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Inertial navigation problems are often understood as initial value problems. However, there are many applications where boundary
value problems naturally arise. In these situations, it has been shown that the finite element method can be efficiently used to
compute accurate position and velocity estimates. We will propose that finite element method complemented with Tikhonov
regularization—a basic tool for inverse problems—is a powerful combination for further accuracy improvements. The proposed
method provides a straightforward way to exploit prior information of various types and is subject to rigorous optimality results.
Use and accuracy of the proposed method are demonstrated with examples.

1. Introduction

The term inertial navigation is often associated with the term
initial value problem (IVP). This kind of an association is
justified in many cases, but not always: there are situations,
where an inertial navigation problem may just as naturally
be posed as a boundary value problem (BVP) [1]. In case of
a BVP, all measurements within the interesting time interval
are exploited, whereas an IVP only exploits measurements up
to a certain time within the time interval.

We will discuss BVPs concerning the position of the
object, given the accelerations in the navigation frame.
Instead of the “full equations”, where rotation of Earth
is taken into account, we consider “simplified equations”,
where this is neglected [1]. In this case, to obtain the position
(p) of the object, we need to solve the following problem:
given a(t) : R → R3, find p(t) : R → R3 such that r satisfies

d2p(t)
dt2

= a(t). (1)

The problem of resolving accelerations a(t) given the specific
force and angular rate measurements is a different matter,
not considered herein. What makes (1) a BVP is that the
necessary constraints are not given at same time [2]. More
specifically, we will consider two-point BVPs where the

necessary constraints are given at the beginning and at the
end of the interesting time interval [3].

In [1], a custom-made FEM model is derived to treat
two-point BVPs of the form (1) with various choices
of boundary conditions. The resulting system of linear
equations is shown in [1] to be of the form

⎡
⎢⎢⎢⎣

Ax 0 0

0 Ay 0

0 0 Az

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

rx

ry

rz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

bx

by

bz

⎤
⎥⎥⎥⎦. (2)

In (2), rx, ry , rz ∈ RN , and rx, for example, is a vector
containing the x-coordinate of the object at N different time
instances. Vectors bx, by , and bz are determined by a(t).
Submatrices Ax, Ay , and Az are symmetric, positive definite
and with the basis functions considered in [1], tridiagonal
N × N matrices. In the following, a shorthand notation for
(2) is used. It is written in the form

Ar = b + ε, (3)

where vector ε ∈ R3N is added to emphasize the presence of
measurement errors, generally of unknown properties. Based
on the above discussion, the matrix A ∈ R3N×3N is known
to be nonsingular. For a 2D problem, the dimensions of
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system (3) are 2N and, respectively, for 1D, N . Unless oth-
erwise noted, the following discussion assumes dimensions
to be 3N .

The goal of this paper is to estimate r as accurately as
possible, given A, b, and additional information of some
form. Sometimes, also some properties of ε can be known
but in general, we do not make such an assumption. We
will be using the term “additional information” throughout
this paper, so let us now clarify this concept: “additional
information” refers to all available information that can be
represented in the linear form

Dr = e + θ, (4)

where D ∈ RM×3N and e ∈ RM . In (4), the term θ denotes
uncertainty, just like ε in (3). The integer M is independent
of N and indicates how many individual equations the
additional information contains. Notice that properties of D
are generally unknown.

In [1], problems of the form (3) are discussed. There,
it is assumed that ε contains mainly deterministic error
components, caused by deficient sensors. Then, one can
exploit provided additional information of type (4) by
modeling errors of these deficient sensors, which results in
smaller position and velocity errors via reduction of ‖ε‖2

(where index 2 refers to the 2-norm). While this approach
was shown to work well in many cases, it is adequate only
for situations where the types of the most significant sensor
errors are known. In practice, the approach proposed in
[1] also limits the attainable accuracy in situations where
M is significantly larger than the number of parameters in
the chosen error model. The motivation of this paper is to
present a new technique to exploit additional information,
without the limitations of the technique proposed in [1].

The technique proposed herein is based on Tikhonov reg-
ularization [4–6], independently developed also by Phillips
[7, 8]. As the name suggests, the basic idea of the method
is to regularize the solution r of (3). This is required in
order to reduce the effects of the error term ε. Tikhonov
regularization has been studied extensively during the last
few decades, mainly in the field of inverse problems [8].
Thus, the properties of the method are well known. In the
statistical literature, Tikhonov regularization is known as
ridge regression [8–10].

We apply a tool of inverse problem theory to inertial
navigation, because inertial navigation problems are, in fact,
inverse problems. That is, we are basically resolving the time-
parametrized trajectory of an object based on erroneous
observations of specific force and angular rate. This rea-
soning is supported also by the fact that inertial navigation
problems are particularly sensitive to measurement errors,
which is the hallmark of inverse problems.

This paper is organized as follows: first, we will discuss
the background of this study in Section 1.1 and make
some remarks about this study in Section 1.2. In Section 2,
Tikhonov regularization is presented. Some practical aspects
of the proposed method are discussed in Section 3. Sections 4
and 5 are devoted to numerical examples and the conclusions
are presented in Section 6.

1.1. Background. Problems resembling the ones considered
here have previously been resolved using the means of fixed
interval smoothing [11–14]. The most frequently used meth-
ods of solving these problems are two-filter smoother [15] and
Rauch-Tung-Striebel smoother [16]. These are exploited, for
example, in [14, 17–19]. In both cases, differential equation
(1) is realized as an IVP. The basic idea of these methods
is to run the filter in the forward direction as a “predictor”
in phase one and then to run the filter in the backward
direction as a “corrector” in phase two. In this approach, each
additional constraint is assumed to be associated to a single
time instance.

The proposed BVP formulation does not make a dis-
tinction between forward and backward directions. Instead
of advancing one step at a time, the BVP formulation
considers the whole time period, and the solution is obtained
in one phase. In addition to the different realization of
(1), the key difference is the form of (4), which allows
additional information to involve an arbitrary number of
time instances. This makes it possible and straightforward
to exploit wide-ranging types of additional information.
Another particularly useful feature of the proposed method
is its capability of finding a reasonable balance between (3)
and (4) without knowledge of ‖ε‖2 and ‖θ‖2. This property
is discussed in Section 2.3.

The similarity between fixed interval smoothing and the
BVP approach is that they can exploit information with
varying reliability and have similar optimality results. Some
optimality results of the proposed method are presented
in Section 2.2. Although there are situations, where both
methods could be exploited, we will not compare these
methods quantitatively.

1.2. Basic Assumptions and Notation. We assume that some
additional information is always available, that is, M > 0. If
this is not the case, the presented method will reduce back to
the one considered already in [1]. We will insist on additional
information given in the form (4). A more general setting can
be found, for example, in [20].

From time to time, we will need to print the entries of
matrices and vectors. They are denoted Ai, j (for matrix A)
and bj (for vector b), where i and j are positive integers
within the allowed range. Symbols i and j are reserved only
for this use. Similarly, notation ti refers to the ith time
instance, where the time starts at t1 and ends at tN . Step size is
defined as hi = ti+1−ti, where 1 ≤ i ≤ N−1. Without loosing
generality, for simplicity we treat the time step as if it was
a constant. Finally, a normally distributed random variable
x with expectation (or mean) value E(x) and variance σ2 is
denoted as x ∼ N (E(x), σ2).

2. An Introduction to Tikhonov Regularization

Tikhonov regularized solution of (3) and (4) is the solution
of

rλ = argmin
r
‖Ar− b‖2

2 + λ‖Dr− e‖2
2, (5)

where λ > 0 is called the regularization parameter. It is used
to weight (3) with respect to (4). Value λ = 1, for example,
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indicates that both equations are weighted equally. With λ →
0, ‖Arλ−b‖ → 0 and the regularized solution rλ approaches
the solution of (3) (with ε = 0). Respectively, with λ → ∞,
the regularized solution rλ approaches a solution satisfying
(4).

Let us point out that in the literature, Tikhonov regular-
ization is seldom presented in the form (5). Most often, it is
assumed that the dimensions of A and D are equal. Moreover,
in many formulations, D is set to be a difference operator or
the identity matrix (I) and/or e = 0 [8, 21, 22].

2.1. Existence and Uniqueness of the Solution. The questions
regarding problem (5) are

(1) is there a solution to (5)?

(2) is the solution unique?

(3) how can one find the solution?

Answer to question one follows easily from the fact that the
cost function of (5) is nonnegative for every λ > 0, indicating
that the minimization problem has at least one solution. To
answer questions two and three, let us denote the value of the
cost function by

Qλ(r) = ‖Ar− b‖2
2 + λ‖Dr− e‖2

2. (6)

As known, function Qλ(r) has a local extremum in a critical
point of (6), in other words, at a point where the Gâteaux
derivative

d
du

Qλ(r + uw)
∣∣∣∣
u=0
= 0 ∀w /= 0, (7)

where u ∈ R and w ∈ R3N . To find critical point(s) of (6),
let us substitute (6) into (7). For the first term of (6), we get

d
du
‖A(r + uw)− b‖2

2

∣∣∣∣
u=0

= d
du
〈Ar + uAw − b, Ar + uAw − b〉

∣∣∣∣
u=0

= 2〈Ar− b, Aw〉,

(8)

where 〈·, ·〉 denotes an inner product. Similarly for the latter
term of (6),

d
du
‖D(r + uw)− e‖2

2

∣∣∣∣
u=0
= 2〈Dr− e, Dw〉. (9)

By substituting these into (7) and dividing by 2, we have

〈Ar− b, Aw〉 + λ〈Dr− e, Dw〉 = 0. (10)

By exploiting the properties of the inner product, it follows
that

〈(
ATA + λDTD

)
r−

(
ATb + λDTe

)
, w
〉
= 0. (11)

Since this has to hold for all w /= 0, we finally get

rλ =
(

ATA + λDTD
)−1(

ATb + λDTe
)
. (12)

Critical point of (6) is unique as long as the matrix (ATA +
λDTD) is nonsingular. This is true if and only if the null
spaces (i.e., kernels) of matrices A and D intersect trivially:
ker(A)∩ ker(D) = {0} [8]. Given that A is nonsingular, this
is the case independently of D. Thus, the critical point of (6)
is always unique. Because the minimization problem (5) is
known to have a solution, the found critical point must be
located at the global minimum of the cost function Qλ(r).

Alternatively, the solution of (5) can be obtained by
finding the least squares solution of

⎡
⎣ A

λ1/2D

⎤
⎦rλ =

⎡
⎣ b

λ1/2e

⎤
⎦, (13)

which is equivalent to (12). For later reference, system (12) is
called normal equations and (13) augmented system.

2.2. Optimality Results of rλ. Let us now examine the
proposed method from the Bayesian point of view. For this,
consider the special case of (5), where M = 3N and D = I:

rλ = argmin
r
‖Ar− b‖2

2 + λ‖r− e‖2
2. (14)

Furthermore, consider that ε ∼ N (0, σ2
ε I) and r ∼

N (e, σ2
θ I), where σ2

ε and σ2
θ represent variances of ε and θ,

respectively. Here, r is considered to be a random variable.
Then, according to [23], the maximum a posteriori estimator
of r is the solution of

arg min
r
‖Ar− b‖2

2 +
σ2
ε

σ2
θ

‖r− e‖2
2. (15)

That is, the choice λ = σ2
ε /σ

2
θ yields the best estimate of r in

the sense that the likelihood of r is maximized.
Similar optimality results are known also for more

general situations, where for example, ε ∼ N (0, σ2
εCCT). For

an extensive discussion of these situations, see [8, 24–26]. To
the best of our knowledge, it is an open question whether
similar results apply in case of the general form of (5).

2.3. The Choice of λ. In this section, we will provide an
introduction to the most relevant systematical methods of
finding λ.

According to [8], parameter-choice methods can be
divided into two classes depending on their assumptions
about the error norm ‖ε‖2:

(1) methods based on knowledge of ‖ε‖2,

(2) methods that do not require ‖ε‖2.

Out of these two classes of methods, our main interest is in
class two. The reason for this is that knowledge of ‖ε‖2 is,
in general, a too strict requirement to make. For reference,
the most widespread parameter-choice method of class one
is the discrepancy principle [8].

In class two, there are three popular and widely used
methods. These are the quasioptimality criterion [8, 27],
generalized cross-validation [8, 28], and L-curve criterion [8,
29, 30]. Let us next take a closer look at the L-curve method,
which will be used here to choose the value of λ.
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Figure 1: Generic form of the L-curve.

The reason for this choice is that the L-curve criterion is,
in fact, accessible and a quite intuitive tool for the selection of
λ. In the heart of this method is the shape of a certain curve
(see Figure 1), which is parametrized as

[
ζ(λ),η(λ)

] = [log‖Arλ − b‖2, log‖Drλ − e‖2
]
. (16)

The idea of the L-curve criterion is to choose λ in such a
way that there is a “good balance” between the values of the
two norms in (5). In other words, balance between ‖ε‖2 and
‖θ‖2. Specifically, the L-curve criterion chooses the value of
λ maximizing the curvature

κ(λ) = ζ̇ η̈ − ζ̈ η̇
[(

ζ̇
)2

+
(
η̇
)2
]3/2 (17)

of the curve (16). In (17), the dots represent first (˙) and
second (̈ ) derivatives of ζ and η with respect to λ. The
location of the point with maximum curvature is demon-
strated in Figure 1. In practice, a suitable one dimensional
optimization routine, such as quasi-Newton, can be used
to find this point. For a more complete discussion of the
reasoning behind the L-curve method, see, for example, [8].
It would also be interesting to compare existing parameter-
choice methods in navigation applications, but this does not
fit the scope of this paper.

3. Practical Aspects of the Proposed Method

In this section, we will discuss some practical aspects of
Tikhonov regularization with L-curve criterion, when it is
applied to inertial navigation. First, we will give some insight
on the choice of D and then, discuss the numerical aspects of
the problem.

3.1. The Choice of D. As mentioned in the introduction,
D is determined by the application at hand. Indeed, an
application with M position constraints, for example, results
in different realization of D than an application with M
velocity constraints would. Both of these are examples
of constraints that bound position estimates only locally.
Average velocity over longer period of time, trajectory of
the object, or possible symmetry in the computed result are
examples of constraints bounding an arbitrary number of
time instances.

We will now present some examples to demonstrate
exploitation of possible constraints. For readability and
notational convenience, these examples are one dimensional.
It is, however, straightforward to generalize the presented
examples to the three dimensions. In the examples, only the
nonzero elements of the corresponding row of D and e are
presented:

(I) (position constraint) r j ∼ N (E(r j), σ2
i ):

Di, j = 1
σ2
i

,

ei =
E
(
r j
)

σ2
i

,

(18)

(II) (velocity constraint) ṙ j ∼ N (E(ṙ j), σ2
i ):

Di, j−1 = −1(
2hσ2

i

) ,

Di, j+1 = 1(
2hσ2

i

) ,

ei =
E
(
ṙ j
)

σ2
i

,

(19)

(III) position vector r is symmetric when mirrored around
the middle element (where N is odd) with pointwise
variance σ2

i (here, j = N − i + 1):

Di,i = −1
σ2
i

,

Di, j = 1
σ2
i

,

ei = 0.

∀i ∈
[

1,
N

2

)
(20)

In these examples, variance σ2
i , ∀i ≤ M, is used to give

each constraint a suitable weight, similar to the weighted
least squares method [31], assuming, of course, that θi are
independent.

The fact that ‖ε‖2 is unknown and L-curve criterion is
used to find λ gives rise to an interesting observation regard-
ing the variance. In addition to its traditional interpretation,
σ2
i can be treated as a measure of “relative” reliability of each

constraint with respect to other constraints. The L-curve
criterion is then used to find the “absolute” variances, given
by λσ2

i .
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In this section, we have only considered the situation
where the M equations within (4) have different weights.
Since (3) contains the measured accelerations and the
required boundary conditions [1], the N equations within
(3) can also have different significance. In this kind of a
situation, one can introduce a diagonal weighting matrix W,
Wi,i > 0 and multiply both sides of (3) with it. In this paper,
however, it is assumed that W = I.

3.2. Computational Aspects. The overall performance of the
proposed method is determined by whether λ has to be
solved or not. Namely, if we do not know it, it must be
estimated as well, which requires that (5) must be solved for
multiple different values of λ. The worse our initial guess for
λ is, the harder it gets to find a reasonable value for it. While
this “brute force” strategy might be a reasonable choice if the
computations are made on a modern desktop computer, it
is probably not a practical thing to do on a platform with
limited resources. This is why we suggest that when possible,
a suitable value of λ should be estimated beforehand, using
either simulations or preferably, test measurements. After
this, we can expect reasonable accuracy in similar situations,
at least where the same type of measurement equipment is
used. In example two, we use this strategy to avoid the re-
evaluation of λ for each measurement run.

Independently of λ, problem (5) must be solved at
least once. In order to avoid possible accuracy and/or
performance issues, some attention should be paid. Although
normal equations (12) and the augmented system (13) are
mathematically equivalent, they are quite different from the
numerical solution point of view. Namely, solving the system
with normal equations is known to be inaccurate due to
round-off errors when forming matrices ATA and λDTD.
The augmented system, on the other hand, can be accurately
solved for with QR or SVD decomposition. There are specific
solvers available also for sparse augmented systems [32].

Considering the computational complexity, the normal
equations seem quite attractive: with a tridiagonal and
symmetric matrix A [1], it is easy to see that ATA = A2

will be a symmetric matrix with a bandwidth of five. The
structure of the regularization matrix D is, however, arbitrary
in general. Yet in many situations, it will also be a banded
matrix, like in the case of constraints (18) and (19). In case
of (20), the situation looks worse, but significantly smaller
bandwidth can be obtained by reordering the equations.
In case of the normal equations, the resulting system
has dimensions 3N × 3N (for general three-dimensional
problem) independently of M.

Consider a problem leading to a reasonably small
bandwidth p ∈ N in case of the normal equations. For
these situations, we propose an iterative refinement-based
solution method similar to the corrected seminormal equa-
tions (CSNE) method [32]. Traditionally, CSNE is based on
the use of a numerical approximation of the matrix Ã =
ATA + λLTL, computed with QR decomposition. In this
case (p � 3N), we can, however, compute elements of Ã
analytically with negligible round-off errors. Thus, no QR
decomposition is required and the corresponding algorithm

for finding r is

rnew ←− 0, rold ←− 1

While ‖rnew − rold‖ > δ do

rold ←− rnew

δr ←−
[

b√
λe

]
−
[

A√
λD

]
rold

rupdate ←− Ã−1(
[

AT
√
λDT

]
δr)

rnew ←− rold + rupdate

end While

with stopping criterion δ [32]. Notice that the solution of
the involved matrix equation can be carried out with linear
time complexity, as it requires 3Np2 + 24Np + 3N flops
[31]. In many occasions, one refinement step is enough,
and more than three refinement steps are seldom required.
For problems with “large” p, this approach is not practical,
and solvers designed for augmented systems should be used
instead.

4. Example 1

In this section, we will work out a simple one dimensional
example demonstrating the use of the Tikhonov regulariza-
tion method. The object of this example is to compare three
different solution strategies, all of which are based on the
finite element method:

(I) tikhonov regularization based on finite element
method with the position fixed at both ends,

(II) finite element method with the position fixed at both
ends,

(III) finite element method with the position fixed at
both ends, where measurement error is modeled as
described in [1].

4.1. Setting Up the Example. Let us generate the reference
position p(t), t ∈ [0, 10] s as a fifth-order polynomial
satisfying the following six conditions:

p(0) = 0 m, ṗ(0) = 0 m/s,

p(5) = −10 m, ṗ(5) = 0 m/s,

p(10) = 10 m, ṗ(10) = 0 m/s.

(21)

From the resulting p(t), it is an easy task to compute
the reference velocity v(t) and acceleration a(t). Erroneous
“measurement” â(t), containing scale factor error s and bias
term μ with additional white noise, is generated as follows:

â(t) = (1 + s)a(t) + N
(
μ, σ2). (22)

In Figure 2, one realization of â(t) (s = 0.05, μ = −0.50 and
σ2 = 1), sampled with a frequency of 50 Hz (N = 501), is
presented with the reference acceleration a(t).

Now, suppose that along with â(t), we know the position
and velocity of the object at points t = 0 seconds and t =
10 seconds. Thus, we have the following problem: find p̂(t),
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Figure 2: Actual acceleration (thick line) and “measured” accelera-
tion (thin line) as a function of time.

0 ≤ t ≤ 10 such that

¨̂p(t) = â (t),

p̂(0) = 0 m,

˙̂p(0) = 0 m/s,

p̂(10) = 10 m,

˙̂p(10) = 0 m/s.

(23)

The problem here is, of course, that we do not know a(t),
but only the erroneous measurement â(t). Thus, ultimately,
the goal is to minimize the effects of the measurement error
using the given two additional boundary conditions.

To exploit method I, we must first generate a suitable
prior, which can then be used to enhance the accuracy of
the solution. For this, let us compute a polynomial of the
lowest order that satisfies the given four conditions at the
boundaries and use that as our prior. In this case, a suitable
choice for the regularization matrix D would be N × N
identity matrix. However, to emphasize the fact that we have
no trust in our prior between the two boundaries, we will
zero out all but, say, 10 first and last rows of D. Thus, in
this example, M = 20. Method II follows from the method
I by setting λ = 0. For method III, we use the error model
presented in [1], modeling constant scale factor and bias
errors using the velocity of the object at t = 0 and t =
10. Knowing the form of the generated measurements, this
model will yield the exact solution when no noise is applied.
The idea here is, however, to test the performance of the
method III in case of noisy measurements.

4.2. Results. Table 1 summarizes the test results, which were
run with a total of nine different combinations of error
parameters s and μ. Each test was run several times with
different realizations of random noise in order to show the
average performance of the tested methods. As an overall
comment, the tested methods are not particularly sensitive to
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Figure 3: Actual position (solid line), estimated position computed
with method I (dashed line, λ = 3.611), estimated position
computed with method II (dotted line) and used prior (dash-dotted
line) as a function of time.

noise. The accuracy of the method III is, however, dependent
on the value of σ2. This was expected, since method III
uses only two measurements to determine the two error
parameters, which gets more inaccurate as the noise level
increases. The value of λ minimizing the position error is
presented only for reference, as there is no practical way to
find it in real situations. Value of λL, however, can be found
for each measurement using the L-curve criterion. During
the test, the value of λ minimizing the velocity error was
also recorded, but the difference to the value minimizing the
position error was not significant.

Based on the results seen in Table 1, the L-curve method
seems to work reasonably well. Indeed, in some cases it is
even able to predict the optimal value of λ (or at least obtain
position error levels very close to the minimum). On average,
Tikhonov regularization with λL works much (five to ten
times) better than the method II. It can also fail, meaning
that the resulting error is larger than the one given by method
II. This happened only when the optimal value of λ was
zero, and the results of method II were optimal. The L-
curve method, on the other hand, performed consistently
among the test situations. When compared with method III,
the difference is not as clear, although on average, Tikhonov
regularization does slightly better. As mentioned above, this
is due to the large value of σ2. In situations with lower noise
and known main error sources, a combination of methods
I and III is also a reasonable strategy. This is due to the
fact that the error modeling can reduce such components of
error (such as bias) with which Tikhonov regularization is
not intended to work with.

Figures 3 and 4 illustrate the performance of methods I
and II in terms of position and velocity. The measurement
was the one seen in Figure 2 with parameters s = 0.05
and μ = −0.5. Value λ = λL was used to compute the
regularized solution. The figures also demonstrate the used
prior, only first and last 0.2 seconds of which were actually
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Table 1: Simulation results for various values of parameters s and μ. Terms σI, σII and σIII refer to the standard deviation of the position
error (in meters) in case of solution methods I, II, and III. The value of the regularization parameter obtained via the L-curve method is
represented as λL and λ represents the value of the regularization parameter minimizing the position error.

s μ σ2 argminλσI(λ) λ σI(λL) λL σII σIII

−0.05 −0.5 1 1.137 4.200 1.137 4.501 5.310 1.236

−0.05 0.0 1 0.453 0.000 1.024 1.438 0.453 0.568

−0.05 0.5 1 0.109 0.149 0.995 5.663 4.040 1.413

0.00 −0.5 1 0.813 4.073 0.813 4.255 4.781 0.723

0.00 0.0 1 0.282 0.000 0.737 1.330 0.282 0.693

0.00 0.5 1 0.101 0.221 0.729 5.185 4.353 1.015

0.05 −0.5 1 0.286 3.407 0.286 3.611 3.823 0.757

0.05 0.0 1 0.139 1.230 0.260 1.581 0.666 1.634

0.05 0.5 1 0.132 0.678 0.336 5.243 4.881 0.758

â(t) = (1 + s)a(t) + N (μ, σ2).
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Figure 4: Actual velocity (solid line), estimated velocity computed
with method I (dashed line, λ = 3.611), estimated velocity
computed with method II (dotted line) and used prior (dash-dotted
line) as a function of time.

exploited. Clearly, comparing to method II, the accuracy of
the proposed method is remarkably better. In terms of the
standard deviation, the proposed method is about 13 times
more accurate than method II. When comparing to method
III, the proposed method is about 2.5 times more accurate,
which is also a significant improvement.

In Table 2, the computational complexity of the proposed
method is demonstrated. The number of samples (N) and
constraints (M) was increased by increasing the sampling
frequency, keeping the problem otherwise unchanged. The
value of λ was kept fixed. As the solution methods were not
optimized for maximum performance, the differences in the
solution times may not be fully comparable. Especially in
case of the LSQR method, default tolerance (relative accuracy
of 1e−6) was used. Despite the “large” number of unknowns,
the solution times are small for any solution method. Based
on the results, one can expect linear time complexity with
respect to N + M for similar problems. In the last case with

N = 128000, the efficiency of the CSNE method drops as
the number of iterations increases to seven. This is due to
the fact that the conditioning of the system is comparable
to N2. Otherwise, the CSNE method seems to provide good
efficiency with a reasonably small cost in the accuracy.

The main purpose of this example was to demonstrate
the performance of the proposed method in situations where
the measurement error is biased (due to error term μ) and
not normally distributed (due to error term s). That is, in
situations where the presented optimality results are not
valid. The results indicate that the proposed method is useful
also in these situations, commonly encountered in practice.
Moreover, the tests indicate that the proposed method can
be very efficient with negligible computing times even for
large-scale problems with over 100000 unknowns. This also
guarantees that when required, also the value of λ can be
determined with reasonably small computational cost.

5. Example 2

In this section, we will demonstrate the use of the regu-
larization method with actual measurement data obtained
in a real-world situation. The data was obtained for use
with a television program of NHK (Japan Broadcasting
Corporation) and presented here with due permission. The
primary goal was to measure the accelerations to which the
passengers were subjected in a car of a roller coaster (The
roller coaster in question is called Insane, located at Gröna
Lund, Stockholm, Sweden.) In this example, we present a
way to estimate the velocity and trajectory of the car with
knowledge about the trajectory of the car. It is important
to notice that only the trajectory is known, not its time
parametrization.

5.1. Measurement Setup. The car moved on a planar trajec-
tory of length ≈ 250 m and rotated freely around its rotation
axis (orthogonal to the plane) during the ride. In other
words, the problem has three degrees of freedom: one for
the rotation and two for the displacements. The trajectory
is not known accurately, but roughly estimated using the
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Table 2: Computing times as N and M increase. All times are average computing times over 100 cycles and include only the solution phase.
Tests were performed with Matlab 7.9.0 running on a 32-bit operating system. The used computer has a 2 GHz processor and 2 GB of
memory. CSNE stands for the method described in Section 3.2, “\” for the “backslash” operator, and LSQR for the iterative least-squares
problems solution routine implemented in Matlab. “It” indicates the number of iterations made by CSNE and δ/N1/2 indicates the “size” of
the last correction step.

CSNE “\” LSQR

N M It T (ms) δ/N1/2 T (ms) T (ms)

500 20 1 1 6.4e − 9 2 5

1000 40 1 2 3.4e − 8 4 7

2000 80 1 4 3.1e − 7 8 12

4000 160 1 8 5.5e − 6 16 20

8000 320 1 16 8.7e − 5 34 36

16000 640 1 34 4.1e − 4 76 63

32000 1280 2 103 1.7e − 5 148 117

64000 2560 2 212 4.0e − 4 302 271

128000 5120 7 1106 3.1e − 4 635 618

length and an image of the trajectory. Because of this, the
estimated trajectory is known to contain significant errors,
which makes it a good example of situations with a rather
vague prior.

The data was collected using an inertial measurement
unit (IMU) consisting of the following sensors:

(i) 3×±75◦/sec Silicon Sensing CRS10 [33],

(ii) 3×±300◦/sec AD ADXRS300ABG [34],

(iii) 3×±3 g VTI SCA610-CC5H1A [35],

(iv) 3×±12 g VTI SCA620-CHCV1A [36].

The IMU is calibrated as described in [37]. Only the sensors
of the lower dynamic range were exploited unless the input
exceeded this range. In this case, only the sensors with the
higher dynamical range were exploited. The sample rate was
1000 Hz, and the total number of unknown displacements
was about 200000 in each measurement. Based on the
construction of the roller coaster, the initial and the final
angle were known to be identical. This allowed the angle to
be computed with high accuracy. Thus, the accelerometers
were the major source of error.

5.2. Exploitation of the Estimated Trajectory. In this section,
the methods used to exploit the estimated trajectory are
presented. Notice that only the trajectory is estimated, not
the time when the car is at a certain point. It is assumed
that the horizontal coordinates of the trajectory are stored
to vector X ∈ RP and the vertical coordinates, respectively, to
vector Y ∈ RP . The number of the points (P ∈ N) is assumed
to be high enough and the trajectory data “smooth” enough
such that the local tangent of the trajectory can be reliably
estimated using two adjacent points of the trajectory.

Given a horizontal coordinate r j , j ∈ [1,N] such that
Xi−1 ≤ r j < Xi, i ∈ [1,P], the corresponding vertical
coordinate rN+ j satisfies the equation

(Yi − Yi−1)r j − (Xi − Xi−1)rN+ j = Xi−1Yi − XiYi−1. (24)

Depending on the trajectory, it is possible that the index i is
ambiguous, meaning that there can be more than one vertical
coordinate corresponding to a single horizontal coordinate.
This is the case also here, as can be verified from Figure 5.
Thus, it is also required to choose correct i. It is also possible
that no suitable index i is found, meaning that the value
of r j is out of range. In such a situation, the trajectory
is not exploited for j in question. With these notions, the
corresponding elements of the regularization term are

Dj, j = Yi − Yi−1,

Dj,N+ j = Xi − Xi−1,

ej = Xi−1Yi − XiYi−1,

∀ j ∈ [1,N]. (25)

5.3. Solution Process. The problem was solved in two phases.
In the first phase, only few points of the trajectory were
exploited. These were the points corresponding to the local
extrema of the horizontal coordinates of the stored trajectory.
The goal of this phase was to produce a reasonable initial
guess for r, which could then be used to obtain better results
when linearizing the trajectory. For this, valid estimates of
the indices j when the car crosses these points were required.
In this phase, we used a rather high value λ = 100 to
minimize the amount of values r j that were out of range in
the next phase. After this phase, the measurement vector b
was updated by setting b← Arλ.

In phase two, the trajectory of the car was exploited
throughout the track. This was done by linearizing the esti-
mated trajectory at each time instance in the neighborhood
of the horizontal position obtained in the first phase, as
explained in Section 5.2. Variance of each constraint was set
to one, as we had no knowledge of the possible differences in
the reliability of these estimates. For the first run of the car,
the value of the regularization parameter was obtained using
the L-curve criterion. The same value of λ was then used also
for the second and third run.

5.4. Results. In Figure 5, the computed three trajectories are
compared to the used prior. In each case, the car starts
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Figure 5: Actual trajectory (solid line), estimated trajectory of run
1 (dashed line), run 2 (dash-dotted line), and run 3 (dotted line).
Small squares, circles, and triangles indicate the position of the car
with three second increments, respectively, for runs 1, 2, and 3.
Regularization parameter λ = 0.352 for all three runs.

at point [0, 0] leaving to the upright direction. The end
point was set to the last local extremum of the horizontal
coordinates of the estimated trajectory, because the time
instance corresponding to the actual stopping point could
not be specified. Notice how the three computed trajectories
are almost identical, while they follow the provided prior
only approximately. Given that no information about the
reliability of different points of the trajectory is provided, this
indicates that the L-curve method provides useful estimates
of the regularization parameter. Since this happens for
all three runs, determining the value of λ in advance, as
discussed before, is a plausible technique.

The small squares, circles, and triangles seen in Figure 5
indicate the position of the car with three second increments,
respectively, for runs 1, 2, and 3. As seen in the figure,
the distances between these marks change significantly,
indicating that the used method “allows” the velocity of
the car to change between different runs. For the first ≈50
meters of the trajectory, however, the distance between the
marks does not change much. This is due to the fact that
during these first meters, the cars were lifted up essentially
the same way for each run. After the highest point of the
trajectory, the car moved freely along the track “driven” only
by gravity and affected by the moment of inertia, determined
by the placements of the passengers. As seen in Figure 5,
the run represented with the circles, for example, attained
significantly higher velocities than the other two runs.

6. Conclusion

A BVP formulation of inertial navigation problems is further
investigated using [1] as a starting point. It is suggested
that the possible additional information can be taken into
account by exploiting Tikhonov regularization, a basic
tool of inverse problems. In addition to typical additional

information, such as a momentary position or velocity, it
allows one to exploit more general forms of information.
These include, but are not limited to, average velocity
over longer period of time, trajectory of the object, and
possible symmetry in the computed result. In the provided
examples, significant accuracy improvements—up to an
order of magnitude—over the basic FEM solution without
any additional information are obtained.

It is also demonstrated that the proposed method can be
viewed as a Bayesian estimator, yielding the maximum a pos-
teriori likelihood estimator in case of unbiased and uncorre-
lated measurement errors. In addition to this, the provided
examples show that the obtained accuracy improvement is
significant, even in cases where these assumptions are not
met.

A method for choosing the value of the regularization
parameter is provided and demonstrated to work in a real-
world example. This method, called the L-curve criterion,
does not require any prior knowledge of the measurement
errors. Thus, it can be used in many real-world situations,
where measurement error is always present, but seldom
reliably characterized. For performance-critical situations, it
is possible to determine a suitable value for the regularization
parameter in advance and use this value to obtain good
results.

In some applications, it is possible and advantageous to
combine the method based on sensor error modeling [1]
with the method proposed herein. Sensor error modeling is
used first to eliminate the modeled deterministic measure-
ment errors, and Tikhonov regularization is then used to
minimize the effects of the remaining stochastic components
of the measurement error.
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[32] Å. Björck, Numerical Methods for Least Squares Problems,
SIAM, Philadelphia, Pa, USA, 1996.

[33] “Silicon Sensing CRS10 Datasheet,” 2007. Revision 2, Checked
on 23.09.2010.

[34] “Analog Devices ADXRS300ABG Datasheet,” 2004. Revision
B, Checked on 22.12.2009.

[35] “VTI SCA610-CC5H1A Datasheet,” 2005. Revision 3,
Checked on 23.09.2010.

[36] “VTI SCA620-CHCV1A Datasheet,” 2006. Revision 2/2,
Checked on 22.12.2009.

[37] T. Nieminen, J. Kangas, S. Suuriniemi, and L. Kettunen, “An
enhanced multi-position calibration method for consumer-
grade inertial measurement units applied and tested,” Mea-
surement Science and Technology, vol. 21, no. 10, Article ID
105204, 2010.


