
Tampere University of Technology

Author(s) Alho, Pekka; Mattila, Jouni

Title Breaking down the requirements: Reliability in remote handling software

Citation Alho, Pekka; Mattila, Jouni 2013. Breaking down the requirements: Reliability in remote
 handling software. Fusion Engineering and Design vol. 88, num. 9-10, 1912-1915.

Year 2013

DOI http://dx.doi.org/10.1016/j.fusengdes.2012.11.008

Version Post-print

URN http://URN.fi/URN:NBN:fi:tty-201403261138

Copyright NOTICE: this is the author's version of a work that was accepted for publication in Fusion
 Engineering and Design. Changes resulting from the publishing process, such as peer
 review, editing, corrections, structural formatting, and other quality control mechanisms
 may not be reflected in this document. Changes may have been made to this work since it
 was submitted for publication. A definitive version was subsequently published in
 Fusion Engineering and Design, Volume 88, Issues 9-10, October 2013, DOI
 10.1016/j.fusengdes.2012.11.008.

All material supplied via TUT DPub is protected by copyright and other intellectual property rights, and duplication
or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by
you for your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an
authorized user.

author’s email: pekka.alho@tut.fi

Breaking down the requirements: reliability in remote handling
software

Pekka Alhoa, Jouni Mattilaa

a Department of Intelligent Hydraulics and Automation, Tampere University of Technology, Finland

Software requirements have an important role in achieving reliability for operational systems like remote
handling: requirements are the basis for architectural design decisions and also the main cause of defects in high
quality software. We analyze related recommendations and requirements given in software safety standards,
handbooks etc. and apply them to remote handling control systems, which typically have safety-critical
functionality, but are not actual safety-systems – for example the safety-systems in ITER will be hardware-based.

Based on the analysis, we develop a set of generic recommendations for control system software requirements,
including quality attributes, software fault tolerance, and safety and as an example we analyze ITER remote
handling system software requirements to identify and present dependability requirements in a useful manner.
Based on the analysis, we divide a high-level control system into safety-critical and non-safety-critical subsystems,
and give examples of requirements that support building a dependable system.

Keywords: remote handling, control system, software, requirements, reliability, dependability

1. Introduction
ITER will feature a large number of remote handling

(RH) systems, including divertor, blanket, port handling,
viewing, neutral beam, transfer cask and hot cell. Proper
maintenance and operation of ITER is not possible
without these systems, and their reliable operation is
necessary for ensuring that the plant is available for
fusion experiments. Achieving this goal requires reliable
mechanical components and designs, together with a
suitable maintenance strategy. However, software
failures have passed hardware as the most common
source for computer system outages already in the last
century [1], and modern control systems have complex
functionality implemented with software. Software
failures therefore present a major threat for ITER RH
systems, which are safety-critical in the sense that a fault
could damage research equipment or cause maintenance
outages, potentially reducing experimental time.

Software requirement specifications have an
important role in establishing safe and reliable RH
operations, especially since the RH systems will be
developed by several contractors. This is because: 1)
requirements set targets that are used to verify software
quality, including reliability; 2) quality attributes (i.e.
non-functional requirements for “how well” the system
should perform) drive significant architectural and
design decisions [2] and 3) requirement specification is
the largest source for defects in high-quality software
[3]. In order to improve dependability in control systems,
our research evaluates effective ways for RH system
development teams to present related software
requirements.

2. Comparison of RAMI process and
dependability

Reliability is defined as the probability of failure-free
operation for a specified period of time in specified
environment [4]. It is also one of the key attributes in the

RAMI process [5] used in the ITER project to manage
risks in the facility development and design. In the
RAMI process every system undergoes a risk-analysis to
evaluate what can go wrong and to recommend spare
components, back-up systems, maintenance schedules,
etc. to reduce the risk level of breakdown to minimum
[6]. RAMI stands for:

Reliability (continuity of correct service),
Availability (readiness for correct service),
Maintainability (ability to undergo modifications
and repairs) and
Inspectability (ability to undergo easy visits and
controls) [6,7].

This is similar to the concept of dependability used in
computing and communication systems. Dependability
has same attributes, except instead of inspectability it has
integrity (absence of improper system alterations) and
safety (absence of catastrophic consequences on the user
and environment) [7], being more relevant for RH
software.

Specifications and standards usually implicitly or
explicitly focus on hardware and are largely silent about
software reliability and other quality attributes [8], and
the RAMI process seems to be no exception. E.g.
inspectability is essentially a requirement for mechanical
systems. Dependability-related requirements for
software-based systems need to take into account that
failure mechanisms of software differ from mechanical
systems. Hardware usually fails because of physical
faults caused by wear and aging, whereas software
failures are typically caused by human errors made in the
development phase of the system and are deterministic in
nature, making software faults harder to predict, locate
and correct [4]. Because of these reasons, proving the
reliability of software is not as straightforward as for
mechanical subsystems and the related requirements for
software need to reflect this.

3. System fault tolerance and dependability
requirements

In this chapter we analyze the practices of developing
dependability requirements and apply them to RH
system software. RH systems typically need high
reliability and have a combination of safety-critical and
non-critical subsystems. Software systems are complex,
which makes fault tolerant and dependable software
costly: development often includes risk assessments,
verification & validation procedures, and restrictions on
design choices. However, use of a particular technique or
techniques is not evidence of software quality, and even
certified systems fail [9].

For high quality software – like control systems – the
requirements specification is the most important source
of delivered defects [3]. These defects can be due to
errors, changes or omissions in requirements. Errors and
changes can be usually discovered and managed with
inspections (validation of requirements) and tools, but
missing requirements can be considerably more difficult
to detect. Possible sources for software requirements
include system requirements specification (which
includes system safety requirements), software hazard &
risk analyses, hardware & environmental constraints and
customer input [10]. To adequately define dependability
and fault tolerance requirements for a system, several
aspects of the software must be documented, including
quality attributes, intended modes of operation, timing
requirements, failure modes, and safety-related
functionality which are briefly covered next.

3.1 Dependability objectives

The dependability objectives are documented in
quality attributes (reliability, availability etc.). For
control systems, important attributes include e.g.
interoperability and evolvability (which has longer-term
focus when compared to maintainability) because of the
long expected lifetimes. Different subsystems may have
different target levels of reliability.

Dependability objectives must be defined for a given
environment, i.e. operation conditions. No system can be
dependable under all conditions, so the claims must be
made explicit [11]. These include not only
environmental factors, but also expected interaction with
external systems and humans.

3.2 Operation modes

Modes of operation are based on operational
conditions or mission phase. By specifying operation
modes we can limit the amount of functionality that has
to be considered at a time.

Operation modes can also affect enabled commands
or allowable limits for parameters, which has safety
implications. Examples of operation modes important to
dependability include automatic & manual, degraded
operation and recovery modes.

3.3 Timing requirements

Timing requirements include communication
deadlines, sampling rates, time to criticality etc. If the

system has timing requirements that include hard
deadlines, this has major impact for the system
architecture design.

Safety and reliability can also be in odds – reliability
can cause non-determinism for communications, as
resent information could already be old. Especially in
safety-critical systems it is often more important to keep
sending up-to-date information.

3.4 Fault tolerance and responses to undesired events

Even though software developers work to create
correct requirements and code, software will always
have faults – and the number of delivered defects per
function point goes up with software size and complexity
[3]. Thus we also need to consider responses to
undesired events, even if the software has low number of
defects. This includes needs for fault tolerance (error
detection, recovery, redundancy), specifying failure
modes, i.e. how the system should fail, and what the
system is not allowed to do in the case of failure.

Another factor that has to be considered in the case
of errors is the tradeoff between robustness and
correctness: robust software function tries to return some
value (even if inaccurate) and correct software will
return no results, which is usually better for safety-
critical systems since faults will be easier to detect.

3.5 Safety-critical requirements

Reliability focuses in costs of failure and downtime,
whereas safety focuses in dangerous failure modes.
When a potentially unsafe command is detected, safety
system inhibits the hazardous command and initiates
transition to a known safe state. E.g. ITER will have a
hardware-based plant interlock system which
implements investment protection functions [12].

Safety-critical software covers software that has
impact on hazards (cf. safety systems that are used for
avoidance or control of hazards). Plant subsystems like
RH may have complex safety-related functionality which
must be implement with software. Examples of such
functions include stability of machines, anti-collision
systems and reduced speed & restricted space for robots
[13]. Any such software feature identified as a potential
hazard should be designated as safety-critical to ensure
that future changes and verification processes can take
them into consideration [10]. Candidates for safety-
critical items list can be found e.g. with software FMEA.

4. Example: ITER RH software requirements &
recommendations
4.1 Safety standards in ITER

Codes and standards applicable at ITER are French
standards for a basic nuclear plant. Main standard is
IEC61513 (Nuclear power plants – instrumentation and
control systems important to safety – general
requirements for systems) [14] which has been derived
from the functional safety standard IEC61508.

Safety systems in ITER fall into three categories,
which are nuclear safety, occupational safety and

personal access safety. However, RH systems do not
implement safety functions for these categories, even
though they may have some safety-related functionality
(i.e. economical hazards for research equipment and
plant availability). It is therefore seen that RH systems
are not “instrumentation and control systems important
to safety” as intended in the standards, and therefore not
in their applicable domain. The developers therefore
have more flexibility to choose most efficient practices,
but also need more expertise to do so without
compromising dependability of the system.

4.2 Non-functional requirements

In this section we analyze some dependability-related
requirements chosen from the system requirements
document for remote handling control systems [15].

Reliability:

“RH operations without causing significant
damaging to ITER components shall have a target
reliability of greater than 98% over a 120 day
operational period.“
“The RH high-level control system shall have target
reliability against significant failures of greater than
90% over a 120 day operational period.”

Target level for RH operations without significant
damaging equals safety integrity level (SIL) 1 in the
IEC61508 functional safety standard (probability of
failure per hour 10-6 to < 10-5). The high-level control
system itself has lower reliability requirements so only
safety-critical operations need to be considered for
higher reliability level, instead of the whole control
system. To be useful, the requirements specification
should also define “significant damaging” and
“significant failures” precisely.

For hardware components it is often possible to
evaluate their reliability based on their historical data
and/or subcomponent specification. However, for
software components such data is not usually available.
Approach used in the IEC61508 is based on giving
recommendations on the use of specific techniques in the
development based on the target SIL. Other sources
recommend building a dependability case for the
software, which should explain why the critical

properties hold e.g. with (formal) requirements, testing
results and verification [11].

Maintainability:

 “The RH high-level control system shall have a
maintenance system that ensures that significant
failures have an average recovery time of less than 1
day.”

For software, maintainability means how easy it is to
correct defects and make changes. To achieve high
maintainability, software needs to be well documented
and easy to understand. Especially the latter can be hard
to achieve with a complex system like RH.
Maintainability can also be greatly affected by choice of
programming environment and language, as e.g. licensed
programming languages are generally lacking in 3rd

party tool support like version control.

Software updates and fixes may also increase failure
rates as new faults can be injected to the system. This is
critical for ITER because the RH systems need to be able
to accommodate new and changing functional
requirements over time, caused by evolving
experimental changes.

4.3 Safety-critical subsystems

High-level control system for ITER RH [15] is used
to demonstrate division to safety-critical & non-safety-
critical subsystems in Fig. 1. Software subsystem is
considered safety-critical if it controls hazardous or
safety-critical hardware or software or provides
information upon which a safety-related decision is
made [10]. Systems that monitor safety-critical hardware
or software as part of a hazard control are considered as
safety-systems and are presumed to be implemented with
hardware (interlocks).

Safety critical subsystems include:

RH input device and computer assisted teleoperation
(CAT) which are used for control in manual control.
Virtual reality which provides information for CAT
(dependencies are not shown in the figure).
Command and control which is used for executing
commands in automatic operations.

Fig.1. High-level control system [15], showing safety-critical subsystems as identified in this paper.

Structural simulator, remote diagnostics and viewing
system are not considered safety-critical in this example
because they do not directly impact hazardous
operations, but are used as supporting information
sources and for data analysis. However, now the system
has a combination of safety-critical and non-safety-
critical subsystems. Without decoupled system
architecture and error detection, there is a danger of fault
propagation. Therefore the system will need
requirements and constraints like example 2 in the next
section to reduce common-mode failures.

4.4 Example requirements

Example 1. Fast controllers (in a plant system) may
run Linux as the operating system and have safety-
critical functionality, but Linux is not validated for
safety-critical use. However, extensively used software
may reach reliability levels suitable for SIL1 or even
SIL2 [16]. Recommendation is to restrict allowed
versions for kernel and distribution to specific, well-
tested versions, and gather reliability-related evidence
for building a supporting dependability case. Constraint
could be e.g.

[CO-1] Linux kernel version must be 2.6.30.8.

Example 2. To prevent fault propagation, add
requirements to support modularity and decoupling
between subsystems:

[MA-1] No direct inter-module references (function
calls, class references etc.) to other software
modules are allowed between subsystems.

Example 3. Specify dependability requirements
explicitly for different properties. E.g. incorrect “stop” is
significantly less dangerous than incorrect “go” [11].

[RE-1] No more than one out of 100 RH operations
using collision detection and virtual force
functionality for guiding telemanipulation
operations shall be incorrectly stopped.

[RE-2] No more than one out of 10000 RH operations
using collision detection and virtual force
functionality for guiding telemanipulation
operations shall cause significant damage to ITER
components.

5. Conclusions
Requirement specification presents a major source of

defects for control systems, and thus has major impact
on reliability. However, risk management processes and
codes often neglect software reliability, even though
reliability requirements need to be managed as a system
measure that accounts for both hardware and software,
and their different characteristics taken into account.
Especially proving the reliability of software can be
problematic.

Remote handling systems have safety-critical
functionality like stability and anti-collision systems
implemented with software, whereas actual safety
functions are usually implemented with hardware.
Software development is therefore guided by
dependability requirements instead of strict safety

standards, as risks are economical ones. Cost-efficient
development needs to take into account that different
subsystems therefore need different levels of reliability
(e.g. diagnostics is not as critical as command &
control). Systematically developed requirements can be
used to form a dependability case for the system under
development, where requirements, architectural
solutions, verification etc. is provided to give sufficient
confidence in the reliability of software.

Acknowledgments
This work was carried out under the EFDA Goal
Oriented Training Programme (WP10-GOT-GOTRH)
and financial support of TEKES, which are greatly
acknowledged. The views and opinions expressed herein
do not necessarily reflect those of the European
Commission.

References
[1] J. Gray, A census of Tandem system availability between

1985 and 1990, IEEE Trans. on Reliability (1990) 409-418.
[2] K. Wiegers, Software Requirements, Microsoft, Redmond,

2003.
[3] C. Jones, Software quality in 2011: a survey of the state of

the art, 31 August 2011 (accessed 14 August 2012),
http://sqgne.org/presentations/2011-12/Jones-Sep-2011.pdf.

[4] M. Lyu, Handbook of Software Reliability Engineering,
IEEE Computer Society Press and McGraw-Hill, 1995.

[5] K. Chan, et al., Development of a RAMI program for
LANSCE upgrade, Particle Accelerator Conference, 1995,
pp. 822-824.

[6] I. Rona, RAMI, or thinking ahead, 27 Oct. 2008 (accessed 9
August 2012) http://www.iter.org/newsline/55/1193.

[7] A. Avizienis, et al., Basic Concepts and Taxonomy of
Dependable and Secure Computing, Trans. on Dependable
and Secure Computing, 1 (1) (2004), 11-33.

[8] M. Hecht, K. Owens, J. Tagami, Reliability-Related
Requirements in Software-Intensive Systems, Reliability
and Maintainability Symposium, 2007, pp. 155-160.

[9] D. Jackson, A Direct Path to Dependable Software,
Communications of the ACM, 4 (52) (2009), 78-88.

[10] NASA Software Safety Guidebook, NASA, 2004.
[11] D. Jackson, M. Thomas, L. Millett, Software for

Dependable Systems: Sufficient Evidence?, National
Academy Press, 2007.

[12] ITER, Plant control design handbook, 27LH2V, 2011.
[13] T. Malm, et al., Safety-critical software in machinery

applications, VTT, 2011.
[14] L. Scibile, et al., The ITER safety control systems – status

and plans, Fusion Engineering and Design, 85 (2010), 540-
544.

[15] D. Hamilton, System Requirement Document SRD-23-07
Remote Handling Control System, ITER, 2008.

[16] P. Bishop, R. Bloomfield, P. Froome, Justifying the use of
software of uncertain pedigree (SOUP) in safety-related
applications, CRR 336/2001, UK Health and Safety
Executive Contract Research Report, 2001.

