
Alexander Bakhtin

PARACONSISTENT MANY-VALUED LOGIC IN

GUHA DATA MINING FRAMEWORK

Literature review

Bachelor Thesis

Faculty of Engineering and Natural Sciences

Examiner: Prof. Esko Turunen

March 2021

i

ABSTRACT

Alexander Bakhtin: Paraconsistent many-valued logic in GUHA Data mining framework
Bachelor Thesis
Tampere University
International Bachelor Programme in Science and Engineering
March 2021

While Classical Logic is a cornerstone of Mathematics, modern Machine Learing and Data
Mining systems need another approache to help deal with situations where contradictory and
inconsistent information is unavoidable. We give an outline of MV-algebras, and in particular,
Lukasiewicz L-structure, which make it possible to create Fuzzy (Many-valued) and Paraconsistent
logic settings. We also find an applied case of using Paraconsistent logic with evidence couples in
another non-classical logic setting, the GUHA data mining method, to produces novel hypotheses.

Keywords: paraconsistent logic, many-valued logic, GUHA, LISpMiner, Data Mining, KDD

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

The idea of this thesis came while I was taking the course "Introduction to Data Mining:

The B-Course and the GUHA Method" by prof. Esko Turunen. That course taught basics

of theory behind GUHA Method for KDD and usage of LISpMiner software.

After contacting the professor with plea to supervise my bachelor thesis, I recieved an

accepting reply and proposition of the topic of Paraconsitent Logic in GUHA Framework,

literature review of which is presented in this work.

Tampere, 15th March 2021

Alexander Bakhtin

iii

CONTENTS

1 Introduction . 1

2 Many-valued and Paraconsistent Logic . 3

2.1 History of Many-valued Logic . 3

2.2 MV-algebras . 3

2.3 Evidence couples and matrices . 6

2.4 Practical application for Paraconsistent logic 12

3 The GUHA Method . 13

3.1 History of GUHA Method . 13

3.2 GUHA Formalism . 14

3.3 Paraconsistent Separation Quantifier . 15

4 Conclusion . 17

References . 18

iv

LIST OF SYMBOLS AND ABBREVIATIONS

FOUR Belnap’s 4-valued Logic FOUR

GUHA General Unary Hypothesis Automaton

KDD Knowledge Discovery in Databases

MV-algebra Multi-Valued Algebra

1

1 INTRODUCTION

As any paper with keywords "Paraconsistent Logic" or similar in its title, this thesis shall

begin with the following observation:

In classical logic, there holds the rule "Ex contradictione [sequitur] quodlibet".

Also know as Principle of Explosion, it states that if a contradiction is assumed to be True,

then any statements (and thus other contradictions) will follow to be True.

While classical logic is well-established and is the cornerstone of Mathematics, modern

world, with its focus on Big Data and Machine Learning, needs another approach. It

needs to deal with potential contradictions, or, in other words, situations where both a

statement and its negation seem to be probable, and where decisions need to be made

bearing this in mind.

Also classical logic gives us only two ways to judge a statement about some set of objects

- either ’All objects satisfy A’ or ’At least one object satisfies A’. While such quantifiers

are essential in Proof Theory, for real world they are pretty useless - due to noise in any

big data set, the first kind of statement is doomed to be False, the second kind will almost

always be True and seems trivial.

For these reasons other logic systems are invented, trying to solve one or both of these

drawbacks of classical logic. Solving the problem of Ex contradictione quodlibet led to the

development of Paraconsistent Logic(s) - approaches where contradictions are treated

formally and assuming contradicting statements to be True does not lead to the explosion

into triviality.

Many-valued Logics are an important tool in achieving this - if the truth value of a state-

ment is allowed to be continuous instead of binary, we can interpret it as a degree of

belief in that statement. The foundations for Many-valued logics discussed in this work

are MV-algebras - special kind of algebras developed by Chang [1] to use as a structure

for Łukasiewicz infinite-valued logic. In particular we follow the approach of Turunen ([2],

[3]), and how he relates this mathematical machinery to Paraconsistency and Belnap’s

logic FOUR, inspiration from which allows to use MV-algebra to create a logic system

with evidence matrices containing values true, false, contradictory, unknown ([4]).

To solve the problem of usefulness of quantifiers, a logic system GUHA (General Unary

2

Hypothesis Automaton) was proposed by Petr Hajek and Tomas Havranek in 1966 [5].

It deals with this problem by introducing four-fold table for each pair of unary predicates

(statements about a certain object) and using values from the table to define Truth con-

ditions for quantifiers. Such approach allows to define many families of quantifiers by

using those counts from the tables as well as introducing some threshold parameters.

The purpose of this work is to explore with literature review how paraconsistent ideas can

be expressed in this GUHA setting.

One such solution is identified [6]. Indeed, a recent systematic analysis done by Zaman-

sky [7] shows that most applications of Paraconsistent logic come from the system called

’annotated logics’, which is different from the one studied here. We study the development

of Belnap’s Logic FOUR, and even though his work is mentioned in [7], no application

of this logic was discovered there.

In the following chapter we present the mathematical foundations of Many-valued Logic

with MV-algebras (section 2.2), and the Paraconsistent setting developed by Turunen;

chapter 3 explains the GUHA framework and showcases its possible applications. Finally,

we show how developments of Turunen can be applied in the GUHA framework.

3

2 MANY-VALUED AND PARACONSISTENT LOGIC

We begin by reviewing the history of Many-valued Logic and considering the mathematical

foundations behind many Many-valued and Paraconsistent logics, which also serve as the

foundation for the paraconsistent logic discussed further in this work.

2.1 History of Many-valued Logic

One of the people considered to be the founders of Many-valued Logic is Jan Łukasiewicz

(1878-1956). Polish mathematician, logician and philosopher, he is responsible for intro-

ducing mathematical logic in Poland and establishing the so-called Warsaw school of

Logic [8]. He work is closely related to works of Tarski, Gödel, Wajsberg and was a big

influence on them.

The system that we now consider to be the first in Many-valued Logic was published by

Jan Łukasiewicz in 1920 ([9], developed since 1917), and it is his Three-valued logic. To

the values True and False of the classical logic he added a third value, called ’unknown’

or ’possible’ and developed logical connectives and operators that worked with all the

three values. This logic is usually denoted as Ł3.

Later, he (together with Tarski) extended his idea and developed an infinite-valued logic

[10], denoted as Łℵ0 , which is the system this work is ultimately based on. That logic

allows a statement to have any value on the interval [0, 1].

Several successful attempts were made to find a model for such a logic, one by Wajsberg,

Łukasiewicz’s student, and one by Chen Chung Chung [1], Tarski’s student, introducing,

respectively, Wajsberg algebras and MV-algebras. The latter approach seems to be more

famous, and the works we cover here and thus us are using that one, however, these

algebras are shown to be equivalent (for example in [2]), so it ultimately does not matter,

as they give the same explanation of the Łukasiewicz logic.

2.2 MV-algebras

We now demonstrate the basic notions of MV-algebras. Comprehensive literature about

this topic is available in [2, 4, 11]. We use the notation from [4].

4

Definition 1. Given a set L, operations ⊕, ∗ and element 0, we say that L = ⟨L,⊕,∗ ,0⟩
is an MV-algebra if the following axioms hold:

x⊕ y = y ⊕ x (2.1)

x⊕ (y ⊕ z) = (x⊕ y)⊕ z (2.2)

x⊕ 0 = x (2.3)

x∗∗ = x (2.4)

x⊕ 0∗ = 0∗ (2.5)

(x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x (2.6)

We also define an operation x ⊙ y = (x∗ ⊕ y∗)∗, then we also obtain following relations

(deduced respectively from 2.1-2.3):

x⊙ y = y ⊙ x (2.7)

x⊙ (y ⊙ z) = (x⊙ y)⊙ z (2.8)

x⊙ 1 = x (2.9)

It is easy to notice that both ⊕ and ⊙ obey the same axioms. Another way to declare

them would would be to simply state that ⟨L,⊕,0⟩ and ⟨L,⊙,1⟩ need to be commutative

monoids.

Note These were the definitions of MV-algebra taken from [6], a book [2] by the same

author gives a more thorough look into the topic, using first Wajsberg algebras, so the

path to defining MV-algebras is different.

5

We notice that conditions x∗ ⊕ y = 1, x⊙ y∗ = 0 are equivalent:

x∗ ⊕ y = 1 = 0∗ definition of 1 (2.10)

(x∗ ⊕ y)∗ = 0∗∗ negation of both sides (2.11)

(x∗ ⊕ y∗∗)∗ = 0 double negation for y and 0 (2.12)

x⊙ y∗ = 0 definition of ⊙, (2.13)

and we may define a partial order:

x ≤ y iff x∗ ⊕ y = 1 iff x⊙ y∗ = 0 (2.14)

We also define three more operations:

x ∨ y = (x∗ ⊕ y)∗ ⊕ y (2.15)

x ∧ y = (x∗ ⊙ y)∗ ⊙ y = (x∗ ∨ y∗)∗ (2.16)

x→ y = x∗ ⊕ y (2.17)

One can spend a great deal of time now deducing and verifying many relations (tau-

tologies) relating all of the symbols ⊕,⊙,≤,∨,∧,→, which would be a good exercise in

algebra and abstract thinking, however such results are not essential to this work and thus

are omitted. Some of them can be found in one of the key references to this work, [4]. We

now instead show some examples and uses of MV-algebras to explain their importance.

If we only consider a set of two numbers {0, 1}, and define operations ⊕ as the classical

logic disjunction and ∗ as negation, we would actually get a two-valued Boolean algebra.

Thus an idea for a certain generalization of classical Boolean logic into Many-valued logic

comes to mind - consider instead of set {0, 1} an interval [0, 1] with operations slightly

redefined.

What we obtain in this case is the standard MV-algebra, or Łukasiewicz structure L. It

was shown that this MV-algebra is the structure of the infinite-valued Łukasiewicz logic

[1]. Now the operations are defined as

x⊕ y = min(x+ y, 1) (2.18)

x∗ = 1− x (2.19)

and the order ≤ is the regular one for the real numbers. It is possible to deduce that

6

remaining operations are:

x⊙ y = max(0, x+ y − 1) (2.20)

x ∨ y = max(x, y) (2.21)

x ∧ y = min(x, y) (2.22)

x→ y = min(1, 1− x+ y) (2.23)

In this case the operation ⊙ is know as "Łukasiewicz t-norm" and ⊕ as its "t-conorm".

We notice that if we consider only the elements 0 and 1 in the standard MV-algebra, the

result of all operations corresponds to their Boolean counterparts.

This particular MV-algebra is also important since it was shown by Chang [1, 12] that

it generates all the other MV-algebras, and thus a proof of an equation in this algebra

proves the same equation for all MV-algebras.

2.3 Evidence couples and matrices

We now begin to demonstrate how the foundations of Many-Valued Logics presented

above relate to notions of Paraconsistency, however at first we present important theo-

rems on MV-algebras.

Classical logic has two important tautologies:

x ∧ x∗ = 0 (False) (2.24)

x ∨ x∗ = 1 (True), (2.25)

where ∗ is the classical negation. Many-valued Logics have a similar set of relations,

namely:

Theorem 1. In an MV-algebra, for any x, y ∈ L holds the following:

(x⊙ y) ∧ (x∗ ⊙ y∗) = 0 (2.26)

(x∗ ∧ y)⊕ (x⊙ y)⊕ (x∗ ⊙ y∗)⊕ (x ∧ y∗) = 1 (2.27)

We prove this in the Łukasiewicz structure L. Start with the first equation. Since ∧ is

defined as a min function, and all operations are bounded to [0, 1], if x⊙ y = 0, then we

7

are done. If x⊙ y ̸= 0 then necessarily x⊙ y > 0 ⇒ x+ y − 1 > 0:

x+ y − 1 > 0 multiply by − 1 (2.28)

1− x− y < 0 add and substract 1 (2.29)

1− x+ 1− y − 1 < 0 group terms (2.30)

(1− x) + (1− y)− 1 < 0 definition of ∗ (2.31)

x∗ + y∗ − 1 < 0 write in min /max language (2.32)

max(0, x∗ + y∗ − 1) = 0 definition of ⊙ in L-structure (2.33)

x∗ ⊙ y∗ = 0 (2.34)

And thus (x ⊙ y) ∧ (x∗ ⊙ y∗) = min(x ⊙ y > 0, x∗ ⊙ y∗ = 0) = 0. This essentially

shows that either of the expressions is always 0. Now we turn to the second equation.

This is easy to show, indeed assume that x ∧ y∗ = min(x, 1− y) = x, thus by switching

elements to different sides of the inequality:

x ≤ 1− y move all to one side (2.35)

x+ y − 1 ≤ 0 multiply by − 1 (2.36)

0 ≤ 1− x− y add and substract 1, group (2.37)

0 ≤ (1− x) + (1− y)− 1 multiply eq. 2.35 by − 1 (2.38)

y ≤ 1− x (2.39)

Now we express eq. 2.35-2.39 in min /max language and also in the language of MV-

algebras (given in the same order):

eq.2.35: min(x, 1− y) = x x ∧ y∗ = x (2.40)

eq.2.36: max(0, x+ y − 1) = 0 x⊙ y = 0 (2.41)

eq.2.38: max(0, (1− x) + (1− y)− 1) = 1− x− y x∗ ⊙ y∗ = 1− x− y (2.42)

eq.2.39: min(y, 1− x) = y x∗ ∧ y = y (2.43)

Thus (x∗ ∧ y)⊕ (x⊙ y)⊕ (x∗ ⊙ y∗)⊕ (x∧ y∗) = x⊕ 0⊕ (1− x− y)⊕ y = 1. Here ⊕
is the regular summation capped at 1, so we may first take the sum of several operands,

and only then compare to 1.

If we assumed the opposite, that x ∧ y∗ = min(x, 1 − y) = 1 − y, that would simply

mean switching the sign ≤ to ≥ everywhere above, thus selecting the other argument

of every min/max function, leading to (x∗ ∧ y) ⊕ (x ⊙ y) ⊕ (x∗ ⊙ y∗) ⊕ (x ∧ y∗) =

(1 − y) ⊕ (x + y − 1) ⊕ 0 ⊕ (1 − x) = 1, which is the same result, thus the proof is

complete.

As mentoioned previously, this proof proves the same equation in a general MV-algebra.

8

The four expressions used in the second equation of the theorem are quite special, since

there is an interesting result about uniqueness of their values:

Theorem 2. In an MV-algebra, if for x, y, a, b ∈ L it is known that:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x∗ ∧ y = a∗ ∧ b

x⊙ y = a⊙ b

x∗ ⊙ y∗ = a∗ ⊙ b∗

x ∧ y∗ = a ∧ b∗,

then x = a, y = b.

Again, we prove this in the L structure. By Theorem 1, either x ⊙ y = a ⊙ b = 0 or

x∗ ⊙ y∗ = a∗ ⊙ b∗ = 0.

Assume that the first equation holds, then max(0, x + y − 1) = 0, thus x + y − 1 ≤ 0.

Rearranging, we get x ≤ 1−y, x ≤ y∗, so x∧y∗ = min(x, y∗) = x. Similarly a∧b∗ = a,

so we obtained:

x = x ∧ y∗ = a ∧ b∗ = a. (2.44)

Rearranging further, y ≤ 1− x, y ≤ x∗, thus x∗ ∧ y = y, and similarly for a, b:

y = x∗ ∧ y = a∗ ∧ b = b. (2.45)

We got x = a, y = b.

Now assume that the second equation holds, then max(0, (1 − x) + (1 − y) − 1) = 0,

so 1 − x − y ≤ 0. Rearrange to get 1 − x ≤ y, x∗ ≤ y, then x∗ ∧ y = x∗ and similarly

a∗ ∧ b = a∗.

x∗ = x∗ ∧ y = a∗ ∧ b = a∗ keep the sides (2.46)

x∗ = a∗ negation on both sides (2.47)

x∗∗ = a∗∗ rule of double negation (2.48)

x = a (2.49)

And again rearrange 1 − x ≤ y into 1 − y ≤ x to get y∗ ≤ x and so x ∧ y∗ = y∗, the

same for a, b:

y∗ = x ∧ y∗ = a ∧ b∗ = b∗ keep the sides (2.50)

y∗ = b∗ negation on both sides (2.51)

y∗∗ = b∗∗ rule of double negation (2.52)

y = b (2.53)

9

Thus in either case we got x = a, y = b.

This theorem means that any pair x, y ∈ L through the operations shown above creates

a unique quadruplet of elements of L. What is more, if we denote these for values as

f, k, u, t (foreshadowed in the Introduction chapter), we can say that:

Theorem 3. If for x, y ∈ L we calculate:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x∗ ∧ y = f

x⊙ y = k

x∗ ⊙ y∗ = u

x ∧ y∗ = t,

then the reverse calculation is ⎧⎨⎩x = t⊕ k

y = f ⊕ k

and ⎧⎨⎩x = (f ⊕ u)∗

y = (t⊕ u)∗

This is shown by direct observation of results of Theorem 2. In that proof we essentially

demonstrated that only two cases are possible:

I II⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x∗ ∧ y = f = y

x⊙ y = k = 0

x∗ ⊙ y∗ = u = 1− x− y

x ∧ y∗ = t = x,

and

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x∗ ∧ y = f = 1− x

x⊙ y = k = x+ y − 1

x∗ ⊙ y∗ = u = 0

x ∧ y∗ = t = 1− y,

(2.54)

Now just observe the suggested formulas:

I II⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = t⊕ k = x+ 0 = x

y = f ⊕ k = y + 0 = y

x = (f ⊕ u)∗ = 1− (y + 1− x− y) = x

y = (t⊕ u)∗ = 1− (x+ 1− x− y) = y

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x = t⊕ k = 1− y + x+ y − 1 = x

y = f ⊕ k = 1− x+ x+ y − 1 = y

x = (f ⊕ u)∗ = 1− (1− x+ 0) = x

y = (t⊕ u)∗ = 1− (1− y + 0) = y

(2.55)

The proof is then complete. Note We did not write out the min(..., 1) operation implied by

⊕ to save space, since all the sums inside end up being x, y, 1 − x, 1 − y, which all are

10

less than 1 in L.

The above theorems together show that there is a one-to-one correspondence between

pairs of elements of L (elements of the product set L × L) and the quadruplet of values

f , k, u, t. Thus we present the following definition:

Definition 2. For the MV-algebra L = ⟨L,⊕,∗ ,0⟩, the product set L×L is called the set

of evidence couples.

The set of evidence couples turns into an MV-algebra LEC = ⟨L×L,⊗,⊥ ,0⟩ by setting:

⟨a, b⟩ ⊗ ⟨c, d⟩ = ⟨a⊕ c, b⊙ d⟩ (2.56)

⟨a, b⟩⊥ = ⟨a∗, b∗⟩ (2.57)

0 = ⟨0,1⟩ (2.58)

Clearly the axioms 2.1-2.6 are satisfied since ⊕ and ⊙ obey them:

⟨a, b⟩ ⊗ ⟨c, d⟩ = ⟨a⊕ c, b⊙ d⟩ = ⟨c⊕ a, d⊕ b⟩ = ⟨c, d⟩ ⊗ ⟨a, b⟩ (2.59)

⟨a, b⟩ ⊗ (⟨c, d⟩ ⊗ ⟨e, f⟩) = ⟨a, b⟩ ⊗ ⟨c⊕ e, d⊙ f⟩

= ⟨a⊕ (c⊕ e), b⊙ (d⊙ f)⟩ = ⟨(a⊕ c)⊕ e, (b⊙ d)⊙ f⟩

= ⟨a⊕ c, b⊙ d⟩ ⊗ ⟨e, f⟩ = (⟨a, b⟩ ⊗ ⟨c, d⟩)⊗ ⟨e, f⟩
(2.60)

⟨a, b⟩ ⊗ ⟨0, 1⟩ = ⟨a⊕ 0, b⊙ 1⟩ = ⟨a, b⟩ (2.61)

(⟨a, b⟩⊥)⊥ = ⟨a∗, b∗⟩⊥ = ⟨a∗∗, b∗∗⟩ = ⟨a, b⟩ (2.62)

⟨a, b⟩ ⊗ ⟨1, 0⟩ = ⟨a⊕ 1, b⊙ 0⟩ = ⟨1, 0⟩ = 0 (2.63)

(⟨a, b⟩⊥ ⊗ ⟨c, d⟩)⊥ ⊗ ⟨c, d⟩ = ⟨a∗ ⊕ c, b∗ ⊙ d⟩⊥ ⊗ ⟨c, d⟩

= ⟨(a∗ ⊕ c)∗ ⊕ c, (b∗ ⊙ d)∗ ⊙ d⟩ = ⟨(c∗ ⊕ a)∗ ⊕ a, (d∗ ⊙ b)∗ ⊙ b⟩

= ⟨c∗ ⊕ a, d∗ ⊙ b⟩⊥ ⊗ ⟨a, b⟩ = (⟨c, d⟩⊥ ⊗ ⟨a, b⟩)⊥ ⊗ ⟨a, b⟩
(2.64)

And also operations similar to 2.7-2.17 can be defined, further explanation can be found

in [4]. We skip it since it is just an intermediate step to evidence matrices.

11

Definition 3. The set of matrices M =

⎧⎨⎩
⎡⎣f k

u t

⎤⎦ =

⎡⎣ x∗ ∧ y x⊙ y

x∗ ⊙ y∗ x ∧ y∗

⎤⎦ ⃓⃓⃓⃓
⃓⟨x, y⟩ ∈ L× L

⎫⎬⎭
induced by the set of evidence couples is called the set of evidence matrices.

We have already shown that sets of evidence couples and evidence matrices are in one-

to-one correspondence.

We use operations defined for evidence couples above to define operations on evidence

matrices:

Let A and B be evidence matrices induced by evidence couples ⟨x, y⟩ and ⟨a, b⟩. Oper-

ation defined in (2.24) creates an evidence couples ⟨x⊕ a, y ⊙ b⟩, which in turn induces

an evidence matrix C =

⎡⎣ (x⊕ a)∗ ∧ (y ⊙ b) (x⊕ a)⊙ (y ⊙ b)

(x⊕ a)∗ ⊙ (y ⊙ b)∗ (x⊕ a) ∧ (y ⊙ b)∗

⎤⎦, so we define an

operation
⨁︁

on evidence matrices so that A
⨁︁

B = C, and similarly other operations.

If we write M(⟨a, b⟩) for "evidence matrix induced by the evidence couple ⟨a, b⟩", we get

the following definitions:

M(⟨a, b⟩)
⨁︂

M(⟨x, y⟩) = M(⟨a, b⟩ ⊗ ⟨x, y⟩) (2.65)

M(⟨a, b⟩)⊥ = M(⟨a, b⟩⊥) (2.66)

F = M(⟨0,1⟩) =

⎡⎣1 0

0 0

⎤⎦ (2.67)

The same way for the operations for evidence couples and matrices that we skipped.

This is done of course because now the structure M = ⟨M,
⨁︁
,⊥ , F ⟩ is an MV-algebra

(of evidence matrices).

The evidence couple ⟨0,1⟩ was used to define the zero element of the sets of evidence

couples and matrices, however similarly we may use couples ⟨1,0⟩, ⟨1,1⟩, ⟨0,0⟩ to in-

duce the following matrices, respectively:

T =

⎡⎣0 0

0 1

⎤⎦ , K =

⎡⎣0 1

0 0

⎤⎦ , U =

⎡⎣0 0

1 0

⎤⎦ . (2.68)

These matrices F, T,K,U then correspond to the values false, true, contradictory and

unknown from Belnap’s Logic FOUR, which inspired the original authors of [4] for the

system explained here.

12

2.4 Practical application for Paraconsistent logic

The mathematical machinery described above can be used to create a system of Para-

consistent logics, which in turn can be applied to a real data mining system.

Generally, Paraconsistent logic is a novel field of Logic, which aims to deal with situations

where inconsistencies are unavoidable. Classical logic has the "Law of excluded middle",

thus either a statement or its negation is false, but both cannot be assumed to be true,

since that leads to explosion into triviality, and any statement can be deduced to be true.

Different paraconsistent logics deal with this problem differently, and a general presenta-

tion of the setting is given in [13]. We present the setting developed in [4], which deals

with the problem by introducing evidence couples to each statement such that we have

a value indicating the degree of belief that it is true, and another value indicating the de-

gree of belief that the statement is false. Making inferences now involves operating on

this evidence couple, thus information about the potential inconsistency is preserved, and

inferred staments also have a limited degree of belief.

In short, associate to each statement A an evidence couple α = ⟨a, b⟩, a, b ∈ [0, 1], and

then calculate the values Truth, Falsehood, Contradictory and Unknown as

T (α) = min(a, 1 − b), F (α) = min(1 − a, b), K(α) = max(0, a + b − 1), U(α) =

max(0, 1 − a − b), and thus also associate an evidence matrix M =

⎡⎣F (α) K(α)

U(α) T (α)

⎤⎦.

Previously proven theorem guarantees that T (α) + F (α) +K(α) + U(α) = 1.

However, for the practical application, there is an evident question now - where would

the evidence couples for the statements actually come from? Next chapter presents a

particular Data Mining approach which makes it possible to create the evidence couples

for a particular kind of statements from available data and use them to judge how justified

those statements are.

13

3 THE GUHA METHOD

This chapter shortly deals with a particular Data Mining method - GUHA - and shows how

results of the chapter 2 can be applied to create a new useful quantifier for the program,

which seems to detect dependies that would be overwise undiscovered.

3.1 History of GUHA Method

General Unary Hypothesis Automaton (GUHA), is a method proposed in 1966 by Petr

Hajek and Tomas Havranek. The original book was since then turned into electronic form

and is now available under [5]. It is a rigorously defined logical formalism, which allows

to add to the logic language so-called generalized quantifiers, ie quantifiers other than

existential ∃ and universal ∀.

Generalized quantifiers are used to define notions such as ’In most cases P (x)’ or ’P (x)

is more common than...’ in precise mathematical language, giving them a truth value, and

form closed formulas with them, thus allowing to make conclusions in situations where

classical quantifiers do not provide enough insight. The purpose of software implementa-

tions of GUHA method is to mine for hypothesis - systematically produce formulas yielding

True value for a given quantifier in an optimized manner, making use of the rules of in-

ference derived for generalized quantifiers. The most basic type of hypothesis that is

possible to mine are the Associational rules - quantifiers of the form ψ(x) ≈ ϕ(x), which

mean that ψ and ϕ often either occur together or both do not occur.

A Windows software packaged called LISp-Miner is developed by Jan Raunch in Prague

University of Economics [14], with contributions by several scientists for different mining

procedures (including the one by Esko Turunen [6], on which with work is based). A

historic overview of software implementations and basic definitions for GUHA is given

by Jan Raunch in [15]. There is also a book by the same author dealing with mining

Associational rules from the formal point of view - [16].

Certain applied studies with GUHA demonstrate its usefullness to produces hypothesis

for possible reasons of certain phenomena. These include: reasons for traffic incidents

[17], sleep disorders [18], contraception use [19], [6].

We now present the basic ideas required to undestand mining for hypothesis with GUHA

14

and defining generalized quantifiers.

3.2 GUHA Formalism

In GUHA Data Mining, data is presented in a flat 2D table (matrix), where every row rep-

resents an object of study (ie a person), and every column represents some attribute of

such objects (height, age, gender etc). Each object is then treated as a variable of a for-

mal language, and every attribute as a logical predicate, which can only yield values True
or False. Thus attributes need to be somehow quantized first - continuous attributes like

age can be binned into intervals, and then each interval can have a corresponding pred-

icate: "Is age 20 to 25?", "Is age 26 to 30?" etc. Categorical attributes can either have

a predicate for each category or for certain sets of categories. It is up to researcher to

define predicates that are sensible to analyze based on the research questions.

The predicates which are formed from the data directly can then be connected into for-

mulas with familiar symbols ¬ for negation, ∧ for AND, ∨ for OR; for example ’Age is 20 to

25 AND Income is low OR Income is none’, ’Age is greater than 26 AND Income is NOT

low’. Now let ψ(x) and ϕ(x) be two such formulas, where x denotes the variable and

thus ranges over all objects in our matrix. For these two formulas we can form a four-fold

table (4ft) as follows:

4ft ψ(x) ¬ψ(x)

ϕ(x) a b r

¬ϕ(x) c d s

k l m

where a stands for number of objects satisfying both ψ and ϕ, b stands for the number of

objects satisfying ϕ but not ψ etc. k, l, s, r and column- and row-wise sums, m is the total

amount of objects.

Now, to define a generalized quantifier ϕ(x) ≈ ψ(x), we need to come up with a rule

which gives value True or False based on the values a, b, c, d (or, equivalently, r, s, k, l,m).

Now we give two simple examples of such quantifiers.

Quantifier of basic association One of the simplest way to define an associational rule

that claims that two predicates either occur or do not occur together is to use ’coincidence

prevails over difference’ - compare the values a, d with b, c. This can be done in one

simple step as

ad > bc, (3.1)

thus, if we denote this quantifier as ∼, the truth value v(ϕ(x) ∼ ψ(x)) is defined to be

True iff ad > bd.

15

Quantifier of founded implication We can also define a quantifier which represents

the notion ’ϕ being true implies ψ also true with certain evidence’, denoted as ⇒p,BASE.

This one uses two selected parameters, p ∈ (0, 1] and BASE ∈ N. The first parameter

is used to compare the amount of objects for which ϕ is true, to the amount of objects for

which also ψ is true, ie the proportion a
a+b

, while the second one ensures that we have

enough ’evidence’ of coexistence of the predicates in the first place. The truth value of

this implicational quantifier is thus defined as:

v(ϕ(x) ⇒p,BASE ψ(x)) = True ⇔

⎧⎨⎩ a
a+b

> p

a ≥ BASE
(3.2)

An application of those and further basic quantifiers is demonstrated by the present author

in [19].

By carefully considering the meaning of a, b, c, d and proportions involving them, it is

possible to derive many other, more ’complicated’ quantifiers, involving statistical signifi-

cance tests (Fisher and Chi-squared quantifiers), difference between groups with different

value of an attribute (SD4ft procedure, making two 4ft tables), changes in value of some

attribute (Ac4ft procedure, also involes two 4ft tables) and many others. We further con-

sider, how it is possible to implement the ideas of Paraconsistent logic into a quantifier.

3.3 Paraconsistent Separation Quantifier

After becoming familiar with basic GUHA procedures and running some tasks, one can

come to the conclusion that most of generalized quantifiers aim to show that two phe-

nomena somehow cause each other’s presence - either that just co-occur, or one implies

another, or presence of one phenomena makes another one stronger. But at the same

time, another research question might be "What are phenomena that do not occur to-

gether?", ie are mutually exclusive.

There do not seem to be quantifiers that cater to this question in the original GUHA

procedures. However, as noted previously, 4ft values a, b, c, d directly lead to evidence

of phenomena either occuring together or not, thus it seems that it is possible to utilise

Paraconstent logic setting discussed in the end of chapter 2. Indeed, this was made

possible in [6]. We now present an overview of the quantifier described in that paper and

how it naturally comes from notion of evidence for and against some statement.

To use Paraconsistent logic machinery described previously, one is required to ’find evi-

dence’ for and against some statement to form an evidence couple and thus an evidence

matrix. Assume that we wish to say "ψ and ϕ occur mutually exclusively", then from our

4ft setting the natural evidence against that statement is the value a - the number of ob-

16

jects which satisfy both ϕ and ψ simultaneously. On the over hand, the value in favor of

this statement are values b and c taken together, so the amount of objects for which one

and only one of ϕ, ψ is true, that is b+ c.

Since we want to show that phenomena are mutually exclusive, we need that b + c be

suitably larger than a. This can be enforced by condition

(1 + p)a ≤ b+ c, p ∈ [0, 1] (3.3)

which stands for "there are at least p · 100% more cases that ϕ and ψ are mutually exclu-

sive than that they co-occur", while we might also want enough evidence that phenomena

can occur mutually exclusively:

b+ c ≥ BASE (3.4)

This could be already enough to define a quantifier, however, to get more insight into the

data we need to find an evidence couple. To do it we need to somehow normalize values

a and b + c. There are two meaningful ways to do it, we could either divide by a + b + c

to obtain ⟨ b+c
a+b+c

, a
a+b+c

⟩, or by n = a+ b+ c+ d to obtain a couple ⟨ b+c
n
, a
n
⟩.

We notice that in the first case, a
a+b+c

+ b+c
a+b+c

= 1, thus paraconsistent values for Con-

tradictory and Unknown will both be zero, which is not very insightful. On the other hand,

1 − a
n
− b+c

n
= d

n
̸= 0, which can be seen as the paraconsistent value Unknown, since

d denotes the cases when neigher ϕ nor ψ is present. Thus it makes more sense to use

the latter way as the evidence couple, so that we obtain the evidence matrix

M
(︂
⟨b+ c

n
,
a

n
⟩
)︂
=

⎡⎣ b+c
n

0

d
n

a
n

⎤⎦ (3.5)

As noted in [6], actually the first evidence couple is used to determine the truth value

of the quantifier, since it does not require determining d, which saves computation time,

however after the truth value is determined to be True, the second evidence couple can

be used to actually obtain the evidence matrix.

The authors of [6] came into contact with the developers of LISp-Miner software, so such

a quantifier is now programmed into current versions of the package. Same paper also

includes a demonstration of possible generated hypotheses based on 1987 National In-

donesia Contraceptive Prevalence Survey ([20], some overview given in [19]). Hypothe-

ses found by Paraconsistent separation seem to be novel in a sense that they were not

achieved by previously implemented quantifiers.

17

4 CONCLUSION

In this thesis, we gave an outline of the foundations of MV-algebras and in particular, the

Lukasiewicz L-structure, which can be used to create Fuzzy (Many-valued) and Paracon-

sistent Logic settings. The key result is the ability to define evidence couples and matrices

as MV-algebras, since such a structure descends naturally from Lukasiewicz L-structure.

Even though these systems are new, there is a growing interest and array of literature,

both theoretic and applied, about different definitions, uses and benefits of such logic

systems. We managed to find a working case of combining two of the non-classical logic

systems - Paraconsistent logic with evidence couples on one hand and General Unary

Hypothesis Automaton on the other, and the two seem to nicely complement each other.

However, previous literature review shows that these particular logic systems are not that

famous in the wide scientific community, where most of research has been on Annotated

Logics. Indeed, all key modern papers discussed in this work have the same author in

common - Esko Turunen, who seems to have a personal interest and dedication to this

particular topic.

Further research in this direction could be based on determining the applicability and

effiency of Paraconsistent Separation Quantifier of GUHA, when applied to research

questions in different domains. Also other quantifiers based on evidence couples could

be created by carefully considering the meaning of a, b, c, d coefficients of 4ft setting.

In general, applicability of Paraconsistent Logic with evidence couples for different data

mining methods could also be studied.

18

REFERENCES

[1] Chang, C. C. Algebraic analysis of many-valued logics. Transactions of the Ameri-

can Mathematical Society 58 (1958), 467–490.

[2] Turunen, E. Mathematics Behind Fuzzy Logic. Advances in Soft Computing. Physica-

Verlag, 1999.

[3] Turunen, E. A well-defined fuzzy sentential logic. Mathematical Logic Quarterly 41

(1995), 236–248.

[4] Turunen, E., Ozturk, M. and Tsoukias, A. Paraconsistent sematics for Pavelka style

fuzzy sentential logic. Fuzzy sets and systems 161 (2010), 1926–1940.

[5] Hajek, P. and Havranek, T. Mechanizing Hypothesis Formation. Springer-Verlag,

online, 2002. URL: http://www.cs.cas.cz/hajek/guhabook/guhabook.pdf.

[6] Turunen, E. Paraconsistent Many-Valued Logic in GUHA Framework. Acta infor-

matica Pragensia 7 (2018), 104–111.

[7] Zamansky, A. On recent applications of paraconsistent logic: an exploratory litera-

ture review. Journal of Applied Non-Classical Logics 29 (2019), 382–391.

[8] Simons, P. Jan Łukasiewicz. The Stanford Encyclopedia of Philosophy (Summer

2020 Edition). 2020. URL: https://plato.stanford.edu/archives/sum2020/
entries/lukasiewicz/.

[9] Łukasiewicz, J. O logice trójwartościowej. Ruch Filozoficzny 5 (1920).

[10] Łukasiewicz, J. Interpretacja liczbowa teorii zdań. Ruch Filozoficzny 7 (1922).

[11] Nola, A. D., Grigolia, R. and Turunen, E. Fuzzy Logic of Quasi-Truth: An Algebraic

Treatment. Studies in Fuzziness and Soft Computing. Springer, 2016.

[12] Chang, C. C. A New Proof of the Completeness of the Łukasiewicz Axioms. Trans-

actions of the American Mathematical Society 93 (1959), 74–80.

[13] Carnielli et al. Logics of Formal Inconsistency. 2007.

[14] LISpMiner software. URL: https://lispminer.vse.cz/ (visited on 10/25/2020).

[15] Hajek, P., Holena, M. and Raunch, J. The GUHA method and its meaning for data

mining. Journal of Computer and System Sciences 76 (2010), 34–48.

[16] Rauch, J. Observational Calculi and Association Rules. Springer, 2013.

[17] Turunen, E. Using GUHA Data Mining Method in Analyzing Road Traffic Acci-

dents Occured in the Years 2004-2008 in Finland. Data Science and Engineering 2

(2017), 224–231.

[18] Merlevede, J. Studying of sleep-disordered breathing, The GUHA Method. MA the-

sis. Tampere, Finland: Tampereen Teknillinen Yliopisto, May 2009.

http://www.cs.cas.cz/hajek/guhabook/guhabook.pdf
https://plato.stanford.edu/archives/sum2020/entries/lukasiewicz/
https://plato.stanford.edu/archives/sum2020/entries/lukasiewicz/
https://lispminer.vse.cz/

19

[19] Bakhtin, A. Determining patterns in contraception use with GUHA Framework. Method-

ology overview. 2020. URL: https://www.researchgate.net/publication/
346081663_Determining_patterns_in_contraception_use_with_GUHA_
Framework_Methodology_overview.

[20] Statistics (Indonesia), C. B. of. National Contraceptive Prevalence Survey 1987.

1987. URL: https://microdata.worldbank.org/index.php/catalog/1398.

https://www.researchgate.net/publication/346081663_Determining_patterns_in_contraception_use_with_GUHA_Framework_Methodology_overview
https://www.researchgate.net/publication/346081663_Determining_patterns_in_contraception_use_with_GUHA_Framework_Methodology_overview
https://www.researchgate.net/publication/346081663_Determining_patterns_in_contraception_use_with_GUHA_Framework_Methodology_overview
https://microdata.worldbank.org/index.php/catalog/1398

	Introduction
	Many-valued and Paraconsistent Logic
	History of Many-valued Logic
	MV-algebras
	Evidence couples and matrices
	Practical application for Paraconsistent logic

	The GUHA Method
	History of GUHA Method
	GUHA Formalism
	Paraconsistent Separation Quantifier

	Conclusion
	References

