajan, R.: Resource usage maateisstruction scheduling: two

new models and a classification. In: ICS '99: Proceedingdefli3th international confer-
ence on Supercomputing, New York, NY, USA, ACM Press (19994124

. Cmelik, B., Keppel, D.: Shade: a fast instruction-setwator for execution profiling. In:

Proc. SIGMETRICS '94, Nashville, Tennessee, United S{&#€M (May 1994) 128-137

. Nohl, A., Braun, G., Schliebusch, O., Leupers, R., Meyr, Hbffmann, A.: A universal

technique for fast and flexible instruction-set architegtsimulation. In: Proc. DAC '02,
New Orleans, Louisiana, USA, ACM Press (Jun 2002) 22-27

. Poncino, M., Zhu, J.: Dynamosim: a trace-based dynatyicampiled instruction set sim-

ulator. In: Proc. ICCAD 04, San Jose, CA, USA, IEEE/ACM (N2004) 131-136

. Qin, W,, D’Errico, J., Zhu, X.: A multiprocessing apprbaio accelerate retargetable and

portable dynamic-compiled instruction-set simulation: CODES+ISSS '06: Proceedings
of the 4th international conference on Hardware/softwardesign and system synthesis,
New York, NY, USA, ACM Press (2006) 193-198

. Schnarr, E., Larus, J.R.: Fast out-of-order processmulation using memoization. In: Proc.

ASPLOS-VIII, San Jose, California, United States, ACM (0@98) 283-294

. Schnarr, E.C., Hill, M.D., Larus, J.R.: Facile: a langeiagd compiler for high-performance

processor simulators. In: Proc. PLDI '01, Snowbird, Utahjteld States, ACM (Jun 2001)
321-331

. Pees, S., Hoffmann, A., Meyr, H.: Retargeting of compgédulators for digital signal

processors using a machine description language. In: PAKE '00, Paris, France, ACM
(Mar 2000) 669-673

Pees, S., Hoffmann, A., Meyr, H.: Retargetable comietdilation of embedded processors
using a machine description language. ACM T. Des. Autonctida. Syst5(4) (2000) 815—
834

Kim, J.K., Kim, T.G.: Trace-driven rapid pipeline argtture evaluation scheme for asip
design. In: Proc. ASPDAC '03, Kitakyushu, Japan, ACM (Ja83Q129-134

Kim, H.Y., Kim, T.G.: Performance simulation modelingr ffast evaluation of pipelined
scalar processor by evaluation reuse. In: Proc. DAC '05,3ago, CA, USA, ACM (Jun
2005) 341-344

Gao, L., Kraemer, S., Leupers, R., Ascheid, G., MeyrAfast and generic hybrid simula-
tion approach using C virtual machine. In: CASES '07: Progegs of the 2007 international
conference on Compilers, architecture, and synthesigfibeedded systems, New York, NY,
USA, ACM Press (2007) 3-12

Davidson, E.S., Shar, L.E., Thomas, A.T., Fatel, J.Hfedive control for pipelined com-
puters. In: COMPCONT75 Digest of Papers, IEEE (Feb 1975) 184—

Faraboschi, P., Fisher, J.A., Young, C.: Instructidmesdaling for instruction level parallel
processors. In: Proc. IEEE. Volume 89., Washington, DC, UEEE (2001) 1638-1659

16.

17.

18.

19.

20.

21.

22.

23.

24.

Thomas H. Cormen, Charles E. Leiserson, R.L.R.: Inttdan to Algorithms. The MIT
Press, Cambridge, Massachusetts, London, England (1999)

Proebsting, T.A., Fraser, C.W.: Detecting pipelinacitiral hazards quickly. In: Conference
Record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium onrRiples of Program-
ming Languages, Portland, Oregon (1994) 280-286

Jaaskelainen, P.: Instruction Set Simulator fom3pert Triggered Architectures. Mas-
ter's thesis, Department of Information Technology, Tarep&niversity of Technol-
ogy, Tampere, Finland, P.O.Box 553, FIN-33101 TamperelaRth (Sep 2005)See
http://tce.cs.tut.fi/.

Corporaal, H.: Microprocessor Architectures: from VMLko TTA. John Wiley & Sons,
Chichester, UK (1997)

Jaaskelainen, P., Guzma, V., Cilio, A., Takala, Jod€sign toolset for application-specific
instruction-set processors. In: Proc. Multimedia on Melevices 2007. (2007) 65070X-1
—65070X-11

Hennessy, J.L., Patterson, D.A.: Computer ArchitectarQuantitative Approach, 3rd edi-
tion. Morgan Kaufmann Publishers Inc., San Francisco, CBAJ2003)

EEMBC: Denbench 1.0 software benchmark databook. PBEe
http://ww. eenbc. or g/ TechLi t/ Dat asheet s/ denbench_db. pdf .

The Xiph Open Source Community: Tremor - the referengevogbis decoder. WW\V6ee
http://xiph.org/vorbis/.

Bala, V., Rubin, N.: Efficient instruction schedulingngsfinite state automata. Int. Journal
of Parallel Programming5(2) (1997) 53-82

