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ABSTRACT

Anton Kondratev: Online Change Detection for Ion-mobility Spectrometry Readings
Master of Science Thesis
Tampere University
Robotics and Advanced Robotics
January 2021

Classification of scents using machine learning methods is of importance in many fields. Ability
to classify scents can be used for safety, recreational purposes or quality control in the food indus-
try[1]. Nowadays portable gas analyzers exist, whose functionality can be potentially extended.
For example, Virtual Reality helmets can be equipped with scent generating appliance giving more
immersion. This study is aimed to implement and analyze various change detection algorithms for
readings from Electronic Nose (eNose). The task is to detect the point where readings become
stable after presenting a scent source to the eNose. Knowledge about change point in the eNose
readings is important for further classification tasks.

The samples in the form of time-series were taken using Ion Mobility Spectrometry based
eNose device ChemPro100i. The device has 14 channels. The time-series data of each channel
is assumed to have a transient and stable phase. The task of implemented algorithms is to find the
end of the transient phase. The algorithms implemented in this work are based on log-likelihood
ratio test, which follows shifts in mean values. The majority of the considered algorithms are
various extensions of the Cumulative Sum (CUSUM) algorithm.

The readings do not always provide useful results because certain channels do not react to
certain scents. The other problem is that the ground truth points were determined manually. The
manually determined ground truth points are subjective, which affects accuracy of the algorithms.
As a result, the change points were detected successfully for good data sets with clear and visually
detectable change points. For the data sets, where change points are not visually detectable
performance of the algorithms was worse.

From classification methods point of view, small error in detections will not play a big role
because in case of two similarly bad or good data sets the results will be similar as well. This
provides possibility to characterize different readings giving possibility to use it as features in
classification techniques.

For the data sets classified as good, all the algorithms performed almost equally well. For
the other classes of data sets the CUSUM, Multivariate Max CUSUM and Matrix Form CUSUM
performed the best and the Bayesian Online Change Point detection algorithm performed worst.

Keywords: change detection, CUSUM, algorithms

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.
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1 INTRODUCTION

Classifying scents from unknown sources can be potentially useful in preventing chem-

ical threats [2], an inspection of food quality [1], and also for example for recreational

purposes. In recreational meaning, it can add a new modality when using virtual reality

devices [1]. One application we are interested in is smelling a scent at location A and

transferring this scent to a location B [3]. For transferring scent from location A to B it

needs to be accurately classified. Classification of scent really means a classification of

Volatile Organic Compounds (VOCs) emitted by scent source and for simplicity they are

called scents in this work. Different techniques may be applied for the scent classifica-

tion. The one implemented technique utilizes the "K nearest neighbors "-algorithm [1].

A suitable technology for gathering samples of VOCs is ion mobility spectrometry (IMS).

The IMS was chosen because it enables real-time monitoring, fast analysis and quick

response time. Commercial IMS devices are relatively affordable and portable [1].

The ion mobility spectrometry based devices also called "eNose" are intended to detect

scents. The ion mobility spectrometry is a study about ions moving in gases under an

electric field. The principle of IMS devices is the separation of ions moving in inert gases

(also called "buffer gas") under the impact of an electric field [4].

Readings from the IMS device used in this work often have a transient and stable phase

when measured in a controlled setting. The controlled setting means that a scent is

presented to the eNose device and readings are changing until stabilisation. The readings

of the IMS-device require 20-30 seconds to stabilize. The time before stabilizing of the

readings is called transient phase. The stable phase is the time after the transient phase.

Different scents have different lengths of transient phases [3, p. 3], which means, that we

have to wait long enough for the measurement to stabilize [1].

The classification algorithms mentioned in [1] work with data from both the transient and

the stable phases. Nonetheless, including the transient phase into the classification usu-

ally increases the misclassification rate. The reason why samples only from the stable

phase are often used for classification is that they show more robust results [3, p. 2]. How-

ever transient phase may contain valuable information for classification itself and might

help accelerating classification algorithm. From the transient phase, features can be ex-

tracted, which are possibly useful for the classification process. Such features can be a
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variance of samples, length of the transient phase, etc. Thus we have several options:

using samples only from the stable phase, using features from the transient phase or us-

ing a mixture of them. For distinguishing phases there is a need to know the time when

the transient phase ends. The phases of a time-series can be distinguished manually

or by means of the change detection algorithms. Often the change detection algorithms

are borrowed from the statistical control theory [5][6]. These algorithms consider either

data points one after another or construct log-likelihood ratio test of samples. This work

is intended to answer the questions:

1. Is it possible to find change points in the IMS readings by means of the change

detection algorithms?

2. What is the computational cost?

3. How reliable these algorithms are?

4. What is the most effective algorithm?

Chapter 2 briefly describes the theoretical aspects of the ion mobility spectrometry and

the devices using this approach. Chapter 3 tells about the necessity of change point

detection algorithms and methods applied in this thesis. All implemented algorithms are

discussed in Chapter 4. Chapter 5 evaluates results and describes the data sets used in

this work. Chapter 6 discuss the achieved results and tries to answer the main questions

of this work.
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2 ION MOBILITY SPECTROMETRY

In IMS devices ions move through the buffer gas impacted by an electric field with a

certain velocity. Velocity correlates with the mobility of a specific ion. Mobility of an ion is

calculated:

K =
v

E

where v is the velocity and E is the electric field. The faster the ion the greater its mobility

[4]. Eventually, ions are separated by their differences in mobilities in space or time. The

parameters that can affect an IMS experiment are temperature, pressure, and humidity.

All these parameters are usually taken into account, and they are provided when reporting

the results of the measurements.

There are several types of IMS devices [4]. Some of them are:

• Drift Tube Ion Mobility Spectrometry

• Travelling Wave Ion Mobility Spectrometry

• Trapped Ion Mobility Spectrometry

• Differential Mobility Analyzer

Figure 2.1 summarises different types of IMS technologies.

Drift tube ion mobility spectrometry (DTIMS). This type of IMS is considered classic.

The key concept of the DTIMS is a uniform electric field, which propagates through the

drift region. The drift region is space with applied weak uniform electric field and gas,

which does not have directional flow. Analytes move through the drift region caused by

the electric field.

Travelling wave ion mobility spectrometry (TWIMS). The structure of the TWIMS tech-

nology is similar to DTIMS except that the electric field is not uniform. The electric field

oscillates, producing electric waves, which push ions towards the mass analyzer.

Trapped ion mobility spectrometry (TIMS). TIMS devices consist of 3 main parts: en-

trance funnel, analyzer, and exit funnel. The ions entering the TIMS are positioned in an

electrical field by the gas flow. Gas flow pushes the ions forward with the force propor-

tional to their collision cross-section value [4], which is calculated from the mobility value.

The electrical field holds ions at certain places in the drift region separating them. The
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ions can be released by manipulating the electrical field.

Differential Mobility Analyzers (DMA). Ions drift axially in a drift gas between two elec-

trodes. When a voltage is applied particles are diverted from their straight paths. Classi-

fication is performed using the electrical mobility of the particles. The DMA devices are

typically functioning under constant electric field and ambient pressure. DMA is able to

perform measurements that are not possible with DTIMS. The DMA is usually utilized to

detect large analytes.

Field Asymmetric Ion Mobility Spectrometry (FAIMS). FAIMS is also known as Dif-

ferential Mobility Spectrometry (DMS) or Differential Ion Mobility Spectrometry (DIMS).

FAIMS operates like a ion mobility filter. After entering the drift region, ions are impacted

by high-voltage asymmetric waves with combination of static waveform. The ions move

towards the upper plate impacted by high voltage and towards the bottom plate with lower

voltage with different vertical displacement. Eventually, certain ions annihilate after colli-

sion with the plates and specific ions move into the detector. Thus FAIMS operates more

like a filter for ions. FAIMS operates under ambient pressure. This technology is not able

to provide collision cross-section information.

Figure 2.1. Types of IMS. Source [4].

In this work, we used the ChemPro100i eNose developed by Environics. The purpose of

the ChemPro100i is to detect chemical agents in ambient air such as dangerous gases,

warfare agents, etc. This device does not belong to any type of IMS devices mentioned

above but it uses a proprietary technique developed by Environics. The ChemPro100i

utilizes an "open-loop aspiration type IMS" configuration patented by Environics, which

uses IMS with different types of semiconductor sensors. This configuration allows the

detector to characterize gaseous chemical compounds. The open-loop configuration has
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advantages over other types of IMS because it does not have any consumable materials

(dryers, desiccants, etc), except a dust filter that require regular maintenance.

The ChemPro100i contains several sensors:

• Miniaturized open-loop IMS sensor with 16 measuring channels

• Tin Oxide Semiconductor gas sensor (SCCell)

• Metal oxide semiconductor gas sensors (MOS)

• Humidity sensor

• Pressure sensor

• Mass flow sensor

• Temperature sensors

The Tin Oxide SCCell outputs changes in resistance, which is caused by the absorption

of ions in the sample gas on the sensor surface. The MOS sensors output change in re-

sistance as well. The resistance change on the surface of the MOS sensor is caused by

absorption and chemical reactions. The MOS sensors are sensitive to different chemicals

depending on the coating material used. When performing measurements the software

related to the ChemPro100i gives access to the values of all of these sensors. The work-

flow of the ChemPro100i consists of several steps. The mobility of various ions differs due

to the difference in their molecular weight, charge, and geometry between compounds [7].

The eNose measures the ions with seven separate electrode pairs. The electric fields in

the IMCell are continuously switched between positive and negative polarities.
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3 METHODS

In this work, we are mainly interested in the Miniaturized open-loop IMS sensor, which

gives 16 measuring channels. There are two control channels among these 16. The

control channels must always be zero. When performing measurements 14 channels

often have readings with transient and stable phases.

Figure 3.1. Readings of one channel. Jasmine smelled in a flask.

Figure 3.1 demonstrates example readings of one channel. The red line depicts the ap-

proximate point, where the phase changed from transient to stable. The readings are

not always as clear as in Figure 3.1. Sometimes readings do not have any clear distinc-

tion between the phases. The existence of transient and stable phases usually depends

on the scent being measured and the conditions of the measurement. Measurement

performed from a bottle, where ambient air, temperature, and humidity do not affect the

results usually has more clear phases. On the other hand, the measurement performed

on a plate is more uncertain in terms of phases. Results often depend on the scent being

measured. For example, the reaction caused by jasmine scent is usually more significant

than the reaction caused by grape scent.

The task of this work is to detect points, where the phase changes from the transient to

the stable. For this task change point detection algorithms are used. The analysis for the

change points can be performed online and offline. The online algorithms could also be

run on offline data. The offline algorithms can be applied only after the whole time-series

data is available for the analysis. The online algorithms assume that the data points
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enter an algorithm sequentially as time goes on. Since ChemPro100i provides readings

immediately and we want to classify scent sources in real time we are interested in the

online change detection techniques.

Change detection algorithms usually decide whether the change point is present or not

by following shifts in a mean or variance (standard deviation). Since the data shows the

noticeable change in the standard deviation (Chapter 5.1) we decided to test changepoint

algorithms, that follow the shift in standard deviation. For exploring the possibility of follow-

ing the shift in standard deviation we performed Fisher’s p-value test for running variance

ratio with significance level α = 0.01 and size of moving window 20. The Fisher’s test

can be used for comparing variances of two samples. Since initially calculated sample

variance is sequentially compared to the variances of the moving window the test must

be suitable to capture the difference. Fisher’s test considers two hypotheses:

H0 : σ
2
0 = σ2

1

H1 : σ
2
0 ̸= σ2

1

the decision about rejecting H0 is calculated as follow

f =
σ̄2
0

σ̄2
1

(3.1)

p = 2min[P (F ≤ f), 1− P (F ≤ f)] (3.2)

where F is F cumulative distribution function. If p-value is less than α = 0.01, then we

can reject the null hypothesis.

Figure 3.2. Fisher’s test for running variance ratio

Figure 3.2 shows the results of Fisher’s test for the jasmine scent. The red line on the

plots shows the time step, where the null hypothesis was rejected. As we can see the

variance changes before the transition phase starts. For ensuring this we performed

a test run of the CUSUM algorithm adjusted to follow variance on one of the channels.
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Figure 3.3 demonstrates failing of this approach. The top plot shows the decision function

of the CUSUM-variance algorithm. The red line designates the point, where the transition

phase starts. The second plot is an enlarged plot of the decision function. The enlarged

area is marked on the top plot with blue. On the second plot, we can clearly see that the

variance has changed although the transition phase has not started yet. The third plot

shows the normalized version of the raw readings. The peak on the third plot shows the

transition phase. The bottom plot shows raw readings from the ChemPro. Thus adjusting

changepoint algorithms to follow a shift in variance does not suit our needs.

Figure 3.3. CUSUM test for following variance

Considering the possibility of using a shift in mean values in change point detection algo-

rithms we performed a t-test on readings of one channel. Figure 3.4 demonstrates results

of the t-test. The top and the middle plots demonstrate raw and normalized readings from

the ChemPro100i. The bottom plot shows the p-values of the running t-test for a mean

shift. The red line on the plots demonstrates the moment when the null hypothesis was

rejected.
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Figure 3.4. Results of t-test for change in mean

The test was performed with a significance level α = 0.01. We tested two hypotheses:

H0 : µ1 = µ0

H1 : µ1 > µ0

The p-value for testing these hypotheses is calculated as follow

t =
x̄− µ0

s/
√︁

(n)

p = 1− F (t)

where s is sample standard deviation, n is the length of the sample, and F is the Fisher’s

cumulative distribution function. Figure 3.4 shows, that the t-test works well and it poten-

tially can be utilized in change detection. The t-test detects a shift in mean in the right

moment so it was decided to adjust change detection algorithms to follow a shift in mean

values.
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4 ALGORITHMS

All approaches and techniques used in this work are mostly described in two books and

a few articles. The studies of change-point detection are very often based on statistical

control theory. In statistical control theory there is a process, which is developing in time.

The task of the statistical control theory is to find a moment, where the process is not

considered evolving normally.

The book "Statistical Quality Control" written by D.Montgomery [5] explains and reviews

modern techniques of statistical control. The book focuses on algorithms that often treat

incoming data points one after another. This thesis, in contrast, mostly focuses on algo-

rithms using log-likelihood ratio. The log-likelihood ratio is a statistic that is used to decide

which of the two distributions is more likely. The book has a detailed description of the

Shewhart Charts algorithm, CUSUM, and their families. However, some of the algorithms

are not explained in detail in this section. For example, the CUSUM v-mask technique

has many hyperparameters, which are not explained. However, not all the algorithms de-

scribed in this book are applicable for this work because Montgomery presents algorithms

that are intended to capture anomalies having prior information about the process, while

the task of this work is detecting change-points.

M. Basseville and I. Nikiforov wrote the book "Detection of Abrupt Changes: Theory and

Application" [6]. This book is focusing entirely on change-point detection techniques. The

algorithms are explained in chapter 2 of the book. Almost all presented algorithms are

adjusted for using LLR-technique. The parts of this book are online and offline algorithms.

In this work, we are interested in online approaches. As mentioned above, a big part of

considered algorithms have their roots in Statistical Control theory. Such algorithms are

Shewhart Control Charts and CUSUM. Generally, the book has very good explanations,

examples and derivations. The plots often illustrate the behavior of decision functions

clearly and make an understanding of the algorithms easier. However, not all approaches

are described clearly and some algorithms are described without many details. An ex-

ample is the Bayesian type algorithm described in chapter 2.3, which has a parameter

that was not explained. This algorithm would be potentially applicable to this work, but

the parameter is left unexplained, making it difficult to use the algorithm’s full potential.

Generally, the book gives comprehensive studies about change-point techniques. Many

algorithms implemented in this work are of the CUSUM family. These algorithms use
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LLR-technique as their base.

In this thesis, the focus is on the change point detection algorithms derived from control

chart algorithms. Both the Shewhart Control Charts algorithm and CUSUM-type algo-

rithms are originally used in control theory. This chapter contains algorithms for detecting

change points both separately for each channel and for all channels simultaneously. The

Bayesian online change point detection algorithm uses another approach that differs from

all other presented algorithms and does not originate from control theory.

4.1 Shewhart Control Charts

There are many change-detection techniques. The simplest algorithms use the log-

likelihood ratio (LLR) approach. The LLR-approach is a method for comparing two distri-

butions. The log-likelihood is defined by

L(y) = ln
pθ1(y)

pθ0(y)
, (4.1)

where pθ1(y) is a distribution with some parameters θ1 and pθ0(y) is a distribution with pa-

rameters θ0. The θ can represent any parameter or a set of parameters of a distribution.

In this work we focus on a shift in mean values and theta, thus, represents the mean of

the normal distribution. The natural logarithm is a non-linear function, which accepts only

positive values and returns both positive and negative values. The natural logarithm ap-

plied to likelihood ratio simplifies calculations by turning multiplications into summations.

In case of the Gaussian distribution the natural logarithm allows also to avoid computation

of the exponential terms.

Figure 4.1 shows an example of two normal distributions with parameters θ0 and θ1 rep-

resenting mean. The distributions have the same standard deviations. Sequentially cal-

culating LLR will result in a negative value if the distribution with mean θ0 is more likely

and a positive value if the distribution with mean θ1 is more likely to be observed. Thus a

change-point is detected when the sign of the LLR changes, because as stated in [6, p.

25]:

E[L(y)] > 0, When pθ1 is more likely to observe

E[L(y)] < 0, When pθ0 is more likely to observe

This approach is used in the Shewhart Control Charts algorithm. This algorithm requires

us to know the parameters of the distributions before and after a change point, as shown

in the example in Figure 4.1.
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Figure 4.1. Example with two mean-shifted normal distributions

Figure 4.2. Typical behavior of LLR-function

The main idea of the Shewhart Control Charts algorithm is to test the following two hy-

potheses sequentially:

H0 : θ = θ0

H1 : θ = θ1

When a decision is made in favor of H1 the algorithm stops running.

Let

Lk
j =

k∑︂
i=j

li (4.2)

li = ln
pθ1(yi)

pθ0(yi)

A decision is made when the sum of LLR crosses some threshold. Below this threshold,
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the decision is made in favor of H0 otherwise the decision is made in favor of H1.

dk =

⎧⎨⎩0, Lk
j ≤ h

1, Lk
j > h

where h is the threshold, dk is called decision rule and k is the sample number of size S

(the size of the moving window). Consider an example from the book [6, p. 27], where

the algorithm is derived for a known variance. All computations needed for defining LLR

for two normal distributions are presented in the book. The changing parameter is here

the mean and the standard deviation is known. The LLR is computed by

LN
1 =

b

σ

N∑︂
i=1

(yi − µ0 −
v

2
) (4.3)

where

v = µ1 − µ0

b =
v

σ

A sliding window of length S will be created and calculations will be performed on the

samples of size S. A threshold value is also required. This can be done either manually, if

data points have always approximately the same structure, or by using confidence inter-

vals. Knowing distribution parameters before a change-point the confidence interval can

be set:

|yī − µ0| ≥ κ
σ√
S

where κ is σ-distance from µ-value, which usually takes on values [1;5] and yī is the

sample mean of sub-time series. The confidence interval is related to the value of LLR

as stated in [6, p. 28]. However, in this work the confidence interval method is not

used because we use LLR values for decision making. The underlying distribution of LLR

values is unknown. Although 4.3 assumes using cumulative LLR-values, in this work we

found that it is more convenient to use its derivative or analyzing LLR-values separately.

The typical behavior (Figure 4.2) of non-cumulative LLR-function assumes that at some

point its values become positive. After the change-point, the data is distributed approxi-

mately around 0. When a shift in mean happens, the LLR-function must become positive

and cross 0.

In the case of the scent dataset, we assume that the data is distributed approximately

normally especially after the change point. We usually don’t know the parameters of dis-

tribution before a change point. However, after the change-point distribution of change

between two consecutive measurements is expected to be around zero and variance
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small. Algorithm 1 shows the structure of the Shewhart Charts approach. The initial

set of points of size S is taken and computed sample mean and sample standard devi-

ation. It is assumed that the data before the change-point is distributed approximately

with these parameters. A threshold h is a value, that can be chosen conveniently such

that h ≥ 0 +m. The m is an optional parameter, which can be set for example as half of

the sliding window size. When the moving window rolls along the time series the change

point is approaching from the right. The algorithm will probably capture the change point

either in the end or in the middle of the moving window. This idea is behind adding the

length or half of the length of the moving window.

Algorithm 1: Shewhart Charts
Input: s - size of sliding window, xi - initial sample of size s

Result: time step i where distribution has changed

1 µ̄ = 1
s

∑︁N
i=0 xi

2 σ̄ =
∑︁

(xi−µ̄)√
N−1

3 µ0 = µ̄, σ0 = σ̄;

4 i = 0; counter
5 do

6 xi = [yi : yi+s]; take sample of size s
7 v = 0− µ0; µ1 is expected to be 0
8 b = v

σ
;

9 Li =
b
σ

∑︁N
i=1(xi − µ0 − v

2
);

10 i = i + 1;

11 while Li < threshold ;

Figure 4.3. Example readings from jasmine flask dataset (IMS_abs1)

Figure 4.3 shows an example of readings of the ion-mobility spectrometer (IMS) sensor.

This reading has a clear transient phase, which lasts for the first approximately 20 - 25

seconds and a stable phase afterwards. Before applying the Shewhart Control algorithm

the data will be preprocessed by performing a difference operation. Difference operation

normalizes data and removes trends and seasonality from a time-series. The difference
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operation is defined by

D(yi, yi+1) = yi+1 − yi (4.4)

Figure 4.4 shows the difference data of the time-series shown in Figure 4.3. From the

Figure 4.4. Differencing the data in 4.3

figure it can be seen that there is a mean-shift and that the time-series is distributed

approximately normally around zero after the change-point.

Now the Shewhart Charts algorithm can be applied to this data with parameters

S = 10,

h ≥ 0 (4.5)

where S is the size of the sliding window and h is the threshold. Half of the window

size was added to the found time step because it is assumed that the change occurred

in the center of the window (see the explanation on page 14). The greater the size of

the sliding window the smoother a decision function will be. Figure 4.5 demonstrates the

Figure 4.5. Result of running Shewhart Charts-algorithm

results of applying the algorithm to the Jasmine time-series shown in Figure 4.3. The top

plot shows readings of the time series and change point detected at 21 sec. The bottom
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left plot shows the behavior of LLR values and the bottom right shows the behavior of

cumulative LLR.



17

4.2 CUSUM

This algorithm was proposed by Page [8] in 1954. The CUSUM (CUmulative SUM) is the

most popular and widely used algorithm for the detection of change points. It has many

extensions: CUSUM V-mask, Self Starting CUSUM, Tabular CUSUM, etc. The classic

CUSUM LLR-based algorithm will be described here.

The main idea of this algorithm uses the cumulative sum of LLR-values as in the previous

section. We accumulate LLR values and compare them to the minimum over previous

LLR values. The algorithm may be implemented with the preservation of the history of all

previous values or only a minimum value before a particular step. We are only interested

in the latter case, so storing full history is not necessary.

The LLR function was defined in 4.3. The CUSUM algorithm has an adaptive threshold,

which is defined as

gk = Lk −mk ≥ h, (4.6)

where

mk = min
1≤j≤k

Lj.

It can be rewritten as

gk = Lk ≥ h+mk, (4.7)

where Lk is 4.3 of kth sample and h is conveniently chosen threshold [6, p. 27].

Thus the decision rule is defined as:

dk =

⎧⎨⎩0, Lk < h+mk

1, Lk ≥ h+mk

(4.8)

Consider two groups of points generated with N(0, 1) and N(5, 1) Figure 4.6 demon-

Figure 4.6. Dataset generated with parameters N(0,1) and N(4,1)

strates shift in mean from 0 to 5 at 150th second. The algorithm can be tested since
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parameters of both distributions and the time of change are known. Let us set the thresh-

old h = 0, mk = 0, window size S = 5. The algorithm will be stopped when dk = 1.

Figure 4.7. CUSUM. Typical behavior of decision function

Figure 4.7 demonstrates typical behavior of the decision function and the generated data

set with detected change point. As can be seen, the decision function starts growing

at 148th second. The CUSUM algorithm detected the change point precisely enough at

153th second. In order to improve the result, the size or half of the size of the moving

window should be added to the found time step. Now let us consider the DIGITS dataset

and test the CUSUM on it. Figure 4.8 demonstrates readings of ChemPro100i for the

Figure 4.8. Jasmine scent measured on the table. Absolute measurement 5.

jasmine scent. The upper plot shows raw measurements and the bottom plot shows

the same measurements differenced. The measurement has clear transient and stable

phases. From these plots it can be seen that the changepoint is between 25 and 30

seconds. The differenced time series demonstrates more clearly where the mean has

shifted and distribution has changed its parameters. The standard deviation for the first

around 30 seconds is larger compared to the rest of the time series. Readings from the

DIGITS dataset, which was analyzed in this thesis, often show that the standard deviation

of the first 3 - 5 points in the time series is unstable. Therefore, it is a good idea to use
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more than 3 points for calculating the sample mean and for the size of the sliding window.

However, the transient phase is usually short, which forces us to use no more than 15

points.

Algorithm 2: CUSUM
Input: s - sliding window size, xi - sample of size s

Result: time step i where distribution has changed

1 L = 0 # initialize cumulative sum variable
2 A = [] # initialize array for storing cumulative sums
3 µ̄0 =

1
s

∑︁s
i=0 xi # sample mean of the first s samples

4 σ̄0 =
∑︁

(xi−µ̄)√
s−1

# sample standard deviation of the first S samples

5 detected = False

6 i = 0 # counter

7 while detected == False do

8 i = i + 1;

9 sample← [yi : yi+s]; Get the next sample of data
10 v = 0− µ̄0;

11 b = v
σ̄0

;

12 L = L+ (1/σ̄0)(
∑︁

sample− s · µ̄0 − s·v
2
);

13 A[i]← L;

14 if (L−min(A)) > 0 then

15 detected← True;

16 change_point← i ;

17 end

18 end

Figure 4.9. Result of applying the CUSUM algorithm.

Algorithm 2 shows the pseudo-code of the CUSUM approach. Figure 4.9 demonstrates

the results of the algorithm. As we can see, the change point is located 18th second.

As shown in Algorithm 2, to make a decision it takes the minimum value from the whole
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preserved history of LLR. This makes the algorithm inefficient as it consumes memory.

To overcome this problem the algorithm can be modified to store only the lowest LLR and

update it at each iteration. Any value for h and mk greater than or equal to zero can be

chosen depending on empirical considerations. The limitation of the CUSUM is that it

performs poorly when there are no clear transient and stable phases.

4.2.1 Tabular CUSUM

The CUSUM algorithm in control theory does not use LLR. The tabular CUSUM takes

points one after another. This approach assumes that the shift in mean will be either

positive or negative. Eventually, there is a need to apply the algorithm two times to the

data for capturing shift or keep two variables for counting positive and negative cumulative

values, because the sign of the shift has to be taken into account.

Montgomery proposes using each sample one after another [5, p. 404] and calculating

cumulative sums as:

L+
i = max[0, xi − (µ0 +K) + L+

i−1]

L−
i = max[0, (µ0 −K)− xi + L−

i−1]

K =
|µ1 − µ0|

2

The xi is the ith reading of the channel j, where j ∈ [1; 14] for the IMS data analyzed

in this thesis. The behavior of L+
i or L−

i will be similar to Figure 4.7 depending on the

trend of the time series. For example, if the time series is uptrending, then the L+
i will

be similar to 4.7. Figure 4.10 shows readings of the jasmine scent from the first channel.

The first two plots show raw and differenced readings. As can be seen on the differenced

readings the mean has shifted positively. The bottom-left plot shows the decision function

for the positive shift and the bottom-right plot shows the decision function for the negative

shift. The bottom-left plot shows the typical behavior of the CUSUM algorithm and the

bottom-right shows the peak near the change point. The decision about the change point

is made with the expected behavior as on the bottom-left plot. Figure 4.11 show the same

information for the readings from the third channel. Now the readings are uptrending and

decision function for the negative shift demonstrates the behavior typical to the CUSUM’s

decision function (Figure 4.11, bottom-right plot) and the decision function for positive shift

(bottom-left plot) does not contain any valuable information. Here the decision function

for the negative shift has to be used.

Readings from ChemPro100i are often uptrending for electrodes measuring positive cur-

rents ("IMS_abs1" - "IMS_abs7") and downtrending for electrodes measuring negative

currents ("IMS_abs9" - "IMS_abs15"). However, this is not always true. We do not know

beforehand what trend the data will have.
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Figure 4.10. Downtrending readings and decision functions. Jasmine IMS_abs1

Figure 4.11. Downtrending readings and decision functions. Jasmine IMS_abs3
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4.2.2 CUSUM V-mask

CUSUM V-mask uses both approaches: LLR and in turn samples. The idea of this algo-

rithm is to apply the so-called "v-mask" as shown in Figure 4.12 The CUSUM V-mask

Figure 4.12. CUSUM V-mask visualisation. Source [6, p. 43]

Figure 4.13. V-mask structure. Source [5, p. 415]

has many hyperparameters and there is no literature on how to set them for best perfor-

mance. Instead, these parameters are chosen randomly. For example, Montgomery uses

random values for calculating hyperparameters [5, p. 416].

The V-mask is set on the latest point O. The hyperparameters U and L define vertical

distance below and above the point O. Parameter d defines the distance from the latest

point O to the vertex of the v-mask and θ defines the angle of the opening backward arms.

Basseville in his book [6, p. 41-43] does not explain how to choose these parameters.

Montgomery in his book criticized this algorithm [5, p. 416]. He advises against using

this approach because of the ambiguity of some parameters and difficulty of determining
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how far backward the so-called arms (Figure 4.13 the two slopes starting at the point P)

should be extended.

4.2.3 Matrix Form CUSUM

For implementing the Matrix Form CUSUM the classic CUSUM was modified by the au-

thor of this thesis to process all channels simultaneously. The approach for calculating

LLR and decision functions was kept unchanged. However, all the calculations were

moved into vectors and matrices. This results in an approximately ten times faster com-

putation of change detection points compared to the classic CUSUM algorithm and im-

proved robustness to outliers.

Let

Xi =

⎡⎢⎢⎢⎣
x1,1 ... x1,S

...
. . .

...

x14,1 ... x14,S

⎤⎥⎥⎥⎦ ∈ R14×S (4.9)

be a matrix containing a part of the 14-dimensional IMS time series data, where S (scalar)

is the size of the sliding window and xi,j is the jth reading of the ith channel. Then the

vector of sample means for each row will be:

m =

⎡⎢⎢⎢⎢⎢⎢⎣
(1× x1,1 + 1× x1,2 + ...+ 1× x1,S)

1
S

(1× x2,1 + 1× x2,2 + ...+ 1× x2,S)
1
S

...

(1× x14,1 + 1× x14,2 + ...+ 1× x14,S)
1
S

⎤⎥⎥⎥⎥⎥⎥⎦ = Xi ×

⎡⎢⎢⎢⎣
1
S
...

1
S

⎤⎥⎥⎥⎦
S×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
µ̄1

µ̄2

...

µ̄14

⎤⎥⎥⎥⎥⎥⎥⎦ (4.10)

The standard deviation for one dimension is calculated by:

σ̄i =

√︃∑︁
(xi − µ̄i)

2

S − 1
(4.11)

Let us now extend 4.11 to matrix form. Let

Fµ =
[︂
m m ... m

]︂
∈ R14×S,1S =

⎡⎢⎢⎢⎣
1

S−1
...

1
S−1

⎤⎥⎥⎥⎦ ∈ R14×1 (4.12)
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The value under the square root is calculated as follow

D =

⎡⎢⎢⎢⎣
1

S−1
× (x1,1 − µ̄1)

2 + 1
S−1
× (x1,2 − µ̄1)

2 + ...+ 1
S−1
× (x1,S − µ̄1)

2

...

1
S−1
× (x14,1 − µ̄14)

2 + 1
S−1
× (x14,2 − µ̄14)

2 + ...+ 1
S−1
× (x14,S − µ̄14)

2

⎤⎥⎥⎥⎦ =

=

⎡⎢⎢⎢⎣
(x1,1 − µ̄1)

2 (x1,2 − µ̄1)
2 ... (x1,S − µ̄1)

2

...
...

...
...

(x14,1 − µ̄14)
2 (x14,2 − µ̄14)

2 ... (x14,S − µ̄14)
2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1
S−1

...

1
S−1

⎤⎥⎥⎥⎦ (4.13)

Then 4.13 can be rewritten in more compact notation as

(Xi − Fµ)
2 × 1S (4.14)

Note that square and square root in 4.15 are applied to each entry of the matrix. Now the

vector of standard deviations for all rows of Xi is calculated by

STD =
√︂

(Xi − Fµ)2 × 1S (4.15)

and the vector of sample means for each row is

m = Xi × 1s. (4.16)

The LLR 4.3 can be rewritten as

LN
1 = (

b

σ
)

S∑︂
i=1

(yi − µ0 −
v

2
) = (

b

σ
)(

S∑︂
i=1

yi − Sµ0 −
Sv

2
), (4.17)

where

σ = STD

v = −1×m (4.18)

b = v ⊙ 1

STD
(4.19)

S∑︂
i=1

yi = Xi ×
[︂
1 1 ... 1

]︂T
(4.20)

Sµ0 = S ×m (4.21)

Note that S is scalar and LN
1 is the LLR calculated for the first sample of size N . Symbol

⊙ in 4.19 denotes element-wise multiplication.



25

The decision rule 4.7 is modified

gk = average(Lk) ≥ h+mk, (4.22)

where

Lk =
k−1∑︂
i=1

L
(S)
i , k ∈ [1...∞), Lk ∈ R14. (4.23)

The summation in 4.23 runs from 1 to infinity until a change point is detected. Sequen-

tial calculation of 4.17 yields LLR values for all channels simultaneously. In the one-

dimensional version of the CUSUM, the history of calculated cumulative LLR for finding

minimum was kept. If the history was kept in this algorithm as well a matrix need to be

created, where each row contains the cumulative LLR history for one channel. The alter-

native way to implement it is to create a vector, which will keep only the minimum values

for each channel. For example, in Algorithm 3 this vector is created (line 7) and updated
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(lines 14,15).

Algorithm 3: Matrix Form CUSUM
Input: S - sliding window size, Xi - sample of size 14× S

Result: time step i where distributions have changed

1 Li ←
[︂
0 0 ... 0

]︂T
# initialize vector of cumulative LLR

2 M = Xi × 1S # calculate vector of means

3 Fµ ←
[︂
M M ... M

]︂
# populate M into the matrix

4 STD =
√︁

(Xi − Fµ)2 × 1S # calculate vector of standard deviations
5 v = −1×M

6 b = v ⊙ 1
STD

7 I←
[︂
0 0 ... 0

]︂T
# vector for keeping minimum values of LLR

8 detected = False

9 point = 0

10 i = 0 # loop counter
11 while detected == False do

12 Xi ← new chunk of data of size 14× S

13 Li = Li + ( b
STD

)(Xi ×
[︂
1 1 ... 1

]︂T
− S ×M− S

2
× v)

14 if Li < I then

15 I← Li

16 end

17 if average(Li − I) > 0 then

18 point = i + S

19 detected← True

20 end

21 i = i + 1

22 end

Lines 14 - 15 of Algorithm 3 show how each entry of two vectors is compared and only

the entries satisfying the condition are updated. Adding the length of the sliding window

improves the performance of this algorithm (Algorithm 3 line 18). This was tested on

several scents of the DIGITS dataset.

Figure 4.14 shows readings of the ChemPro100i on the left and decision functions on the

right. As can be seen from the figure readings "IMS_abs9" and "IMS_abs10" are either

failing or they have a more smooth and longer transition phase. Regardless of these two

readings, the algorithm detects the right change point that happened at the 18th second.
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Figure 4.14. Results of running Matrix Form CUSUM on the Vanilla Flask readings.
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4.2.4 Multivariate Max-CUSUM Chart

This algorithm was proposed in [9]. The Multivariate Max-CUSUM Chart (Max-MCUSUM)

is a naturally multivariate algorithm, which uses multivariate Gaussian distribution. The

idea of the Max-MCUSUM is to reduce a multivariate normal process to a univariate

process.

In this thesis, the algorithm was modified by adding a smoothing operation. The algorithm

assumes, that the data points come one after another. In this case, a sliding window

of size S was created. Eventually, the data will come as a matrix of size R14×N . All

derivations of the formulas below are presented in the original paper.

Let

µµµ =

⎡⎢⎢⎢⎣
µ1

...

µ14

⎤⎥⎥⎥⎦ (4.24)

be the vector of mean values of all channels and

ΣΣΣ =

⎡⎢⎢⎢⎢⎢⎢⎣
σ1,1 σ1,2 ... σ1,14

σ2,1 σ2,2 ... σ2,14

...
...

. . .
...

σ14,1 σ14,2 ... σ14,14

⎤⎥⎥⎥⎥⎥⎥⎦ (4.25)

be the covariance matrix calculated on the initial data sample. The mean-vector before

the change point is denoted as µ0µ0µ0 and the mean-vector after the change point is denoted

µ1µ1µ1. As in the case of the classic CUSUM algorithm, the µ0µ0µ0 and the Σ are calculated from

the initial sample of data points. It is assumed, that they are Gaussian distributed with

these parameters. The distribution after the change point is assumed to be Gaussian with

the mean approximately zero and covariance matrix approximately Σ.

The noncentrality parameter is defined as

z =
√︁

(µ1µ1µ1 − µ0µ0µ0)TΣ−1(µ1µ1µ1 − µ0µ0µ0) (4.26)

and the CUSUM decision rule is defined as

Li = max(0, Li−1 + a(xixixi − µ0µ0µ0)− 0.5z) > h, (4.27)

where

a =
(µ1µ1µ1 − µ0µ0µ0)

TΣ−1√︁
(µ1µ1µ1 − µ0µ0µ0)TΣ−1(µ1µ1µ1 − µ0µ0µ0)

(4.28)

and h is a conveniently chosen threshold value. In the original paper xixixi in 4.27 denotes
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an m-dimensional vector of data points Rm. In this implementation, a matrix M ∈ R14×N

is collected and the mean-value is calculated along each row (Algorithm 4, row 11).

Algorithm 4: Multivariate Max-CUSUM Chart
Input: S - sliding window size, Xi - sample of size 14× S

Result: time step i where distributions have changed

1 µ0 = µ̄ # sample mean along each row
2 Σ = Σ̄ # sample covariance matrix
3 Σi,j = Σi,j + 1e− 10,where i = j # add a small value to the main diagonal

to avoid singularity
4 a = (µ1µ1µ1−µ0µ0µ0)TΣ−1√

(µ1µ1µ1−µ0µ0µ0)TΣ−1(µ1µ1µ1−µ0µ0µ0)

5 Li = 0 # initial value for cumulative sum
6 detected = False

7 point = 0

8 i = 0 # counter
9 while detected == False do

10 XiXiXi = data points of size 14×N

11 µ1µ1µ1 = mean(Xi)

12 DDD =
√︁

(µ1µ1µ1 − µ0µ0µ0)TΣ−1(µ1µ1µ1 − µ0µ0µ0)

13 Li = max(0, Li−1 + a(XiXiXi − µ0µ0µ0)− 0.5×D

14 if Si > 0 then

15 point = i + N

16 detected = True

17 end

18 i = i + 1

19 end

As can be seen, the Max-MCUSUM algorithm is very similar in its structure to the classic

CUSUM algorithm. Calculation on line 13 (Algorithm 4) yields a one-dimensional value

Li. The covariance matrix can be singular if variances on the main diagonal are close to

zero. This problem is avoided by adding a small value to the entries in the main diagonal.

Figure (4.15) shows the behavior of the decision function applied to the JasmineFlas-

kNoBaseline1 data set. As can be seen, the algorithm detects accurately the change

point at the twentieth second. The algorithm detects the change point for all the channels

simultaneously.
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Figure 4.15. Decision function for JasmineFlaskNoBaseline1 data set.

Figure 4.16. JasmineFlaskNoBaseline1. Result of running the algorithm.
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4.3 Bayesian Online Change Point Detection

The Bayesian Online Change Point Detection algorithm was proposed by Adams and

MacKay in 2007 [10]. It is not related to the log-likelihood ratio statistics. The change

point is detected in terms of so-called run lengths.

Figure 4.17. Partitioning the data by run lengths. Source [10]

Figure 4.17 represents the data arriving in time. As can be seen, the mean got changed

after the 4th time step. The next mean got changed after the 10th time step. The gi is

a partition of the data, which share the same mean. These partitions are separated by

change points.

Figure 4.18. Run lengths. Source [10].

Figure 4.18 demonstrates a plot of run lengths. As we can see at time steps 5 and 11

run lengths drop to zero. Taking into account the previously observed data, the run length

increases by one if a new datapoint probably belongs to the same partition. Otherwise,

the run-length will drop to zero. These drops indicate a change in distribution.
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The algorithm enables us to add a priori information into the system. For example, in

the DIGITS dataset change points occur usually within the first 100 timesteps. We can

enter this information using the so-called "Hazard function" or "hazard rate", which in our

case may be a constant function. The hazard rate is a priori information about how often

change points can occur. More information about the hazard function may be found in [11,

p. 9-48]. Information about the underlying probability distribution function can be added

as well. Here the Gaussian and the t-distribution will be used as underlying probability

models.

Each node in 4.19 keeps information needed for further calculations: the predicted prob-

ability of the new point, updated parameters of the underlying probability model, hazard

function, probability of growth. The original paper [10] describes 4.19 as follow: "Figure

Figure 4.19. Message passing trellis. Source [10].

shows the trellis on which the message-passing algorithm lives. Solid lines indicate that

probability mass is being passed “upwards,” causing the run length to grow at the next

time step. Dotted lines indicate the possibility that the current run is truncated and the run

length drops to zero."

For example, at time step 4 there are 4 nodes along rt axis. Each of these nodes contains

the probability of the 4th point appearance at each run length. This probability is calcu-

lated using a posterior predictive distribution function with parameters from each node of

the previous time step.

First, this algorithm will be considered using data generated from Gaussian distribution

with known mean before and after the shift. In this case, the Gaussian distribution will

be used as the underlying probability model. It is assumed that the variance is known

beforehand.

Many authors (e.g. [12, p. 12]) define the hazard function as discrete Geometric distri-
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bution with parameter λ because it is computationally efficient and easy to interpret. The

Hazard function is then defined as

H(t) =
1

λ
,∀t (4.29)

where t is time and λ is called precision and often set λ = 1
σ2 .

4.3.1 Parameter µ is unknown and σ is known

Only the calculations will be presented here with short descriptions of derivations if needed.

The more detailed derivations are explained in [10] and [12, p. 11-15]. In this algorithm,

a shift in the mean is detected while the variance is constant.

The first step is to calculate the posterior predictive probability of the arrived point for each

possible run length. The posterior predictive is calculated by

πi = N(xi|µi, σ
2 +

1

λ
) (4.30)

where xi is a new point from a time series and

µi =

µprior

λ
+

∑︁
xi

λprior

i
λprior

+ 1
λ

(4.31)

λi = λprior + iλ. (4.32)

This step in the algorithm is realized by defining probability distribution functions for each

µ and λ. In equations 4.31 and 4.32 λprior represents our prior knowledge about the

precision and λi is the value of the λ updated on each step. The prior will be set to

λprior = 1.

The second step is to calculate growth probabilities for each possible run-length r > 0 of

the current time step given run lengths on the previous steps by

P (rt = l, x1:t) = P (rt−1, x1:t−1)π
l
t−1(1−H(rt−1)), (4.33)

where H(rt−1) is the hazard rate from previous steps, which represents our prior beliefs

about change point, and l is the possible run length at the current time step.

The third step is to calculate change point probabilities as

P (rt = 0, x1:t) =
∑︂

P (rt−1, x1:t−1)π
l
t−1H(rt−1) (4.34)

Summation in 4.34 means summing up all probabilities at the previous steps.
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The fourth step is normalizing probabilities calculated at two previous steps:

P (r = l) =
P (r = l)∑︁
P (r = l)

(4.35)

In the last step, the parameters are updated using information learned in this current step.

Updates are calculated using 4.31 and 4.32.

Let us consider an example for which data was generated from two normal distributions

with the change point at the 50th second (see Figure 4.20). The exact parameters of the

Figure 4.20. Generated data for testing the algorithm.

two distributions are known and the algorithm can be initialized. The first S samples are

taken for calculating sample mean x̄. Let:

µprior = µ̄1:S (4.36)

σ2 = 1 (4.37)

λ =
1

σ2
= 1 (4.38)

H(t) =
1

100
(4.39)

R[0, 0] = 1 (4.40)

The hazard rate is set to 1/100 to show, that the algorithm is insensitive to this value. The

right value for the hazard rate must represent prior beliefs about how often change points

happen.

Two vectors will be created, which contain all mean values and all λ for all run lengths at

each time step. These two vectors are needed for further calculations.

A matrix defined by 4.21 will be created to represent structure 4.19. The first column

of the matrix R represents probabilities of change point or that the run length drops to

zero. All other columns represent growth probabilities. The matrix R exists here only for

visualization purposes. It is not mandatory to keep all the joints in memory. Only the joint
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Figure 4.21. Matrix R for storing probabilities of growth

Figure 4.22. Typical behavior of the decision function. BOCPD.

from the previous iteration is needed.

The data will be fed into the algorithm one point after another. At each time step, a row

will be added to R for the new time step.

Let us now observe one new point at t = 2 and calculate posterior predictive distribution

πt of observing this point at each possible run length with 4.30. The probabilities of growth

are computed using posterior predictive results with

P (r = i) = R[t− 1, :] ∗ πt ∗ (1−H(t)). (4.41)

The probability of t = 2 being a change point is

P (r = 0) =
∑︂

R[t− 1, :] ∗ πt ∗H(t), (4.42)

Vectors 4.41 and 4.42 are concatenated into one vector

V = [P (r = 0), P (r = i)]. (4.43)
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The probabilities in this vector are renormalized by

R[i, :] =
V∑︁
vi

(4.44)

as a new row into the matrix R. The last step is updating µ and λ using 4.31 and 4.32.

Figure 4.22 shows the typical behavior of matrix R for the data in Figure 4.20 in grey shade

and rotated by 90 degrees for readability. The darker the colour the more probability

mass is concentrated at a point. In the figure it can be seen, that until the 50th second

probability mass is mostly concentrated at the top designating probability of growth. At

the 50th second probability of increasing run length drops to zero, which means that the

change point has occured almost certainly.

This configuration of BOCPD does not perform on the scent data, because the exact

parameters of probability distributions are unknown beforehand. To overcome this prob-

lem the BOCPD can be reconfigured to use the t-distribution as an underlying probability

model.

4.3.2 Both µ and σ are unknown

The BOCPD framework has 4 main steps:

1. Define posterior predictive distribution

2. Calculate probability of growth

3. Calculate probabitliy of change point

4. Update parameters

In case µ and σ are unknown only steps 1 and 4 must be modified. Previously it was

assumed that µ is unknown and σ is known, which required using Normal distribution as

a conjugate prior. The first step is modified to use another conjugate prior for estimating

µ and σ. The conjugate prior used in this case is a Normal-Gamma as proposed in [12, p.

17]. The posterior predictive distribution, in this case, will be a generalized t-distribution

with the following parameters:

v = 2α degrees of freedom (4.45)

µ = µ̄ sample mean (4.46)

σ2 =
βn(κn + 1)

αnκn

(4.47)

The Normal-Gamma probability distribution function has four parameters: κ, µ, α and β.
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The updating rules for these parameters are

µ̄n =
κ0µ0 + nx̄

κ0 + n
(4.48)

κn = κ0 + n (4.49)

αn = α0 +
n

2
(4.50)

βn = β0 +
κi(xi − µi)

2

2(κi + n)
(4.51)

where n = 1 since the data arrives one point at a time.

Figure 4.23. Jasmine Table data normalized

Before the first iteration κ0, α0, β0 and µ0 must be initialized, but how to initialize these

parameters is an open question. In the literature, a commonly used initialization is to

set all parameters to one. However, this setting does not work for our data-set. Figure

4.24b shows how the BOCPD performs with all parameters set to 1. A thorough study of

different initial values revealed that setting the κ, α parameters to one, µ to sample mean

and β to be equal to the hazard rate yielded reasonably good results.

The algorithm was applied to the jasmine data, visualized in Figure 4.23. All the parame-

ters were initialized as mentioned above.
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(a) Result of running BOCPD with t-
distribution

(b) Result of running BOCPD with the pa-
rameters set to 1 (t-distribution)

Figure 4.24. Results of running the BOCPD with different initial parameters

As can be seen from Figure 4.24a there is a drop at 18 seconds. This algorithm shows

good results if run on data with clear transient and stable phases. More results will be

presented in the results section.

This is a well working algorithm, but it is very difficult to set up and explain some param-

eters. The main difficulty of this algorithm is the parameters. It is not obvious how to

initialize the parameters and what they mean. Over time probabilities in the matrix con-

verge to roundoff error. This can be avoided by replacing all values that are, for example,

less than 1e-10 by zero.

The matrix R in Algorithm 5 was used for possible visualizations of intermediate results

if needed. Note that using R-matrix is not mandatory. Moreover, not using the matrix R

makes the algorithm more memory efficient. Algorithm 5 is run on each channel sepa-

rately although there is a possibility to generalize it such that it can be run on all channels

simultaneously. Each data point from a channel is handled separately as well. Here we

keep the matrix R for visualization purposes. The algorithm is not optimized for using the

R-matrix. Values in the matrix R are likely to converge to round-off error.

The left-hand sides of 4.41 and 4.42 do not depend on the full history but only on the

probabilities of the previous time step (Markov chain property). Thus we can use the

vector L for saving all values from the previous step. Instead of using the matrix R,

decision about change points can be done by following data in the vector l. If the index of

the maximum element is 1 at some iteration this means that a change point is detected

and the algorithm can be stopped. If data contains significant noise and the existence

of the change point is obscured another way can be employed. Normally, if there are no

change points, values in the vector L are growing from start to end at each time step.

In case of clear change point, the first entry in the vector will have the maximum value.
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Algorithm 5: Bayesian Change Point with t-distribution as UPM
Result: time step i where distributions have changed

1 R← 0 initialize matrix R with zeros n× n
2 R[0, 0] = 1 the first value is one
3 l← [1] create a vector for keeping information from previous step
4 H = 1

100
initialize hazard rate

5 α0 = κ0 = 1 initialize parameters of UPM distribution
6 µ0 = µ̄ mean is sample mean
7 β0 = H β will be equal to the Hazard rate
8 a = b = m = k = [] initialize vectors for α, β, µ, κ for saving all

previous values
9 found = False

10 i = 1 counter
11 while found == False do
12 xi ← next point
13 π = function get_predictive_probabilities(xi, a,b,m,k)
14 g = l× π × (1−H) calculate growth probabilities
15 c =

∑︁
(l× π ×H) calculate change point probabilities

16 ng = [c,g] concatenate into one vector change and growth
probabilities

17 R[i,:] = ng∑︁
ng

normalize and put into the R-matrix

18 µn = (k×m+xi)
k+1

update mean-value
19 κn = k+ 1 update kappa-value
20 αn = a+ 1

2
update alpha-value

21 βn = b+ k(xi−m)2

2(k+1)
update beta-value

22 a = [α0, αn] concatenate vector alpha
23 b = [β0, βn]
24 m = [µ0, µn]
25 k = [κ0, κn]
26 l = [C,G] concatenate for next iteration
27 end
28 Function get_predictive_probabilities(xi, a,b,m,k):
29 df = 2× a
30 loc = m

31 scale =
√︂

b(k+1)
a×k

32 return probability t(x,df, loc, scale)
33 return



40

In case of obscured change point, the growing sequence in the vector will be broken

indicating a possible change point.

The algorithm keeps all previous parameters of underlying PDF in vectors a,b,m,k,

which means that these vectors will grow in size as time goes on. Thus, the algorithm is

not optimal for long data series. The DIGITS data-set contains time series measurements

of 300 seconds length, which allows us to ignore this problem.

The first part of Algorithm 5 (above row 10) initializes all needed values:

• H - hazard rate, which expresses our prior beliefs about the rate of change point

• α0, κ0, µ0, β0 - initial parameters of the Normal-Gamma distribution

• a,b,m,k - vectors for saving the parameters of the Normal-Gamma PDF at each

iteration

• i - counter for defining time step where change point is found

The second part of the algorithm is the iterative process described above:

• Get predictive probability of the new point for each run-length (row 13) -

here the generalized t-distribution was used by calling the function

get_predictive_probabilities() defined in row 28

• Calculate growth probabilities (row 14) - multiply vector L with predictive

probabilities and the inverse of the hazard value

• Calculate change point probabilities (row 15) - multiply vector L with predictive

probabilities, the hazard rate, and sum all.

• Update parameters of PDF (rows 18 - 25 )



41

5 RESULTS

In this section results for three data sets will be presented as examples. The data set and

the results from all 40 analyzed data sets can be found at https://doi.org/10.5281/
zenodo.4454381. Here the exemplary analysis of one of the best data set, one of the

worst data set, and a set with mixed data will be presented. A data set is characterized as

good when there are clear transition and stable phases. These phases may be detected

visually as well. A data set characterized as bad does not contain any clear phases. The

problem of bad data set may arise from device insensitivity to certain scents, wrongly

arranged measurement process, or internal errors of the ChemPro100i as seen in Figure

5.1b. It is assumed that the sensor with binary shift readings is corrupted. The wrong

arrangement of measurements may have a significant impact. For example, if the time

between collecting two data sets is too short then IMS signals might not return to the

baseline 5.1. A bad data sets contain only fluctuations, that can not be explained and

are, therefore, considered to be noise. A mixed data set contains good readings, bad

readings, and readings with binary peaks.

Each change detection algorithm processes all 14 channels of a certain data set and the

results are compared with ground truth values. Ground truth are change points, that are

manually determined by visual inspection of the channel responses. The plots provided in

this chapter demonstrate the results of running algorithms with the sliding window of size

10. The tables presented have the results of running algorithms with the sliding window

of size 5, 10 and 15. For assessing the results of the detection algorithms the mean

absolute error (MAE) scores were used. The MAE is calculated as

MAE(y,x) =
1

14

14∑︂
i=1

|yi − xi|, (5.1)

where y is a vector with ground truth values for each channel and x is a vector of detected

change points for each channel.

The cases with binary peaks (Figure 5.1b and 5.1c) have ground truth points selected

visually as well and this can falsify the results because ground truth points selected for

measuring performance are subjective. Different people may have different opinions on

where to place the actual change point. Especially for the data sets with unclear phase

https://doi.org/10.5281/zenodo.4454381
https://doi.org/10.5281/zenodo.4454381
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changes, this is a significant problem. However, using change point algorithms will reduce

subjectivity in this process. If a set of parameters is determined and works well for a good

data set, then the hypothesis is that it works well for a bad data set and that the change

points it found can be trusted.

(a) Example of readings with clear phases

(b) Example of bad readings. Binary peaks.

(c) Example of readings without clear phases

Figure 5.1. Examples of readings
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5.1 Summary of all data sets

The data set contains 40 measurement sets from 4 scents. The scents are jasmine oil

(1% concentration), lemon peel (grated peel of ripe lemon), vanilla (sliced dried vanilla

fruit) and grape. The data sets were collected at Tampere University between October

and November 2017. For the measurements the ion mobility based eNose ChemPro100i

was used and data was sampled at 1 Hz.

The baseline is the measurement of ambient air in the room. The ambient air was mea-

sured for reducing noise in the measurements. The measurements were performed five

times for each scent in the following sequence. The first 5 minutes were measured as a

baseline. Subsequently, samples presented in the flask or on the table were measured

for 5 minutes. Finally, ambient air was measured for 10 minutes to ensure that the IMS

readings returned to the baseline.‘

Before implementing the change detection algorithms all data sets were summarized to

get a big picture. The summary contains sample means and sample standard deviations

before and after a change point. The change points were detected using the CUSUM

with the moving window of size 5 for each channel separately. The statistics were cal-

culated for all the data points belonging to the transition phase of the particular group

and for all the data points belonging to the stable phase. For example, the change points

were detected for the group "Training set". The sample mean was calculated for all the

points belonging to all the transition phases in this group giving "mean_before". Similarly,

sample mean was calculated for all the points belonging to all the stable phases giving

"mean_after". The same approach was used for calculating "std_before" and "std_after"

values.

There are two main statistics in the readings we can follow in order to detect a change.

The readings at different phases show changes in the mean and the variance. Figure

5.2 shows several statistics for data grouped by measurement place and train/test sets.

The data describes changes in the mean and variance before and after change points.

Rows with names "mean_before" and "mean_after" demonstrate sample mean before

the change point and after. Rows with names "std_before" and "std_after" contain sam-

ple standard deviations before and after. The rows "delta_mean" and "delta_std" show

differences in changes before and after a change point.

If we compare rows "delta_mean" and "delta_std" the standard deviation demonstrates

usually noticeable change compared to change in the mean. The statistics show as well

scents, that often experience a very insignificant change. These are the vanilla and the

grape measured on a table. However, scents measured from a flask show often more

significant changes and have transient and stables phases.
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(a) Statistics. Training data set (b) Statistics. Test data set

(c) Statistics. All scents (d) Statistics. Scents measured in the flask

(e) Statistics. Scents measured on the table (f) Statistics. Scents meeting room

Figure 5.2. Statistics for scents.
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5.2 Good data set

Figure 5.3. Algorithms applied to jasmine table data set

Figure 5.3 shows the results of all algorithms applied to the second jasmine data set

measured on the table. The abbreviations used in the legends are:

• shewhart - Shewhart’s Charts
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• cusum - CUSUM

• max mcusum - Multivariate Max-CUSUM Chart

• MFCUSUM - Matrix Form CUSUM

• BAYES - Bayesian Online Change Point Detector

The red lines on the left column of the plots indicate ground truth change points. As

can be seen, all the channels demonstrate clear phase change and all the algorithms

found the change point comparatively well. The Shewhart Control Charts algorithm has

detected a change point too early and the Bayesian Online Change point algorithm failed

two times, but overall performances are very good.

reading gt window size shewhart cusum mfcusum max mcusum bayes

IMS_abs1 18

5 10 22 21 8 20

10 13 25 23 22 20

15 19 28 24 22 20

IMS_abs2 42

5 5 22 21 8 26

10 10 25 23 22 26

15 15 29 24 22 26

IMS_abs3 19

5 5 22 21 8 20

10 13 24 23 22 20

15 18 27 24 22 20

IMS_abs4 19

5 5 22 21 8 20

10 10 24 23 22 20

15 15 27 24 22 20

IMS_abs5 19

5 10 22 21 8 20

10 13 24 23 22 20

15 15 27 24 22 20

IMS_abs6 19

5 5 22 21 8 22

10 10 24 23 22 22

15 19 27 24 22 22

IMS_abs7 19

5 11 22 21 8 123

10 15 24 23 22 123

15 19 27 24 22 123

IMS_abs9 19

5 5 21 21 8 21

10 10 24 23 22 21

15 15 26 24 22 21

IMS_abs10 19

5 5 21 21 8 21

10 10 24 23 22 21

15 15 26 24 22 21

IMS_abs11 19

5 10 22 21 8 21

10 15 24 23 22 21

15 19 27 24 22 21

IMS_abs12 19

5 5 21 21 8 20

10 10 24 23 22 20

15 15 26 24 22 20

IMS_abs13 19

5 5 21 21 8 20

10 10 23 23 22 20

15 15 25 24 22 20

IMS_abs14 19

5 5 21 21 8 22

10 10 23 23 22 22

15 15 25 24 22 22

IMS_abs15 19

5 5 21 21 8 0

10 10 23 23 22 0

15 15 24 24 22 0

mean run time (sec) 1.334e-03 6.455e-03 4.745e-04 9.224e-04 1.845e-01

mean relative run time 2.811 13.603 1.000 1.944 388.848

Table 5.1. Change points found for each size of the moving window. Jasmine table set.
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Table 5.1 shows change points found by the algorithms for each size of the moving win-

dow and each channel. The gt-column in the table shows ground truth. The last row of

the table shows the relative running time of each algorithm for all channels. Relative run

time is calculated with respect to the fastest algorithm. The second last row shows direct

run times. As can be seen from the table, the fastest and one of the closest to ground

truth algorithm is Matrix Form CUSUM. The run times are generally very small and even

performance of the Bayesian algorithm will not be a problem. The ChemPro100i is sam-

pling at rate 1 Hz, which means that all algorithms, including the Bayesian algorithm, are

able to check for change points in real-time, between consecutive samples.

moving window size shewhart cusum mfcusum max mcusum bayes

5 14.07 3.86 3.43 12.57 11.29

10 9.21 5.79 5.14 4.29 11.29

15 4.36 7.79 6.00 4.29 11.29

Table 5.2. MAE of each algorithm for jasmine table

Table 5.2 shows the Mean Absolute Error of each algorithm for all sizes of the moving

window. The Multivariate Max-CUSUM has the lowest MAE:s for window sizes 10 and

15, which means that its estimates are constantly closer to the actual change point for

these window sizes. Given the information in these tables and plots, it can be stated

that the larger the moving window for the Shewhart and Max CUSUM the better their

performance. For the CUSUM and MFCUSUM increasing the size of the moving window

decreases their accuracy. Each algorithm calculates first the initial mean and variance.

The Multivariate Max-CUSUM calculates the initial mean vector and covariance matrix.

As was explained in chapter 4 several points at the beginning of time series have large

variability, which affects the initial covariance matrix. This causes significant sensitivity in

the Multivariate Max-CUSUM. However, there are restrictions with the size of the moving

window, because the transition phases are usually short. Since transition phases are

usually 15 - 25 points long it is not feasible to use a moving window size of more than 20.

Because the first several points of each time series have large variability, the length of the

moving window needs to be 5 or longer. Out of the presented algorithms, the Matrix Form

CUSUM and Multivariate Max CUSUM in case Jasmine data set are more suitable.



48

5.3 Bad data set

Figure 5.4. Algorithms applied to vanilla table data set

Vanilla measured from the table mostly does not have any clear phase transition points.

It is very hard to determine change points for these readings. The ground truth points

for this data set were selected subconsciously. As a result, the plots show (Figure 5.4)

that the algorithms react mostly on local trend changes. Channels 7 and 15 have binary
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looking plots. However, there are slight trends so we can classify them as belonging to

the bad data sets. Algorithms can detect change points on these channels as well.

reading gt window size shewhart cusum mfcusum max mcusum bayes

IMS_abs1 35

5 7 7 7 11 129

10 12 19 12 17 129

15 17 19 15 21 129

IMS_abs2 35

5 8 12 7 11 45

10 12 19 12 17 45

15 15 37 15 21 45

IMS_abs3 35

5 10 13 7 11 64

10 13 16 12 17 64

15 16 24 15 21 64

IMS_abs4 50

5 5 14 7 11 63

10 13 16 12 17 63

15 16 22 15 21 63

IMS_abs5 50

5 5 13 7 11 231

10 11 16 12 17 231

15 16 21 15 21 231

IMS_abs6 50

5 5 13 7 11 284

10 10 18 12 17 284

15 15 21 15 21 284

IMS_abs7 50

5 5 12 7 11 260

10 10 12 12 17 260

15 15 21 15 21 260

IMS_abs9 40

5 5 41 7 11 48

10 15 42 12 17 48

15 16 45 15 21 48

IMS_abs10 40

5 10 27 7 11 48

10 10 24 12 17 48

15 15 27 15 21 48

IMS_abs11 30

5 12 36 7 11 41

10 13 39 12 17 41

15 19 42 15 21 41

IMS_abs12 35

5 5 40 7 11 31

10 10 41 12 17 31

15 15 44 15 21 31

IMS_abs13 35

5 5 40 7 11 46

10 10 42 12 17 46

15 15 45 15 21 46

IMS_abs14 35

5 5 16 7 11 298

10 10 44 12 17 298

15 15 46 15 21 298

IMS_abs15 10

5 5 0 7 11 257

10 10 15 12 17 257

15 15 0 15 21 257

mean run time (sec) 2.585e-03 1.552e-02 1.984e-04 9.008e-04 5.275e-01

mean relative run time 13.026 78.219 1.000 4.539 2658.041

Table 5.3. Change points found for each size of moving window. Vanilla table set.

moving window size shewhart cusum mfcusum max mcusum bayes

5 31.29 20.00 30.86 27.00 94.50

10 26.50 17.36 26.14 21.86 94.50

15 22.86 15.29 23.57 18.43 94.50

Table 5.4. MAE of each algorithm for vanilla table

Table 5.3 demonstrates that Bayes Online Change Point algorithm fails on almost all chan-

nels and its running time is very long compared to the other algorithms. The MAE results
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from Table 5.4 tell us that the Multivariate Max-CUSUM yields again estimates the closest

to the actual change points and is one of the fastest algorithms. The MAE scores in this

table are greater than scores in the jasmine data set. This means that the algorithms

perform worse. The accuracy of the algorithms decreased because the vanilla data set

does not have clear phase changes. The other reason is the subjectivity of ground truths.

As can be seen from Figure 5.3 variability of detected change points is significant. Mostly

algorithms reacted on the first peak of readings. It is possible that algorithms responded

on real change points that can not be visually detected or that the ChemPro did not react

to this scent.
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5.4 Mixed data set

Figure 5.5. Algorithms applied to grape table baseline 2 data set

The plots in Figure 5.5 show the last exemplary data set in this section. Again there are

no clear change points. It can be seen, furthermore, that the readings on the channels

"IMS_abs14" and "IMS_abs15" are possibly corrupted. It is almost impossible to detect

where the change happened especially in the case of the channels "IMS_abs14" and
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"IMS_abs15". Since channels 14 and 15 have very clear binary shifted readings and

other readings do not have clear change points, this data set was classified as mixed.

reading gt window size shewhart cusum mfcusum max mcusum bayes

IMS_abs1 45

5 6 7 6 13 57

10 15 51 11 17 57

15 16 16 16 21 57

IMS_abs2 45

5 6 6 6 13 93

10 10 11 11 17 93

15 16 16 16 21 93

IMS_abs3 45

5 9 15 6 13 90

10 12 17 11 17 90

15 16 20 16 21 90

IMS_abs4 45

5 5 16 6 13 56

10 10 17 11 17 56

15 16 49 16 21 56

IMS_abs5 45

5 6 7 6 13 88

10 12 48 11 17 88

15 16 49 16 21 88

IMS_abs6 45

5 5 7 6 13 243

10 10 47 11 17 243

15 15 17 16 21 243

IMS_abs7 45

5 5 0 6 13 267

10 10 16 11 17 267

15 15 16 16 21 267

IMS_abs9 45

5 6 13 6 13 282

10 11 15 11 17 282

15 16 17 16 21 282

IMS_abs10 45

5 6 7 6 13 0

10 10 12 11 17 0

15 16 17 16 21 0

IMS_abs11 15

5 7 16 6 13 24

10 12 18 11 17 24

15 16 21 16 21 24

IMS_abs12 15

5 7 16 6 13 95

10 12 18 11 17 95

15 16 21 16 21 95

IMS_abs13 15

5 5 16 6 13 275

10 10 18 11 17 275

15 15 22 16 21 275

IMS_abs14 11

5 5 0 6 13 254

10 10 22 11 17 254

15 15 21 16 21 254

IMS_abs15 44

5 0 0 6 13 250

10 10 0 11 17 250

15 15 0 16 21 250

mean run time (sec) 6.252e-03 2.120e-02 1.707e-04 7.606e-04 6.819e-01

mean relative run time 36.623 124.197 1.000 4.456 3994.716

Table 5.5. Change points found for each size of moving window. Grape table baseline 2
set

moving window size shewhart cusum mfcusum max mcusum bayes

5 30.50 27.50 30.07 23.36 118.50

10 25.07 18.36 25.07 20.79 118.50

15 21.29 19.79 21.21 19.07 118.50

Table 5.6. MAE of each algorithm for grape baseline 2 table

Tables (5.5 and 5.6) show that the detected change points are far from the actual ones.
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This is caused by unclear phase changes and by the binary looking channels. The results

demonstrate that the CUSUM, the Matrix Form CUSUM, and Multivariate Max-CUSUM

performed almost equally well, especially if taking into account, that the ground truth

change points may be shifted around.

5.5 Results review

The results over the entire data set are summarized in Table 5.7. The table contains

names of all data sets, their quality, the best algorithm for each window size and its MAE

score. The table shows that MAE for scents measured from flask are often better because

the sealed flask contains only scented air. The scents measured on the table usually have

more unstable readings because surrounding air containing other scents significantly im-

pacts measurements, which cause more problems in change point detection. For details

refer to [1] and [13]. The Matrix Form CUSUM and Multivariate Max CUSUM yielded the

best results in many cases.

However, there are data sets classified as "bad" and "mixed", where ground truth change

points are marked manually. The ground truth change points being marked manually

give subjectivity, which increases MAE. This means, that the algorithms may potentially

perform better with the "bad" and "mixed" data sets and MAE scores for these data sets

are not very reliable. Thus the best algorithms for the good data sets are the CUSUM,

the Matrix Form CUSUM and Multivariate Max-CUSUM. The algorithms are possibly de-

tecting actual change points for these readings or they just guess because they need to

find a change point. Since the algorithms are online they can run infinitely until a change

point occurs. The ground truth points chosen by different people may differ significantly.

This is a crucial part to choose the best algorithm and use it as a reference for further

classification. We can assume that the best algorithm gives sufficient detection results

even for the "bad" data sets. A small error in change point detection has no significant

impact.

For scent classification different features can be used, such as variance, mean, deriva-

tives. The length of transient phase can possibly uniquely characterize a scent. From

the classification methods point of view, the best algorithm will provide similar features

for "bad" data sets and similar features for "good" data sets. This difference of features

makes it possible to apply classification algorithms. It is very important to have an auto-

mated change point detection system. This excludes subjectivity and thus increases the

accuracy of change point detections.

There is one more problem with binary shifted readings. In this case, it is impossible to

detect change points so we can exclude these channels from calculations. The decision

about excluding channels from calculations can be made using, e.g. running variance.

If the variance is zero or almost zero during several iterations or in the initial sample,
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this indicates that there is a probably binary channel. There is no information about why

channels 7, 14, and 15 in the case of measurements from the table are often behaving in

such a binary way. This part needs to be investigated.
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set name quality window size best algorithm MAE set name quality window size best algorithm MAE

G
ra

pe

GrapeFlaskBaseline1 mixed

5 max mcusum 1.286

Lemon peelFlaskBaseline1 good

5 cusum 4.286

Le
m

on
pe

el

10 max mcusum 3.429 10 cusum 5.643

15 mfcusum 1.143 15 cusum 7.214

GrapeFlaskBaseline2 good

5 max mcusum 3.571

Lemon peelFlaskBaseline2 good

5 max mcusum 2.714

10 max mcusum 2.714 10 max mcusum 2.714

15 mfcusum 4.000 15 shewhart 3.929

GrapeFlaskBaseline3 mixed

5 max mcusum 2.286

Lemon peelFlaskBaseline3 good

5 cusum 2.429

10 max mcusum 3.143 10 max mcusum 3.929

15 shewhart 3.500 15 shewhart 3.714

GrapeFlaskBaseline4 mixed

5 cusum 7.786

Lemon peelFlaskBaseline4 good

5 cusum 6.429

10 cusum 4.857 10 max mcusum 1.286

15 mfcusum 1.071 15 mfcusum 1.286

GrapeFlaskBaseline5 mixed

5 max mcusum 4.857

Lemon peelFlaskBaseline5 good

5 max mcusum 2.214

10 max mcusum 4.429 10 max mcusum 2.214

15 max mcusum 5.286 15 mfcusum 1.786

GrapeTableBaseline1 mixed

5 cusum 17.714

Lemon peelTableBaseline1 mixed

5 max mcusum 2.000

10 max mcusum 9.929 10 max mcusum 3.000

15 max mcusum 7.643 15 shewhart 4.071

GrapeTableBaseline2 bad

5 max mcusum 23.357

Lemon peelTableBaseline2 bad

5 cusum 2.857

10 cusum 18.357 10 max mcusum 3.643

15 max mcusum 19.071 15 mfcusum 3.643

GrapeTableBaseline3 bad

5 max mcusum 19.429

Lemon peelTableBaseline3 bad

5 cusum 4.571

10 cusum 24.714 10 mfcusum 0.000

15 max mcusum 17.429 15 max mcusum 1.000

GrapeTableBaseline4 bad

5 max mcusum 11.643

Lemon peelTableBaseline4 mixed

5 max mcusum 1.000

10 max mcusum 11.643 10 mfcusum 1.000

15 shewhart 11.286 15 shewhart 0.786

GrapeTableBaseline5 bad

5 cusum 24.143

Lemon peelTableBaseline5 mixed

5 max mcusum 5.643

10 max mcusum 13.643 10 mfcusum 7.643

15 max mcusum 13.071 15 max mcusum 4.071

Ja
sm

in
e

JasmineFlaskBaseline1 good

5 max mcusum 1.000

VanillaFlaskBaseline1 good

5 cusum 5.857

Va
ni

lla

10 bayes 2.786 10 cusum 7.000

15 shewhart 2.714 15 mfcusum 7.857

JasmineFlaskBaseline2 good

5 max mcusum 0.929

VanillaFlaskBaseline2 good

5 max mcusum 11.429

10 max mcusum 2.643 10 max mcusum 14.143

15 shewhart 2.357 15 max mcusum 12.714

JasmineFlaskBaseline3 good

5 max mcusum 2.000

VanillaFlaskBaseline3 mixed

5 max mcusum 4.071

10 max mcusum 1.000 10 max mcusum 8.357

15 max mcusum 3.000 15 shewhart 6.286

JasmineFlaskBaseline4 good

5 mfcusum 2.571

VanillaFlaskBaseline4 good

5 max mcusum 3.214

10 max mcusum 0.571 10 max mcusum 2.643

15 shewhart 3.071 15 max mcusum 3.214

JasmineFlaskBaseline5 good

5 cusum 9.571

VanillaFlaskBaseline5 good

5 cusum 11.571

10 mfcusum 4.000 10 max mcusum 6.357

15 max mcusum 0.000 15 cusum 6.286

JasmineTableBaseline1 good

5 max mcusum 2.571

VanillaTableBaseline1 mixed

5 max mcusum 18.643

10 max mcusum 3.429 10 max mcusum 4.929

15 shewhart 3.357 15 max mcusum 5.786

JasmineTableBaseline2 good

5 mfcusum 3.429

VanillaTableBaseline2 bad

5 max mcusum 21.929

10 max mcusum 4.286 10 max mcusum 9.929

15 max mcusum 4.286 15 max mcusum 9.929

JasmineTableBaseline3 good

5 max mcusum 1.000

VanillaTableBaseline3 bad

5 cusum 20.000

10 mfcusum 4.000 10 cusum 17.357

15 shewhart 3.286 15 cusum 15.286

JasmineTableBaseline4 good

5 max mcusum 0.929

VanillaTableBaseline4 bad

5 max mcusum 29.929

10 max mcusum 0.929 10 max mcusum 23.071

15 shewhart 2.500 15 cusum 22.071

JasmineTableBaseline5 good

5 max mcusum 1.000

VanillaTableBaseline5 mixed

5 max mcusum 27.286

10 max mcusum 1.000 10 max mcusum 26.571

15 shewhart 3.143 15 cusum 22.643

Table 5.7. Results over the entire data set
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6 DISCUSSION

The results in Section [5] show that change detection algorithms work well of more or

less visible point of change. When a time series does not have a clear transition phase

such simple algorithms do not perform well. However, we focused on simpler algorithms

because one of the tasks was to select a range of techniques and implement them. For

future research more sophisticated techniques will be studied for online change point de-

tection. For example, algorithms using neural networks are an option[14]. The paper

proposes using Bayesian Online Change Point Detection with a neural network. Another

technique is to use time series analysis [15], specifically Auto Regressive Moving Aver-

age (ARMA) with Generalized AutoRegressive Conditional Heteroskedasticity (GARCH)

innovations models for online change point detection.

The problem with invisible phase changes may be solved by using more sophisticated

preprocessing approaches. In this work, we used a derivative of time series readings also

called "self lag differencing" of order 1. The task of this differencing is to remove seasonal

changes from the time series. We could use other orders of differencing, but often short

length of a transition phase does not provide us such freedom. The other differencing

operation is Log Lag Differencing, which is not applied in this work. Its task is to stabilize

the variance of the data, which may affect the results. In the theory section [3] we showed

that the variance tends to change after the change point. One more possible approach to

preprocess the data and detect a change point is to employ time series models such as

ARMA. Since we have a moving window we can fit models to arriving sets of points and

make decisions based on that. However, by removing the trend from the raw data series

we might lose some valuable information. The difference operation may be applied to raw

data to detect the existence of a trend.

The other problem is the performance measurement of the algorithms. In case of clear

change points, which can be detected visually and used as ground truths, the algorithms

perform well and MAE-values are reliable. In situations where we do not have certainty

on where to place ground truth points, the ground truth points are assigned subjectively.

This causes variability in the ground truth, which in turn affects the reliability of MAE-

values. One of the main reasons for using change detection algorithms is to remove

subjectivity from the process. The best performing algorithm has to be chosen and kept

as a reference. Even if the chosen algorithm will detect change points with poor accuracy
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for the "bad" data sets it will provide similar results for all "bad" data sets. Among others,

this will provide one more feature for further classification of scents.

The validity of readings affects results as well. Figure 5.1b shows how the channel

IMS_abs15 provides binary readings. In this situation, it is not possible to determine the

ground truth point. Moreover, such a channel is not suitable for being fed into algorithms.

Such readings may signal corrupted sensors. However such channels were taken into

account while calculating MAE-performance. There is no knowledge about what causes

these channels to behave like that, thus there are no proposals on how to overcome this

problem. The only reasonable way is to detect such channels and ignore them. These

channels have to be investigated properly.

Sometimes IMS sensors do not react to certain scents or their concentrations. Knowl-

edge about channels not reacting to presented scents can potentially increase detection

accuracy. Excluding such channels from calculations will decrease the running time of

the algorithms and increase accuracy. Detecting channels not reacting to scent can be

implemented for example by following what values other channels get on average. The

non-reacting channels are a problem particularly for the Multivariate MAX CUSUM algo-

rithm because at the end of an iteration it yields a value, which is not related to a specific

channel. However, prior knowledge about non-working channels can be potentially a fea-

ture for classification tasks if for different scents there are specific channels that do not

react to a specific scent.

The questions asked in the Introduction part were:

1. Is it possible to find change points in the IMS readings by means of the change

detection algorithms?

2. What is the computational cost?

3. How reliable these algorithms are?

4. What is the most effective algorithm?

It is possible to detect change points in case of existence of the change points in the read-

ings. In case of unclear or non-existing change points, we have to rely on the detections

provided by the algorithms.

The computational cost of all presented algorithms is very low compared to the fre-

quency of sampling. It can be stated that all the presented algorithms consume less

time than needed for sampling. The most costly algorithm in terms of time consumed is

the Bayesian Online Change Point Detection algorithm, which still performs faster than

the sampling.

Presented algorithms are reliable and provide trustworthy results. In case of clear change

points, the algorithms perform well. In other cases, we have to rely on the results because
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ground truths contain only subjective information. Moreover, the algorithms provide de-

tections of time steps, which usually indeed contain change points.

The most effective algorithm in terms of accuracy is the Multivariate Max-CUSUM. In

terms of computational cost the most effective is the Matrix Form CUSUM. Choosing

between these two the most effective turned out to be the Multivariate Max-CUSUM algo-

rithm because it is multivariate as the Matrix Form CUSUM. It is also the most accurate

algorithm.



59

REFERENCES

[1] Müller, P., Salminen, K., Nieminen, V., Kontunen, A., Karjalainen, M., Isokoski, P.,

Rantala, J., Savia, M., Väliaho, J., Kallio, P., Lekkala, J. and Surakka, V. Scent clas-

sification by K nearest neighbors using ion-mobility spectrometry measurements.

Expert Systems with Applications 115 (2019), 593–606. ISSN: 0957-4174. DOI:

https://doi.org/10.1016/j.eswa.2018.08.042. URL: http://www.
sciencedirect.com/science/article/pii/S0957417418305566.

[2] Raj, V. B., Singh, H., Nimal, A., Sharma, M. and Gupta, V. Oxide thin films (ZnO,

TeO2, SnO2, and TiO2) based surface acoustic wave (SAW) E-nose for the de-

tection of chemical warfare agents. eng. Sensors and actuators. B, Chemical 178

(2013), 636–647. ISSN: 0925-4005.

[3] Müller, P., Salminen, K., Kontunen, A., Karjalainen, M., Isokoski, P., Rantala, J.,

Leivo, J., Väliaho, J., Kallio, P., Lekkala, J. and Surakka, V. Online Scent Classifica-

tion by Ion-Mobility Spectrometry Sequences. eng. fi=Tampereen ammattikorkeak-

oulu.

[4] Dodds, J. N. and Baker, E. S. Ion Mobility Spectrometry: Fundamental Concepts,

Instrumentation, Applications, and the Road Ahead. Journal of the American Soci-

ety for Mass Spectrometry 30.11 (2019). PMID: 31493234, 2185–2195. DOI: 10.
1021/jasms.8b06240. eprint: https://pubs.acs.org/doi/pdf/10.1021/
jasms.8b06240. URL: https://pubs.acs.org/doi/abs/10.1021/jasms.
8b06240.

[5] Montgomery, D. C. Introduction to statistical quality control, 6th edition. John Wiley

& Sons, Inc., 2009.

[6] Basseville, N. Detection of Abrupt Changes: Theory and Application. Prentice Hall,

1993.

[7] Zamora, D. and Blanco, M. Improving the efficiency of ion mobility spectrome-

try analyses by using multivariate calibration. Analytica Chimica Acta 726 (2012),

50–56. ISSN: 0003-2670. DOI: https://doi.org/10.1016/j.aca.2012.
03.023. URL: http://www.sciencedirect.com/science/article/pii/
S0003267012004400.

[8] PAGE, E. S. CONTINUOUS INSPECTION SCHEMES. Biometrika 41.1-2 (June

1954), 100–115. ISSN: 0006-3444. DOI: 10.1093/biomet/41.1-2.100. eprint:

https://academic.oup.com/biomet/article-pdf/41/1-2/100/1243987/
41-1-2-100.pdf. URL: https://doi.org/10.1093/biomet/41.1-2.100.

https://doi.org/https://doi.org/10.1016/j.eswa.2018.08.042
http://www.sciencedirect.com/science/article/pii/S0957417418305566
http://www.sciencedirect.com/science/article/pii/S0957417418305566
https://doi.org/10.1021/jasms.8b06240
https://doi.org/10.1021/jasms.8b06240
https://pubs.acs.org/doi/pdf/10.1021/jasms.8b06240
https://pubs.acs.org/doi/pdf/10.1021/jasms.8b06240
https://pubs.acs.org/doi/abs/10.1021/jasms.8b06240
https://pubs.acs.org/doi/abs/10.1021/jasms.8b06240
https://doi.org/https://doi.org/10.1016/j.aca.2012.03.023
https://doi.org/https://doi.org/10.1016/j.aca.2012.03.023
http://www.sciencedirect.com/science/article/pii/S0003267012004400
http://www.sciencedirect.com/science/article/pii/S0003267012004400
https://doi.org/10.1093/biomet/41.1-2.100
https://academic.oup.com/biomet/article-pdf/41/1-2/100/1243987/41-1-2-100.pdf
https://academic.oup.com/biomet/article-pdf/41/1-2/100/1243987/41-1-2-100.pdf
https://doi.org/10.1093/biomet/41.1-2.100


60

[9] Healy, J. D. A Note on Multivariate CUSUM Procedures. Technometrics 29.4 (1987),

409–412. ISSN: 00401706. URL: http://www.jstor.org/stable/1269451.

[10] Adams, R. P. and MacKay, D. J. C. Bayesian Online Changepoint Detection. (2007).

arXiv: 0710.3742 [stat.ML].

[11] Rinne, H. The Hazard rate : Theory and inference (with supplementary MATLAB-

Programs). eng. Justus-Liebig-UniversitÃ¤t, 2014. URL: http://geb.uni-giessen.
de/geb/volltexte/2014/10793.

[12] J.A.Grant. BAYESIAN CHANGEPOINTDETECTION IN SOLAR ACTIVITY DATA.

2014. URL: https://www.lancaster.ac.uk/postgrad/grantj/mastersdiss.
pdf.

[13] Müller, P., Salminen, K., Kontunen, A., Karjalainen, M., Isokoski, P., Rantala, J.,

Leivo, J., Valiaho, J., Kallio, P., Lekkala, J. and Surakka, V. Online Scent Classifi-

cation by Ion-Mobility Spectrometry Sequences. Frontiers in Applied Mathematics

and Statistics 5 (July 2019). DOI: 10.3389/fams.2019.00039.

[14] Titsias, M. K., Sygnowski, J. and Chen, Y. Sequential Changepoint Detection in

Neural Networks with Checkpoints. (2020). arXiv: 2010.03053 [cs.LG].

[15] Choi, H., Ombao, H. and Ray, B. Sequential Change-Point Detection Methods for

Nonstationary Time Series. eng. Technometrics 50.1 (2008), 40–52. ISSN: 0040-

1706.

http://www.jstor.org/stable/1269451
https://arxiv.org/abs/0710.3742
http://geb.uni-giessen.de/geb/volltexte/2014/10793
http://geb.uni-giessen.de/geb/volltexte/2014/10793
https://www.lancaster.ac.uk/postgrad/grantj/mastersdiss.pdf
https://www.lancaster.ac.uk/postgrad/grantj/mastersdiss.pdf
https://doi.org/10.3389/fams.2019.00039
https://arxiv.org/abs/2010.03053

	Introduction
	Ion Mobility Spectrometry
	Methods
	Algorithms
	Shewhart Control Charts
	CUSUM
	Tabular CUSUM
	CUSUM V-mask
	Matrix Form CUSUM
	Multivariate Max-CUSUM Chart

	Bayesian Online Change Point Detection
	Parameter  µ is unknown and σ is known
	Both  µ and  σ are unknown


	Results
	Summary of all data sets
	Good data set
	Bad data set
	Mixed data set
	Results review

	Discussion
	References

