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The authors consider the influence of steps and nonequilibrium conditions on surface diffusion in a
strongly interacting surface adsorbate system. This problem is addressed through Monte Carlo
simulations of a lattice-gas model of O/W�110�, where steps are described by an additional binding
energy EB at the lower step edge positions. Both equilibrium fluctuation and Boltzmann-Matano
spreading studies indicate that the role of steps for diffusion across the steps is prominent in the
ordered phases at intermediate coverages. The strongest effects are found in the p�2�1� phase,
whose periodicity Lp is 2. The collective diffusion then depends on two competing factors: domain
growth within the ordered phase, which on a flat surface has two degenerate orientations �p�2
�1� and p�1�2��, and the step-induced ordering due to the enhanced binding at the lower step edge
position. The latter case favors the p�2�1� phase, in which all adsorption sites right below the step
edge are occupied. When these two factors compete, two possible scenarios emerge. First, when the
terrace width L does not match the periodicity of the ordered adatom layer �L /Lp is noninteger�, the
mismatch gives rise to frustration, which eliminates the effect of steps provided that EB is not
exceptionally large. Under these circumstances, the collective diffusion coefficient behaves largely
as on a flat surface. Second, however, if the terrace width does match the periodicity of the ordered
adatom layer �L /Lp is an integer�, collective diffusion is strongly affected by steps. In this case, the
influence of steps is manifested as the disappearance of the major peak associated with the ordered
p�2�1� and p�1�2� structures on a flat surface. This effect is particularly strong for narrow
terraces, yet it persists up to about L�25Lp for small EB and up to about L�500Lp for EB, which
is of the same magnitude as the bare potential of the surface. On real surfaces, similar competition
is expected, although the effects are likely to be smaller due to fluctuations in terrace widths. Finally,
Boltzmann-Matano spreading simulations indicate that even slight deviations from equilibrium
conditions may give rise to transient peaks in the collective diffusion coefficient. These transient
structures are due to the interplay between steps and nonequilibrium conditions and emerge at
coverages, which do not correspond to the ideal ordered phases. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2713100�

I. INTRODUCTION

Metal surfaces are essentially never ideally flat but rather
characterized by various kinds of imperfections such as im-
purities and defects, including steps and kinks. However, this
is by no means an undesired matter, since in many cases,

steps and kinks, for example, are highly useful as they pro-
mote chemical reactions and enhance molecular
dissociation.1–4 These properties that are rather unique to
steps have elicited substantial experimental activity focused
on understanding the role of stepped surfaces in potential
applications. What is rather surprising, though, is that theo-
retical and computational studies of stepped surfaces have
received considerably less attention. This is particularly true
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with regard to surface diffusion, which plays a crucial role in
a variety of surface processes such as surface growth, lubri-
cation, as well as reactions between individual particles.5–10

The related single-particle �tracer� and collective diffusion
processes have been investigated rather extensively on flat
�idealized� systems,11–14 but the challenge of addressing step-
induced effects on surface diffusion is still a topical issue.

The first systematic study of the influence of regular ar-
rays of steps on diffusion was done by Natori and Godby,15

who treated the tracer diffusion of a single particle within the
lattice-gas model. Recently, Durukonaglu et al.16 considered
the effect of step-step separation on surface diffusion using
molecular dynamics simulations, with focus on single-
particle dynamics. Another recent study is by Olsen et al.17,
who employed density functional theory to determine the
influence of steps on the diffusion of hydrogen on Pt�211�.
Concerning collective diffusion, the first comprehensive the-
oretical analysis in equilibrium was carried out by Merikoski
and Ying.18,19 They considered the simple Langmuir lattice-
gas model and established that additional binding at the step
edge has a pronounced influence. Further, they were able to
establish a criterion for crossover from terrace dominated to
step dominated diffusion in terms of the additional binding
energy at the step edge and the Ehrlich-Schwoebel barrier.19

Over the last few years, the present authors have carried out
a series of systematic studies of collective diffusion and
spreading on vicinal surfaces,20–25 in most cases by consid-
ering a lattice-gas model of a stepped surface through Monte
Carlo simulations. These studies have focused on the role of
various generic properties such as the distinctly different en-
ergetics along and across the steps and strengthened binding
at the step edge positions in determining the coverage depen-
dence of collective diffusion �for a review of some of the
work, see Ref. 24�. The enhanced binding at the step edge is
often the rate limiting step in terms of the diffusion rate
across the steps �though enhanced diffusion across steps
compared to a flat surface has also been observed26�.

However, despite this considerable body of work, there
is one important issue that remains unexplored. This is the
role of steps in diffusion within spatially ordered phases of
surface adsorbate systems, which is characteristic of many
strongly interacting surface systems at low enough tempera-
tures. Thus, to clarify the role of steps in systems where
ordered phases among adsorbed adatoms emerge from inter-
particle interactions under given thermodynamic conditions,
we consider here a lattice-gas model of oxygen adatoms dif-
fusing on a stepped W�110� surface. We also address the
influence of nonequilibrium conditions in this context
through simulations of spreading of density profiles of oxy-
gen adatoms.

II. MODEL

We consider here a system of strongly interacting ada-
toms on a static vicinal surface. For this purpose, we employ
a model of oxygen atoms diffusing on a W�110� surface,
which has been cleaved to a desired terrace width �step-step
distance� L. All terraces are of equal width and the steps are

straight, i.e., there are no kinks. On a flat surface, the lattice-
gas Hamiltonian for this model is given by27,28

H = �
m=1

5

�
�ij�

Jmninj + �
m=1

2

�
�ijk�

Jtmninjnk − ��
i

ni. �1�

The Hamiltonian includes pair interactions up to fifth nearest
neighbors as well as certain three-body interactions. Here
ni=0,1 is the occupation number of the lattice site i, and �ij�
and �ijk� denote pair and three-body interactions, respec-
tively. The strengths of the respective interactions are de-
noted by Jm and Jtm; see Ref. 28 for details. Following Refs.
27 and 28, we have chosen J2=J3=−0.390J1, J5=0.690J1,
and Jt1=Jt2=−0.720J1. To set the scales for temperature and
energy, we have chosen J1=−58.3 meV, which reproduces
the phase transition temperature of Tc�710 K between the
disordered high-temperature phase and the ordered p�2�1�
phase at a coverage of ��0.45; see Ref. 28. The number of
adatoms in our simulations is fixed; thus we set the chemical
potential �=0.

As depicted in Fig. 1, steps on the surface are character-
ized by several parameters. There is an Ehrlich-Schwoebel
barrier ES controlling rates over step edges and an additional
binding energy at the lower step edge EB. The activation
barrier of a single adatom �in the limit �→0� associated with
a jump on a terrace is given by E0.

To numerically study diffusion, we have performed stan-
dard Monte Carlo simulations using the transition dynamics
algorithm �TDA� of Ref. 29, in which the thermally activated
nature of diffusion processes is accounted for. In essence, in
the TDA a jump from an initial state i with energy Ei to a
final state f with energy Ef proceeds through an intermediate
saddle point or transition state I with energy EI=�+ �Ei

+Ef� /2. Then the transition rate from the initial to the final
state is subsequently wi,f =wi,IwI,f, where the rates have a
Metropolis form wi,j =min�1,exp�−�Ej −Ei� /kBT�� and the
additional barrier ��0 characterizes the effect of the �bare�
saddle point of the adiabatic substrate potential together with
step-induced effects. Here, since our objective is to gauge the

FIG. 1. Geometry and relevant activation barriers for the model used here
for a stepped surface. In the direction across the steps, there is an additional
barrier at the step edge position known as the Ehrlich-Schwoebel barrier ES.
The EB denotes an additional binding energy at the lower step edge, and E0

characterizes the diffusion barrier of a single adatom in the dilute limit on a
flat surface. The diffusion tensor for adatoms has its principal axes in the x
direction across the steps and in the y direction along the steps.
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influence of steps on surface diffusion for this model system,
we have described � in terms of E0 and EB as follows:

EI =
Ei + Ef

2
+ E0 + EB. �2�

Note that here E0 does not influence the qualitative behavior
of diffusion but only scales the magnitude of diffusion coef-
ficients. The additional binding energy EB is nonzero only at
the lower step edge position, and its strength is varied in our
simulations; see Sec. III for discussion.

In equilibrium simulations, we determine the collective
surface diffusion coefficient Dc��� by decomposing it in a
standard way14,30,31 into the center-of-mass diffusion coeffi-
cient �mobility� Dcm��� and the thermodynamic factor Kd���,
which together yield

Dc��� = Kd���Dcm��� . �3�

Here,

Kd��� =
1

S0���
, �4�

where the static structure factor S0 is calculated as the zero
wave-vector limit of the full dynamic structure factor S�q , t�
at t=0 as

S0 = lim
q→0

S�q,t = 0� . �5�

To compute S0, we used a large system comprised of 500
�500 lattice sites, from which S0 was calculated for sub-
systems of linear sizes 50, 100, 150, 200, 220, and 240 lat-
tice sites, hence employing finite-size analysis to extract the
final value for S0.

The mobility is calculated from the center-of-mass dis-
placement

Dcm = lim
t→�

1

2Ntd
�	R�t� − R�0�	2� , �6�

where R= �1/N��iri, and ri’s are the coordinates of the N
particles, and d=2 is the spatial dimension. As usual, we
have computed Dcm��� by using the memory expansion
method.14,32 To this end, systems of sizes 100�100 sites
were used. Our data for Dcm were typically averaged over
5�107 Monte Carlo steps.

To find the full coverage dependence of Dc���, we have
determined it through the well-established Boltzmann-
Matano �BM� method.6,33 The BM method is widely used for
analysis of collective diffusion in spreading experiments. We
have recently employed the same approach to elucidate the
influence of nonequilibrium conditions and impurities on
surface diffusion coefficients.20,23,34–36 The BM method is
based on an assumption that, in the long time limit, the cov-
erage profiles ��x , t� along the spreading direction x collapse
to a single scaling function when scaled with ��x /
t�. Using
the transformation �=x /
t, we can find Dc��� as a solution
of the nonlinear diffusion equation as37

Dc��� = −
1

2t
� dx

d�
�

�



0

�

x����d��. �7�

In practice, spreading simulation has been conducted for
a system of size Lx�Ly lattice sites. Typical values chosen in
this work are Lx=1500 and Ly =200, though they depend
slightly on the number of steps and the terrace width, see
below. The initial adatom distribution corresponds to a sharp
steplike interface profile where all sites for x	Lx /2 are oc-
cupied ��=1�, while the other half of the system is empty
��=0�. Hence the density gradient gives rise to diffusive
spreading in the +x direction. Periodic boundary conditions
are employed in both directions. However, in all the cases
studied here, the system size has been chosen to be large
enough in the x direction such that the adatoms never reach
the boundary of the system during the simulation. As an
example, for spreading across the steps separated by five
lattice sites �L=5�, the system has been chosen to contain
300 steps and thus for spreading across the steps Lx=1500.

Following our previous works,20,23 we can use Eq. �7� as
an operational definition to obtain effective, time-dependent
diffusion coefficients Dc

t ��� from coverage profiles scaled at
well-separated limited time intervals, where the system is
still evolving towards its equilibrium state. In practice this is
done by averaging coverage profiles from independent
spreading simulations at fixed time periods. The data are
typically averaged over 50–60 independent simulations.
Based on our tests, there are no observable finite-size effects
in our data.

The model used for O/W�110� has been previously stud-
ied extensively for the case of a flat surface under
equilibrium28,38,38 and nonequilibrium conditions.40 The pa-
rametrization of steps, though, is less obvious because we are
not aware of any experimental or first-principles studies to
shed light on the values of ES and EB. The only somewhat
related study is the one by Jardin et al.,41 who considered the
energetics of oxygen on a stepped bcc �110� surface using a
tight-binding scheme with approximations, where the spe-
cific nature of the surface was not accounted for. Despite its
generic nature, Ref. 41 concludes that the binding of oxygen
at the lower step edge position is more favorable than on a
terrace �EB�0�, ES is small, and that diffusion parallel to the
ledge is rather insensitive to the presence of the step. Con-
sequently, in our simulations we have used a parametrization
which is consistent with these findings. The Ehrlich-
Schwoebel barrier was set at ES=0, because that does not
change the nature of the results but only slows down diffu-
sion here. The value of EB�0 was varied during the simu-
lations to consider its influence on diffusion. Finally, the bare
potential was chosen to be E0=50 meV, which is consistent
with previous studies.28

All calculations were done at the temperature of T
=590 K. On the one hand, this temperature is sufficiently
low to observe all the important ordered phases of this sys-
tem. On the other hand, it is also high enough to facilitate
getting good statistics for collective diffusion. In the chosen
temperature, the phase behavior39 is characterized by many
phases starting from the disordered phase at low coverages,
from which one crosses continuously over to the p�2�1�
phase at ��0.35. At higher coverages, there is another tran-
sition of second order to the p�2�2� phase at ��0.59,
which in turn crosses continuously over to the disordered
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phase around ��0.78. The phase diagram is in line with
experimental findings; see Ref. 28 for discussion on this mat-
ter. In the figures below, these phase boundaries as deter-
mined from equilibrium simulations for a system without
steps have been shown by dashed lines, where appropriate.

III. RESULTS

A. Equilibrium results and equilibration of
Boltzmann-Matano profiles

Let us first consider the equilibrium behavior of collec-
tive diffusion. While these studies are computationally more
time consuming than BM simulations, which rather readily
result in the full coverage dependence of Dc���, the equilib-
rium data allow us to determine the conditions when the BM
profiles are sufficiently close to equilibrium conditions. Hav-
ing done this, we can employ BM simulations to thoroughly
elucidate the influence of steps on surface diffusion.

Comparison between equilibrium and BM simulations
with L=4 and EB=5 meV is given in Fig. 2. The focus here
is on the data for diffusion across the steps. They indicate
that the time period of 250 000–300 000 Monte Carlo steps
�MCS� used for the analysis of BM simulations is suffi-
ciently long in order to find the correct equilibrium behavior
of collective diffusion. The deviations from equilibrium are
minor. They are observable only in the high-coverage or-
dered p�2�2� phase close to �=0.75, where the BM simu-
lations slightly reduce the peak height of Dc��� as the order-
ing of the adatom phase is not fully developed. Hence, unless
mentioned otherwise, the BM results discussed below have
been analyzed from the same time window, that is, for
250 000–300 000 MCS after the initiation of the spreading
process.

Figure 2 illustrates the prominent role of steps on diffu-
sion and, in particular, the role of step orientation with re-
spect to diffusion. The diffusion tensor can be decomposed
into two principal components: one component characteriz-
ing diffusion along the steps and another describing diffusion

perpendicular to them. The data in Fig. 2 highlight the fact at
small coverages, diffusion along and across steps is essen-
tially similar. In the ordered p�2�1� phase, however, the
situation is completely different. In this highly ordered an-
isotropic phase, the diffusion coefficients along and across
the steps are significantly different. This difference is due to
the center-of-mass diffusion coefficient �see Fig. 3�, which is
strongly suppressed for diffusion across the steps. The at-
tenuation essentially eliminates the main peak in Dc���
around �=0.5. As Dcm��� competes with the thermodynamic
factor and Kd��� displays a strong peak at �=0.5 �see Fig. 3�,
it is obvious that the steps reduce the diffusive motion sub-
stantially across the steps.

It is interesting to compare the present result with the
results of collective diffusion for the same model on a flat
surface.35 We find that Dcx��� and Dcy��� perfectly match
those found for Dc,���� and Dc,����, where Dc,� and Dc,� are
the collective diffusion coefficients across and along the
chains of adatoms in the p�2�1� phase, respectively. This
means that the specific orientation of the p�2�1� phase in
this stepped system is induced by the steps, that is, the bind-
ing energy EB. This is demonstrated in Fig. 4, which for �
�0.5 clearly shows how the adatoms close to steps prefer to

FIG. 2. Equilibrium �solid line� and BM �dotted� results for Dc��� for dif-
fusion across the steps, using L=4 and EB=5 meV. For comparison, the
dashed line represents Dc��� for diffusion along the steps. The case along
the steps is qualitatively similar to the equilibrium results for a flat surface
�Ref. 39� Vertical lines indicate the positions of phase boundaries in equi-
librium for a flat surface �see text for details�.

FIG. 3. �a� Equilibrium mobility Dcm��� across �solid line� and along �dotted
line� the steps. Here Dcmx��� �Dcmy���� stands for diffusion across �parallel
to� the steps. �b� Thermodynamic factor as determined through equilibrium
simulations. The results are for L=4 and EB=5 meV. Vertical lines indicate
the positions of phase boundaries in equilibrium for a flat surface.
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form rows right under the step edge. This in turn dictates the
orientation of the p�2�1� phase and results in the slow
center-of-mass diffusion across the steps.

In the p�2�2� phase, Dcm��� is also affected to some
degree, but the difference is considerably smaller than in the
p�2�1� phase.

B. Boltzmann-Matano spreading: Even terrace widths

The above results highlight the distinct difference be-
tween diffusion along and across the steps. However, the
terrace width considered above was small and matched the
ordered phases of this system. Next we consider the case
where the terrace width is varied over a large range, subject
to a condition that it still coincides with the size of the p�2
�1� and p�2�2� phases; that is, we consider even values of
L. The objective is to assess the changes in diffusion associ-
ated with a crossover from narrow to wide terraces. The case
of odd L is discussed separately below.

Figure 5 shows the collective diffusion coefficient across

the steps, Dcx���, for several even terrace widths. We also
show the results for a flat surface in the absence of steps �see
also Ref. 39�. The results for a flat surface show how closely
the collective diffusion reflects changes in phase behavior
and, in particular, the ordered nature of the adatom layer.
This is evidently close to the ideal coverages of 1 /2 and 3/4
of the p�2�1� and p�2�2� phases, respectively, where we
find prominent peaks due to the strongly enhanced thermo-
dynamic factor in the ordered regions. What is remarkable,
though, is the influence of steps on diffusion data. For wide
terraces �large L�, Dcx��� is essentially similar to the data for
a flat surface. In the other limit of a narrow terrace �L=4�,
the minor peak at �=0.75 is still found but the main peak
around �=0.5 is completely absent. The reasons for this be-
havior were discussed in the previous section, the main point
being the increased binding at the lower step edge. The en-
hanced binding at the step edge fixes the orientation of the
p�2�1� phase, blocking mass flow as almost all sites right
below the step edge are occupied, which in turn implies that
the collective diffusion across the steps is substantially re-
duced. This effect is most prominent for narrow terraces. As
the terrace width is increased, the role of steps and the addi-
tional binding at the step edge become less important, and
the behavior approaches that of the flat surface. There, both
orientations of the p�2�1� phase contribute equally to the
collective diffusion. In the present case, the crossover be-
tween the “narrow” and “wide” terrace behavior is around
Lco�16. Under these conditions, both orientations of the
p�2�1� phase are present, see Fig. 6. For L�Lco, we found
data supporting the presence of a �small� peak around �
=0.5, while for L	Lco, such behavior was not evident.

The cases corresponding to narrow terraces pose a chal-
lenge for simulations, since the equilibration times become
very large. This is due to the large concentration of steps and
the resulting binding at the step edges. As an example, the
minor peaks in Fig. 5 for L=10 at ��0.3 and for L=4 at
��0.15 are actually transient features and due to the fact
that these systems are not in complete equilibrium. When
these simulations were extended to much longer times �be-
yond 106 MCS�, these minor peaks vanished while all other
structures in the data remained unchanged. What makes this

FIG. 4. Snapshot of the system after 300 000 MCS for L=4 and EB

=50 meV. Note that only part of the system is shown here in the y direction.
The density profile ��x� vs x is also shown by the continuous line across the
system �see the right panel for the coverage scale�.

FIG. 5. Results for the collective diffusion coefficient across steps, Dcx���,
for different terrace widths L=4, 10, 20, and 50. The additional binding
energy at the lower step edge has been chosen as EB=5 meV. Dc��� on a flat
surface �solid line� is shown for reference. Vertical dashed lines denote the
phase boundaries of the p�2�1� and p�2�2� phases for a system without
steps.

FIG. 6. Example of the system configuration after 300 000 MCS for L
=16 and EB=5 meV. Only part of the system is shown in the y direction.
The density profile is also shown by the continuous line.
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finding interesting is the fact that Butz and Wagner42 have
conducted BM spreading experiments to consider the diffu-
sion of oxygen on a W�110� surface. While their studies are
not fully comparable to ours due to the temperature range of
760–880 °C in their study �corresponding to the disordered
phase�, some features of their findings may be compared to
ours. Butz and Wagner found that Dc��� displayed a maxi-
mum near ��0.45 and a decrease beyond �=0.6. The stud-
ies in Ref. 42 were conducted over large times �4–45 min�
and large distances �several micrometers�. Hence the experi-
mental data are presumably influenced by nonequilibrium
conditions �see Fig. 6 in Ref. 42� as well as steps, which are
essentially unavoidable over such large scales �see also Ref.
43�. In our simulation data, we have found the emergence of
transient peaks at coverages less than 0.5, originating from
the interplay of steps and nonequilibrium conditions. In par-
ticular, the data in Fig. 5 for L=20 show that for the present
stepped system the main peak close to �=0.5 is more shal-
low and considerably broadened with respect to the flat sur-
face, and there is some structure on the low-coverage side of
the main peak. All these features are in qualitative agreement
with the data in Ref. 42.

C. Boltzmann-Matano spreading: Odd terrace widths

In real samples, where the terrace widths are not neces-
sarily identical to each other, it is likely that the unit cell
corresponding to an ordered adatom layer does not always
coincide with the step-step distance but gives rise to local
frustration. In the present case, that happens when L is an
odd number. To this end, let us first consider the cases EB

=5 and 50 meV together with L=5, see Fig. 7. We find that
for weak binding at the step edge �EB=5 meV�, Dcx��� is
practically the same as in the flat surface case �data not
shown�. Further, even for strong binding at the lower step

edge, EB=50 meV, the collective diffusion coefficient is af-
fected by steps only very weakly. Clearly, the even and odd
terrace widths give rise to distinctly different behavior, see
Fig. 7 for comparison. This difference is further emphasized
by the fact that for L=4, the step-induced effects are very
prominent, while an increase of L from 4 to 5 drastically
changes the behavior of Dcx���.

The significance of odd L is demonstrated in Fig. 8.
Even though L is small, we find only region with orientations
of the p�2�1� phase with chains perpendicular to steps close
to �=0.35–0.59. For comparison, a similar snapshot for
L=4 shown in Fig. 4 indicates only the orientations with
chains parallel to persist in that case. It is evident that an odd
L gives rise to frustration, which in turn breaks the step-
induced ordering manifested as a specific orientation of the
p�2�1� phase.

D. Boltzmann-Matano spreading: Influence of step
edge binding

Finally, let us briefly discuss the role of EB in more
detail. One of the issues related to the present model is the
strength of this additional binding parameter at the lower
step edge. In the absence of ab initio or experimental data,
we prefer not to make strong arguments in favor of any par-
ticular value of EB. Usually, on the basis of changes in the
coordination number as adatoms diffuse from terraces to the
step edge, it is justified to expect enhanced binding at the
lower step edge position. This generic property is here
complemented by studies where we vary the value of EB and
hence aim to clarify the resulting trends. The results pre-
sented below are mainly for EB=5 and 50 meV. The signifi-
cance of these numbers is best understood by comparing
them to the bare potential value E0=50 meV: see Sec. II.

For even terrace widths, Fig. 7 shows that EB has a sig-
nificant effect on Dcx��� for narrow terraces. Then, the stron-
ger the binding energy EB is, the more suppressed the order-
ing effects are in Dcx���. When the terrace width is increased
with strong binding up to L=50, we find that the influence of
steps is alleviated in the sense that the data are very close to
the case of weak step binding with a narrow terrace width
�L=4 and EB=5 meV�, see Fig. 7. Here, Fig. 5 indicates that

FIG. 7. Collective diffusion coefficients across the steps, Dcx���, for odd
�L=5� and even �L=4� terrace widths. The result for a flat surface is also
given for comparison. For the even terrace width �L=4�, the data demon-
strate the effect of two different binding energies at the lower step edge
position �EB=5 and 50 meV�. Also shown is the case of a wide terrace �L
=50� with a strong binding energy �EB=50 meV�. In the case of the odd
terrace width �L=5�, we only show the results for strong binding �EB

=50 meV�. The Dcx��� for L=5 with a small binding energy EB=5 meV is
essentially identical to the flat surface behavior and is hence not plotted
here. Vertical dashed lines denote the locations of phase boundaries for a flat
system without steps.

FIG. 8. Snapshot of the system configuration after 300 000 MCS for a case
with L=5 and EB=50 meV. Only part of the system is shown in the y
direction. Continuous line indicates the density profile.
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for EB=5 meV, the terrace width has to change from L=4 to
L�50 to recover the main peak at �=0.5. Using this as a
rough estimate, we can conclude that for EB=50 meV in Fig.
7, the terrace width should increase to about L=1000 to find
the peak at �=0.5 in a manner similar to the flat surface. This
highlights the prominent role of steps on diffusion: the strong
binding �EB=50 meV� used here is of the same magnitude as
the bare potential of the surface, E0. Thus, the stronger EB is,
the more prominent its effects are on collective diffusion. For
odd terrace widths, the situation is clearly different. Then
weak binding �EB=5 meV� has no effect at all, and even for
strong binding the effect is surprisingly small, see Fig. 7.

Summarizing the above results, we may conclude that
there are two competing factors which both give rise to or-
dering along the surface. First, as also shown in previous
works,18–24 the lower step edge acts as a trap for adatoms
which diffuse across the steps. This favors enhanced occu-
pancy of adsorption sites at the lower step edge position, and
for sufficiently strong binding at the step edge all adsorption
sites in the first row below the step would be occupied. In
order to adapt to this condition, the p�2�1� phase should
orient itself accordingly. Second, due to the symmetric nature
of the Hamiltonian, the two orientations of the p�2�1�
phase are energetically equivalent in the flat surface case:
thus the self-ordering of the adlayer promotes both orienta-
tions to a similar extent. The competition between the two
factors dictates the ordering of the system. The key param-
eters in this respect are L and EB characterizing steps and the
adatom interaction Hamiltonian.

As shown in Fig. 9, the competing factors dominate un-
der different conditions. For even and small L, the step-
induced effect is important even for small EB. For even and
large L, the influence of steps on diffusion is important only
if EB is large compared to typical adatom-adatom interac-
tions. When L is odd, however, the self-ordering dominates
as L in this case does not match the periodicity of the p�2
�1� phase and hence reduces the impact of the additional
binding energy at the step edge. Thus, for odd L, steps play a
major role in collective diffusion only if EB is very large.

IV. SUMMARY AND DISCUSSION

Nanoscale engineering of surfaces offers new possibili-
ties for controlling various kinetic processes such as growth
or chemical reactions. One particularly simple and effective
way to achieve this is to create regular arrays of steps on
single crystal substrates by cleaving or through growth tech-
niques. It has been demonstrated that such arrays of steps can
be indeed used to control surface kinetics and, in particular,
spreading, adatom mobility, and collective diffusion.

In the present work, we have extended our previous
studies20–25 on the influence of regular arrays of steps to the
important case where strong interactions between the surface
adatoms lead to the formation of ordered phases at finite
coverages. This leads into an interesting interplay between
step and nonequilibrium effects due to the competition be-
tween intrinsic phase ordering and step-induced symmetry
breaking in ordering. In particular, using a lattice-gas model
for the O/W�110� adsorbate system, we demonstrate that the
collective diffusion then depends on two competing factors:
domain growth within the ordered phase and step-induced
ordering due to enhanced binding at the lower step edge
position. The latter case favors an ordered phase, in which all
adsorption sites below the step edge are occupied. In the case
of O/W�110�, this means that strong step edge binding se-
lects one of the degenerate phases around �=0.5 when the
step spacing matches its intrinsic periodicity. In this case
collective adatom transport is strongly affected by steps in
the ordered phase. However, if the matching condition is not
met, there is frustration that largely eliminates the effect of
steps provided that step edge binding is not exceptionally
large. Under these circumstances, the collective diffusion co-
efficient behaves largely as on a flat surface.

As already briefly mentioned in Sec. III C, under realis-
tic experimental conditions, there is always some variation in
the distribution of the terrace widths due to miscut errors,
impurities, thermal fluctuation effects, etc. In the present
case, such variation can cause significant changes in the ideal
scenario presented above. This effect should be most pro-
nounced in the p�2�1� phase, where mass transport is effi-
ciently reduced at terraces with even �and small� L due to the
matching condition with ordering. If we consider the case
where we assume that the steps are ideally straight and the
intended miscut corresponds to high-mobility steps �e.g., L
=5� and there is a small concentration of low-mobility steps
�L=4 or L=6�, the latter hinder the mobility of adatoms very
efficiently. However, in the opposite case where a system
with mostly low-mobility steps is diluted with high-mobility
steps, there should be very little change in diffusion. In the
more realistic case where step widths fluctuate in time and in
space, the above scenario is too simplistic because the high-
and low-mobility patches do not percolate through the sys-
tem but are small. It would be an interesting problem to
study these effects with more detailed simulations.

Additionally, our Boltzmann-Matano spreading simula-
tions indicate that even slight deviations from equilibrium
conditions may give rise to transient peaks in the collective
diffusion coefficient. These transient structures are due to the
interplay between steps and nonequilibrium conditions and

FIG. 9. Schematic structures for occupied �filled circles� and vacant �open
circles� sites on the W�110� surface, where the first rows of adsorption sites
under the step edge are shown as dashed boxes. �a� The ordered p�2�1�
phase has a periodicity of 2 and hence matches the periodicity of a vicinal
surface with even L �here L=4�. �b� In the case of an odd L �here L=5�, the
periodicity of the p�2�1� phase does not match the periodicity of the vici-
nal surface. �c� Consequently, for odd L �here L=5�, the orientation perpen-
dicular to steps is also possible and may emerge spontaneously.
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emerge at intermediate coverages. The detailed role of do-
main growth on stepped surfaces will be studied in future
works.
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