
Tampere University Dissertations 357

Flexible Low-Area
Hardware Architectures

for Packet Processing in

HESAM ZOLFAGHARI

Tampere University Dissertations 357

HESAM ZOLFAGHARI

Flexible Low-Area Hardware Architectures for
Packet Processing in Software-Defined Networks

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion in Zoom
on 21 December 2020, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication Sciences
Finland

Responsible
supervisor
and Custos

Professor Jari Nurmi
Tampere University
Finland

Pre-examiners Professor Guido Maier
Politecnico di Milano
Italy

Professor Seppo Virtanen
University of Turku
Finland

Opponents Professor Guido Maier
Politecnico di Milano
Italy

Professor Peeter Ellervee
Tallinn University of Technology
Estonia

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2020 author

Cover design: Roihu Inc.

ISBN 978-952-03-1805-5 (print)
ISBN 978-952-03-1806-2 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-1806-2

PunaMusta Oy – Yliopistopaino
Vantaa 2020

iii

ACKNOWLEDGEMENTS

This dissertation is based on the research carried out throughout the years 2017-
2020 in the Electrical Engineering Unit of Tampere University (prior to 2019 by the
name Department of Electronics and Communications Engineering at Tampere
University of Technology). First and foremost, I express my deepest gratitude to my
supervisor, professor Jari Nurmi for sharing with me his many-year experience in
custom processor design as well as providing financial support and a peaceful
environment for carrying out this research. I am also grateful to assistant professor
Davide Rossi from University of Bologna for being the second author of all scientific
papers included in this dissertation as well as for arranging a research visit to the
Microelectronics Lab of University of Bologna.

I appreciate the time and effort of the respected reviewers, associate professors
Guido Maier and Seppo Virtanen for providing constructive feedback on this work.
Also, thanks to professor Peeter Ellervee and associate professor Guido Maier for
accepting to be the opponents in my thesis defense.

This research was funded by The Pekka Ahonen Fund, Finnish Doctoral Training
Network DELTA, HiPEAC, Nokia Foundation, 5G-FORCE project and
TETRAMAX project. I hereby express my gratitude to all the above-mentioned
funding bodies.

Finally, I wish to thank all members of my family for supporting me throughout
the years and providing me with the energy required for achieving my academic
goals.

Tampere, November 2020
Hesam Zolfaghari

iv

v

ABSTRACT

Computer networks have changed radically in the last 10 years. Advances in
computer networks and emergence of new network protocols require more
flexibility and programmability in forwarding devices such as switches and routers.
The main components of these devices are the control and data plane. The former
instructs functionality and the latter just executes the dictated functionality. In the
traditional philosophy for designing forwarding devices, the control and data plane
were tightly coupled. With increase in the number and complexity of network
protocols, this design principle proved to be inefficient. Software Defined
Networking (SDN) breaks this tight coupling of the control and data plane. Under
this network architecture, a central controller installs forwarding rules on the tables
in forwarding devices. SDN-based forwarding devices only contain the data plane
and the interface for communicating with the control plane. By matching the value
of header fields against the installed rules, the data plane executes the corresponding
actions. Research on SDN is done on the control and data planes as well as and the
interface making their communication possible.

In this dissertation, the focus is on the programmable data plane. It is the enabling
component for protocol-independent packet processing. The most notable
hardware architecture for programmable data plane is Reconfigurable Match Tables
(RMT). Despite its capabilities, there are a number of shortcomings associated with
it that make it unnecessarily complex, limit its flexibility and use the memory
resources inefficiently. In response to these shortcomings, a new architecture has
been designed and implemented. The packet parser in this new architecture does not
employ Ternary Content Addressable Memory (TCAM). As a result, it reduces the
area of memories required for Match-Action packet parsing by 50%. The area saving
is used for providing packet preprocessing functionality in the packet parser. The
crossbar alternatives for search key generation and action input selection have been
explored and the most area-efficient alternatives has been selected. Yet another
packet parser is designed whose supported throughput is 10 times that of RMT
parser whereas the area increase factor is less than 2. Finally, a packet processing
pipeline has been designed with enhanced level of flexibility and functionality.
Despite the enhancements, it has 31% less area compared to the RMT pipeline.

vi

vii

CONTENTS

1 Introduction .. 17
1.1 Objectives and scope... 19
1.2 Research questions .. 19

1.2.1 Research questions specific to packet parser 20
1.2.2 Research questions specific to the packet processing

subsystem.. 20
1.3 Research significance ... 21
1.4 Contributions and results ... 22
1.5 Author’s contribution.. 22
1.6 Thesis outline .. 22

2 Packet Processing ... 23
2.1 Packet processing operations ... 24

2.1.1 Parsing ... 25
2.1.2 Integrity checking .. 25
2.1.3 Header field manipulation ... 25
2.1.4 Tunnelling ... 26
2.1.5 State modification ... 26
2.1.6 Lookup .. 26

2.1.6.1 Exact Matching ... 27
2.1.6.2 Ternary Matching ... 27

2.1.7 Classification .. 27
2.1.8 Fragmentation and reassembly ... 28
2.1.9 Traffic Management ... 28

2.2 Software-based packet processing solutions ... 29
2.2.1 Software Routers ... 29
2.2.2 Programming Languages.. 30
2.2.3 User-space Packet Processing ... 31

2.3 Hybrid packet processing solutions .. 32
2.3.1 Solutions based on FPGAs ... 33
2.3.2 Solutions based on GPUs .. 34

2.4 ASIC-based packet processing solutions ... 35
2.4.1 Network Processors .. 36
2.4.2 Programmable Switch Chips ... 36

2.5 Summary of Packet Processing Solutions .. 41
2.6 Applications of Programmable Data Plane ... 41

viii

3 A New Programmable Packet Parser .. 44
3.1 A Closer Look at Packet Parsing ... 44
3.2 TCAM-based State Machine .. 45
3.3 An Alternative to TCAM-based State Machine .. 46

3.3.1 Functional Units .. 48
3.3.2 Instruction Format .. 48
3.3.3 Instruction Pipeline ... 49

3.4 Throughput Evaluation ... 50
3.4.1 Parsing Individual Headers .. 50
3.4.2 Parsing Header Stacks .. 51
3.4.3 Enhancements for achieving higher throughputs 52

3.5 Implementation Results .. 55
3.5.1 Discussion of results ... 56

4 An on-the-fly Packet Pre-processor .. 58
4.1 Use Cases for Processing Packets on the Fly .. 58
4.2 Architecture ... 59
4.3 Packet Preprocessor in Action ... 60

4.3.1 Preprocessing of IPv4 Header .. 60
4.3.2 Fragmentation of IPv4 Packets ... 62

4.4 Implementation Results .. 67
4.4.1 Discussion of results ... 67

5 Exploring Crossbar Alternatives .. 69
5.1 Crossbars in RMT .. 69
5.2 Crossbar alternatives .. 70

5.2.1 Alternative Match Crossbar ... 70
5.2.2 Alternative Action Crossbars .. 71

5.2.2.1 Zero-extending Smaller Units ... 72
5.2.2.2 Combining Smaller Units .. 73

5.3 Reducing Action Crossbars’ Area ... 73
5.4 Implementation results .. 75

5.4.1 Discussion of results ... 76

6 Towards Terabit-level Packet Parsing ... 78
6.1 The Building Block for Terabit-level Packet Parsing ... 78
6.2 Using the Header Parsers to Build a Packet Parser .. 80
6.3 Implementation Results .. 81

6.3.1 Discussion of implementation results .. 82

7 A Flexible Packet Processing Pipeline .. 83
7.1 Motivation ... 83

ix

7.2 A New Architecture .. 84
7.2.1 Program Control ... 84
7.2.2 Combining Tables ... 86
7.2.3 Action Input Selectors .. 88
7.2.4 Pointer-based Header Field Referencing .. 88

7.3 Implementation results ... 89
7.3.1 Comparison with other Match-Action Architectures 90
7.3.2 Discussion of results ... 91

8 Conclusion ... 93
8.1 Research Findings .. 93
8.2 Open Problems and Future Directions.. 96

References .. 97

Publications.. 105

List of Figures

Figure 1. OSI Model ... 23

Figure 2. High-level view of the internal components of a MAU (adapted from
[26]) ... 37

Figure 3. Match and Action dependencies in a Match-Action packet processing
pipeline (adapted from [26]) ... 38

Figure 4. Parser used in RMT architecture (adapted from [26]) ... 45

Figure 5. The proposed packet parsing processor .. 47

Figure 6. Throughput when parsing individual headers ... 50

Figure 7. Resulting throughput when parsing Ethernet, IPv4, and IPv6 packets
with 46-, 128-, 512-, and 1024-byte payload.. 51

Figure 8. Two consecutive 32-bit headers .. 53

Figure 9. Timing diagram for instruction pipeline when parsing two consecutive
headers ... 54

x

Figure 10. Timing diagram for instruction pipeline of the 8-threaded packet
parsing processor .. 54

Figure 11. Procedure for fragmenting IPv4 packets ... 63

Figure 12. IPv4 header containing option .. 64

Figure 13. Alternative match crossbar ... 71

Figure 14. Action crossbar with zero-extension of smaller units .. 72

Figure 15. Operation of PHV filling logic when writing the third word of IPv4
header to PHV .. 73

Figure 16. Action crossbar combining smaller units ... 74

Figure 17. Lightweight action crossbar with zero-extension of smaller units 75

Figure 18. Internals of Header Parser [PVI] .. 79

Figure 19. Parse graph with three levels [PVI] .. 80

Figure 20. Packet processing stage [PVI] .. 85

Figure 21. A fraction of the pipeline reconfiguration architecture (adjusted
from PVI) .. 87

List of Tables

Table 1. Contributions made in this dissertation.. 22

Table 2. Summary and comparison of packet processing solutions 41

Table 3. Functional units of the new packet parser ... 48

Table 4. Instruction fields... 49

Table 5. Instruction pipeline stages .. 49

Table 6. Achieved throughput when parsing basic and full header stacks 52

xi

Table 7. Area and power dissipation values for components of an 80 Gbps
packet parser ... 55

Table 8. Correspondence of packet parser components in RMT and the
proposed architecture .. 56

Table 9. Register index of PHV entries ... 60

Table 10. Integrity checking operations on IPv4 header fields ... 60

Table 11. Instructions executed on the packet preprocessor during arrival of IPv4
header ... 61

Table 12. Instructions executed by the egress parser .. 65

Table 13. Area and power dissipation of the components of a single packet
preprocessor .. 67

Table 14. Per stage area requirement of match crossbar variants ... 76

Table 15. Per stage area requirement of action crossbar variants ... 76

Table 16. Header parsing stages .. 79

Table 17. Area and power dissipation of the components of a header parser
(adjusted from PVI) .. 81

Table 18. Area and power dissipation of components required for 6.4 Tbps
packet parsing (adjusted from PVI) .. 81

Table 19. Components in each stage of the proposed packet processing pipeline 84

Table 20. Area of the constituent components of a packet processing stage
(adjusted from PVI) .. 90

Table 21. Comparison of the area (mm2) of RMT, dRMT and the proposed
architecture [PVI] .. 91

Table 22. Total area for the three architectures under comparison [PVI] 91

xii

ABBREVIATIONS

ALU Arithmetic and Logic Unit
AOI AND-OR-Invert
APCU Advanced Program Control Unit
ASIC Application-specific Integrated Circuit
BC Branch Catalyst
BE Best Effort
CRC Cyclic Redundancy Check
DPDK Data Plane Development Kit
DPI Deep Packet Inspection
dRMT Disaggregated Reconfigurable Match Tables
DSCP Differentiated Services Code Point
DSL Domain-specific Language
EPIC Explicitly Parallel Instruction Computing
FCS Frame Check Sequence
FD-SOI Fully Depleted Silicon on Insulator
FE Field Extractor
ForCES Forwarding and Control Element Separation
FPGA Field-Programmable Gate Array
GbE Gigabit Ethernet
Gbps Gigabit per second
GHz Giga Hertz
GPP General Purpose Processor
GPU Graphics Processing Unit
GRE Generic Routing Encapsulation
HDL Hardware Description Language
HLS High-level Synthesis
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IHL Internet Header Length
INT In-band Network Telemetry

xiii

IoT Internet of Things
IP Internet Protocol
IPB Incoming Packets’ Buffer
IPC Inter-packet Concurrency
ISA Instruction Set Architecture
LoC Lines of Code
LPM Longest Prefix Match
MAC Medium Access Control
MAU Match-Action Unit
Mbps Megabit per second
MPLS Multiprotocol Label Switching
Mpps Million packets per second
MTU Maximum Transmission Unit
NAT Network Address Translation
NFV Network Function Virtualization
NHRU Next Header Resolve Unit
NIC Network Interface Card
NOP No Operation
NP Network Processor
OSI Open Systems Interconnection
PaCW Parse Control Word
PC Program Counter
PCIe Peripheral Component Interconnect Express
PHV Packet Header Vector
PiCW Pipeline Configuration Word
PIEO Push In Extract Out
PIFO Push In First Out
PISA Protocol Independent Switch Architecture
PLUG Pipelined Lookup Grid
POF Protocol-oblivious Forwarding
PPS Packets Per Second
QoS Quality of Service
RAM Random Access Memory
RAN Radio Access Network
RMT Reconfigurable Match Tables
RTL Register-transfer level

xiv

SDN Software Defined Networking
SMT Simultaneous Multithreading
SR Segment Routing
SRAM Static Random-access Memory
SRH Segment Routing Header
Tbps Terabit per second
TCAM Ternary Content Addressable Memory
TCP Transmission Control Protocol
TLP Thread-level Parallelism
TLV Type-Length-Value
TM Traffic Management
TPP Tiny Packet Program
TTL Time to Live
UADP Unified Access Data Plane
UDP User Datagram Protocol
VDP Virtual Data Plane
VHDL Very High-Speed Integrated Circuit Hardware Description

Language
VLAN Virtual Local Area Network
VLIW Very Long Instruction Word
VM Virtual Machine
VNF Virtualized Network Function
WF2Q Worst-case Fair Weighted Fair Queuing

xv

ORIGINAL PUBLICATIONS

PI H. Zolfaghari, D. Rossi and J. Nurmi, "An Explicitly Parallel
Architecture for Packet Parsing in Software Defined
Networks," 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), Milan, 2018, pp. 1-
4, doi: 10.1109/ASAP.2018.8445123.

PII H. Zolfaghari, D. Rossi and J. Nurmi, "Low-latency Packet Parsing
in Software Defined Networks," 2018 IEEE Nordic Circuits and
Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC), Tallinn, 2018, pp. 1-6, doi:
10.1109/NORCHIP.2018.8573461.

PIII H. Zolfaghari, D. Rossi and J. Nurmi, "A Custom Processor for
Protocol-Independent Packet Parsing," Microprocessors and
Microsystems, vol. 72, 2020, pp. 1-11, doi:
10.1016/j.micpro.2019.102910.

PIV H. Zolfaghari, D. Rossi and J. Nurmi, "An Explicitly Parallel
Architecture for Packet Processing in Software Defined
Networks," 2019 IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of System-on-Chip
(SoC), Helsinki, Finland, 2019, pp. 1-7, doi:
10.1109/NORCHIP.2019.8906959.

PV H. Zolfaghari, D. Rossi and J. Nurmi, "Reducing Crossbar Costs in
the Match-Action Pipeline," 2019 IEEE 20th International Conference
on High Performance Switching and Routing (HPSR), Xi'An, China, 2019,
pp. 1-6, doi: 10.1109/HPSR.2019.8808105.

PVI H. Zolfaghari, D. Rossi, W. Cerroni, H. Okuhara, C. Raffaelli and J.
Nurmi, "Flexible Software-Defined Packet Processing Using Low-
Area Hardware," in IEEE Access, vol. 8, pp. 98929-98945, 2020, doi:
10.1109/ACCESS.2020.2996660.

xvi

17

1 INTRODUCTION

Computer networks have been subject to fundamental changes during the last
decade. As a result of these changes, programmability and the role of software has
become an indispensable part of computer networks. Today, computer networks
operate based on the Software Defined Networking (SDN) concept. The main idea
in SDN is the separation of the control plane from the data plane of forwarding
devices such as switches and routers. The control and data plane are the two main
logical entities within forwarding devices. They perform routing and forwarding
respectively. Routing is the process of determining the routes that packets must
traverse for reaching their destination. The outcome of routing is filling in the
corresponding database for routing. Forwarding is the process of finding the right
interface to which an incoming packet must be directed. As a result, routing is a
wider problem which involves all the nodes within a network whereas forwarding is
a problem to be solved within a forwarding device only. This tight coupling of the
control and data plane was the dominant logical architecture of the forwarding
devices. By mid 2000s, a router deployed by service providers was based on 100
million lines of source code [1]. Each new device had to add functionality on top of
those of its predecessors. As a result, switches and routers were internally comprised
of enormous logic to support all the network protocols that a potential customer
may use. Obviously, not all of the functionalities of a commercial forwarding device
could be utilized in a given deployment scenario.

Another shortcoming of the tightly coupled model was that it was
counterproductive to innovation in the area of computer networks. If the research
body had proposals for new network protocols, they had to start writing proposals
and submit them to Internet Engineering Task Force (IETF) for standardization
which was a lengthy process. Even if the idea was turned into a standard, switch and
router vendors had to implement the new functionality into the devices, thus adding
a few more years. A prime example is that of VxLAN. The first switch chip that
supported VxLAN appeared 3 years after VxLAN was standardized [2].

As a result of these shortcomings, the idea of separating the control and data
plane took off. In order for this separation to work, an interface must be made

18

between the control and data planes. One of the first efforts in development of such
an interface was Forwarding and Control Element Separation (ForCES) [3]. A
working group of the same name was formed at IETF and took the task of providing
a standard interface between the control and data planes. Through this interface, the
control plane installs forwarding rules in the data plane [4]. The next major step was
Ethane [5]. In this architecture, flow management is handled by a centralized
controller. Ethane-capable switches maintain a connection with the centralized
controller that contains an overall view of the network. Ethane failed to convince
commercial switch vendors for adoption.

A successful attempt was OpenFlow. First introduced in [6], it shared the main
idea with Ethane. However, it was far more advanced. It provides a logical
architecture for switches in which there are a number of tables containing forwarding
rules. A match on a table results in the execution of actions associated with the
matching entry. OpenFlow has been a commercial success and OpenFlow-based
switches are available on the market. Although OpenFlow performs the task of
interfacing between the control and data plane very well, it is not flexible because it
is dependent on a number of protocols.

For the inception of truly SDN-based networks, further contributions were
needed to support protocol-independent processing of packets. This required
working on the data plane. The key to achieving this goal is support of
programmability in the data plane. As a result of the clear need for the programmable
data plane, efforts were made in both hardware and software.

On the programming language level, P4 was introduced in [7]. It is a target-
independent language for describing packet processing behaviour in the data plane.
It abstracts the underlying hardware as a series of Match and Action stages. Moving
down to the Instruction Set Architecture (ISA) level, the term Protocol-oblivious
Forwarding (POF) was first mentioned in [8]. It was continued in [9] and [10]. POF
is a generic ISA for the processing of network packets. In a similar approach,
NetASM was proposed as an intermediate representation in [11]. It is in the
hardware-software interface of packet processing. On the hardware level, the
Reconfigurable Match Tables (RMT) architecture appeared in 2013. It is a fully
programmable protocol-independent architecture that sustains 640 Gigabits per
second (Gbps) throughput. Clearly, RMT was not the first hardware architecture for
packet processing, as Field-Programmable Gate Arrays (FPGAs) and Network
Processors existed prior to RMT, but the innovation of RMT was maintaining
programmability and performance.

19

Another development was the shift from middleboxes to commodity hardware for
implementing network functions. Middleboxes are devices that perform non-
forwarding functions. These devices were becoming costly, hard to manage and they
increased the failure points within the network [12]. Network Function
Virtualization (NFV) is the proposed solution for solving these issues. A network
function, such as Network Address Translation (NAT) can be instantiated on a
server. This class of network functions are referred to as Virtualized Network
Functions (VNFs) [13]. The need for programmability manifested itself for
implementing a wide range of network functions. However, packet processing on
the general-purpose processor of a server has its own problems. The time between
arrival of a packet at network interface card until being processed by the processor
results in high latency. Moreover, even high-end processors can be overloaded with
packets [14]. In order to solve these issues, SmartNICs appeared as a new class of
Network Interface Cards (NICs) with enhanced functionality, performance and
flexibility for offloading network functions and providing better performance [15].
SmartNICs come in a wide range of platforms such as Application-specific
Integrated Circuit (ASIC), embedded processor, and FPGA for varying levels of
flexibility and performance [16].

1.1 Objectives and scope

In this dissertation, the focus is on architectural aspects of Match-Action packet
processing. The implementation target is ASIC. Specifically, the focus is on the
problem of programmable packet parsing and packet processing. Issues such as
packet scheduling and switch fabric are not within the scope of this dissertation. In
the contributions made in this thesis, the key objectives are programmability, low
hardware complexity and sustaining line rate throughput of 640 Gbps and above.

1.2 Research questions

There are research questions common to both packet parsing and packet processing
as well as research questions specific to each of the two problems. One of the most
recurring questions common to both packet parsing and packet processing is the
question of which architecture is better, pipelined or run-to-completion. In the case
of run-to-completion, is it better to use conditional execution or branches in order

20

to support the high-throughput nature of packet processing? Since increasing the
frequency is not possible beyond a point, what architectural techniques are beneficial
for enhancing performance?

1.2.1 Research questions specific to packet parser

Regarding the packet parser, the author investigates how programmability is
achieved without expensive lookup entities such as Ternary Content Addressable
Memories (TCAMs). Ways of enhancing the performance of the parser without
increasing the operating frequency are also explored. With increase in line rates and
complexity of network protocols, the question is, whether the parser is supposed to
perform parsing only? Is there any performance benefit in processing the packets as
they arrive?

1.2.2 Research questions specific to the packet processing subsystem

As for the packet processing subsystem, the first step in designing architectures with
reduced area is to find out the major contributors to area. Since efficient use of
lookup resources is a key goal, the author investigates and provides solution for
program control mechanisms other than matching while still providing wire-speed
performance. Support of advanced workloads is also a design goal. Simultaneous
support of diverse set of protocols requires deep instruction memories which in turn
cause noticeable increase in total area. The question is, how is it possible to support
as many actions as possible while keeping the area overhead of instruction memories
low.

Another research question relates to crossbars used for generating search keys,
selecting operands to actions, and combining tables. Large crossbars occupy large
area and make physical design challenging. Is it possible to use smaller crossbars in
order to minimize the area while still maintaining programmability and performance?
Is it feasible to combine as many match tables as required without large multiplexers?
Minimizing recirculation is another research item addressed in this dissertation.
Recirculation of packets increases packet processing latency and reduces throughput.
What can be done in order to minimize the need for recirculating packets? Another
question is whether the field referencing mechanisms in the latest programmable
architectures are sufficient for supporting state of the art network protocols?

21

1.3 Research significance

Research on programmable data plane is mainly done in research and development
departments of leading switch and router vendors. The amount of academic research
on this topic is very small. Consequently, the outcome of research is not available to
the public. The research based on which this dissertation is written provides
substantial insight into the state-of-the-art packet processing hardware.
Programmable architectures for protocol-independent packet processing are still in
their infancy. Many SDN-related standards and contributions such as [7] and [17]
describe the switch as a logical entity. The designer is free in making design choices
as long as the desired functionality is achieved. The requirement analysis and
architectural exploration in this thesis paves the way for further contributions and
innovations for high-performance programmable packet processing hardware.

Performance in digital systems can be enhanced by increasing the operating
frequency or replicating the functional units for providing parallelism. Upscaling the
operating frequency is subject to physical limits. At 6.4 Terabits per Second (Tbps),
there are 10 billion minimum-sized packets per second each of which requiring
multiple cycles of processing. This means that even a processor with frequency of
10 Gigahertz (GHz) will not be able to keep pace with the rate of packet arrival.
There are physical barriers that hinder scaling the frequency of digital systems
beyond 5 GHz. Even within the range of feasible operating frequency values, lower
frequencies are preferred to avoid excessive power and heat dissipation. The only
solution for terabit-level packet processing is replication of functional units. The
significance of low-area design is that the savings in area can be exploited for
providing more on-chip match tables and/or more computational units without
violating area constraints. Integrating more match tables increases the lookup
capacity. Instantiating more functional units enhances functionality and/or
throughput. An entire packet processing pipeline can be replicated so that the
arriving packets are divided into the available pipelines.

The significance of supporting novel protocols by software means is obvious.
Due to the time-consuming and costly nature of designing, implementing and
verifying new hardware, it is best to have hardware that can be programmed for as
many different purposes as possible.

22

1.4 Contributions and results

Table 1 outlines the contributions made in this dissertation.

Table 1. Contributions made in this dissertation

Contribution Innovation Original
Publication

A low-area programmable packet
parser

Use of program control instead of TCAM PI, PII, PIII

Packet pre-processor Enhancement of packet parser with packet
processing functionality, processing packets on the
fly

PIV

Alternative crossbar architectures Use of smaller crossbars while maintaining
functionality

PV

A pipelined parser for 6.4 Tbps parsing Tenfold increase in throughput PVI
A flexible packet processing pipeline
with advanced addressing mode and
more efficient use of lookup tables

Custom action depth, advanced field referencing,
unlimited table combination

PVI

1.5 Author’s contribution

The author of this thesis has been the first author of all papers included in this
dissertation. The contribution includes coming up with the research idea, software
implementation of selected network protocols, architecting the design, Register-
Transfer Level (RTL) implementation, verification, and programming the
implemented architecture. In addition, for PVI, the ASIC synthesis has also been
done by the author of this dissertation.

1.6 Thesis outline

This thesis is organized as follows. Chapter 2 provides an in-depth overview of
packet processing solutions and justifies the need for custom hardware architectures.
Chapter 3 contains the first contribution, which is a fully programmable packet
parser. Chapter 4 provides enhancements to the packet parser for packet processing.
Chapter 5 compares crossbar alternatives for the Match-Action pipeline. Chapter 6
provides an alternative packet parser for terabit-level packet parsing. Finally, chapter
7 provides a new packet processing pipeline with enhanced level of flexibility. Finally,
chapter 8 concludes the work.

23

2 PACKET PROCESSING

Computer networks are the underlying means for communication of computer
systems including servers, desktop computers, laptops, tablets, smart phones, and
Internet of Things (IoT) devices. Internet is a prime example of a gigantic computer
network. In computer networks, data traverses in the form of network packets. In
order to simplify the design, operation, management, and troubleshooting of
computer networks, networks are built of logical entities, each belonging to a layer.
A reference model for this layered approach is the Open Systems Interconnection
(OSI) model elaborated in [18]. Figure 1 illustrates the OSI model.

Application layer
Presentation layer
Session layer
Transport layer
Network layer
Data link layer
Physical layer

Figure 1. OSI Model

The lowest layer is the physical layer. It deals with electrical, optical, or wireless
signals. As such, it has no knowledge of the contents of these signals. An instance
of a system operating at the physical layer can be found in [19]. The next layer is the
data link layer. It deals with accessing the transmission medium and addressing of
nodes within a single network. The next layer is the network layer. This layer solves
the problem of communication between independent networks which means how a
packet destined to a node in another network must reach the target network. The
next layer is the transport layer, which is in charge of transmission of variable-length
data segments between two logical end points. The upper layers deal with more
application-oriented matters. It is thanks to this layered model that when sending an
email, it is not of significance whether the recipient of the email is using the Internet
on a wired or wireless connection. Neither is it necessary to know what operating

24

system the recipient has. The message is created at the application layer and
submitted to the lower layers in turn. Each layer is concerned only with its own
specific issues. At the recipient’s side, the flow of the corresponding packet(s) starts
at the physical layer and moves upwards to the application layer.

The layered approach allows for interoperability. As far as a given implementation
of a layer’s functionality is fulfilled and the data is received and produced in the same
format, different implementations can be swapped. Associated with each layer are a
set of protocols each of which is a specific implementation of the tasks associated
with the layer in question. For instance, the most dominant layer-2 protocol is
Ethernet. The most dominant layer-3 protocol is the Internet Protocol (IP).
Currently, IPv4 and IPv6 are being used on the Internet. At the transport layer,
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are in
common use. Each protocol has a header to wrap around the data it receives from
the next higher layer protocol’s data.

Packet processing refers to the operations performed on network packets. These
operations are performed on the header(s) of network packets. It is also possible for
the payload of the packet to undergo processing. For instance, in the case of packet
fragmentation, the original packet is broken into multiple smaller packets each of
which carries a fraction of the original payload. The payload may also be subject to
encryption. Packet processing operations are executed in network switches, routers,
Network Interface Cards (NIC), and in general-purpose processor as instructed by
the operating system. This chapter provides an overview of packet processing
operations and the packet processing solutions.

2.1 Packet processing operations

Packet processing operations can be classified based on different criteria. One such
criterion is the direction of the packet. Processing on an incoming packet is called
ingress processing while processing on an outgoing packet is called egress
processing. Another classification is based on packet processing operations of which
the most basic one is forwarding. Forwarding was discussed in the introductory
section of chapter 1. Packet processing operations can be listed as follows:

-Parsing
-Integrity checking
-Header field manipulation
-Tunnelling

25

-State modification
-Lookup
-Classification
-Fragmentation and reassembly
-Traffic management

Each of them will be discussed in more detail.

2.1.1 Parsing

Parsing is the first step in processing of packets. In this chapter it is categorized as
one of the packet processing operations. In the chapters to follow, parser is the
prelude to packet processing. During parsing, the headers present in a packet are
recognized and consequently, the kind of processing required for the packet is
determined. According to [20], parsing can be done as the packets arrive or after the
packet has been received in its entirety. Parsers operating based on these two models
are referred to as streaming and non-streaming parsers respectively. Parsing must
not be confused with Deep Packet Inspection (DPI) in which the payload of the
packet is subject to inspection. Packet parser deals only with the headers.

2.1.2 Integrity checking

The contents of a packet might become corrupted during transmission as a result of
noise or other defects. The purpose of integrity checking is to detect errors within
the header. Ethernet frames contain a Frame Check Sequence (FCS) field that carries
an error detection code. It is calculated using 32-bit Cyclic Redundancy Check
(CRC). In IPv4, checksum of the header is calculated and then compared with the
value contained in the Header Checksum field. After each header field manipulation,
the checksum is recalculated and written to the Header Checksum field. Header
checksum in IPv4 is calculated using one’s complement addition [21].

2.1.3 Header field manipulation

Manipulation of header fields is the most obvious form of packet processing. One
of the examples of header field manipulation is decrementing the value of Time-to-

26

Live (TTL) and Hop Limit fields within the IPv4 and IPv6 header respectively.
Updating the value of checksum in IPv4 is another instance of header field
manipulation.

2.1.4 Tunnelling

Tunnelling refers to the process of encapsulating a packet into another packet. It
basically means adding a new header in front of the current header(s). One of the
use cases for tunnelling is when a network cannot carry packets of a specific type. In
this case, the packets have to be encapsulated in packets that can be transported by
the network in question. For instance, if IPv6 packets need to traverse a network
supporting only IPv4, IPv6 packets must be encapsulated into IPv4 as described in
[22]. At the end of the so-called tunnel, the wrapping is removed.

2.1.5 State modification

Implementing the functionality of certain protocols requires maintaining state. A
notable example is Transmission Control Protocol (TCP). Apart from such
protocols, it is possible to associate some form of state with packets belonging to
stateless protocols. For instance, a router can be configured to keep track of the
payload length of IPv6 packets whose next header is UDP. With each IPv6 packet
that fulfils this criterion, the router retrieves the state and adds the payload length of
the packet to it. State modification may be used just for statistical or billing purposes
and hence not affect the fate of packets. Alternatively, the value of the state may be
used as basis for modifying header fields or even dropping packets for which a
threshold value has been reached.

2.1.6 Lookup

Lookups are one of the most widely used operations in packet processing. The
nature of packet processing requires that some fields be selected as the search key to
be used for looking up a table and retrieving the associated data. For instance, when
an Ethernet frame arrives in a switch, the destination address is used as a search key
to look up into the forwarding table to find out the port to which the frame must be
forwarded. When an Internet Control Message Protocol version 6 (ICMPv6) [23] is

27

encountered, the Type and Code fields must be used to obtain the correct
instruction(s) for processing the ICMP message in question. Therefore, lookups are
required both for retrieving data items and for program flow. Lookup can be
regarded as a sub-operation of packet classification, which will be discussed shortly.

2.1.6.1 Exact Matching

Exact matching is a kind of matching in which an exact match for the search key in
question is being searched. This kind of matching is encountered in forwarding of
Ethernet frames. When presenting the Destination Media Access Control (MAC)
address to the lookup table, an exact match is looked for. If a memory is used to
host all possible MAC addresses, 248 entries are required because MAC addresses are
48 bits wide. This amount of memory is gigantic. Instead of this naïve approach,
hashing is used because a switch will deal with a far more limited range of MAC
addresses rather than the whole address space. The major issue brought upon by
hashing is that of collisions. It refers to the problem of distinct search keys being
mapped to the same entry in the hash table. One of the most widely used solutions
to this issue is cuckoo hashing [24].

2.1.6.2 Ternary Matching

Ternary matching allows a third state in addition to the default zero and one states
to be stored in the match table. One use case of ternary matching is Longest Prefix
Matching (LPM) in which the stored entries contain a non-ternary part called prefix
followed by the ternary part. In LPM, matching entry with the longest prefix is
searched. TCAMs can provide the means for ternary matching because they can
store don’t care bits as well. TCAMs have single-cycle latency [25] at the cost of area
and power consumption. The area of a TCAM block is 6-7 times that of an Static
Random Access Memory (SRAM) with equal size [26]. A TCAM consumes as much
as 15 watts [27].

2.1.7 Classification

The purpose of classification is grouping packets into classes. Packets in a given class
receive similar processing. The basis for classification is matching. Therefore,

28

classification is the outcome of an earlier match operation. The simplest form of
classification is packet forwarding in which the basis for matching, and hence
classification, is the destination address. All the packets having the same destination
will be steered to the same port. More advanced packet classification involves using
the value of multiple fields as the basis for matching. For instance, the 5-tuple refers
to source IP address, destination IP address, protocol/next header, source port and
destination port fields from IPv4/IPv6 and TCP/UDP. It is used for identifying a
transport-layer session. Use of 5-tuple as the basis for classification has use cases in
NAT [28] and traffic management purposes [29].

2.1.8 Fragmentation and reassembly

If the size of a packet is larger than the Maximum Transmission Unit (MTU) of the
network connected to the outgoing port, the packet has to be fragmented. This
means that the payload of the packet must be broken into fragments and each sent
as an independent packet. In the header of each fragment, there should be sufficient
information to allow the reassembly of the fragments in the receiving host. In IPv4,
the routers fragment a packet if its size is above the MTU of the path it must be
forwarded to. In IPv6, fragmentation is done only by the source node. The minimum
supported MTU as required by IPv6 is 1280 bytes [30].

Use of fragmentation and reassembly of packets is not limited to IPv4 and IPv6.
Rather, it is sometimes done inside a network switch or router. Variable-length
packets are fragmented into smaller fixed-size units called cells for better management
of resources such as the internal switching fabric and packet buffers. The packet is
then reassembled before being sent out through an egress port.

2.1.9 Traffic Management

Traffic Management (TM) deals with the problem of differentiating treatment of
certain packets. Not all packet processing systems implement TM. In the absence of
TM, all packets are treated equally and forwarded in Best Effort (BE) mode. Traffic
management is a collective term for a wide range of operations such as marking,
traffic policing, priority-based packet scheduling and traffic shaping. For each of
these operations, there are various algorithms. The purpose of TM is providing
Quality of Service (QoS) and/or preventing congestion. A notable instance of traffic
management mechanism for IP traffic is Differentiated Services (DiffServ) [31].

29

2.2 Software-based packet processing solutions

In this section packet processing solutions employing software are discussed.
Software switches and routers provide switching and routing functionality on
general-purpose computers by means of software. The benefit of software routers is
their flexibility and use of commodity hardware. In addition to general-purpose
programming languages such as C, custom programming languages for packet
processing have emerged to describe packet processing functionality. The operating
system kernel performs packet processing services to applications sending and
receiving packets. For enhanced performance, the operating system kernel can be
bypassed. This concept is known as user-space packet processing. Each of the
aforementioned subjects are elaborated in the subsections that follow.

2.2.1 Software Routers

Click [32] is a flexible and configurable software router. Its original implementation
achieves forwarding rate of slightly over 170 Megabits per second (Mbps). At the
time Click was presented, processors were running at sub 1.0 Giga Hertz (GHz)
frequencies. With increase in processor speeds software routers achieved better
performance. RouteBricks [33], builds a software router made of four servers
connected through a mesh topology. It achieves throughput of 35 Gbps.

CuckooSwitch [34], is a software-based Ethernet switch. It has two underlying
components: Intel Data Plane Development Kit (DPDK) and a scheme for ensuring
consistency in spite of concurrent access of a writer and multiple readers. It achieves
throughput of 92.22 Gbps.

Another development that pushed research for software routers was the rise of
virtual machines (VM). Software routers steer packets towards or out of virtual
machines. Open vSwitch [35] is a virtual switch that achieves 18.8 Gbps throughput
when used as an Ethernet switch. With increase in the number of protocols and
correspondingly increase in the complexity of software routers, the need to make
them programmable became ever evident. PISCES [36] is a programmable software
switch. It achieves throughput of slightly over 10 Gbps in a benchmark in which
minimum-sized Ethernet frames arrive.

30

2.2.2 Programming Languages

As a general-purpose programming language, C can be used for implementing packet
processing functionality. Linux kernel is implemented in C and contains components
for processing of packets. C language does not natively support protocol-specific
features such as variable-length fields and encapsulation. Apart from the limitations
of C, the protocol format may be incompatible with the processing width and byte
ordering of the computer that executes packet processing code written in a general-
purpose programming language. Consequently, the applications need to perform the
required adjustments before using the value of a header field. A Domain-specific
Language (DSL) for describing the format of packets overcomes these
shortcomings. PacketTypes [37] is a language specialized for packet specification. In
this language, the layout of fields within a packet as well as constraints on their values
can be defined as a type. It has native support for encapsulation, variable-length
fields, and optional fields. The principle operation in PacketTypes is checking their
membership of packets in a type. PacketTypes has been used for network
monitoring, packet classification, and formal declaration of protocol formats.

P4 is a declarative domain-specific language for instructing the data plane on how
the packets must be processed. P4 was first introduced in [7]. Many commercial
switches today are P4-programmable. Currently, P4 has two releases, P414 and P416
that are described in detail in [38] and [39] respectively. P4 is based on an abstraction
of the data plane in which the parser is followed by a Match-Action pipeline. Using
P4 language, the headers can be described. The description of headers contains an
ordered list of header fields and their size. The parse graph can also be described.
Tables are described in terms of their size, the search key, the kind of lookup and
the action that must be executed upon match. Associated with each packet is a set
of metadata items called intrinsic metadata. It contains information such as the port
on which the packet has arrived, the port to which it must be forwarded, whether
the packet is a clone or recirculated packet, and other relevant information. P4
contains a number of primitive actions such as arithmetic and logical operations,
header addition and removal, packet dropping, etc. More complex actions can be
defined as a combination of primitive actions.

Domino [40] is a domain-specific imperative language with syntax similar to C. It
is used to express data plane algorithms. The central concept in Domino is packet
transaction which is an atomically executed code block separated from other blocks.
Packet transactions allow the programmer to focus on the operations that must be
performed on a packet, rather than concurrency issue brought upon by other

31

packets. In other words, packet transactions provide the illusion that a packet arrived
at a switch is processed to completion and then processing of the next packet starts.
When compiled for execution, packet transactions run at line rate in a guaranteed
manner. It achieves this by imposing certain constraints. For instance, it does not
allow loops nor unstructured control flow statements such as goto statements. When
dealing with an array element within a transaction, only one element is allowed. What
triggers the execution of a packet transaction is a guard that is a predicate. For
instance, a guard could be defined as a header field having a specific value. Once this
predicate evaluates to true, the packet transaction associated with it is executed.
Domino has been evaluated in terms of its expressiveness when used to implement
various data plane algorithms for traffic engineering, congestion control, active
queue management, network security and measurement. The authors have compared
the number of lines of code (LoC) for the data plane algorithms written in Domino
and P4. The LoC value for Domino is considerably smaller than those of P4.

In chapter 1, ISA-level contributions such as POF and NetASM were mentioned.
Describing desired packet processing functionality at ISA-level is cumbersome.
However, this does not undermine the significance of ISA. A widely adopted ISA is
of benefit to compiler development and hardware design. The compiler converts a
given higher-level language to ISA-level representation. Hardware architects provide
microarchitecture required for hardware implementation of the ISA in question.

2.2.3 User-space Packet Processing

Implementation of protocol stacks in operating systems has improved over the years.
However, at high rates of packet arrival, these implementations lag behind. The
survey in [41] has gathered the shortcomings of packet processing in OS from a
number of research works. One of the notable shortcomings is the high cost of
context switch to kernel and back to user space. Every time an application needs to
receive a packet, it must make an OS system call. After the OS has taken control,
another context switch is made back to the application. According to [42], as many
as 1000 CPU cycles are consumed per packet in these context switches. The solution
to this inefficiency is user-space packet processing in which the kernel is bypassed.
This bypassing enables the packet buffers to be directly accessible from the user
space. The other solutions required for mitigating inefficiencies of packet processing
by kernel are sharing the packet buffer between user space and NIC, processing

32

packets in batches and supporting the multi-queue feature of modern NICs for load
balancing [43].

Data Plane Development Kit (DPDK) is an open source set of libraries for fast
packet processing in the user space. The purpose of DPDK is sending and receiving
packets with minimum possible number of cycles. According to [44], the throughput
of layer-3 forwarding of 64-byte packets with LPM as default lookup method using
Intel NICs ranges from 29.76 to 74.4 Million packets per second (Mpps). For some
packet processing functions, the throughput is hundreds of Mpps [45]. As of now,
DPDK supports the dominant CPU architectures and NICs from different vendors.
Instead of the interrupt-driven approach taken by the operating system’s kernel, it
uses polling because when the rate of packet arrival is high, interrupt-driven
approach is inefficient. The other similar frameworks are netmap [46] and PFQ [47].

2.3 Hybrid packet processing solutions

In addition to the software-based solutions, there are solutions implemented on
FPGAs. FPGAs are devices with a pool of hardware resources that can be
interconnected in order to achieve the desired hardware architecture. The desired
hardware architecture is provided in the form of Hardware Description Languages
(HDLs) such as Verilog and Very High-Speed Integrated Circuit Hardware
Description Language (VHDL). In recent years, it has become possible to describe
the desired functionality in higher-level languages such as C/C++. The concept of
using higher-level languages for obtaining the corresponding functionality in
hardware is called High-level Synthesis (HLS). So, FPGAs are hardware solutions
but since they allow reconfigurability, they have flexibility characteristics similar to
software. For this reason, it is considered as a hybrid solution.

In 2010s, Graphics Processing Units (GPUs), received attention for use as the
platform for execution of packet processing. GPUs are specialized processors for
graphical operations such as high-performance rendering of images. The most
notable architectural characteristic of GPUs is large pool of parallel resources for
thread-level parallelism (TLP).

33

2.3.1 Solutions based on FPGAs

NetFPGA is an open-source FPGA-based platform for implementing network
processing functionality. There are 1 Gbps, 10 Gbps and 100 Gbps NetFPGA
variants [48]. NetFPGA SUME [49] is the latest in the line-up of NetFPGA devices.
It is a Peripheral Component Interconnect Express (PCIe) board containing four 10
Gbps ports. The board hosts XILINX Virtex-7 690T device for custom logic
realization. With more than 690K logic cells, 52,920 kb block Random Access
Memory (RAM), and high-speed transceivers, it can be programmed for standalone,
peripheral, and switch use cases.

SwitchBlade [50] is a platform for rapid deployment of custom protocols. It is
designed with the aim of providing the right balance between flexibility of software
and performance offered by hardware. It is implemented on NetFPGA board. In
SwitchBlade, workloads pertaining to multiple protocols can run in parallel. Each
corresponding data plane is called a Virtual Data Plane (VDP). Functional units in
SwitchBlade are organized in pipelined fashion. The main operations in the pipeline
are preprocessing in which fields for matching are selected, hashing, matching and
post-processing. Both LPM and exact matching are supported by SwitchBlade. In
the experimentation performed by the authors, it has been used for IPv4 and IPv6
forwarding, path slicing and OpenFlow switch. The forwarding rate of SwitchBlade
is 1.5 × 106 packets per second (pps) for 64-byte packets. This translates to 732.42
Mbps throughput.

As mentioned earlier, the functionality of FPGAs is dependent on HDLs or
languages such as C/C++. The fact is that many network innovators are not familiar
with HDLs. Furthermore, even C/C++ languages are at a low abstraction layer for
describing network processing functionality. For this reason, many FPGA-based
platforms come with a toolchain that takes the desired functionality in a language
close to networking. In [51], a complete solution is provided in which the
functionality is described in high-level language called PX. The PX-specific compiler
converts the code into the equivalent HDL and then to the bitcodes required for
configuring the underlying FPGA platform. It achieves 100 Gbps throughput when
dealing with minimum-sized Ethernet frames.

In a similar approach, [52] accelerates network functions for commodity servers.
It is programmed in a language called ClickNP. When configured as a firewall, it can
process 64 million packets per second (Mpps) with each packet being 64 bytes.
Another work in which a complete solution is provided is P4FPGA [53]. It is P4
compiler with a custom backend for generating HDL code to be used as the input

34

to synthesis and place and route on FPGA. P4FPGA has been evaluated in terms of
its capability to support different data plane applications. Match-Action processing
for L2/L3 forwarding on P4FPGA takes 124 ns for packets whose size is up to 1024
bytes.

FPGAs have been extensively used for packet parsing. In these solutions, the
header sequence is described in HDL or a higher abstraction layer. In [54], a domain-
specific language called PP is used for describing headers. Based on this description,
the FPGA is configured for providing the desired implementation. For a stack
containing Virtual Local Area Network (VLAN), IPv4/IPv6 and TCP/UDP, it
achieves throughput values of 302 and 578 Gbps using 1024- and 2048-bit datapaths
respectively. The latency figures are above 300 ns. However, it is stated that these
figures are raw throughput values obtained by multiplying datapath width and
operating frequency. The effect of short packets and quantization over wide word
must be taken into account. As a result, the actual packet parsing throughput is less
than the provided values.

Since P4 language also describes headers, some solutions use it as the input to the
tool chain that generates the HDL. This approach is used in [55] and [56] and the
achieved throughput is 100 Gbps. The highest achieved parsing throughput using
FPGAs is in [57] in which up to 1 Tbps throughput is achieved.

2.3.2 Solutions based on GPUs

PacketShader [58] uses the architectural features of GPUs to enhance the
performance of software routers. In addition, I/O optimizations have been provided
for implementing batch processing to eliminate the overhead caused by memory
management on a per-packet basis. In IPv4 forwarding, PacketShader achieves
throughput of almost 40 Gbps. For IPv6 forwarding, the throughput value is 38.2
Gbps.

The work in [59] considers both strong and weak points of GPUs. On the strong
side, GPUs hide memory latency incurred by lookups by switching to another thread.
General-Purpose Processors (GPPs) also support multithreading but they support 2
or 4 threads. In GPUs, tens of threads are supported and the switching between
them occurs very fast. On the weak side, the high memory access latency of GPUs
is undesirable for packet processing. In addition, the memory bandwidth degrades
in packet processing applications because random memory locations are accessed.
The main argument of their work is that performance brought by GPUs is not due

35

to their computational capacity, rather due to efficient context switching in hardware.
In order to emulate such efficient context switching in CPUs, a technique called G-
Opt is developed. It is based on group prefetching and fast context switching. It re-
orders code for concurrent memory access. This access pattern allows software
pipelining. Use of G-Opt on GPPs yields throughput similar to GPUs. For instance,
using 4 cores, G-Opt achieves throughput of close to 50 Mpps while with GPU this
figure is 40 Mpps.

APUNet [60] evaluates whether fast context switching in GPP can solve a wide
range of network applications. The findings confirm that besides the fast context
switching, the computational capacity of GPUs is indeed a key contributor to
performance. However, a barrier to achieving the full performance gain of GPUs in
packet processing is the transfer bottleneck of PCIe. Typical PCIe bandwidth is
considerably smaller than that of GPU memory. In response, the authors suggest
use of integrated GPU in which CPU and GPU share memory. As a result of this
unified memory space, the data transfer overhead is eliminated.

2.4 ASIC-based packet processing solutions

So far, the relevant software and hybrid solutions have been reviewed. Software and
virtual routers achieve throughputs in the range of tens of Gbps. FPGA-based
solutions provide throughputs in the range of hundreds of Gbps. But as discussed
earlier, FPGA-based solutions are based on a high- or low-level description of the
workload. As a result of this, FPGA solutions contain hardware specific to a known
set of protocols. This is in contrast with the protocol-independence principle of
SDN. Solutions compliant with SDN do not contain any protocol-specific state. By
removing this dependence on specific protocols from FPGAs, their performance
will degrade. In addition, TCAMs are required in high-throughput environments
because of their parallel search capability. In FPGAs, it is possible to achieve TCAM
functionality by emulation. However, this is inefficient in terms of resource usage.
Another issue with FPGAs is that they run at considerably lower frequencies when
compared with ASICs. In Terabit-scale packet processing, the minimum required
operating frequency is 1.0 GHz. Because of their low operating frequency, FPGAs
rely on ultrawide datapaths. Multiplying datapath width by operating frequency gives
a raw throughput value which is not achievable for small packets. This issue is
discussed in [54]. The latency figures for parsing alone is in the range of hundreds of
ns while commercial routers and switches perform entire processing in such a time

36

window [61]. This is confirmed by the line-up of high-end commercial products. As
will be seen in sections 2.4.1 and 2.4.2, hardly any such device is built upon FPGAs.
In this segment, the ASICs have no rivals. This is the motivation for using ASIC-
based solutions.

2.4.1 Network Processors

Network Processors (NPs) gained popularity in early to mid-2000s. They were
basically processors with functional units optimized for processing packets. The
focus, at that point, was not protocol-independence. Instead they contained the logic
for implementing and accelerating the most commonly used network protocols. In
[62], some of the shortcomings of NPs are presented. The main challenge in reaching
high performance with NPs is the large gap between the processor and the memory.
As opposed to GPPs, use of caching is of little help because locality of reference is
missing in network processing. Instead, NPs mitigated this issue by using
multithreading. When an NP core requests an item from memory, it switches to
another thread.

One of the most notable network processors was the Intel IXP2800 and
IXP2850, the latter of which has integrated cryptographic units. The store-and-
forward packet processing is performed by 16 32-bit micro-engines, each of which
can run 8 threads. The maximum operating frequency is 1.4 GHz. Each micro-
engine has an 8K instruction store. The micro-engines cooperate with each other for
solving packet processing problems. The complete datasheet is available in [63].

Today network processors are not as widely used as early 2000s. However, there
are a few of them in use. Cisco has a 400 Gbps multicore network processor which
is comprised of 672 general-purpose processors [64]. Each of the processors has an
8-stage pipeline. The instruction set contains network-specific instructions. It can be
programmed in C and assembly language. Another notable network processor is
Nokia NP4. It is a 3 Tbps network processor that supports deep packet lookups and
real-time telemetry [65].

2.4.2 Programmable Switch Chips

In the post-NP era, Pipelined Lookup Grid (PLUG) [66] was one of the first
architectures providing flexibility with the aim of supporting new protocols. It
consists of a grid of tiles that can be combined for implementing different protocols.

37

In [20], a programmable packet parser was presented. It operates based on the
Match-Action principle. Based on the action determined by its current state, it
extracts a specific field of the arrived header to determine its next state. Actions
associated with a given state determine what fields of the arrived header must be
extracted and what fields must be written to the field buffer. This parser achieves
throughput of 40 Gbps.

RMT [26] contains 16 instances of the parsers presented in [20] and a 32-stage
pipeline of Match and Action Units (MAU). The parsers write header fields to a
4096-bit register called Packet Header Vector (PHV) which traverses through the
pipeline. The PHV has 224 entries. The physical architecture of RMT closely
resembles the switch abstraction made by P4. Inside each MAU, there are 16
TCAMs, each being a 2K×40-bit unit. In addition, there are 106 SRAM blocks each
of which is 1K×112 bits. These units can be flexibly assigned for exact match, action
memory and statistics. What is meant by action memory is the parameters required
for modification of header fields. Match crossbars generate the search key from the
fields in PHV and present it to the ternary and exact match tables. The outcome of
the match determines the actions to be executed. The actions are executed by action
engines. Each action engine is an Arithmetic Logic Unit (ALU) for modifying PHV
entries. There is an action engine associated with each PHV entry. Figure 2 provides
a high-level view into a MAU. Only one of the 224 ALUs is illustrated. The output
of the ALU is modified header field.

Figure 2. High-level view of the internal components of a MAU (adapted from [26])

If the dependencies in the program allow, it is possible to overlap the operation of
MAU instances. In other words, it is not mandatory for MAUi to start match
operation after action execution in MAUi-1 has been done. However, this

PHV
Match

Crossbars
Lookup Tables

(Ternary and Exact)

Action
Memory

Instruction
Memory

Action
Crossbar A

L
U

38

overlapping is not always possible due to dependencies. There are match
dependencies and action dependencies. Match dependencies occur when field(s)
modified by a MAU must be used as the search key in the subsequent MAU. In this
case, the matching in subsequent MAU starts only after the action execution in
current MAU is over. Action dependencies occur when field(s) modified by a MAU
must be used as input(s) to action execution in the subsequent MAU. In this
scenario, matching in subsequent MAU can overlap with action execution in current
MAU. Figure 3 illustrates the two dependencies with respect to time.

Match dependency

Stage i Match Action
Stage i+1 Match Action

Action dependency
Stage i Match Action
Stage i+1 Match Action

Figure 3. Match and Action dependencies in a Match-Action packet processing pipeline (adapted
from [26])

The inter-MAU latency caused by match and action dependencies are 12 and 3 cycles
respectively [67]. The delays are configured statically according to the dependencies
present in the program. The parsers in RMT occupy a total area of 5.6 M gates after
synthesis using an industry-standard 28-nm library. The area of the entire
architecture has not been provided, though. Later on, RMT evolved into Protocol-
independent Switch Architecture (PISA), which is a P4-programmable architecture
[68].

The work in [40] provides a machine model for programmable switches. Banzai
is the compiler target for the Domino language discussed earlier. Banzai models the
Action part of the Match-Action pipeline. As such, it does not model the matching
operations. Banzai’s pipeline does not stall and always sustains the line rate. The
functional units at each stage of Banzai are called Atoms. They modify header fields
and state in a single-cycle manner. In order to provide consistency when it comes to
modifying state, atoms perform read, modify and write operations in a single cycle.
After analysing various data plane algorithms, 8 different Atoms with different levels
of complexity have been designed and synthesized using 32 nm process technology
for running at 1.0 GHz frequency. Stateless Atoms, with an area of 1384 μm2,
perform arithmetic and logic operations on header fields. Stateful atoms modify state
variables. The basic stateful Atom type simply modifies state and has area of 431

39

μm2. More advanced stateful atoms contain logic for predicated assignment,
assignment for both outcomes of a conditional evaluation, and nested conditional
evaluation statements. The area of these atoms varies between 791 to 5997 μm2.

Disaggregated RMT (dRMT) [69] is a Match-Action architecture similar to RMT,
except that instead of a pipeline with 32 stages, it comprises 32 processors.
Therefore, instead of a pipeline model, it is a run-to-completion model. Once a
packet is assigned to a dRMT processor, it remains there until all the processing has
been done. In addition, the tables are not attached to the processors. The processors
are connected to table clusters via a crossbar. The processors contain 32 ALUs, as
opposed to 224 in RMT. The motivation for disaggregating memory from action
stages, is that if the memory resources within a stage are not used in one stage, they
cannot be assigned to another stage. By providing a crossbar, the authors of dRMT
provide this added flexibility to RMT.

In addition to programmable packet parsing and processing, support for flexible
packet scheduling is required as well. In [70], a hardware primitive for programmable
packet scheduling has been designed. The primitive is called Push In First Out
(PIFO). It is a priority queue to which items can be pushed to arbitrary positions
according to their rank. However, dequeuing operation is applied only to the head.
PIFO can be programmed to provide the functionality of different scheduling
algorithms. It supports hierarchical scheduling of up to 5 levels with programmable
scheduling for each level. It has been synthesized using 16 nm standard cell library.
The synthesis results confirm that it can run at 1.0 GHz which makes it suitable for
a switch with 64×10 Gbps ports. The results on area indicate that PIFO incurs only
a 4% increase in chip area. A generalization of PIFO, referred to as Push In Extract
Out (PIEO) is proposed in [71]. It improves the expressiveness of PIFO by allowing
dequeuing to be applied not only to the head but to arbitrary positions as well. PIFO
cannot be used for more general scheduling algorithms, such as Worst-case Fair
Weighted Fair Queuing (WF2Q), in which the eligible item with highest rank must
be scheduled. This is because in scheduling implemented by PIFO, the item with
highest rank is always assumed to be eligible. Such scheduling algorithms require a
primitive that can dynamically filter a subset of items and select the one with highest
rank.

One of the notable commercial products was Intel FM5000/FM6000 Ethernet
switch chip that use a microcode-programmable packet processing pipeline called
FlexPipe [72]. Although it is an Ethernet switch chip, it provides features such as a
number of lookup tables that can be combined for flexible frame classification. In

40

addition, the Arithmetic and Logic Units (ALUs) provide a means for implementing
custom actions.

Netronom NFP-6000 is a programmable multi-core processor for data plane
processing [73]. It consists of 120 programmable flow processing cores and 96
packet processing cores. The amount of on-chip memory is 31 MB. It provides 200
Gbps throughput for L2-L7 processing. It supports both exact and ternary matches.
It is used in Netronome Agilio LX series of SmartNICs.

Barefoot Tofino is a programmable Ethernet switch chip. Its internal architecture
is called PISA, which is based on the RMT architecture. It is programmed using the
P4 language. It sustains 6.4 Tbps aggregate throughput by integrating 4 pipelines into
the chip [74]. Each of the four pipelines is very similar to RMT. In addition to packet
forwarding, its programmability allows it to be used for telemetry and load balancing
as well. Barefoot’s successor to Tofino is Tofino 2. Built using 7 nm processing
technology, it sustains a doubled aggregate throughput of 12.8 Tbps by doubling the
number of transistors to 21 billion [75].

The Unified Access Data Plane (UADP) is the ASIC in Cisco Catalyst 9000
switches [76]. It consists of a flexible parser and pipeline. For some more advanced
network functions such as fragmentation and encryption, it uses on-chip micro-
engines instead of the pipeline. The latest architectural variant is UADP 3.0. It
sustains 1.6 Tbps aggregate throughput. Built on 16 nm process technology, it
contains 19.2 billion transistors. It contains 36 MB memory for buffering. The width
of its lookup tables allows storage of IPv6 address in their entirety.

The most high-performance chip is currently the Broadcom Tomahawk 4.
Designed for datacentre and cloud computing environments, it sustains aggregate
throughput of 25.6 Tbps. It is built using 7 nm process technology [77].

As can be seen, very little architectural information is available for commercial
products. It is notable that the major vendors offer products with similar capabilities.
A unifying characteristic of all in recent years has been emphasis on flexibility and
programmability.

41

2.5 Summary of Packet Processing Solutions

Table 2 summarizes and compares characteristics of the packet processing solutions
reviewed in this chapter.

Table 2. Summary and comparison of packet processing solutions
Spectrum Solution Characteristics

Maximum
throughput

Programmability Latency Commercial
deployment

Primary use
case

Power
efficiency

Market
segment

Software Software
routers

100 Gbps High Variable Yes Steering
packets to and
from virtual
machines

Low Entry-
level

Programming
languages

Depends
on the
hardware
target

High Can be
fixed or
variable

Yes Programming
the packet
processing
system

Depends
on the
target
platform

Entry-
level to
high-
end

User-space
packet
processing

A few tens
of gigabits
per
second

High Variable Yes Bypassing the
OS

Low Entry-
level to
mid-
range

Hybrid FPGA Tens of
gigabits
per
second

High but
requires
knowledge of
HDLs

Can be
fixed or
variable

Limited Prototyping,
acceleration

Low Mid-
range

GPU Tens of
gigabits
per
second

High Variable Not for
packet
processing

Using massive
thread-level
parallelism

High Mid-
range

Hardware Network
Processor

A few
terabits
per
second

High but may
require
assembly- or
microcode-level
programming

Variable Limited Providing
programmability
into networking
hardware

High Mid-
range to
high-
end

Programmable
switching
chips

Tens of
terabits
per
second

High Fixed Yes Providing
programmability
and guaranteed
performance
into networking
hardware

High High-
end

2.6 Applications of Programmable Data Plane

Programmable data plane enables innovation by providing the flexibility to
implement different network protocols. In addition to this, they enable enhanced
visibility into the network. This provides for more effective troubleshooting and
diagnostic operations. As programmable data plane supports any protocol for which
the corresponding functionality is written in software, a protocol could be designed

42

whose messages contain internal information of switches and routers. This
information is updated as the packet belonging to this protocol traverses the
network. This technique is referred to as In-band Network Telemetry (INT). A
similar approach is taken in [78], in which sources of packets embed tiny packet
programs (TPP) into packets for querying and manipulating network state. As the
packet traverses the network, the containing TPP is executed on the switches and
routers. This technique has become one of the most important use cases for
programmable switch chips [79].

Another novel application is load balancing which is critical in datacentres.
Modern flexible switch chips contain a vast amount of memory that can be flexibly
used for storing per-connection state. In [80], a layer-4 load balancer is implemented
in P4 for execution on a modern switch ASIC. Using their approach, up to hundreds
of load balancing servers can be replaced by one switch, thereby reducing the cost
of load balancing by two orders of magnitude. This solution has also become an
industry solution [81].

One of the latest and most innovative use cases is offloading program execution
to the switches. This concept is called in-network computing. Under this concept,
the switches not only forward packets, they contribute to the processing of data
contained in the packets as well. This is motivated by the fact that networking
hardware are becoming more and more programmable. Furthermore, when
computation is offered as a service, the packets must traverse the network until they
reach the service provider’s server(s). If the forwarding devices on the path to the
service provider can also take part in the processing, more processing power is
achievable. In [82], the problem of convolutional neural networks has been analysed
in terms of its suitability for in-network computing. Their analysis reveals that
current network hardware can be used to accelerate neural network inference
workload of datacenters. In [83], similar analysis is performed for implementing a
line-following algorithm on a P4-programmable NIC. By carefully dividing the
required calculations among the Match-Action stages, they can achieve 19 decisions
per second on 640×480 greyscale images. Some principles are provided in [84] for
in-network computations. The authors suggest offloading primitive calculations
rather than the whole application because the computational resources on switches
are limited. Care should be taken so that failure of switches does not make
computation by the server impossible. In addition, it should be possible to recover
any lost data as a result of failure in switches.

The programmable data plane has also become an enabler for 5G radio networks
offering ubiquitous connectivity using technologies from radio, transport and cloud

43

domains [85]. There is growing interest in using packet-based networks such as
Ethernet in the transport network. The flexible Radio Access Network (RAN), in
collaboration with SDN and NFV allows to configure the network with different
functional splits in transport network nodes [86]. This dynamic solution requires
virtual resource instantiation needs, referred to as network slices. In addition,
different standards such as [87], [88], [89] each require different packet format. A
programmable packet processing system is required for implementing packet
forwarding and performing the reconfigurations when a different functional split is
required for changing slice requirements.

44

3 A NEW PROGRAMMABLE PACKET PARSER

Packet parsing is the first step in processing of packets. It involves recognizing the
headers present in a packet and extracting them for processing. In this chapter, a
new programmable packet parser is presented. It uses program control instead of
relying on TCAMs for maintaining state. The contents of this chapter are based on
publications PI, PII, and PIII.

3.1 A Closer Look at Packet Parsing

In order for a packet parser to operate correctly, it must know the first header. When
multiple headers must be parsed, the next header must be determined. Some headers
have an indication of the header that follows. Examples of fields that contain this
kind of indication are EtherType in Ethernet, Protocol in IPv4 and Next Header in
IPv6, and Protocol Type in Generic Routing Encapsulation (GRE). For the headers
that do not contain this indication, there must be a default header associated with
them. Alternatively, the next header can be considered as the payload that is not
subject to parsing. As far as a packet parser is concerned, the payload is the part of
the packet that does not need parsing. For instance, a layer-2 switch is only
concerned with layer-2 header such as Ethernet and the rest is treated as payload
while it may indeed contain higher-layer headers. Another issue that the parser must
be concerned with is determining the size of the header being parsed so that it knows
the starting boundary of the next header or the payload. Some headers such as IPv4
and GRE have variable length because they contain optional fields. On the other
hand, headers such as IPv6 and Multiprotocol Label Switching (MPLS) have a fixed
size. The extension headers of IPv6 protocol are independent headers and not part
of the fixed IPv6 header.

In addition to the points mentioned above, the packet parser must keep track of
its progress within the stack of headers. Headers have different sizes. For instance,
MPLS header has size of 32 bits while IPv6 has size of 320 bits. If the processing
width is chosen to be 32 bits, the entire MPLS header fits into the data unit, while
for IPv6 10 such data units are required. Conversely, if the data unit is chosen to be

45

320 bits, multiple headers of smaller size fit into the data unit. Due to this variety of
header sizes, for all practical choices of processing width, there will be both smaller
and larger headers. As a result, it is important for the packet parser to keep track of
their progress. This means that packet parsing is a stateful operation.

3.2 TCAM-based State Machine

As mentioned earlier, packet parsing is a stateful operation. As such, the parser must
maintain state. The packet parser in [20] and [26] operates in Match-Action mode.
For matching, it generates 32-bit search keys from the arrived header. Assuming that
the arrived header data contains EtherType field of the Ethernet header, it is
extracted and used as a search key to determine the next header. The value of
EtherType alone is not sufficient for correct state transition. For this reason, each
field extracted from the header is appended with an 8-bit value that represents
current state. The 40-bit search key is then presented to a 256 × 40-bit TCAM. With
this addition, a given value of EtherType is distinguished from the same 16-bit value
in another header and state transitions work correctly. Associated with each state is
an action. The actions are stored in a 256 × 128-bit SRAM. Figure 4 illustrates the
entities present in the parser.

Figure 4. Parser used in RMT architecture (adapted from [26])

TCAM SRAM

PHV

Extract Extract

Delay

Lookup result

Next State

Extract Control

Extract
Control

Incoming Packet

46

Let’s assume that the datapath width of this parser can accommodate the minimum-
sized IPv4 header. When IPv4 header arrives, the value of Protocol field is extracted
for determining the next header, but the size of the header must be determined as
well. Because at this point it is not yet known whether what follows the minimum-
sized IPv4 is IPv4 optional fields or the next header. Therefore, the value of Internet
Header Length (IHL), which contains the size of the header in terms of 32-bit words
is also extracted and appended to the search key. Since the search key is now
comprised of 2 header fields, the number of actual search keys is the result of
multiplication of the number of possible values of the 2 fields. There are 11 valid
values for IHL (0x5-0xF). Assuming that the parser is programmed to parse 8
different headers following the IPv4 header, there are 88 entries within the TCAM
for the next state transition. Therefore, 34 percent of the TCAM entries are used for
IPv4 alone. The reason for this is that all actions are based on the match result and
there is one lookup table for all matches, whether they are for determining the next
header or the size of the header. Use of narrower datapath width is also inefficient
because for multiword headers such as IPv4 and IPv6, more states will be required.

The parser in RMT is not the only parser that employs TCAMs. The parser in
[72] uses multiple instances of TCAM. The datapath width of this parser is 32 bits.
The incoming data is written to an 88-byte bus. The parser is organized in a pipeline
of slices. Each slice receives the 32-bit state output of its preceding slice and 32 bits
of frame data. Together, they are used as a 64-bit search key for looking up into the
TCAM located in the slice. The matching entry determines the action, which updates
the state and defines how frame data should be written to the 88-byte bus. This
parser is similar to RMT parser, except that there is a pipeline of TCAM-SRAM pairs
instead of just one pair.

3.3 An Alternative to TCAM-based State Machine

TCAMs are very powerful devices for searching. Their ability to store don’t care
values makes them a high-performance solution for LPM matching. However, prefix
matching is not dealt with in packet parsing. The most area- and power-efficient
means for programmable packet parsing is using program control instead of strict
Match-Action using TCAM. Program control logic is far simpler than the logic of
TCAM. With program control, the parser turns into a custom processor. Program
control is also a form of state maintenance and transition because the value of

47

Program Counter (PC) can be considered state and the instruction it points to
represents action.

One of the important design choices is the processing width. It is important to
note that wide processing width does not mean throughput higher than in
architectures with narrower processing width. The reason for this is that when
looking up the next header field, it takes a number of cycles until the result is
available. During these cycles the parser must wait. The cycles are required for field
extraction, lookup, and resolving. The chosen processing width is 32 bits. It is also
possible for this parser to read 8 or 16 bits from the buffer of incoming packets, but
the processing width is 32 bits. So, 8- and 16-bit reads from the buffer are retrieved
in 32-bit zero-extended format. An instruction is associated with each processing
unit. The instruction specifies what fields must be written to the PHV. In addition,
they specify what fields must be extracted for determining the next header and the
size of the header. The next header is determined by comparing the field containing
indicator of next header with the values associated with the header under parsing.
These values are stored in a parameter memory that can provide them in parallel.
The comparisons are also done in parallel to speed up the process. Figure 5 illustrates
the new packet parser that employs program control for state maintenance.

Figure 5. The proposed packet parsing processor

APCU IPB

Incoming
packets

PHV

FE

FE

FE

FE

FE

Header
Counter

Payload
Counter

BCE

BC

NHRU

Opcode

Opcode

Opcode

Opcode

Opcode

Parameter

Parameter

Parameter

Parameter

Parameter

Verified
Instruction

to
Program
Counter

Fetched
Instruction

48

The difference compared to the TCAM-based approach is that in this architecture
there is a small number of comparison functional units for parsing different headers.
They are loaded with the extracted value from the header and the parameter values.
The extracted value of next header field is compared only with values associated with
the header being parsed, whereas in TCAM-based approach this value is compared
with all TCAM entries. Furthermore, there is no need to append a state-value to this
field for comparison. The parse program for parsing IPv4 header has 15 instructions
because IPv4 has 15 32-bit words. If minimum-sized IPv4 header is encountered,
the instructions after the 5th instruction will be skipped.

3.3.1 Functional Units

The main functional units of this packet parser are listed in Table 3.

Table 3. Functional units of the new packet parser

Functional Unit Purpose
Incoming Packets’ Buffer (IPB) Storing the incoming packets and providing them in 8-, 16-, and

32-bit units upon request.
Advanced Program Control Unit
(APCU)

Providing the correct instruction address to the PC. In addition,
providing no-operation (NOP) instruction until the correct
instruction reaches the functional units.

Field Extractors (FE) Extracting the fields containing header size, payload size and next
header

Next Header Resolve Unit (NHRU) Compares the next header identifier with the values associated
with header under parsing

Branch Catalyst (BC) Speeds up multiway branching by comparing all ways in parallel.
Useful for evaluating the value of multibit flag fields

Branch Condition Evaluator (BCE) Evaluates the condition of the branch. If the branch condition is
satisfied, program flow changes

Header Size Counter Initialized to the size of current header. When reaches zero,
causes a branch to the first instruction for parsing next header

Payload Size Counter Initialized to the size of current header. When reaches zero,
causes the APCU to branch to the beginning

3.3.2 Instruction Format

The instruction fields are elaborated in Table 4. There is an instruction field for each
of the functional units present in this architecture. Therefore, the proposed
architecture is a Very Long Instruction Word (VLIW) architecture. VLIW

49

architectures are discussed in detail in [90]. These architectures are also referred to
as Explicitly Parallel Instruction Computing (EPIC) [91].

Table 4. Instruction fields
Instruction field Width (bits) Purpose
Branch condition 4 Specifies the condition for branch
Branch type 3 Specifies the type of branch
Branch offset 7 Offset for branching
Field extraction opcode 0 5 The field to extract for branch catalyst
Field extraction opcode 1 5 The field to extract for NHRU
Field extraction opcode 2 6 The field to extract for BCE
Field extraction opcode 3 5 The field to extract for header counter
Field extraction opcode 4 5 The field to extract for payload counter
PHV filler opcode 8 Specifies how the arrived header segment must be

written to PHV
Size of header segment 2 Requests a 1-, 2-, or 4-byte unit from the IPB
Parameters Memory Address 5 Address of the entry containing parameters for parsing

the header
Stack in select 1 Whether the address of current or next instruction

should be pushed to the stack
Stack push 1 Causes the selected value to be pushed to the stack

3.3.3 Instruction Pipeline

The instruction pipeline stages are elaborated in Table 5.

Table 5. Instruction pipeline stages

Stage Outcome
Instruction Fetch (FI) Instruction fetched from the instruction memory is

written to instruction register
Decode (D) The fetched instruction is validated and if necessary

nullified
Fetch Header (FH) An 8-, 16- or 32-bit unit of the arrived packet is

written to the PHV
Extract (X1) The programmer-specified portion of the latest

arrived header segment is extracted
Compare (X2) The extracted segment is subject to comparison or

condition evaluation
Resolve (X3) The outcome of comparison or condition evaluation

is determined

50

3.4 Throughput Evaluation

In this section the throughput of the designed packet parser is evaluated. The width
of the datapath is 32 bits and the operating frequency is 1.19 GHz. This means that
the maximum possible throughput will be 38.08 Gbps. The outcome of experiments
reveals if this ideal throughput value will be achieved when different workloads are
run on this architecture. The intention is to determine how many packet parser
instances are required for sustaining aggregate throughput of 640 Gbps.

3.4.1 Parsing Individual Headers

The first step in the evaluation of the designed packet parser’s performance is
measuring the achieved throughput when individual headers are parsed. A number
of headers have been chosen for this purpose as shown in Figure 6. For headers with
variable length, the parsing time and achieved throughput depend on the size of
header under parsing. Fixed size headers result in better throughput because no
evaluation of fields indicating existence of optional fields is required.

Figure 6. Throughput when parsing individual headers

Throughput depends also on the size of the payload. Large packets result in higher
throughput because the content of the payload does not need evaluation. The
payload is simply forwarded. Figure 7 illustrates the variation in throughput with

0
5

10
15
20
25
30
35
40

IPv4 IPv6 Ethernet TCP UDP VXLAN

Th
ro

ug
hp

ut
(G

bp
s)

Header

Best case Worst case

51

Ethernet, IPv4 and IPv6 packets with payload size of 46, 128, 512, and 1024 bytes.
The IPv4 packet under study has the minimum-size header. They have differing
starting values because different headers result in different throughput values. As the
payload size increases, the achieved throughput approaches the ideal throughput. As
can be seen, larger packets result in better throughput. In different deployments,
packets of different sizes will be encountered. In order to provide guaranteed
performance, the lowest achieved throughput must be used as the basis.

Figure 7. Resulting throughput when parsing Ethernet, IPv4, and IPv6 packets with 46-, 128-, 512-,
and 1024-byte payload

3.4.2 Parsing Header Stacks

In order to evaluate the throughput of the designed parser under more demanding
workloads, the throughput when parsing packets with the following two stacks of
headers has been tested:

-Basic: Ethernet - IPv4 - TCP
-Full: Ethernet - 2×VLAN - 2×MPLS - IPv4 - TCP

IPv4 and TCP are both minimum sized in both header stacks mentioned above in
order to limit the achievable throughput. The resulting throughputs are reported in
Table 6.

Ethernet

IPv4

IPv6

31

32

33

34

35

36

37

38

39

0 200 400 600 800 1000 1200

Th
ro

ug
hp

ut
(G

bp
s)

Payload size (bytes)

52

Table 6. Achieved throughput when parsing basic and full header stacks

Header stack Total size of headers (bits) Parsing time (cycles) Parsing throughput

(Gbps)

Basic 432 28 18.36

Full 560 42 15.87

It should be noted that the two stacks based on which the throughput values in Table
6 have been achieved are not fixed stacks. In other words, each packet that has been
parsed by this parser in this experiment could have had a different sequence of
headers. The values in Table 6 correspond to those packets whose header sequence
is according to the two header stacks mentioned above. If fixed headers were used,
the resulting throughput would be higher. Both basic and full header stacks have
Ethernet, IPv4 and TCP within them. However, the achieved throughput is lower
than the resulting throughput when each of these headers were individually parsed.
The reason for this is that when a branch must be made to the first instruction in
charge of parsing the next header, a number of dead cycles are encountered during
which parsing cannot occur. The number of these cycles increases if the latest header
segment read from the buffer of incoming packets contains indication of next
header. This is the case in Ethernet because the next header begins right after
EtherType field. A similar condition occurs in MPLS as well. Although MPLS does
not have a next header field, it does have an S bit that must be evaluated to determine
if another MPLS label follows the current label.

3.4.3 Enhancements for achieving higher throughputs

In the performance evaluations so far, each instruction issues a read request to the
buffer of incoming packets in order to retrieve a 32-bit header segment. For an
ingress parser that parses the packets as they arrive, the number of cycles required
for serving this request depends on port speed. With 10 Gbps ports, as in the case
of ports in [26], it takes 3.2 ns until 32 bits arrive. This is equivalent to 4 cycles in a
1.19 GHz system. During the cycles that the requested data is not available, no
parsing can take place because the requested data is not available yet.

Since the parser issues a read request in each instruction and each read request
for retrieving 32 bits results in idle cycles, higher throughput and better utilization

53

of functional units is achieved if the parser switches to parsing a packet arriving on
another port. If a parser is assigned to parse packets coming through four 10 Gbps
ports and if it switches to parsing of the next port each cycle, by the time it reaches
serving a given port again, 4 cycles have elapsed, and the data is ready. This means
turning the packet parsing processor into a multithreaded processor with support
for 4 threads. Each thread serves its corresponding port. For supporting
multithreading, all components that maintain state must have an independent
instance for their own thread. Stateful components include the program counter,
APCU, PHV, header and payload counters. Field extractors, NHRU, BC, and BCE
do not maintain state, and hence can be shared by different threads.

Another technique that can be used for boosting throughput is reading header
segments from the buffer in large bursts. Doing so requires some modification to
the components used. For instance, the field extractors will require larger
multiplexers. However, requests for large bursts can be issued when the payload of
the packet is being forwarded. Reading in large bursts is only beneficial if during
parsing of headers the parser has not kept pace with the rate of data arrival.
Otherwise it causes stalls because it cannot increase the speed of the port.

With the performance-enhancing techniques mentioned here, the question is,
what is the right number of ports to assign to a packet parser instance. This is
equivalent to the question of what is the ideal number of threads to support in each
packet parsing processor? The next question to solve is what is the optimum size of
header segment that must be requested in each instruction. As seen in the previous
section, the greatest performance loss is encountered when program flow changes
to parsing of next header. In order to better understand this, consider parsing of two
consecutive headers Hi and Hi+1 shown in Figure 8. It is assumed that both headers
are 32 bits wide. Therefore, one instruction per header is sufficient for parsing.
Figure 9 illustrates timing diagram of the instruction pipeline when parsing the two
headers. The next header indicator within Hi is extracted at tn+3. At tn+4, its value is
compared with the expected next header indicator values. Based on the outcome of
the comparison, the PC is loaded with the address of the instruction for parsing
headeri+1 at tn+6. During the cycles tn+3 to tn+8 no header fields are written to the
PHV. The goal is to choose the right number of ports to utilize the parser efficiently
and avoid idle cycles.

 Hi Field 0 Field 1 (Next Header) . . . Field m
 Hi+1 Field 0 Field 1 . . . Field n

Figure 8. Two consecutive 32-bit headers

54

Instruction Time

tn tn+1 tn+2 tn+3 tn+4 tn+5 tn+6 tn+7 tn+8 tn+9 tn+10 tn+11 tn+12

Instruction

for Hi

FI D FH X1 X2 X3

Instruction

for Hi+1

 FI D FH X1 X2 X3

Figure 9. Timing diagram for instruction pipeline when parsing two consecutive headers

Figure 10 illustrates the timing diagram for the instruction pipeline of an 8-threaded
packet parser that has been assigned parsing of packets arriving through 8 ports.
Associated with each of the ports is a thread. At each cycle, the parser switches to
the next thread. It is assumed that the same consecutive headers Hi and Hi+1 arrive
through the ports. By the time the parser switches back to a given thread, the field
extraction and loading of PC have been done, so there is no need for stalling. Those
cycles that would have been wasted by stalling the pipeline are now used for parsing
headers of packets coming through the other ports. This can be seen in the last row
of Figure 10 where the instruction from thread corresponding to port Pj is fetched
at tn+8. This instruction is used for parsing Hi+1. Now, the only question that must
be solved is the size of header segment to read from the buffer in each instruction.
It takes 8 cycles until the parser switches back to a given port. During these cycles,
8 bytes have arrived. Therefore, each instruction reads 8 bytes. For headers whose
size is not an integer multiple of 8 bytes, the corresponding instructions request reads
of smaller units.

Port Header tn tn+1 tn+2 tn+3 tn+4 tn+5 tn+6 tn+7 tn+8 tn+9 tn+10 tn+11 tn+12 tn+13

Pj Hi FI D FH X1 X2 X3

Pj+1 Hi FI D FH X1 X2 X3

Pj+2 Hi FI D FH X1 X2 X3

Pj+3 Hi FI D FH X1 X2 X3

Pj+4 Hi FI D FH X1 X2 X3

Pj+5 Hi FI D FH X1 X2 X3

Pj+6 Hi FI D FH X1 X2 X3

Pj+7 Hi FI D FH X1 X2 X3

Pj Hi+1 FI D FH X1 X2 X3

Figure 10. Timing diagram for instruction pipeline of the 8-threaded packet parsing processor

55

3.5 Implementation Results

With the modifications discussed above, a single parser can serve eight 10 Gbps
ports. Therefore, the throughput of one packet parser instance is 80 Gbps. For
support of 640 Gbps aggregate throughput, eight packet parser instances are
required. Table 7 outlines the number of components required in each instance and
the total area and power dissipation. The ASIC technology used is 28nm Fully
Depleted Silicon on Insulator (FD-SOI). The operating conditions are (SS, 0.9V,
125˚C). The synthesis tool under use is Synopsys Design Compiler J-2014.09-SP4.

Table 7. Area and power dissipation values for components of an 80 Gbps packet parser

Component Number of
instances

Total area (μm2) Total power (mW)

PHV 8 149181.28 80.24
APCU 8 3587.76 47.20
Header counter 8 2766.08 11.36
Payload counter 8 2766.08 11.36
Instruction Memory (256×72) 1 44564.47 9.88
Read port for Instruction Memory 1 10450.56 14.83
Parameter Memory (32×448) 1 34426 3.46
Read port for Parameter Memory 1 8684 42.74
NHRU 1 920.33 0.73
BC 1 452.49 0.48
BCE 1 293.65 0.42
Total - 258092.7 222.7

The total area of an 8-threaded packet parser that sustains 80 Gbps throughput is
258092.7 μm2. For sustaining aggregate throughput of 640 Gbps, 8 processor
instances are required. Since the instruction memory and parameter memory are
relatively small, they are hosted on memories made of registers. Therefore,
independent read ports can be easily added. In other words, there is one instruction
memory and one parameter memory for all 8 processor instances, each of which
runs 8 independent threads. Another benefit of sharing the instruction and
parameter memories is that initialization process takes less time. The area of this
parser must be compared with RMT’s parser. In [26] parser components have been
categorized into 4 classes. Table 8 outlines these classes and their corresponding
components in the proposed architecture.

56

Table 8. Correspondence of packet parser components in RMT and the proposed
architecture

Component
class

Components in RMT parser Equivalent components in this architecture

1 TCAM APCU, Parameter memory with 8 read ports
2 SRAM Instruction memory with 8 read ports
3 Header identification and field

extraction
NHRU, header counter, payload counter, BC,
BCE

4 PHV PHV

The total area of components equivalent to the TCAM-SRAM pair is 0.79 M gates
in this architecture. This is in contrast to the 1.6 M gate figure of RMT parsers. For
class 3 component, the area in RMT and this architecture are 0.35 M and 0.17 M
gates respectively. The total area for all PHV instances in this architecture is 3.65 M
gates and matches the value provided in [26]. Total gate count is 4.6 M and 5.6 M
gates in this architecture and RMT parser instances respectively. As will be discussed
in the section to follow, the area difference increases as more parser instances are
instantiated for supporting higher aggregate throughput values.

3.5.1 Discussion of results

A 50% saving in area has been achieved for Match-Action memories of the parser
by implementing an alternative mechanism for protocol-independent packet parsing.
In TCAM-based approach, the search key is compared with all entries of the TCAM
whereas in this architecture the search key is compared with the relevant values only.
In addition, since a non-lookup mechanism has been used for maintaining the
boundary between headers, the number of next header entries does not need to be
as many as the TCAM entries. Hence, these values are hosted on memories made of
registers. For such memories it is easy to add an independent port. This is not
possible with TCAMs. In TCAM-based solutions, as more parser instances are
added, each instance must have its own TCAM instance.

The area difference becomes more noticeable as the number of parser instances
is increased for sustaining higher throughputs. In RMT parser, the TCAM-SRAM
pair must be replicated for each parser instance. This approach is not scalable for
instantiating tens of parser instances for achieving high throughputs. In this
architecture, on the other hand, the memories are shared simply by adding extra read

57

ports. The elimination of TCAM is beneficial not only from chip area perspective,
but from power dissipation point of view as well. According to [20], the power
requirement for an 80 Gbps non-programmable packet parser that does not contain
TCAM is around 400 mW. Comparing this figure with an instance of the designed
80 Gbps packet parsers, programmability is achieved at roughly 50% of that power
requirement. No power dissipation has been provided in [20] for TCAM-based
programmable parser. For a programmable parser that employs TCAM the power
dissipation is far above this figure. Information regarding TCAMs are scarce as they
do not come with standard cell libraries by default. As a result, it is not possible to
compare the power dissipation of the proposed solution with a TCAM-based parser.
However, it can be confidently said that this architecture is far more power efficient.

The achieved throughput can be enhanced by increasing the operating frequency.
The fact that register-based memories have been used makes increasing the
frequency a lot easier because registers are not the limiting factor in frequency
scaling. The limiting factors are memories and the critical path of combinatorial
components such as field extractors. By internally pipelining the field extractors, the
potential timing constraint violations can be eliminated. Actual SRAMs and TCAMs,
on the other hand, cannot be clocked beyond a certain point. The synthesis
experimentations revealed that even at 2.0 GHz the timing constraints are still met.
All the results in this chapter, however, correspond to operating frequency of 1.19
GHz.

58

4 AN ON-THE-FLY PACKET PRE-PROCESSOR

The implementation results of the programmable packet parser in the chapter 3 are
promising. Due to the small area footprint of this parser, there is a lot of silicon real
estate that can be utilized for enhancing functionality and throughput. In this
chapter, packet processing capabilities will be provided for the packet parser of
chapter 3. The content of this chapter is based on PIV.

4.1 Use Cases for Processing Packets on the Fly

Processing the packets as they arrive can enhance the throughput. The entity that is
involved with the packets as they arrive is the packet parser. Therefore, on-the-fly
packet processing is performed inside or in close proximity to the packet parser.
Integrity checking operations such as checksum validation can be easily performed
by the parser by adding a few functional units such as ALUs. Assuming that there is
a parameter problem within the arrived packet, the following benefits are achieved:

-If the packet must be discarded, it will not enter the pipeline. At high line rates,
the packets compete for entering the pipeline. Less competition means less waiting
time in the buffers and higher throughput for the rest of the packets. In addition,
each packet consumes the computational and lookup resources of the system. By
making the drop decision already at the parser, wasting units of the packet processing
subsystem is avoided.

-If a packet destined to the sender must be generated, the MAUs are visited with
the correct lookup address. Otherwise, by the time parameter problem in the packet
is detected, the table containing the address of the packet’s original source may have
been passed. In this case, the packet must be recirculated which reduces throughput
and increases latency.

-Certain tasks such as packet fragmentation and reassembly are best handled by
a processor rather than a pipeline. For this reason, flexible ASICs such as Cisco
UADP contain micro-engines to handle such operations.

Based on these reasons and considering the fact that the packet parser presented
in chapter 3 is very lightweight, it is enhanced with packet processing functionality.

59

Since real packet processing involves looking up some form of destination address,
the kind of packet processing dealt with in this chapter is packet pre-processing.
However, it is also possible to include a tiny lookup table for highly recurring flows
or those having high QoS requirements. Furthermore, the absence of lookup tables
does not make this architecture less of a packet processor. An interface to lookup
table(s) is sufficient for it to be considered as a full packet processor.

4.2 Architecture

Compared to packet parsing, packet processing is more complicated. Therefore, the
fine-grain multithreaded processing model of the parser in chapter 3 must be turned
into a simultaneously multithreading (SMT) in order to maintain line rate. It is still
assumed that there are 64 × 10 Gbps ports in the system. At operating frequency of
1.19 GHz, it takes 8 cycles for a 64-bit segment to arrive. Therefore, on average, 8
single-cycle operations can be performed for each arriving segment. The PHV is
written to by both the parser and the packet preprocessor containing a 32-bit ALU.
1024 bits of the PHV are reserved for the packet preprocessor to write. The packet
preprocessor can read from the entire PHV. When the PHV traverses through the
pipeline, the values calculated by the packet preprocessor can be used in addition to
the values written by the parser. For instance, the pipeline can be programmed to
use the IPv4 address provided by the packet preprocessor as the search key. During
parsing, the packet preprocessor checks the integrity of the IPv4 header. If all the
header fields have correct value, the packet preprocessor copies the destination
address to a known position within the 32 entries reserved for the packet
preprocessor. On the other hand, if there is a parameter problem within the header,
the packet preprocessor copies the source address to the designated entry so that an
ICMP message is sent to the source of the packet.

The preprocessor uses both branches and conditional execution for program
control. Conditional execution is an efficient program control mechanism that
avoids flushing of the pipeline. It is useful when a PHV entry must be modified only
if a certain condition is fulfilled. However, in more complex programs, there is a
need for branches. For instance, a header may contain different Type-Length-Value
(TLV) messages, each of which requires different processing. In this scenario,
conditional execution cannot be used as a replacement for branches because
processing of each TLV requires a different subprogram.

60

4.3 Packet Preprocessor in Action

In this section it will be seen how the packet preprocessing functional unit operates
in parallel to the packet parsing system. Two use cases have been provided.
Preprocessing of IPv4 packets and packet fragmentation. The operations for these
two use cases are executed in ingress and egress respectively. Table 9 elaborates the
register index range, width, and the component writing to each range of PHV entries.

Table 9. Register index of PHV entries

Index range Width (bits) Written to by
R0-R31, R96-R127 8 Parser
R32-R79, R128-R175 16 Parser
R80-R95, R176-R191 32 Parser
R192-R223 32 Preprocessor

4.3.1 Preprocessing of IPv4 Header

Processing of IPv4 packets requires a fair amount of integrity checking prior to
address lookup. If these integrity checking operations reveal a parameter problem,
the packet is discarded and a new IPv4 packet is generated destined to the source of
the original packet. The new IPv4 packet contains an ICMPv4 Parameter Problem
Message. Table 10 outlines the IPv4 header fields for which integrity checking must
be performed.

Table 10. Integrity checking operations on IPv4 header fields

Header field Required checking
Ver Must be equal to 4
IHL Must be greater than or equal to 5
Total Length Must be greater than or equal to 20
TTL Must be greater than 0
Checksum Must match the checksum calculated after packet arrival

In RMT architecture, tables are divided into the stages. Operations such as checksum
verification require a number of cycles. This requires use of multiple MAUs. During
the cycles that checksum is being calculated, it is possible to look up either the source

61

IP address or the destination IP address, but not both. If a problem is found with
the header, there is the possibility that the packet has gone past the table containing
the matching entry for the source IP address. In this case, the packet must start from
the beginning of the pipeline to look up the source address because the ICMP
message must be sent to the packet’s source. By having the packet preprocessor take
care of these operations, this kind of packet recirculation is avoided. Table 11
contains instructions executed on the packet preprocessor for parsing and
preprocessing IPv4 header. Registers in this table follow the numbering defined in
Table 9.

Table 11. Instructions executed on the packet preprocessor during arrival of IPv4 header

Time Packet Parser Packet Preprocessor Comments

t0 -

t1 -

t2 -

t3 R0 <- (Ver, IHL)
R32 <- (Ver, IHL, DSCP, ECN)
R64 <- Total Length
R128 <- Identification
R160 <- (Flags, Fragment Offset)

R192 <- R32 + R64 1st and 2nd words of IPv4
header written to PHV

t4 - R192 <- R192 + R128

t5 - R192 <- R192 + R160

t6 - R194 <- R0 AND 0x0000000F Retrieving IHL

t7 - R195 <- SHR4(R0) Obtaining the value of Ver

t8 - r0 <- R194 >= 0x5

t9 - r0 <- R195 == 4

t10 -

t11 R1 <- TTL
R8 <- Protocol
R33 <- (TTL, Protocol)
R65 <- Header Checksum
R129 <- upper_halfword(Source IP)

R192 <- R192 + R33 3rd and 4th words of IPv4
header written to PHV

62

R161 <- lower_halfword(Source IP)
R176 <- Source IP

t12 - R192 <- R192 + R65

t13 - R192 <- R192 + R129

t14 - R192 <- R192 + R161

t15 - r0 <- R1 < 1 Checking TTL

t16 -

t17 -

t18 -

t19 R34 <- upper_halfword(Destination IP)
R66 <- lower_halfword(Destination IP)
R80 <- Destination IP

R192 <- R192 + R34 5th word of IPv4 header written
to PHV

t20 - R192 <- R192 + R36

t21 - R193 <- SHR16 R192

t22 - R192 <- R192 + R193

t23 - R192 <- NOT (R192)

t24 - r0 <- R192 == R65 Comparing the calculated
checksum with the value of
Checksum field

4.3.2 Fragmentation of IPv4 Packets

Packet fragmentation is required when the size of a packet is greater than the MTU
of the path to which it must be forwarded. In this case, the packet must be
fragmented into multiple packets such that the size of each fragment is no more than
the value of MTU. Figure 11 contains the algorithm for fragmenting IPv4 packets.

63

if(Total_Length > MTU)
{
 if(DF == true)
 {
 send_icmp_destination_unreachable(); //Type = 3, Code = 4
 }
 else
 {
 payload_size = Total_Length - (IHL*4);
 fragment_header = original_header;
 NFB = (MTU - (IHL * 4))/8;
 Append(NFB*8);
 Fragment_offset = 0;
 MF = true;
 Total_Length = (IHL*4) + (NFB*8);
 send();
 remaining_payload = payload_size - (NFB*8);
 //And now for producing the other fragments
 selectively_choose_options(byte_size_of_selected_options);
 do
 {
 fragment_header_byte_size = byte_size_of_selected_options + 20;
 Fragment_offset = Fragment_offset + NFB;
 if(fragment_header_byte_size + remaining_payload > MTU)
 {
 MF = True;
 NFB = (MTU - fragment_header_byte_size)/8;
 append(NFB*8);
 fragment_payload_size = NFB*8;
 Total_Length = fragment_header_byte_size + (NFB*8);
 }
 else
 {
 MF = false;
 fragment_payload_size = remaining_payload;
 append(remaining_payload);
 Total_Length = fragment_header_byte_size + remaining_payload;
 }
 send();
 remaining_payload = remaining_payload - fragment_payload_size;
 }while(remaining_payload > 0);
 }
}

Figure 11. Procedure for fragmenting IPv4 packets

The procedure for fragmenting IPv4 packets is straightforward. However, the
presence of IPv4 header options can make it a bit complicated because some options
must be included in all fragments, some must be included only in the first fragment
and some may be subject to removal in case of fragmentation. When fragmenting an
IPv4 packet that contains options, for each option, it must be decided if the option

64

should be included in each of the fragments or not. Furthermore, the size of each of
the options has an impact on the amount of payload data that can be included in the
fragment. In the ingress pipeline, when a matching entry is found for the destination
address of an IPv4 packet, the MTU of the corresponding path is also retrieved.
Then, contents of the PHV are written to the buffer. Once the packet is scheduled
for transmission, the egress parser retrieves the packet from the buffer and starts
parsing. The most efficient way to handle fragmentation of IPv4 packets whose
header contains options is to make the decision for each option during egress
parsing. Furthermore, the packet preprocessor is the best computational component
for maintaining a loop in which the required number of fragments are created.
Assuming that the MTU is 576 bytes, consider the IPv4 datagram in Figure 12. This
600-byte datagram contains Loose Source and Record Route. The MTU is 576 bytes,
so the packet must be fragmented. The accompanying option must be included in
all fragments. This packet will be fragmented into two packets. Table 12 contains
instructions that are executed on the packet preprocessor for fragmenting the IPv4
packet in Figure 12. Registers in this table follow the numbering defined in Table 9.

Figure 12. IPv4 header containing option

Version IHL = 0x9 DSCP ECN Total Length = 0x0258

Identification 000 Fragment Offset

TTL Protocol Header Checksum

Source IP Address

Destination IP Address

Type = 0x83 Length = 0x10 Pointer

First IP Address

Second IP Address

Third IP Address

Payload

65

Table 12. Instructions executed by the egress parser

Time Packet Parser Packet Preprocessor Comments

t0 -

t1 -

t2 -

t3 R0 <- (Ver, IHL)
R32 <- (Ver, IHL, DSCP, ECN)
R64 <- Total Length
R128 <- Identification
R160 <- (Flags, Fragment Offset)

R192 <- R0 AND 0x0000000F 1st and 2nd words of IPv4 header
written to PHV. The
value of IHL is obtained.

t4 R1 <- TTL
R8 <- Protocol
R33 <- (TTL, Protocol)
R65 <- Header Checksum
R129 <- upper_halfword(Source IP)
R161 <- lower_halfword(Source IP)
R176 <- Source IP

R192 <- SHL2(R192) 3rd and 4th words of IPv4 header
written to PHV. The
value of IHL is multiplied by 4.

t5 R34 <- upper_halfword(Destination IP)
R66 <- lower_halfword(Destination IP)
R80 <- Destination IP

R203 <- 0 5th word of IPv4 header written to
PHV. R203 which is designated
to contain byte size of all must-copy
options is initialized

t6 R2 <- Type
R9 <- Length
R16 <- Pointer
R35 <- upper_halfword(option word)
R67 <- lower_halfword(option word)
R81 <- option word

r0 <- R2(7) 1st option word written to PHV.
Checking the highest bit of Type
field.

t7 R82 <- option word (r0) R203 <- R203 + R9 2nd option word written to PHV
Conditionally adding the size of
current option to size of must-copy
options.

t8 R83 <- option word (r0) R193+0 <- R81+0 3rd option word written to PHV
Conditionally copying current option
to the space reserved for must-copy
options.

t9 R84 <- option word (r0) R193+1 <- R82+1 4th option word written to PHV
Conditionally copying current option
to the space reserved for must-copy
options.

t10 (r0) R193+2 <- R83+2 Conditionally copying current option
to the space reserved for must-copy
options.

t11 (r0) R193+3 <- R84+3 Conditionally copying current option
to the space reserved for must-copy
options.

t12

66

t13 R223 <- MTU R64 > R223 Total Length > MTU

t14 -

t15 -

t16 R160(14) Evaluating DF

t17 -

t18 -

t19 R204 <- R64 – R192 Calculating payload size

t20 R205 <- R223 – R192

t21 R205 <- SHR3(R205) Number of fragment blocks

t22 R206 <- 0xABCDEFAB Code representing first fragment

t23 R207 <- SHL3(R205) Number of payload bytes to be
included in the fragment

t24 Submit to egress Submit to the egress pipeline

t25 R208 <- R204 – R207 Calculating the size of remaining
payload

t26 R209 <- R203 + 0x00000014 Calculating the size of fragment
header

t27 R160 <- R160 + R205 Updating fragment offset

t28 R210 <- R208 + R209 Adding byte size of remaining
payload and fragment’s header size

t29 R210 > R223 Checking if the sum of size of header
and remaining payload exceeds MTU

t30 R206 <- 0xABCDEFAA Code representing last fragment

t31 R211 <- R208 Fragment’s payload size

t32 Submit to egress Submit to the egress pipeline

t33 R208 <- R208 – R211 Updating remaining payload size

t34 R208 > 0 Checking if there is payload
remaining

67

Those options that must be included on all fragments are written to registers R193
to R202 of the register space reserved for the packet preprocessor. In addition, the
total size of these options is also stored so that the amount of payload to be
appended to each fragment can be determined. As each fragment is sent, a code is
written to a designated PHV entry. There are distinct codes for a non-fragment
packet, first fragment, fragments after the first fragment and before the last one and
the last fragment. The code is looked up in the egress pipeline and the instructions
corresponding to each one of them is executed, as each of them requires different
processing. For instance, for a packet that does not require fragmentation, the
options written to registers R193-R202 are ignored. This is also true for the first
fragment, as its header is exactly the same as that of the original packet.

4.4 Implementation Results

Table 13 outlines the total area and power for the components required in each
packet preprocessor instance. The ASIC technology used is 28nm FD-SOI. The
operating conditions are (SS, 0.9V, 125˚C). The synthesis tool under use is Synopsys
Design Compiler J-2014.09-SP4. Timing constraints have been verified for operating
frequency of 1.19 GHz.

Table 13. Area and power dissipation of the components of a single packet preprocessor

Component Area (μm2) Power dissipation (mW)
Instruction decode, operand
retrieval, and operand forwarding

23161 33.5

ALU 1044 3.5
Program Control 448 5.9
Instruction Memory (1K × 32b) 15717.60 3.69

4.4.1 Discussion of results

This architecture enables processing of packets as they arrive. Based on the reasoning
in chapter 3, 8 bytes are read from IPB every 8 cycles. Instead of header segments
sitting idle in the PHV until the rest of the header fields are written, processing starts
already at this point. Although RMT architecture contains 7168 ALUs, some actions
such as checksum calculation must be mapped to ALUs across different MAUs. For

68

such actions, presence of 224 ALUs in a single MAU is of little benefit. The proposed
architecture reduces the chance of need for recirculation if the chain of MAUs is not
sufficient for a given action. Another issue that this architecture solves is that RMT
has match resources coupled with action resources. Each MAU contains 32K ternary
entries and 106K exact match entries. It is possible to look up speculatively if the
outcome of the action determines whether to match or not. However, if both
outcomes of the action each require matching on the same tables but using different
keys, speculation is not beneficial. This is problematic for use cases in which match
resources from the whole chip must be combined. The main purpose of the
architecture proposed in this chapter is to perform the required preprocessing so
that the issues discussed here do not hinder throughput.

In addition to the preprocessing IPv4 packets, a similar role can be taken for IPv6
packets. For instance, it can check the value of Hop Limit field and if necessary,
discard the packet or generate a message to the original sender of the packet. The
actual list of use cases is limited only by the number and complexity of available and
upcoming network protocols. The programmable nature of this architecture does
not tie it to any specific set of protocols.

Given that a single packet preprocessor sustains 10 Gbps throughput, the total
area and power dissipation for 640 Gbps packet preprocessing is 2.58 mm2 and 2.98
W respectively. These values are pessimistic because the instruction memory has
been replicated per packet preprocessor instance due to unavailability of multiported
SRAMs. For instance, in the presence of two-ported SRAM, the memory cells will
be shared by two packet preprocessors. Hence the resulting area will be less than the
value provided here. In order to interpret the area and power values properly, it
should be considered that commercial switch chips are somewhere between 300 to
700 mm2 in area and 150 to 350 W in power [69]. Therefore, the total area and power
of the extra logic required for 640 Gbps packet preprocessing is negligible. Focusing
on IPv4 traffic, the exact gain in throughput depends on the percentage of packets
having a parameter problem or requiring fragmentation. For the latter, the proposed
architecture acts as an enabler because in the absence of a processor-based
component for calculating the fragmentation-specific parameters and sending the
required number of fragments to the egress pipeline, fragmentation is not possible
and the packet processing architecture simply has to drop the packets requiring
fragmentation.

69

5 EXPLORING CROSSBAR ALTERNATIVES

Crossbars are used extensively in programmable packet processing hardware for
providing flexibility. Two primary use cases for crossbars are selecting the header
fields for forming the search key and for selecting the input to ALUs. Since a
programmable data plane allows any field to be used as the basis for forming the
search key or for being the input to a given ALU, crossbars are one of the enabling
components and main contributors to the area. In this chapter, further details are
provided on the crossbars in RMT and the alternatives are explored for better area
efficiency. The content of this chapter is based on PV.

5.1 Crossbars in RMT

In each of the 32 MAUs within RMT, two 640-bit search keys are generated from
the 4096-bit PHV. One of the search keys is meant for TCAMs and the other for
SRAM-based exact match tables. In [26], it is mentioned that each bit of the search
key is driven by a 224-to-1 multiplexer, which is made of a binary tree of and-or-
invert (AOI22) gates. The provided area for this gate is 0.65 μm2. The total area for
match key crossbars across the whole chip is 6 mm2.

The fact that a 224-to-1 multiplexer has been used for every bit of the search key
implies that there are certain constraints for selecting the input for match tables. For
instance, the smallest unit for selection from the PHV is an entry within the PHV.
Furthermore, there are constraints for placing fields of different width within the
search key. The starting position for bytes, halfwords, and words in the resulting
search key has a bit index, which is an integer multiple of 8, 16, and 32 respectively.
Not all of the multiplexers require distinct select inputs. Some of the multiplexers
can share the select lines. The total number of distinct select lines within a MAU is
1280 bits.

Action crossbars provide the operand inputs for each ALU in a given MAU. In
RMT architecture, there are 8-bit, 16-bit and 32-bit ALUs. The action engines take
input from the PHV and action memory. The first input to a given action engine is
from the PHV. The second input is from the PHV or action memory. Smaller units

70

can be combined so that processing can be performed on a wider unit. For instance,
two 8-bit units can be combined into a 16-bit operand. It is unclear whether this
combination is performed by the action crossbars or by the action engines. In either
case, it is obvious that 16-bit and 32-bit ALUs receive smaller units as input as well
as PHV entries of identical width. In [26], it is mentioned that the area calculation
for the action crossbar is similar to that of match crossbars. Since there is an ALU
per PHV entry and that each ALU requires two operand inputs, two 4096-bit units
must be generated out of PHV. This results in the total area of action crossbars to
be over 38 mm2 which is equivalent to the area of 220 TCAM blocks.

5.2 Crossbar alternatives

It is important to explore crossbar alternatives because crossbars occupy a noticeable
area and contain considerable amount of wires. In addition, the value for select lines
must be stored in wide registers and/or memory blocks. This in turn increases area.
This is specifically noticeable in an architecture such as RMT in which wide search
keys are generated and there are numerous action engines requiring input.

5.2.1 Alternative Match Crossbar

In this scheme, the entries of each of the two 640-bit search keys are determined on
a 32-bit basis. This can be referred to as word-level selection of match keys. For
every 32-bit unit of the search key, it is possible to select the following combinations
from the PHV:

Four 8-bit units
Two 8-bit units and a 16-bit unit
Two 16-bit units
One 32-bit unit

For the combination in which there are two 8-bit units and a 16-bit unit, two valid
arrangements are possible depending on whether the 16-bit unit comes before or
after the two bytes. In order to select match key fields on a 32-bit basis, the
multiplexers must be organized in two levels as illustrated in Figure 13. The first level
contains multiplexers for selecting fields and the second level has one multiplexer
for organizing the selected fields according to the combinations above. In this

71

alternative, the constraints mentioned in section 5.1 are satisfied. This scheme
requires 1080 bits of select lines in each stage.

Figure 13. Alternative match crossbar

5.2.2 Alternative Action Crossbars

Action crossbars select inputs to ALUs. For action crossbars the issue of the number
of select lines is of more importance because they affect the width of instructions.
In RMT, the instruction memory has 32 entries. Furthermore, there are 224 ALUs
per stage, each requiring 2 action input selectors.

Grouping
into

Valid 32-bit
Combinations

64x8b

64x8b

64x8b

64x8b

96x16b

96x16b

64x32b

32

72

5.2.2.1 Zero-extending Smaller Units

In this system of multiplexers, as shown in Figure 14, the input to 8-bit ALUs is any
of the 8-bit entries of the PHV. For 16-bit ALUs, each input can be any of the 16-
bit entries or any of the zero extended 8-bit entries. In a similar manner, for 32-bit
ALUs, each input can be any of the 32-bit entries or any zero-extended 16-bit entry.
This scheme requires 3328 select lines per stage. Under this scheme, the actual
merging takes place by the ALUs. In addition, the parser presented in chapter 3 can
be programmed to write an arrived 32-bit word as four 8-bit units, two 16-bit units
and a 32-bit unit at the same time in order to tailor the content of headers to the way
required by corresponding packet processing functions. As a result, the packet parser
can also perform combination of smaller fields that happen to be adjacent in the
header. This is illustrated in Figure 15.

Figure 14. Action crossbar with zero-extension of smaller units

64x8b

64x8b

96x16b

96x16b

64x32b

2x64 instances

2x96 instances

2x64 instances

Zero-extend

Zero-extend

8

16

32

73

Figure 15. Operation of PHV filling logic when writing the third word of IPv4 header to PHV

5.2.2.2 Combining Smaller Units

Using this crossbar architecture, the input to 8-bit ALUs is any of the 8-bit entries
of the PHV. For 16-bit ALUs, each input can be any of the 16-bit entries or any two
8-bit entries combined together to form a 16-bit unit. In a similar manner, for 32-bit
ALUs, each input can be any of the 32-bit entries or any two 16-bit entries combined
together into a 32-bit unit. This scheme requires 5184 select lines per stage. This
action input selection scheme is illustrated in Figure 16.

5.3 Reducing Action Crossbars’ Area

The area of crossbars can be reduced significantly by using smaller crossbar variants.
In other words, by limiting the number of inputs to the multiplexers, considerable
savings can be made. An ALU performing some header field or state modification
does not require to access the entire PHV. Some packet processing functions such
as IPv4 checksum calculation, the entire header needs to be accessed. The largest
possible IPv4 header contains 15 32-bit words, which is a tiny fraction of the entire
PHV. The fact that each of the 224 ALUs can read from the entire PHV for each of
its inputs is overkill. It is sufficient that each action crossbar reads from a smaller
number of PHV entries. The number and location of fields that can be accessed is a
design choice.

TTL Protocol Header Checksum

PHV Filling Logic

TTL

Protocol

TTL Protocol

Header Checksum

8

8

16

16

74

Figure 16. Action crossbar combining smaller units

In order to limit the number of inputs to the action crossbars, the PHV is logically
divided into four equal segments. This means that the number of 8-, 16-, and 32-bit
entries within each logical segment is 16, 24, and 16, respectively. The action engines
within a segment can read from all the PHV entries pertaining to the segment in
question. On the other hand, reading from fields located in other segments is subject
to limits. Let’s consider the action crossbars that zero-extend smaller processing
units. In each segment, the input to 8-bit ALUs is any of the 8-bit entries within the
segment. For each of the two inputs of 16-, and 32-bit ALUs each, there are 40 input

Concatenate

Concatenate

64x8b

64x8b

64x8b

96x16b

96x16b

96x16b

64x32b

2x64 instances

2x96 instances

2x64 instances

8b

16b

32b

75

options but since for 40 options, 6 bits of select input are required, the unused inputs
to multiplexers are used to accommodate entries within other segments. Figure 17
illustrates the structure required per segment. For the 16-bit multiplexers marked
32×16b, there are 24 inputs coming from 16-bit PHV entries within the segment.
The other 8 inputs come from other segments. With this structure, up to 160 fields
from other segments can be read.

Figure 17. Lightweight action crossbar with zero-extension of smaller units

5.4 Implementation results

In this section, the implementation results are provided in terms of gate area of
crossbars and the area of memory cells required for storing the value of select bits.
These values are provided in Tables 14 and 15 for match and action crossbar variants
respectively. The ASIC technology, backend tool, operating frequency and operating
conditions are the same as in previous chapters. For action crossbars, the area of

16x8b

16x8b

32x16b

32x16b

16x32b

2x16 instances

2x24 instances

2x16 instances

Zero-extend

Zero-extend

8

16

32

76

storage required for select lines is considerably more because action crossbars have
more select lines and the instruction memory has 32 entries.

Table 14. Per stage area requirement of match crossbar variants

Crossbar variant Crossbar area (mm2) Memory area (mm2)
Original RMT 0.187 0.007
Word-level selection 0.174 0.006

Table 15. Per stage area requirement of action crossbar variants

Crossbar variant Original size Lightweight crossbars
Crossbar area
(mm2)

Memory area
(mm2)

Crossbar area
(mm2)

Memory area
(mm2)

Combination of
smaller processing
units

0.730 0.967 0.203 0.685

Zero-extension of
smaller processing
units

0.553 0.625 0.148 0.457

5.4.1 Discussion of results

When using lightweight crossbars, the most important question is whether the use
of smaller multiplexers can limit the programmability and performance of the
architecture. Let’s consider the lightweight variant of action crossbars that combine
smaller processing units. Inside each logical segment, there are 112 16-bit
multiplexers, each having 8 unused inputs that can be used for reading entries
residing in other logical segments. This means that it is possible to read 896 16-bit
units that are not resident in a given segment. The total number of 16-bit entries
across the whole PHV is 96. Therefore, even in case of segmentation of PHV and
limited access to cross-segment fields, the functionality can be maintained by
efficient use of resources. The only limitation is that when a field in another segment
is required as input, the ALU that has access must be used for the required operation.

As seen from the Tables 14 and 15, for match crossbars, word-level selection of
match fields is slightly more area efficient. For action crossbars, zero-extending
crossbars occupy smaller area. The lightweight variant brings further savings in area.
In chapter 7, a packet processing pipeline whose all ALUs are 32 bits in width will

77

be presented. For this kind of ALU, the total number of input possibilities is more
than each of the ALUs in RMT. Based on the insight gained in this chapter, the
required optimizations will be applied to reduce the area.

78

6 TOWARDS TERABIT-LEVEL PACKET PARSING

As line rates increase, the time window during which a new packet arrives shrinks.
For instance, in 400 Gigabit Ethernet (GbE), minimum-sized packets arrive every
1.67 ns. In a digital system operating at frequency of 1.0 GHz, this is hardly
equivalent to 2 cycles. Even with minimum-sized Ethernet frames, it is possible for
the frame to contain multiple headers. Parsing of multiple headers in a 2-cycle time
window is not trivial unless the sequence of headers is known in advance. In this
chapter, the details of an architecture for Terabit-level packet parsing will be
presented. The content of this chapter is based on PVI.

6.1 The Building Block for Terabit-level Packet Parsing

The packet parser presented in chapter 3 uses a single packet parsing entity to parse
all the headers within a packet. It uses program control to use the same functional
units for parsing of all headers within a packet. Line rate is sustained because the
packets arrive through 10 Gbps ports. The packet parser in this chapter, however,
uses multiple parsing entities, each for one of the headers in the packet. The parsing
entity is called header parser and it is the building block for Terabit-level packet
parsing. These building blocks are put in series to form a pipelined packet parser.
The first header parser parses the first header in the incoming packet. The second
header parser parses the second header and so on. This is the requirement for
Terabit-level switches in which each port operates at hundreds of Gbps.

The header parsers together form a pipeline. In addition, each header parser is
internally pipelined. The header data read from the buffer of incoming packets
traverses the pipeline of header parsers. Figure 18 illustrates the internals of a header
parser. The inputs to each header parser are the Header ID, header data and starting
offset. The Header ID is a 4-bit identifier of the header that must be parsed. This
ID is only of significance inside the architecture. It is used to retrieve the control
signals for the functional units within the header parser. The control signals for
parsing a given header are collectively referred to as Parse Control Word (PaCW).
Each header parser determines the next header, calculates the size of current header

79

in order to provide the starting offset of next header and extracts fields of current
header into the PHV. Output of each header parser is the input to the next header
parser. For the first header, the header ID and starting offset are already set. Each
header is parsed over 5 cycles. These cycles are outlined in the table 16.

Table 16. Header parsing stages

Cycle Operations
1 PaCW is retrieved using the ID of the incoming packet
2 Header fields containing indication of next header and header size are extracted.
3 Extracted next header value is compared in parallel with 16 next header values corresponding to

current header. In parallel, the extracted header size field goes through modification.
4 The matching entry for next header is selected. The modified header size value goes through another

round of modification.
5 The size of header is now available. Up to 16 words within the header can be extracted in parallel for

writing to PHV.

Figure 18. Internals of Header Parser [PVI]

The main difference with the parser in chapter 3 is that the header parser is a
pipelined architecture rather than a processor. This should be distinguished from a
processor with an instruction pipeline. In addition to this, the header parser’s input

Header
ID

Arrived
packet

Parse Control
Word (PaCW)

Memory

FE

Starting Offset

N
e

xt
 H

e
a

d
e

r

== Resolve

Data Memory

FE

Starting Offset

H
e

a
d

e
r

S
iz

e

Modify Modify

Default Header Size

+

Starting Offset

Starting Offset of Next Header
Header Size

x16

FE FE FE

Starting Offset Starting Offset Starting Offset

W
o

rd
 0

W
o

rd
 1

W
o

rd
 1

5

PHV

Next Header ID

80

is considerably wider. It requests 64 bytes from the buffer of incoming packets. This
means that an entire minimum-sized packet can be retrieved at once. Each header
parser receives the starting offset from its previous header parser. It calculates the
size of the header being parsed and adds it to the starting offset it received to provide
the next header parser with the starting offset of the header that must be parsed.

The fact that each header parser parses only one of the headers in the packet does
not mean that the header parser has the capability to parse only one header. Rather,
it can be programmed to parse 16 distinct headers. Consider the parse graph
illustrated in Figure 19. If a packet parser made of header parsers is deployed in an
environment in which header sequences within the packets are based on the parse
graph in Figure 19, the first header parser parses Ethernet header. The second header
parser must be programmed to parse IPv4, IPv6, VLAN, or MPLS. Every header
parser finds out what the next header is and signals it to the next header parser. The
third header parser must parse IPv4, IPv6, MPLS, or TCP. Interestingly, the second
header parser also could parse IPv4, IPv6 and MPLS but for the third header only
the third parser is used.

Figure 19. Parse graph with three levels [PVI]

6.2 Using the Header Parsers to Build a Packet Parser

By placing 8 header parser instances in a pipelined organization, a packet parser that
can parse packets having up to 8 headers is constructed. For complex headers, a

Ethernet

IPv4 IPv6 VLAN MPLS

IPv4 IPv6 MPLS TCP

81

header parser may not be able to completely parse the header. In such a case, one
header parser partially parses the header and the next header parser performs the
rest of the parsing of the header in question. The operating frequency is 1.19 GHz.
This means that a minimum-sized Ethernet frame is fetched every 0.84 nanoseconds.
Therefore, one single packet parser sustains 800 Gbps throughput. For achieving
higher throughputs, either the operating frequency must be increased, or the packet
parser instances must be replicated. The latter is chosen because the packet parsers
are very efficient in area. For a 6.4 Tbps switch, 8 packet parsers are required.

6.3 Implementation Results

Table 17 contains the area and power breakdown of the constituent components of
a single header parser. The ASIC technology, backend tool, operating frequency and
operating conditions are the same as in previous chapters. Based on the values of
Table 17, Table 18 contains the total area and power requirements for 6.4 Tbps
packet parsing. These parser instances have total area of 3.61 mm2 and total power
dissipation value of 9.5 W.

Table 17. Area and power dissipation of the components of a header parser (adjusted from
PVI)

Component Total area (μm2) Total power (mW)
PaCW and Parameter Memories 30 K 52
Field extractors and manipulators 15.9 K 21.64
Comparators and resolving logic 1.1 K 0.96
Total 47.0 K 74.6

Table 18. Area and power dissipation of components required for 6.4 Tbps packet parsing
(adjusted from PVI)

Component Number of instances Total area (mm2) Total power (W)
Header Parsers 64 3 4.7
PHV 8 0.61 4.8
Total - 3.61 9.5

82

6.3.1 Discussion of implementation results

In order to sustain 6.4 Tbps throughput, 8 pipelined packet parser instances are
needed. For this target throughput value, if the 80 Gbps parser presented in chapter
3 is to be used, 80 instances will be needed. If the 40 Gbps parsers used in RMT
architecture are to be used, 160 parsers would be needed. There is, however, a
fundamental difference between the parser presented in this chapter when compared
with the 80 Gbps parser and the 40 Gbps parser. The difference is that the parser in
this chapter can parse packets coming from 800 Gbps ports. The parser in chapter
3 and RMT are designed for 10 Gbps ports. 20 instances of RMT parser can sustain
aggregate throughput from 80 ports of 10 Gbps which in total is 800 Gbps but they
cannot parse packets arriving through a single 800 Gbps port. Similarly, the 80 Gbps
parser cannot parse packets coming from an 800 Gbps port, no matter how many
parsers have been instantiated. They can however, sustain aggregate 800 Gbps
throughput. Despite this, let’s compare the area of a 6.4 Tbps packet parser
presented in this chapter with the area of 80 instances of 80 Gbps packet parser and
160 instances of RMT parser. The corresponding gate counts are 11 M, 46 M and
56 M respectively. Therefore, the designed parser has 76% and 80% less area
compared to parsers in chapter 3 and the RMT parsers instantiated for 6.4 Tbps. It
is worth mentioning that each header parser has its own memory instances. No
sharing of memory has been used.

At port speeds above 100 Gbps, it is challenging for processor-based solutions
to keep pace with the rate of packet arrival. Each 800 Gbps packet parser pipeline
of this chapter can sustain an unlimited stream of minimum-sized packets. If a
processor-based architecture were to be used for an 800 Gbps port through which
an unlimited stream of minimum-sized packets arrives, the requirements would be
hardware support for an unlimited number of threads as well as speculative
execution engines for each thread. The reason why speculative execution is required
is that an entire packet arrives every clock cycle, i.e. every 0.84 ns, while the
operations required for determining the next header require multiple cycles. Support
for infinite number of threads means infinite amount of hardware, which is not
feasible. The pipelined architecture with 8 stages sustains 800 Gbps throughput with
far less complexity. Therefore, the fundamental research question of whether to use
processor or pipeline has been answered.

83

7 A FLEXIBLE PACKET PROCESSING PIPELINE

In this chapter the motivation and architectural details will be provided for a low-
area packet processing pipeline with enhanced level of flexibility and functionality.
The content of this chapter is based on PVI.

7.1 Motivation

Since programmable data plane is a new research area, there have not been many
hardware architectures fulfilling the criteria of programmability and performance.
The dominant architecture is RMT. It sustains 640 Gbps throughput. A few years
after RMT, a new architecture with modifications to RMT appeared. The new
architecture was called disaggregated RMT (dRMT). Both architectures were
discussed in chapter 2. dRMT is a run-to-completion architecture while RMT is a
pipeline. For dRMT, the achievable throughput using all processor instances is at
most 1 packet per cycle. Considering its 1.19 GHz operating frequency and 64-byte
packets separated by 20-byte unit inserted by the physical layer, the maximum
sustained throughput by dRMT is 800 Gbps. As discussed in chapter 6, a pipelined
architecture is more suited to the nature of high-throughput packet parsing. The
same applies to packet processing as well. Deep pipelines can accommodate extra
processing required for some packets whereas in processor-based systems, the issue
of extra processing can lengthen the interval at which a new packet must be accepted.
The solution to this is simultaneous multithreading but as discussed in chapter 6, a
pipelined architecture has far less complexity. Another benefit of pipelined
architectures is that the instruction memory is divided into pipeline stages. In other
words, each pipeline stage has a portion of the packet processing program. For run-
to-completion architectures, each processor instance must have the entire program.
As a result, the number of processor instances and/or functional units within them
must be subject to limits. Otherwise, the area increase can violate the constraints.

The motivation behind this work is achieving an area-efficient architecture in
order to minimize the overall area of multiple pipeline instances required for terabit-
level packet processing. In addition, the intention is to overcome RMT’s

84

shortcomings that unnecessarily increase the area, limit the supported workload and
use memory resources inefficiently. These shortcomings are listed below:

Lack of action depth
Extensive use of matching for program control
Limited field referencing
High cost of table combination

7.2 A New Architecture

The underlying component of the new packet processing pipeline is a packet
processing stage. Table 19 outlines the functional units available within each stage.
Figure 20 illustrates the components within each stage. By having only one TCAM
and one exact match table in each stage, the design is greatly simplified. The size of
each table and their total number of instances are exactly the same as that of RMT
architecture. This means that this architecture is a 512-stage pipeline.

Table 19. Components in each stage of the proposed packet processing pipeline

Functional unit Number of
instances

Purpose

Field Extractors (FE) 18 Extract fields for modification of fields and state
Field- and state-modifier (ALU) 8 ALUs for modifying content of header fields and state
Search key generator (Match
crossbar)

2 Crossbars for selecting search key components for
exact and ternary matching

TCAM (2K×40) 1 Performing ternary matching
Hash table (1K×64) 4 4-way hash table for exact matching
Associated memories (1K×32) 12 Data associated with match entries in exact and ternary

match tables

7.2.1 Program Control

A 10-bit tag is assigned to the packet by the packet parser based on the sequence of
headers present in the packet. This tag precisely describes the processing that a
packet requires. For instance, it can refer to an IPv4 packet that has TTL value of
zero. As the PHV traverses the pipeline, this tag is used to retrieve the instructions
for modifying header fields and state. However, this tag is not directly used because
its direct use requires an instruction memory with 1K entries at each stage.

85

Figure 20. Packet processing stage [PVI]

FE

FE

Associated data

2nd operand location

1st operand location

Immediate Value

PHV

sel

sel

Match
Crossbars

Search keys

TCAM

Associated
Memory

Exact
Match
Table

Associated
Memory

Modified
header field/state

Opcode

Ternary Match
Search key

Match lines from
previous stage

Associated data
address

Exact Match
Search Key

Associated data
address

Match Lines

Data associated
with ternary match

Associated data
address

Combine

Data associated
with exact match

x8

86

In addition to large area, if a VLIW instruction differs only in the opcode of one of
the functional units, a new instruction memory entry is required, which is inefficient
in use of memory. Instead, at each stage the 10-bit tag is used as an index into a 1K
× 64-bit memory. Each entry of this memory contains instruction pointers for each
of the functional units present in a stage. Once the instruction pointer for each
functional unit is available, they are used to retrieve the instruction from a 32-entry
memory. Therefore, at each stage, 328 combinations are possible while in the naïve
approach 1K entries are not sufficient for accommodating 328 combinations.

The fact that the tag is used for retrieving the instructions at each stage, allows
custom action depth. At each stage, the instructions related to the stage in question
are executed. A sequence of instructions is divided into a number of stages. The tag
can be changed throughout the pipeline. In addition to the 8 ALUs, there is also a
condition evaluator that is present in each stage. It can compare the value of header
fields or extract bits. When checking the value of TTL, this unit is used instead of
using TTL as a search key for matching.

7.2.2 Combining Tables

Each of the match tables in the architecture is referred to as a physical table. On the
other hand, a table required for a specific purpose is referred to as a logical table.
For instance, it is possible to combine all ternary match tables for storing over 1
million IPv4 prefixes. In this setting, the logical table with is entries 1048576
constructed using 512 physical tables each having 2K entries. If the required logical
table is wider than a single physical table, each of the visited tables receives part of
the search key that is designated for it. If the required logical table is deeper than a
single physical table but has the same width, each of the visited tables receives the
same search key. The first table that returns a match terminates the search. If the
required logical table is both wider and deeper than a single physical table, both
scenarios above are combined.

When a large number of tables need to be combined, this way of combining tables
results in high latency. For instance, in the case of logical table combining all TCAMs,
there is a 512-cycle latency for visiting all tables. In order to reduce the latency in
such scenarios, the designed architecture has an area-efficient mechanism for
combining the tables. In order to elaborate this architecture, some definitions must
be made. Pipeline stages are numbered 0 to 511. This 512-stage pipeline is made of
32 smaller pipelines with 16 stages, each of which is called a PIPE16. The starting

87

index of each PIPE16 is an integer multiple of 16. The PIPE16 instances can be
combined in a binary tree manner as can be seen in Figure 21. Note that the complete
binary tree has 5 levels. Only a fraction of the pipeline configuration architecture is
illustrated for clarity.

Figure 21. A fraction of the pipeline reconfiguration architecture (adjusted from PVI)

The required components are the multiplexers for selecting the input to the PIPE16
instances and priority-based 2-to-1 multiplexers that receive input from the final
stage of the PIPE16 instances. For multiplexers providing input to PIPE16
instances, the select lines are set by Pipeline Configuration Word (PiCW). For
priority-based 2-to-1 multiplexers, the select lines are set dynamically during the
operation of the pipeline by match found flags. In addition to the output of the PIPE16
instance that returned a match, the match found flag is also multiplexed so that next-
level priority-based multiplexer can function properly. Consider combination of 128
physical tables for making a logical table that is 128 times deeper than a single

Parser output

Parser output

Parser output

Parser output

PIPE0 output

PIPE1 output

PIPE2 output

PIPE0,1 output

PiCW(0)

PiCW(2:1)

PiCW(3)

PIPE0

PIPE1

PIPE2

PIPE3

PIPE0,1

PIPE2,3

PIPE0,1,2,3

88

physical table. It requires tables from eight PIPE16 instances. By providing the
correct select values for the input multiplexers, eight PIPE16 instances can receive
the same input and operate in parallel. By doing so, instead of 128 cycles, 16 cycles
are required for visiting the tables.

7.2.3 Action Input Selectors

The PHV contains 128 32-bit words. It is also possible to extract four 8-bit units
and three 16-bit units from each 32-bit word. Therefore, the action input selectors
are 1024-to-1 multiplexers whose width is 32 bits. The area of such a multiplexer is
8100 μm2 in 28 nm technology. At each stage of the pipeline, there are eight ALUs,
each requiring two field extractors. In addition, the condition evaluator also requires
a pair of field extractors. As a result, the area of field extractors within one stage of
the pipeline is 145800 μm2 and the total area in the whole pipeline is 74.64 mm2,
which is equivalent to the area of 429 instances of 2K × 32-bit TCAM.

Due to the large area and based on the insight provided in chapter 5, it is wise to
consider using smaller action input selectors. The optimization strategies discussed
in chapter 5 are based on the principle of dividing the PHV into logical segments
and limiting access to PHV entries belonging to other segments. The optimized field
selection scheme of use divides the PHV into 8 logical segments, each of which
contains one ALU instance. Inside each segment, there are 16 32-bit words.
Considering the 8-bit and 16-bit units within the 16 32-bit words, the total number
of options for field selection is 128. For PHV entries in other segments, it is only
possible to access them in 32-bit units. If an 8-bit field from another segment is
required, the whole 32-bit unit in which it is located is read. Therefore, the total
number of options for each optimized action input selector is 240. The area of the
optimized field selector is 36% of the area of the full field extractors. The first ALU
and the condition evaluator still use the large field selectors. The other seven ALUs
use the reduced field extractors. The area of field selectors per stage and across all
stages is 79000 μm2 and 40 mm2, respectively. This is a 46% area reduction with
respect to using full field extractors for all functional units.

7.2.4 Pointer-based Header Field Referencing

Sometimes the location of a field that needs to be retrieved as an operand or selected
as the destination is not fixed within the header. In these cases, it cannot be accessed

89

by an absolute index. In Segment Routing (SR), the use of pointer-based field
referencing is common. IPv6 Segment Routing Header (SRH) [92], contains a list of
IPv6 addresses. The index of the IPv6 address that must be used as the destination
address is pointed to by the Segments Left field. In the absence of more advanced field-
referencing mechanisms, the value of the pointer must be used as a search key. The
outcome of the search is an instruction pointer that points to the correct instruction.
However, the instructions that are stored for different values of the pointer all have
the same opcode. The only difference is in the absolute value of source or destination
indexes. This results in inefficient use of lookup and instruction memories.

In this architecture, reading from or writing to a pointer-specified header field
can be done without any lookup and using only one instruction. For using an
operand that is referred to by a pointer, the pointer field is selected directly as the
operand. The ALUs designed have opcode for pointer dereferencing. Once this
operation has been executed, the value of the field that has been pointed to by the
pointer is available at the specified location. For writing to a location pointed to by
a pointer, the first source operand is the value to be written and the second operand
is the pointer, both of which can be accessed using absolute address. The operation
write to pointer-based location is executed. In this operation, the location specified
by the pointer is accessed for writing. When this operation is executed, the writing
ALU can override other ALUs because the write location may be located beyond the
locations that the ALU in question writes to.

7.3 Implementation results

In this section, the implementation result of the proposed architecture are provided.
Table 20 provides an area breakdown of the constituting components of a single
packet processing stage. For those components of which multiple instances are
present, the total area has been provided. As can be seen, the major contributors to
the area are ternary and exact match tables followed by action input selectors. The
ASIC technology, backend tool, operating frequency and operating conditions are
same as in previous chapters.

90

Table 20. Area of the constituent components of a packet processing stage (adjusted from
PVI)

Component Total area (mm2)
TCAM 0.180
4-way Exact Match tables 0.125
Field selectors 0.079
Instruction Memory 0.032
PID Map Table 0.031
PHV 0.018
Field- and State-Modifiers 0.012
Search Key Selectors 0.009
Total 0.486

7.3.1 Comparison with other Match-Action Architectures

In this section, the area of the proposed architecture is compared with that of RMT
and dRMT. From the perspective of sustained throughput, these architectures are
on par with each other. The proposed pipeline sustains 800 Gbps throughput. RMT
can also sustain 800 Gbps if its operating frequency is scaled up to 1.25 GHz which
is only marginally higher than 1.19 GHz of this architecture. For dRMT, 2 variants
have been considered, each with a different value of Inter-Packet Concurrency
(IPC). The values in Table 21 correspond to one MAU, one dRMT processor, and
one packet processing stage in this architecture. Based on the values of Table 21,
Table 22 contains the total area in the three architectures. What is meant by the
crossbar area is the area of components required for combining tables. In this
architecture, the components required for configuration of pipeline fit into this
category. dRMT has more crossbar area because on top of table combination
crossbars, there are crossbars for assigning table clusters to dRMT processors. All
the three architectures have equal amount of memory for ternary and exact
matching.

91

Table 21. Comparison of the area (mm2) of RMT, dRMT and the proposed architecture [PVI]

Component RMT dRMT (IPC = 1) dRMT (IPC = 2) This architecture
Match key config.
Reg.

0.021 0.012 0.015 0.000

Match key
crossbar

0.187 0.150 0.217 0.009

PHV 0.336 0.998 1.439 0.018
Scratchpad N/A 0.156 0.156 N/A
Action input
selector

1.448 0.523 0.964 0.079

ALUs 0.200 0.050 0.050 0.012
Action output
selector

N/A 0.147 0.147 0.000

VLIW instruction
table

1.139 1.029 1.029 0.032

Total 3.331 3.065 4.017 0.150

Table 22. Total area for the three architectures under comparison [PVI]

Architecture Non-crossbar area
(mm2)

Crossbar area (mm2) Total area (mm2)

RMT 106.592 6 112.592
dRMT (IPC = 1) 98.080 11.328 110.128
dRMT (IPC = 2) 128.544 11.328 139.872
This architecture 76.800 1 77.800

7.3.2 Discussion of results

The proposed architecture applies simplifications to RMT and also makes some
enhancements. One important thing to note is that the presence of 32 MAUs in
RMT architecture does not mean that it is a pipeline of 32 stages. Each MAU is
internally pipelined because the operations that must be performed inside MAU
require a number of cycles. These operations include search key generation, lookup,
action memory access, instruction memory access, and action execution.
Considering the number of latency cycles in match and action dependencies, the
total number of physical stages in RMT and the proposed architecture are on par
with each other.

92

The main motivation behind a long pipeline in which each stage contains only one
ternary match table and one exact match table is eliminating the complex logic for
combination of tables and allowing any number of tables to be combined for
forming wider and/or deeper tables. Furthermore, some actions must be mapped to
a chain of ALUs across multiple stages. One action stage after a match is not
sufficient for complex actions. The operation executed in the ALUs in each MAU is
dependent on the Match in the same MAU. A strong argument in favor of deep
pipelines is that it is better to forward packets to a deep pipeline in which some
operations, including both match and action, are executed speculatively, rather than
a short pipeline in which packets are likely to be recirculated. Although a deep
pipeline has high latency as its main characteristic, it provides guaranteed
performance. Once the match result is ready, the outcome of unnecessary
speculatively executed operations is discarded.

One of the main design goals of this architecture was efficient use of memory
resources. The RMT architecture uses match tables extensively for program control.
This means that checking the value of TTL field also requires matching. This
architecture, on the other hand, uses combinatorial logic for this purpose and
reserves lookup tables for address lookup purposes. Another architectural
enhancement introduced in this architecture was support of pointer-based
addressing mode. The absence of this kind of addressing mode in RMT causes the
instruction memory entries to be exponentially filled in an inefficient manner.

Despite the enhancements, the proposed packet processing pipeline has 31% less
area compared to the RMT architecture. This area saving is about 35 mm2. This is
equivalent to 200 TCAM blocks of 2K×40b or more than 2200 instances of 1K×32b
SRAMs. Integrating more memories increases the match and action capacity of the
architecture, which is one of the performance metrics. Another benefit of an
architecture with noticeable area savings is that it allows more instances being
integrated into the chip while adhering to the overall area constraint.

93

8 CONCLUSION

SDN has the concept of software controlling the network at its heart. Despite this,
it has provided new opportunities for custom packet processing hardware. There has
been a shift from network processors to custom programmable switch ASICs. NFV,
as the other major development in computer networks, is about softwarization of
network functions and decoupling them from middleboxes. However, it has also
provided new opportunities for packet processing hardware by causing a shift from
middleboxes to smartNICs. As a result, custom packet processing hardware has not
been eliminated. There is a lot of room for innovation. Innovation is needed mostly
in hardware architecture, not in ISA. Although the main focus of this thesis was
packet processing architecture for switching and routing, the contributions made are
also of benefit for architecting smartNICs as well.

8.1 Research Findings

This thesis answered many questions specific to the architectural choices. VLIW is
a suitable parallel processing scheme for protocol-independent packet processing. In
VLIW, parallelism is dictated explicitly by software. This is in line with the concept
of software being in charge. Another benefit of VLIW is that the time required for
implementation and verification is far less than that of processors with run-time
scheduling hardware. Although neither RMT nor the pipelined architecture in
chapter 7 are processors, the fact that they contain multiple ALUs per stage makes
them fit the VLIW category.

Deep pipelines and SMT are the dominant architectures for high-performance
packet processing. In principle, every computation can be performed by a processor.
SMT is the solution for sustaining throughput of packets arriving through ports
whose speed is 100 Gbps and above. The major issue with SMT is that
implementation complexity can get out of hand. When a large number of
simultaneous threads must be supported, it is not possible to add an independent
read port to the memory hosting instructions. A pipelined architecture can offer the
same performance level using simpler hardware. However, there are certain tasks

94

that the pipelined architecture is not capable of. The conclusion is that both
pipelined and processor-based architectures are required for high-performance
protocol-independent packet processing. The ideal combination is a processor-based
packet preprocessor, or a preprocessor coupled with a pipelined parser as the parsing
and preprocessing subsystem and a pipeline for the packet processing subsystem.

With respect to the question of achieving programmability in packet parsing
without using TCAMs, it was seen that using simple binary matching of next header
indicator against expected values results in far simpler and more power-efficient
hardware. Determining the header size can be done by manipulating header size
indicator or if necessary binary matching. As for enhancing the performance of
packet parsers, using multithreading in which each thread is in charge of parsing
packets arriving through the port to which the thread corresponds is effective. For
further performance enhancement, the pipelined parser in which at each clock cycle
an entire minimum-size frame is accepted is a promising solution.

There are numerous cases in which the parser can assist packet processing. At a
minimum, integrity checking operations can be easily performed by the parser. In
addition, the process of fragmentation of variable-sized packets into fixed-size cells
can also be handled by the parser. Since match field crossbars are one of the main
contributors to area, the packet preprocessor can write the fields used for matching
in a designated location of PHV. Doing so helps eliminate match crossbars or use
far smaller ones.

Deep programmable pipelines are a good match for flexible layer-2 and layer-3
packet processing. However, some considerations must be taken into account to
avoid excessive area and power dissipation. One such consideration concerns
instruction memories. Since there is a vast number of memories for storing the
instructions, it is necessary to keep the memories small. The way this was achieved
in the pipeline of Chapter 7 was use of small instruction memories whose entries can
be reused in an efficient manner. The next consideration deals with combination of
lookup tables for making tables of custom size. The pipeline of Chapter 7 allows
combination of an arbitrary number of tables with least possible amount of
hardware. Finally, since each stage has multiple ALUs each of which requiring 2
action input selectors that select from a large number of header fields, it is imperative
to subject the number of inputs to some limit. For the designed pipeline, this was
done by segmenting the PHV into smaller units. All the header fields in a given
logical segment can be read in 3 different sizes while header fields in other segments
are read only in 32-bit size, thereby reducing the number of inputs to the
multiplexers. Regarding the action input selectors, it is important to note that direct

95

addressing of header fields is not sufficient. There must be support for pointer-based
reads. The same applies for selecting action output destination.

Performance comes not only from hardware, but from software as well. One of
the performance-enhancing software techniques used in the designed pipeline was
speculatively looking up tables and executing actions. This speculation is instructed
by software. The width of PHV allows storing speculative results. From the
perspective of throughput and latency, it is far better to speculatively perform
matching and action execution rather than recirculating a packet.

The most important finding of this dissertation is that achieving high
performance and enhanced functionality does not necessarily come at the cost of
increased complexity and power dissipation. The key to achieving high performance
without increase in chip area and/or power requirements is making the right
architectural choices.

The findings of this dissertation can also be applied to FPGAs as well. Use of
low-area hardware architectures is of significance in FPGAs especially because entry-
level FPGAs that are more accessible to the research community are more limited in
available resources. Both packet parser variants can be implemented on FPGAs as
well as they do not require TCAMs. However, some architectural modifications are
required to compensate for the lower performance resulting from lower operating
frequency of FPGAs.

This dissertation provided insight into packet processing hardware. The insight
is not only of significance to packet processing system architects, but to network
protocol designers as well. Network protocols are designed mainly with the
functional requirements in mind. After reading this dissertation, the protocol
designer is familiar with the strengths and weaknesses of packet processing
hardware. For instance, in protocols whose header is comprised of multiple words,
it is more efficient to place the next header indicator as far as possible from the
ending boundary of the header. Furthermore, variable-length headers should be
avoided unless absolutely necessary as they put additional performance requirement
on packet parsers. IPv6 is an example of a well-designed network protocol. Its
enhancements compared to IPv4 are not limited to a much larger address space. The
number of integrity checking operations required for IPv6 is considerably smaller
than that of IPv4. In addition, the size of IPv6 header is fixed which eases the task
of parser. Finally, the position of next header indicator is chosen such that there will
be no need for idling the pipeline until the address of instruction for parsing next
header becomes available.

96

8.2 Open Problems and Future Directions

One of the open issues is the degree to which network operators are willing to
support flexibility. For instance, one of the questions is whether the programmable
data plane must be an architecture that supports flexibility on top of Ethernet or is
it desirable to also support any protocol as the first protocol in the header stack of
packets. This is a fundamental question as it affects the datapath width and the
frequency of packet arrival.

The next major open issue is programming of packet processing hardware.
Network administrators prefer to use a high-level language for specifying network
policies. There must be tools that translate the policies and provide the operation
and configuration codes for the hardware. P4 is one such language. However, its
program control mechanism is limited to Match and Action. The RMT architecture
is in fact a compiler target for P4. An ideal solution is a language with high-level
properties of P4 and yet with the ability to be mapped to various packet processing
hardware architectures.

As for future work, the author’s plan is to extend this research both in the
hardware and software domains. In the hardware domain, the intention is to use
both ASICs and FPGAs as the target platform in order to cover the following
aspects:

-Programmability of buffer management
-Memory-efficient hash collision resolution
-Enhancing the flexibility and throughput of the designed pipeline

On the software side, the aim is to develop a tool that accepts packet processing
requirements at a higher layer of abstraction and generates the configuration and
operation codes for the pipeline.

97

REFERENCES

[1] M. Casado, N. McKeown, and S. Shenker, “From Ethane to SDN and
Beyond,” Comput. Commun. Rev., vol. 49, no. 5, pp. 92–95, 2019, doi:
10.1145/3371934.3371963.

[2] L. Jose, L. Yan, G. Varghese, and N. McKeown, “Compiling packet
programs to reconfigurable switches,” in 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2015, pp. 103–115.

[3] “Requirements for Separation of IP Control and Forwarding,” 2003.
https://tools.ietf.org/html/rfc3654 (accessed Nov. 06, 2020).

[4] “Forwarding and Control Element Separation (ForCES) Framework,”
2004. https://tools.ietf.org/html/rfc3746 (accessed Nov. 06, 2020).

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Mckeown, and S. Shenker,
“Ethane: Taking Control of the Enterprise,” SIGCOMM Comput. Commun.
Rev., vol. 37, no. 4, pp. 1–12, 2007, doi: 10.1145/1282380.1282382.

[6] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus
Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008, doi: 10.1145/1355734.1355746.

[7] P. Bosshart et al., “P4: Programming Protocol-Independent Packet
Processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3, pp.
87–95, 2014, doi: 10.1145/2656877.2656890.

[8] H. Song, “Protocol-Oblivious Forwarding: Unleash the Power of SDN
through a Future-Proof Forwarding Plane,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, 2013, pp.
127–132, doi: 10.1145/2491185.2491190.

[9] J. Yu, X. Wang, J. Song, Y. Zheng, and H. Song, “Forwarding
Programming in Protocol-Oblivious Instruction Set,” in 2014 IEEE 22nd
International Conference on Network Protocols, 2014, pp. 577–582, doi:
10.1109/ICNP.2014.92.

[10] S. Li et al., “Protocol Oblivious Forwarding (POF): Software-Defined
Networking with Enhanced Programmability,” IEEE Netw., vol. 31, no.
2, pp. 58–66, 2017, doi: 10.1109/MNET.2017.1600030NM.

[11] M. Shahbaz and N. Feamster, “The Case for an Intermediate
Representation for Programmable Data Planes,” 2015, doi:
10.1145/2774993.2775000.

[12] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V.
Sekar, “Making middleboxes someone else’s problem: Network

98

processing as a cloud service,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13–24, 2012, doi: 10.1145/2377677.2377680.

[13] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and R.
Boutaba, “Network function virtualization: State-of-the-art and research
challenges,” IEEE Commun. Surv. Tutorials, vol. 18, no. 1, pp. 236–262,
2016, doi: 10.1109/COMST.2015.2477041.

[14] Z. Ni, G. Liu, D. Afanasev, T. Wood, and J. Hwang, “Advancing network
function virtualization platforms with programmable NICs,” 2019 IEEE
Int. Symp. Local Metrop. Area Networks, vol. 2019-July, pp. 1–6, 2019, doi:
10.1109/LANMAN.2019.8847032.

[15] S. Miano, R. Doriguzzi-Corin, F. Risso, D. Siracusa, and R. Sommese,
“Introducing smartnics in server-based data plane processing: The DDoS
mitigation use case,” IEEE Access, vol. 7, pp. 107161–107170, 2019, doi:
10.1109/ACCESS.2019.2933491.

[16] D. Firestone et al., “Azure Accelerated Networking: SmartNICs in the
Public Cloud,” in 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2018, pp. 51–66, [Online]. Available:
https://www.usenix.org/conference/nsdi18/presentation/firestone.

[17] “OpenFlow Switch Specification (Version 1.5.1).” Open Networking
Foundation, 2015, [Online]. Available: https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[18] “Open Systems Intrconnection Basic Reference Model: The Basic
Model.” International Organization for Standardization, 1994, [Online].
Available:
https://standards.iso.org/ittf/PubliclyAvailableStandards/s020269_ISO
_IEC_7498-1_1994(E).zip.

[19] “1G/2.5G Ethernet PCS/PMA or SGMII v16.2.” XILINX, 2020,
[Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/gi
g_ethernet_pcs_pma/v16_2/pg047-gig-eth-pcs-pma.pdf.

[20] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, “Design
Principles for Packet Parsers,” in Proceedings of the Ninth ACM/IEEE
Symposium on Architectures for Networking and Communications Systems, 2013,
pp. 13–24, doi: 10.1109/ANCS.2013.6665172.

[21] R. Braden, D. Borman, and C. Partridge, “Computing the Internet
Checksum,” 1988. https://tools.ietf.org/html/rfc1071 (accessed Nov.
05, 2020).

[22] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers,” 2005. https://tools.ietf.org/html/rfc4213 (accessed
Nov. 05, 2020).

[23] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol
(ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification,” 2006.

99

https://tools.ietf.org/html/rfc4443 (accessed Nov. 03, 2020).
[24] R. Pagh and F. F. Rodler, “Cuckoo hashing,” J. Algorithms, vol. 51, no. 2,

pp. 122–144, 2004, doi: 10.1016/j.jalgor.2003.12.002.
[25] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory

(CAM) circuits and architectures: A tutorial and survey,” IEEE J. Solid-
State Circuits, vol. 41, no. 3, pp. 712–727, 2006, doi:
10.1109/JSSC.2005.864128.

[26] P. Bosshart et al., “Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN,” Comput. Commun. Rev.,
vol. 43, no. 4, pp. 99–110, 2013, doi: 10.1145/2534169.2486011.

[27] V. C. Ravikumar and R. N. Mahapatra, “TCAM architecture for IP lookup
using prefix properties,” IEEE Micro, vol. 24, no. 2, pp. 60–69, 2004, doi:
10.1109/MM.2004.1289292.

[28] “Stateful NAT64: Network Address and Protocol Translation from IPv6
Clients to IPv4 Servers.” https://tools.ietf.org/html/rfc6146 (accessed
Nov. 05, 2020).

[29] “Differentiated Services (Diffserv) and Real-Time Communication.”
https://tools.ietf.org/html/rfc7657 (accessed Nov. 06, 2020).

[30] “Internet Protocol, Version 6 (IPv6) Specification,” 2017.
https://tools.ietf.org/html/rfc8200 (accessed Nov. 06, 2020).

[31] “New Terminology and Clarifications for Diffserv.”
https://tools.ietf.org/html/rfc3260 (accessed Nov. 05, 2020).

[32] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click
Modular Router,” ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
2000, doi: 10.1145/354871.354874.

[33] M. Dobrescu et al., “RouteBricks: Exploiting Parallelism to Scale Software
Routers,” in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, 2009, pp. 15–28, doi: 10.1145/1629575.1629578.

[34] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
high performance ethernet forwarding with CuckooSwitch,” in Proceedings
of the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, 2013, pp. 97–108, doi: 10.1145/2535372.2535379.

[35] B. Pfaff et al., “The Design and Implementation of Open vSwitch,” Proc.
12th USENIX Symp. Networked Syst. Des. Implementation, NSDI 2015, pp.
117–130, 2015.

[36] M. Shahbaz et al., “PISCES: A Programmable, Protocol-Independent
Software Switch,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 525–538, doi: 10.1145/2934872.2934886.

[37] P. J. McCann and S. Chandra, “Packet Types: Abstract Specification of
Network Protocol Messages,” SIGCOMM Comput. Commun. Rev., vol. 30,
no. 4, pp. 321–333, 2000, doi: 10.1145/347057.347563.

[38] “The P4 Language Specification.” The P4 Language Consortium, 2018,

100

[Online]. Available: https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf.
[39] “P416 Language Specification.” The P4 Language Consortium, 2019,

[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.2.0.pdf.
[40] A. Sivaraman et al., “Packet Transactions: High-Level Programming for

Line-Rate Switches,” in Proceedings of the 2016 ACM SIGCOMM Conference,
2016, pp. 15–28, doi: 10.1145/2934872.2934900.

[41] V. Moreno, J. Ramos, P. M. Santiago Del Rio, J. L. Garcia-Dorado, F. J.
Gomez-Arribas, and J. Aracil, “Commodity Packet Capture Engines:
Tutorial, Cookbook and Applicability,” IEEE Commun. Surv. Tutorials, vol.
17, no. 3, pp. 1364–1390, 2015, doi: 10.1109/COMST.2015.2424887.

[42] G. Liao, X. Znu, and L. Bnuyan, “A new server I/O architecture for high
speed networks,” in 2011 IEEE 17th International Symposium on High
Performance Computer Architecture, 2011, pp. 255–265, doi:
10.1109/HPCA.2011.5749734.

[43] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace packet processing,”
in 2015 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), 2015, pp. 5–16, doi:
10.1109/ANCS.2015.7110116.

[44] “DPDK Intel NIC Performance Report Release 20.02,” 2020. [Online].
Available:
http://fast.dpdk.org/doc/perf/DPDK_20_02_Intel_NIC_performance
_report.pdf.

[45] “Data Plane Development Kit.” https://www.dpdk.org/ (accessed Jun.
08, 2020).

[46] L. Rizzo, “NetMap: A novel framework for fast packet I/O,” in Proceedings
of the 2012 USENIX Annual Technical Conference, 2012, pp. 101–112.

[47] N. Bonelli, A. Di Pietro, S. Giordano, and G. Procissi, “On multi–gigabit
packet capturing with multi–core commodity hardware,” in International
Conference on Passive and Active Network Measurement, 2012, pp. 64–73, doi:
https://doi.org/10.1007/978-3-642-28537-0_7.

[48] “NetFPGA.” https://netfpga.org/ (accessed Jun. 15, 2020).
[49] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,

“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, vol. 34, no. 5, pp. 32–41, 2014, doi: 10.1109/MM.2014.61.

[50] M. B. Anwer, M. Motiwala, M. Bin Tariq, and N. Feamster, “SwitchBlade:
A platform for rapid deployment of network protocols on programmable
hardware,” in SIGCOMM’10 - Proceedings of the SIGCOMM 2010 Conference,
2010, pp. 183–194, doi: 10.1145/1851182.1851206.

[51] G. Brebner and W. Jiang, “High-Speed Packet Processing using
Reconfigurable Computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014,
doi: 10.1109/MM.2014.19.

[52] B. Li et al., “ClickNP: Highly Flexible and High Performance Network

101

Processing with Reconfigurable Hardware,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016, pp. 1–14, doi: 10.1145/2934872.2934897.

[53] H. Wang et al., “P4FPGA: A Rapid Prototyping Framework for P4,” in
Proceedings of the Symposium on SDN Research, 2017, pp. 122–135, doi:
10.1145/3050220.3050234.

[54] M. Attig and G. Brebner, “400 Gb/s Programmable Packet Parsing on a
Single FPGA,” in 2011 ACM/IEEE Seventh Symposium on Architectures for
Networking and Communications Systems, 2011, pp. 12–23, doi:
10.1109/ANCS.2011.12.

[55] P. Benáček, V. Puš, H. Kubátová, and T. Čejka, “P4-To-VHDL:
Automatic generation of high-speed input and output network blocks,”
Microprocess. Microsyst., vol. 56, pp. 22–33, 2018, doi:
https://doi.org/10.1016/j.micpro.2017.10.012.

[56] J. Santiago da Silva, F.-R. Boyer, and J. M. P. Langlois, “P4-compatible
high-level synthesis of low latency 100 Gb/s streaming packet parsers in
FPGAs,” in Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2018, pp. 147–152, doi:
10.1145/3174243.3174270.

[57] J. Cabal, M. Kekely, P. Benáček, V. Puš, L. Kekely, and J. Kořenek,
“Configurable FPGA Packet Parser for Terabit Networks with
Guaranteed Wire-Speed Throughput,” in Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
2018, pp. 249–258, doi: 10.1145/3174243.3174250.

[58] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
Accelerated Software Router,” SIGCOMM Comput. Commun. Rev., vol. 40,
no. 4, pp. 195–206, 2010, doi: 10.1145/1851275.1851207.

[59] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the Bar
for Using GPUs in Software Packet Processing,” in 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2015, pp.
409–423.

[60] Y. Go, M. Jamshed, Y. G. Moon, C. Hwang, and K. S. Park, “APUNet:
Revitalizing GPU as Packet Processing Accelerator,” in USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2017, pp.
83–96.

[61] “Arista 7060X Series.” https://www.arista.com/en/products/7060x-
series (accessed Jun. 08, 2020).

[62] J. S. Turner et al., “Supercharging planetlab: A high performance, multi-
application, overlay network platform,” ACM SIGCOMM 2007 Conf.
Comput. Commun., vol. 37, no. 4, pp. 85–96, 2007, doi:
10.1145/1282380.1282391.

[63] “Intel IXP2800 and IXP2850 Network Processors.” Intel, 2005.
[64] J. Markevitch and S. Malladi, “A 400Gbps Multi-Core Network

102

Processor,” 2017, [Online]. Available: https://www.hotchips.org/wp-
content/uploads/hc_archives/hc29/HC29.22-Tuesday-
Pub/HC29.22.80-Architectdure-Pub/HC29,22,810-400gbs-NPU-
Markevitch-Cisco.pdf.

[65] “FP4: Delivering performance and capability without compromise.”
https://www.nokia.com/networks/technologies/fp4/ (accessed Nov.
01, 2020).

[66] L. De Carli, Y. Pan, A. Kumar, C. Estan, and K. Sankaralingam, “PLUG:
Flexible lookup modules for rapid deployment of new protocols in high-
speed routers,” in Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication, 2009, pp. 207–218, doi: 10.1145/1592568.1592593.

[67] G. Gibb, “Reconfigurable Hardware for Sonftware-Defined Networks,”
Stanford University, 2013.

[68] “The World’s Fastest & Most Programmable Networks.”
https://www.barefootnetworks.com/resources/worlds-fastest-most-
programmable-networks/ (accessed Jun. 08, 2020).

[69] S. Chole et al., “dRMT: Disaggregated Programmable Switching,” in
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 1–14, doi: 10.1145/3098822.3098823.

[70] A. Sivaraman et al., “Programmable Packet Scheduling at Line Rate,” in
Proceedings of the 2016 ACM SIGCOMM Conference, 2016, pp. 44–57, doi:
10.1145/2934872.2934899.

[71] V. Shrivastav, “Fast, Scalable, and Programmable Packet Scheduler in
Hardware,” in Proceedings of the ACM Special Interest Group on Data
Communication, 2019, pp. 367–379, doi: 10.1145/3341302.3342090.

[72] “Intel Ethernet Switch FM5000/FM6000 1 Gb/2.5 Gb/10 Gb/40 Gb
Ethernet (GbE) L2/L3/L4 Chip Datasheet.” Intel, 2017.

[73] “NFP-6000 Intelligent Ethernet Controller Family.”
https://www.netronome.com/static/app/img/products/silicon-
solutions/PB_NFP6000.pdf (accessed Nov. 06, 2020).

[74] P. Bosshart, “Programmable Forwarding Planes at Terabit/s Speeds,”
2018, [Online]. Available:
https://www.hotchips.org/hc30/2conf/2.02_Barefoot_Barefoot_Talk_
at_HotChips_2018.pdf.

[75] G. Antichi, T. Benson, N. Foster, F. Ramos, and J. Sherry, Eds.,
“Programmable Network Data Planes,” Dagstuhl Reports, vol. 9, no. 3, pp.
178–201, 2019.

[76] B. Sayle et al., Cisco Catalyst 9000 A new era of intent-based networking, Second
edi. CISCO, 2019.

[77] “25.6 Tb/s StrataXGS® Tomahawk® 4 Ethernet Switch Series.”
https://www.broadcom.com/products/ethernet-
connectivity/switching/strataxgs/bcm56990-series (accessed Nov. 06,

103

2020).
[78] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and D. Mazières, “Millions

of Little Minions: Using Packets for Low Latency Network Programming
and Visibility,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 3–14,
2014, doi: 10.1145/2740070.2626292.

[79] “Advanced Network Telemetry.”
https://www.barefootnetworks.com/use-cases/ad-telemetry/ (accessed
Jun. 08, 2020).

[80] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making Stateful
Layer-4 Load Balancing Fast and Cheap Using Switching ASICs,” in
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication, 2017, pp. 15–28, doi: 10.1145/3098822.3098824.

[81] “Layer 4 Load Balancer.” https://www.barefootnetworks.com/use-
cases/loadbalancing/ (accessed Jun. 08, 2020).

[82] D. Sanvito, G. Siracusano, and R. Bifulco, “Can the Network be the AI
Accelerator?,” in Proceedings of the 2018 Morning Workshop on In-Network
Computing, 2018, pp. 20–25, doi: 10.1145/3229591.3229594.

[83] R. Glebke, J. Krude, I. Kunze, J. Rüth, F. Senger, and K. Wehrle,
“Towards Executing Computer Vision Functionality on Programmable
Network Devices,” in Proceedings of the 1st ACM CoNEXT Workshop on
Emerging In-Network Computing Paradigms, 2019, pp. 15–20, doi:
10.1145/3359993.3366646.

[84] D. R. K. Ports and J. Nelson, “When Should the Network Be the
Computer?,” in Proceedings of the Workshop on Hot Topics in Operating Systems,
HotOS 2019, 2019, pp. 209–215, doi: 10.1145/3317550.3321439.

[85] A. Checko et al., “Cloud RAN for Mobile Networks—A Technology
Overview,” IEEE Commun. Surv. Tutorials, vol. 17, no. 1, pp. 405–426,
2015, doi: 10.1109/COMST.2014.2355255.

[86] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A Survey of the
Functional Splits Proposed for 5G Mobile Crosshaul Networks,” IEEE
Commun. Surv. Tutorials, vol. 21, no. 1, pp. 146–172, 2019, doi:
10.1109/COMST.2018.2868805.

[87] “Common Public Radio Interface: eCPRI Interface Specification.”
Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporationand
Nokia, [Online]. Available:
http://www.cpri.info/downloads/eCPRI_v_2.0_2019_05_10c.pdf.

[88] “1914.1-2019 - IEEE Standard for Packet-based Fronthaul Transport
Networks,” 2020.

[89] “1914.3-2018 - IEEE Standard for Radio over Ethernet Encapsulations
and Mappings,” 2018.

[90] J. A. Fisher, P. Faraboschi, and C. Young, “VLIW processors: once blue
sky, now commonplace,” IEEE Solid-State Circuits Mag., vol. 1, no. 2, pp.

104

10–17, 2009, doi: 10.1109/MSSC.2009.932433.
[91] M. S. Schlansker and B. R. Rau, “EPIC: Explicitly Parallel Instruction

Computing,” Computer (Long. Beach. Calif)., vol. 33, no. 2, pp. 37–45, 2000,
doi: 10.1109/2.820037.

[92] “Segment Routing Architecture,” 2018.
https://tools.ietf.org/html/rfc8402 (accessed Nov. 03, 2020).

105

PUBLICATIONS

106

PUBLICATION
I

An Explicitly Parallel Architecture for Packet Parsing in Software Defined Networks

H. Zolfaghari, D. Rossi and J. Nurmi

2018 IEEE 29th International Conference on Application-specific Systems, Architectures and Processors (ASAP),
1-4

doi: 10.1109/ASAP.2018.8445123

Publication reprinted with the permission of the copyright holders

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does
not endorse any of Tampere University’s products or services. Internal or personal use of this material
is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or
ProQuest Library, or the Archives of Canada may supply single copies of the dissertation.

PUBLICATION
II

Low-latency Packet Parsing in Software Defined Networks

H. Zolfaghari, D. Rossi and J. Nurmi

2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), 1-6

doi: 10.1109/NORCHIP.2018.8573461

Publication reprinted with the permission of the copyright holders

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Tampere University’s products or services. Internal or personal use of this material is permitted.
If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or
for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest
Library, or the Archives of Canada may supply single copies of the dissertation.

1.1 1.6

5.6

0
1
2
3
4
5
6

Modified
[8]

Current
Parser

Parser in
[2]

Parser instance

Millions
of gates

PUBLICATION
III

A custom processor for protocol-independent packet parsing

H. Zolfaghari, D. Rossi and J. Nurmi

Microprocessors and Microsystems, vol.72 (2019), 1-11

doi: 10.1016/j.micpro.2019.102910

Publication reprinted with the permission of the copyright holders

Microprocessors and Microsystems 72 (2020) 102910

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier.com/locate/micpro

A custom processor for protocol-independent packet parsing

Hesam Zolfaghari a , ∗, Davide Rossi b , Jari Nurmi a

a Electrical Engineering Unit, Tampere University, Tampere, Finland
b Department of Electrical, Electronic and Information Engineering, University of Bologna, Bologna, Italy

a r t i c l e i n f o

Article history:

Received 18 February 2019

Revised 12 August 2019

Accepted 12 October 2019

Available online 14 October 2019

Keywords:

Software defined networking

Programmable data plane

Packet parsing

Advanced program control

a b s t r a c t

Networking devices such as switches and routers have traditionally had fixed functionality. They have

the logic for the union of network protocols matching the application and market segment for which

they have been designed. Possibility of adding new functionality is limited. One of the aims of Software

Defined Networking is to make packet processing devices programmable. This provides for innovation and

rapid deployment of novel networking protocols. The first step in processing of packets is packet parsing.

In this paper, we present a custom processor for packet parsing. The parser is protocol-independent and

can be programmed to parse any sequence of headers. It does so without the use of a Ternary Content

Addressable Memory. As a result, the area and power consumption are noticeably smaller than in the

state of the art. Moreover, its output is the same as that of the parser used in the Reconfigurable Match

Tables (RMT). With an area no more than that of parsers in the RMT architecture, it sustains aggregate

throughput of 3.4 Tbps in the worst case which is an improvement by a factor of 5.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Software Defined Networking (SDN) is the key to deployment

and management of complex networks. New network protocols

are being proposed and standardized by both the industry and

academia. The internals of the packet processing devices such as

switches and routers can no longer accommodate the logic for the

union of network protocols proposed and standardized so far. In-

stead, the data plane of the packet processing systems must be

protocol-independent and programmable, so that they can provide

the functionality required for network protocols of present and fu-

ture. This requires thorough analysis of the operations incurred in

processing of packets. A common concern for programmable and

protocol-independent data plane is that of performance. However,

as we will see, such systems can be on par with the conventional

systems due to simpler architecture which allows for further opti-

mizations.

Recently, there have been research efforts for realizing pro-

grammable data plane. These efforts span over the software and

hardware abstraction layers. The P4 language, first introduced in

[1] , is a language for describing the forwarding behavior in packet

processing systems. It describes packet processing in the form of

match and action. In [2] , an intermediate representation for pro-

grammable data plane is provided. It is a target-independent in-

∗ Corresponding author.

E-mail addresses: hesam.zolfaghari@tuni.fi (H. Zolfaghari), davide.rossi@unibo.it

(D. Rossi), jari.nurmi@tuni.fi (J. Nurmi).

struction set. It bridges the gap between high-level languages and

hardware. A similar contribution is made in [3] . In [4] , a solution

for providing programmable packet scheduling in switches is pro-

vided. The most notable of research efforts for the hardware ar-

chitecture of the programmable data plane are [5–7] . The architec-

ture proposed in [6] is called Reconfigurable Match Tables (RMT). It

contains the packet parser proposed in [5] and 32 stages of match

and action. Any number of fields could be used to form a match

key. The result of the match determines the processing that must

be performed on header fields. The architecture in [6] has been

commercialized and it is now the basis of the Protocol Indepen-

dent Switch Architecture (PISA) used in Barefoot Tofino [8] .

In this paper we are interested in the problem of packet pars-

ing. There are countless papers in which FPGA-based parsers are

proposed. [9–13] are just a few examples of such research efforts

which achieve throughput on the scale of hundreds of Gigabits

per second. However, it should be noted that these architectures

achieve this throughput by means of operating on ultra-wide in-

put due to their low frequencies. For instance, in [9] , the input

width is 2048 bits. Obviously, no transmission medium can trans-

fer this amount of data at once. In addition, due to the sequen-

tial dependency of headers, each header must be parsed in turn

in order to extract its fields and determine the following header.

Therefore, there will be stalls and the flow of wide data could not

be processed at every clock cycle unless the sequence of headers

is known and remains unchanged. As a result, the actual through-

put is far below the claimed figure. In addition, checksum verifi-

cation which is needed in many packets must be calculated over

https://doi.org/10.1016/j.micpro.2019.102910

0141-9331/© 2019 Elsevier B.V. All rights reserved.

2 H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910

a number of cycles because the addition result must be accumu-

lated and the clock cycle does not allow adding more than two

operands. Therefore, it is best to read header data in smaller units

and maintain a steady flow. In [10–13] packet parsers are synthe-

sized from P4 definition of headers and parsers. This means that

the synthesized architecture is protocol-specific. Having a fixed

hardware which provides parsing capability for different headers

by means of software is a far more robust solution and more com-

patible with the goals of SDN. This is the approach taken by the

industry and hardly any high-end commercial packet processing

system is based on FPGAs. Packet parsers in high-end commercial

devices parse packets without buffering them in advance. We take

the same approach and present a programmable packet parser for

Terabit-scale packet parsing. It could be used for parsing any L2-

L4 header. It could also parse application-layer headers unless the

header requires deep packet inspection capabilities, in which case

the throughput deteriorates.

2. State of the art in packet parsing

In this section we investigate the architecture of two packet

parsers in commercial use. The first one is the parser used in Intel

FM50 0 0/FM60 0 0 Ethernet switches. The architecture of this switch

is presented in detail in [14] . This switch series supports 640 Gbps

aggregate throughput. The output of this parser contains a 40-bit

vector of flags, checksum and an 88-byte bus containing header

fields. This parser could be thought of as a state machine whose

each iteration consumes successive 4-byte segments of the frame.

The operation of this parser is specified by microcode. The parser

is comprised of 28 slices each of which represents one of the tran-

sitions of the parser’s state machine. Each slice receives as input

4 bytes of the frame and the status of the preceding slice. These

two inputs are concatenated to form a 64-bit search key which is

provided to a Ternary Content Addressable Memory (TCAM). The

result of the match determines the action. As a result of the ac-

tion, the state of the slice as well as the status flags are updated

and frame data is placed on the 88-byte bus. We do not investigate

this architecture any further for two reasons. It requires microcode

for programming and it is not protocol independent. It is an Ether-

net switch and the flags are specific to protocols such as Ethernet,

IPv4 and IPv6.

We limit our focus to the parser used in [6] . It shares similar-

ities such as use of TCAM and Action SRAM with the parser used

in [14] . However, it is programmed using P4 and could be used to

parse a wider range of headers. Internally, it is a state machine. As

with any state machine, each state is associated with a number of

actions. A schematic of this parser is illustrated in Fig. 1 . As we

can see, the incoming header data is subject to being shifted and

extracted in order to form a search key. The amount of shift and

the field to be extracted are determined by the current state of the

parser. The search key is comprised of the extracted header field as

well as the present state of the parser. Together, they form a 40-

bit key which is presented to a TCAM. The outcome of the match

determines the next state. When the next header arrives, the state

determined in the previous cycle is the present state. The present

state also specifies how the arrived header must be extracted and

written to the Packet Header Vector (PHV) which is a 4096-bit vec-

tor comprised of 8-bit, 16-bit and 32-bit entries. Since the TCAM

can lookup 40 bits at each clock cycle and the parser operates at

clock frequency of 1.0 GHz, it provides 40 Gbps throughput. Pro-

grammability is achieved by filling in two separate memory units.

The first one is a TCAM-based match table. The second table is the

SRAM associated with the TCAM. When a search key is presented

to the TCAM, the matching entry will point to a memory location

in the action table so that the associated action is executed.

Fig. 1. Programmable parser in [6] .

One of the shortcomings of the parser presented in [6] is that

its Match-Action nature may result in the TCAM entries being filled

in an inefficient manner. For instance, consider parsing of IPv4

headers. At a minimum, the IHL and the Protocol field must be

combined to form a search key. IHL has 11 valid values (0x5-0xF).

Assuming that the parser is programmed to recognize 8 different

next headers, there will be 88 search keys in the TCAM for only

8 different next headers. A more efficient architecture could solve

this problem.

TCAMs are powerful devices for searching. When a search key is

presented to the device, all entries are searched in parallel. There-

fore, the outcome of the search is ready in one clock cycle. TCAMs

allow storing don’t care bits. As a result, they are widely used for

Longest Prefix Matching (LPM). Due to their robust search capabil-

ities, they have large area footprint on the chip and the power dis-

sipation figures are relatively high. With this in mind and consid-

ering the fact that no address lookup is required in packet parsing,

we are motivated to consider alternative ways for determining the

next state of the parser while still maintaining the programmabil-

ity and protocol-independence.

It turns out that the most energy- and area-efficient way to ac-

complish this is to convert the state machine in question to a pro-

cessor in which the TCAM and its functionality is replaced by a

program control unit. Such a unit, regardless of its degree of com-

plexity, will be far simpler and more energy-efficient than a TCAM.

The role of such a unit is to ensure that the right instruction is

executed when each segment of the header arrives. We should de-

sign parsing-specific branch types for the processor under devel-

opment. Therefore, in this paper we will go through the process of

converting a state machine for packet parsing to a processor. The

main changes required are as follows:

• Converting state-specific actions to instructions, or more specif-

ically, to operation codes for functional units

• Converting next state determination to next instruction’s ad-

dress resolution

3. Program flow in packet parsing

The aim of packet parsing is to extract the incoming header so

that the packet processing system could perform the required pro-

cessing on the extracted header fields. Therefore, the general rule

is that the parser is not concerned with the content of the header.

For instance, header fields such as destination address do not af-

fect parsing. However, there are fields whose value have impact on

parsing. For instance, in IPv4, the value of Internet Header Length

H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910 3

(IHL) specifies the length of the header. The parser must examine

the value of such fields for correct operation.

In order to be able to design an efficient program control logic,

we must analyze the nature of program flow in packet parsing pro-

grams. A parse program for a given header is comprised of a num-

ber of instructions, each of which is associated with one of the

segments of the packet header. A header segment could be of 8-,

16- or 32-bit size. Each of the instructions specifies how its associ-

ated header segment must be placed into the containers within

the PHV. Moreover, if the header segment in question contains

fields indicating size of header, size of payload or next header, it

instructs the extraction and use of these fields in order to per-

form branches within the parse program or branches to parse pro-

gram for another header. One of the most common branches are

the ones that jump to the code segment in charge of parsing the

next header. This kind of branch occurs once the current header

has been fully parsed. Branches are sometimes required within a

subroutine or code segment that parses a given header. For in-

stance, presence of some header fields are signaled by flag fields

which need to be evaluated for correct branches. If optional fields

are not present, the instructions in charge of parsing them must

be skipped. Branches are sometimes required based on the value

of non-flag header fields. For instance, in Ethernet frames, if the

value of EtherType field is 1500 or below, it should be interpreted

as the size of the payload in bytes. Otherwise, the value should be

used as the basis for determining payload type.

4. A new programmable packet parser

In this section we present the architectural details of our novel

programmable packet parser. Incoming packets go through a buffer

called Incoming Packets’ Buffer before being read by the parser.

However, the packets need not be buffered in their entirety before

the parsing can start. The parser is indeed a streaming parser. The

aim of the buffer is to control the size of header data that each

instruction operates upon. Moreover, different headers have differ-

ent sizes. For instance, minimum-sized IPv4 header is comprised

of 20 bytes while the Ethernet frame is made up of 14 bytes. IPv4

header could be read and operated upon in 4-byte units while for

the Ethernet header it could be read in a sequence of two 4-byte

and one 2-byte units. In the absence of such a buffer, header data

must be read in the smallest unit common among different head-

ers which is inefficient and throughput-degrading. The parser has

two sets of output ports. The first set of ports are the ones through

which the extracted header fields will be output to be written into

the PHV. The second set of ports is used to forward the payload of

the packet which is not subject to parsing to a buffer. As we could

see in Fig. 2 , the new packet parser is comprised of Header Parser

and Payload Forwarder.

Fig. 2. The new packet parser.

4.1. Header parser

Header Parser is the entity in charge of parsing headers. It reads

the header in 4-byte units from the Incoming Packets’ Buffer. Due

to the presence of multiple fields in each header segment, it is

beneficial performance-wise to employ some form of parallelism.

We have chosen explicit parallelism as the parallelism model. It is

a software-defined form of parallelism and suits the Software De-

fined Networking paradigm very well. Protocol-independent net-

working hardware is unaware of protocols and cannot dynami-

cally schedule the instructions at run-time. Instead, all instruction

scheduling tasks must be handled by software. Explicit parallelism

achieves this by explicitly specifying the required parallelism. An-

other benefit of such architectures is their simplicity and shorter

design and verification time. Such architectures have wide instruc-

tions. Basically, there is an instruction field for each of the pro-

grammable functional units. The generic name for this class of pro-

cessors is Very Long Instruction Word (VLIW). VLIW processors are

discussed in detail in [15] . Our packet parser is based on the packet

parsers proposed in [16-17] .

The main components of the Header Parser are PHV Filler and

Advanced Program Control Unit.

4.1.1. PHV filler

This unit places the arrived header segment into PHV entries. It

has 16 modes of operation. Fig. 3 shows the input and output ports

of the PHV Filler. It extracts the incoming header segment into any

combination of 8-, 16- and 32-bit units in a way that the sum of

the size of the units equals the size of the input header segment.

The PHV is organized in 7 separate banks each connected to an

output port of the PHV Filler. This separation allows writing to dif-

ferent locations in the PHV simultaneously. These banks together

form the entire PHV. At any given instance in time, a maximum of

4 PHV banks receive data to be written.

The PHV Filler has no knowledge of protocols and header struc-

tures. It must be programmed for correct functionality. The Ad-

vanced Program Control Unit is in charge of ensuring that this unit

receives the correct operation code.

4.1.2. Advanced Program Control unit (APC)

Advanced Program Control Unit is the brain of the system. It

provides the right instruction for a given header word. It does so

according to the control signals that it constantly monitors as well

as the branch type specified in the current instruction. Among the

control signals, reset has the highest priority and it causes the APC

Fig. 3. PHV filler.

4 H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910

Fig. 4. A series of type-length-value sub-headers.

to jump to the initial subroutine. Internally, the APC consists of the

following units.

4.1.2.1. Header counter. The Header Counter is a counter that is

initialized with the size of the header. After initialization, it will

count downwards with arrival of each header segment. Upon ex-

piry, it signals an interrupt to the APC at which point parsing of

next header or forwarding of the payload must begin.

4.1.2.2. Payload counters. There are four Payload Counters in the

APC. They are used to hold two distinct values:

• Size of sub-headers
• Size of packet payload or the entire packet

What is meant by a sub-header is a part of a header which has

a specified size and associated data. They do not have next header

indicator because they are part of a main header which may or

may not have next header indicator. For instance, IPv4 options are

optional extensions to the IPv4 header. IPv4 options except the ba-

sic ones have a Length field specifying the size of the option. When

a Payload Counter is used to hold the size of sub-headers, the stack

is initialized with a return address so that once the option has

been parsed, a return could be made to the return address at the

top of stack. Alternatively, a Payload Counter is initialized with the

size of the payload or entire packet if any of the headers has a field

containing these values. The counter is initialized by the Header

Parser but it is used by the Payload Forwarder.

4.1.2.3. Stack. The APC contains a stack to which the address of

the current or following instruction can be pushed. If any of the

Payload Counters expires and the Stack is non-empty, the address

at the top of the Stack is popped and loaded into the Program

Counter. As mentioned above, the stack is used in conjunction with

the Payload Counters. Assume that a header contains a number of

sub-headers each of which has a Type identifier, a Length indica-

tor and the associated data. This is illustrated in Fig. 4 . In the parse

program, one of the instructions must be designated for extracting

the Type and Length for branching to the right set of instructions

and initializing a Payload Counter. The address of this instruction is

pushed to the stack. Each time a sub-header is parsed, the Payload

Counter expires and the address at the top of the stack is loaded

into the program counter so that the next sub-header could be

evaluated and parsed. This process continues until the main header

is over.

4.1.2.4. Next Header Resolve Unit (NHRU). The parser needs to know

the next header and the address of the subroutine in charge of

parsing the next header. For instance, in IPv4 the Protocol field in-

dicates the next header. This unit determines the next header and

provides the starting address of the subroutine in charge of pars-

ing the next header. Fig. 5 illustrates the internals of this unit. As

Fig. 5. The internal components of the NHRU.

we can see, there is a dedicated extraction engine for this unit. It

extracts the field containing the identifier of the next header. The

value of this field will be compared against a set of expected values

in parallel to resolve the next header. We call this set of expected

values a comparand set. In our architecture, each entry within the

comparand set is 16 bits wide and the memory storing them can

provide 8 entries in parallel. There are 8 comparators operating in

parallel. Associated with each comparand is its corresponding sub-

routine address. Comparands and associated memories are hosted

on two distinct memory units. The memory hosting associated ad-

dresses also provides eight entries in parallel. The number of com-

parands required for determining the next header may be larger

than a memory word can accommodate at each address. In such a

case, more than one memory address holds comparands. Similarly,

H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910 5

Table 1

Control signals monitored by the APC.

Control signal Corresponding action

Reset Jump to the first instruction

Expiry of header counter Jump to subroutine in charge of parsing the next header or start payload forwarding

Expiry of any of the payload counters Jump to the address at the top of stack if stack is non-empty else start payload forwarding

Branch type in the fetched instruction Depending on the branch type, load the program counter with the value provided by the NHRU, BC or BCE

the associated addresses will occupy more than one memory en-

try. For this reason, the memory interface submodule is initialized

with the number of times to access the two memory units until

a match is found. To avoid wasted cycles, the entries should be

filled in decreasing order of prevalence. In other words, the most

expected values should be placed in the first comparand memory

location that is accessed. For instance, a comparand set for resolv-

ing the next header of IPv4 is {0x0 0 01, 0x0 0 02, 0x0 0 06, 0x0 0 09,

0x0 011, 0x0 029, 0x0 033, 0x0 073}. They are all standardized val-

ues. The corresponding entry in the memory hosting associated ad-

dresses will have starting address for parsing of ICMP, IGMP, TCP,

IGP, UDP, IPv6, AH and L2TP headers respectively. There is also a

default address that is provided to Next Header Resolve Unit in

case none of the comparands results in a match. The Next Header

Resolve Unit has status signals in-progress and ready to guide the

APC in determining the address of the next instruction.

4.1.2.5. Branch Catalyst (BC). Some headers have optional fields

whose presence is indicated by flag bits. A very good example of

such a header is that of Generic Routing Encapsulation (GRE). This

header has three flag bits, each signaling the presence of its cor-

responding field. Therefore, there are 8 possibilities that need to

be evaluated without degrading throughput. The purpose of the

Branch Catalyst is to speed up branching by extracting the flag bits

using a dedicated extraction engine and comparing the extracted

flag(s) against all valid values at once to resolve the branch in a

real-time manner. Architecturally, it is similar to the Next Header

Resolve Unit, except that only one access is made to the memory

units hosting comparands and associated memory addresses.

4.1.2.6. Branch Condition Evaluator (BCE). This unit extracts the

programmer-specified segment of header using its built-in extrac-

tion engine and checks whether it evaluates to true according to

the programmer-specified condition and reference value. The eval-

uation result is provided to the APC to resolve the branches.

The control signals based on which the APC operates are out-

lined in decreasing order of priority in Table 1 .

Fig. 6 illustrates a high-level view of the internals of the Header

Parser.

Fig. 6. Internals of the explicitly parallel header parser.

6 H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910

Fig. 7. Instruction pipeline of the parser.

4.2. Payload forwarder

The Payload Forwarder is the unit in charge of forwarding the

payload of the packet into a buffer to which modified header

fields will be written once the processing of the packet is done.

The Payload Forwarder can read the Incoming Packets’ Buffer in

32-Byte units which is 8 times wider than the widest unit the

Header Parser could read. Payload Forwarding is more straightfor-

ward than header parsing. It uses the value of the Payload Counter

which contains the remaining size of the payload to determine the

size of data it requests from the buffer until the Payload Counter

expires.

5. Pipelined organization

For operation at 2.0 GHz frequency, fetching and execution of

instructions occur separately and in a pipelined manner. As each

functional unit has its own field within the instruction, there is lit-

tle need for instruction decoding. The functional units within the

parser perform the execution stage. As we saw in Fig. 6 , the inter-

nals of the packet parser are also pipelined. Therefore, the execu-

tion stage is made up of the following single-cycle stages.

5.1. Fetch header (FH)

At this stage, as much of the header as specified by the instruc-

tion is retrieved for operations at the upcoming stages.

5.2. Extraction (EX)

At this stage, the retrieved header segment is subject to extrac-

tion by extraction engines and PHV Filler.

5.3. Writeback (WB)

At this stage the extracted fields are written to the PHV.

Resolving the branches occurs at the beginning of the execution

stage, i.e., at the FH stage. Branches have a penalty of one cycle.

Fig. 7 illustrates the instruction pipeline.

6. Instruction format

The instructions are 96 bits wide and comprised of 21 fields.

Table 2 specifies the instruction fields, their width and use.

The instructions do not need decoding and can be fed to the

packet parser once they have been fetched. A No Operation (NOP)

instruction has value of zero for all extraction mode fields and the

size of next header segment field.

7. Parsing example

7.1. Parsing Ethernet

In this section we illustrate how a parsing subroutine written

in P4 could be mapped to and executed on our parser. Figs. 8 and

H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910 7

Table 2

Instruction fields.

Instruction field Width (bits) Use

Branch type 2 Specifies the type of branch

Branch condition 3 Specifies the branch condition for conditional branch instructions

Extraction mode_0 5 Specifies the extraction mode for the extraction engine dedicated to Next Header Resolve Unit

Extraction mode_1 5 Specifies the extraction mode for the extraction engine reserved for Branch Catalyst Unit

Extraction mode_2 5 Specifies the extraction mode for the extraction engine dedicated to Branch Condition Evaluator

Extraction mode_3 5 Specifies the extraction mode for the extraction engine reserved for Header Counter

Extraction mode_4 5 Specifies the extraction mode for the extraction engine designated for Payload Counters

Address_0 6 Next Header Comparands’ Starting Address

Next header resolve

iterations

7 Specifies the number of consecutive memory locations the Next Header Resolve unit may access

starting from the initial address until a match is found

Address_1 6 Branch Catalyst Comparands’ Address

Address_2 6 Header Counter Target Value Address

Address_3 6 Payload Counters’ Target Value Address

Header segment size 2 Specifies the size of header segment to operate on. Valid sizes are 0 byte, one byte, two bytes

and 4bytes

PHV filler operation

mode

4 Determines how the incoming header should be broken down into fields.

PHV_address_0 4 The location of the extracted field in the first bank containing 8-bit entries

PHV_address_1 4 The location of the extracted field in the second bank containing 8-bit entries

PHV_address_2 6 The location of the extracted field in the third bank containing 8-bit entries, in the first bank

containing 16-bit entries as well as in the bank containing 32-bit entries

PHV_address_3 6 The location of the extracted field in the fourth bank containing 8-bit entries as well as in the

second bank containing 16-bit entries

Stack data in select 1 Selects whether the value to be pushed into the stack is the address of the current instruction

or the following instruction

Stack push 1 Instructs a push operation to the stack

Unused 7 Currently unused

Fig. 8. Header defintion for Ethernet.

Fig. 9 illustrate the Ethernet header and parser definition in P4 re-

spectively.

As we can see, the subroutine for parsing Ethernet, has the

statement extract, which indicates that fields of this header must

be extracted. On our parser, parsing of Ethernet is done using 4

instructions as shown in Fig. 10 . The P4 source code also specifies

selecting the parsing function for the next header based on the

value of Ethertype field.

I 0 reads 4 bytes from the buffer at t 1 and writes it to a 4-byte

container within the PHV at t 3 . These 4 bytes are part of the 6-byte

Destination MAC address. The next instruction, I 1 also reads 4bytes

but writes them to two distinct 2-byte containers because the first

2 bytes belong to the Destination MAC address while the second 2

bytes belong to the Source MAC Address. The third instruction, I 2 ,

reads the lower 4 bytes of the Source MAC Address and writes it

to a 4-byte container. By now, contents of Destination and Source

Address fields are in the PHV. Instruction I 3 whose branch type in-

dicates a jump to the address provided by the NHRU, reads the 2-

byte Ethertype field at t 4 , extracts it at t 5 for writing to the PHV. At

the same time, the field extractor in the NHRU extracts it for using

it to find out the next header. At the same time, the memory ad-

dress containing the comparands for Ethernet’s next header is pro-

vided to the memory hosting the values. At t 6 , Ethertype is written

to a 2-byte container within the PHV. In parallel, Ethertype value is

Fig. 9. Source code for parsing Ethernet header in P4 language.

compared with the values at the memory address provided in the

previous clock cycle. These values are 0x8100, 0x8847, 0x0800 and

0x86DD. They have been loaded into the memory in advance. At

t 7 , the comparison result is evaluated and the instruction address

associated with the matching entry is selected. For instance, if the

Ethertype had value of 0x86DD, the address of the subroutine con-

taining the instructions for parsing IPv6 header is selected. At t 8 ,

the address selected in the previous clock cycle is loaded into the

program counter.

7.2. Parsing IPv4 header

Fig. 11 illustrates the definition of IPv4 header in P4 language.

Parsing of IPv4 header is more complex than parsing Ethernet

header because its length is variable. The fixed part contains five

8 H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910

Fig. 10. Instructions for parsing the Ethernet header.

Fig. 11. Definition of IPv4 header in P4.

32-bit words. Up to ten 32-bit words may exist after the fixed

words.

Fig. 12 illustrates the pipeline stages of the executed instruc-

tions for parsing minimum-sized IPv4 header. At t 2 , the first in-

struction is in the Extract stage of the instruction pipeline. Paral-

lel to the extraction performed by the PHV Filler, the extraction

engine in the Header Counter extracts the IHL field and the ex-

traction engine in the Payload Counter extracts Total Length. At t 3 ,

the extraction performed by the PHV Filler is written to the PHV.

Furthermore, both Header Counter and Payload Counter are initial-

ized. Therefore, starting from t 4 , their value will be decremented

based on the size of the header segment read from the buffer at

each clock cycle. Again, at t 4 , header fields in the second word of

the header are written to the PHV. At the same time, the value of

the Protocol field is extracted by the NHRU in order to start resolv-

ing the next header. The third, fourth and fifth header words are

written at t 5 , t 6 and t 7 respectively. Execution of I 4 causes expiry

of the Header Counter. As a result, at t 8 , the first instruction from

the subroutine for parsing the next header must be fetched.

Table 3

Time required for parsing of different headers.

Header Shortest parsing time (cycles) Longest parsing time (cycles)

IPv4 8 18

IPv6 13 13

MPLS 4 4

Ethernet 7 7

TCP 8 18

VxLAN 5 5

GRE 4 12

L2TP 10 13

8. Experimental results and discussion

In this section, we evaluate the performance of the parser in

terms of how well it could parse individual headers as well as

stacks of headers when operating at a clock frequency of 2.0 GHz.

After this evaluation, we present the implementation details of the

parser.

8.1. Parsing individual headers

We have chosen a number of commonly used protocols for this

purpose. Table 3 contains the time taken to parse the chosen head-

ers.

The difference in parsing time for some headers is due to vari-

able length of some headers such as GRE. For fixed headers such

as IPv6, parsing time is constant. There are interesting observations

to make from Table 3 . For instance, maximum-sized L2TP header

contains 128 bits and it takes 13 cycles to fully parse this header.

This is the same duration required for parsing of IPv6 header that

consists of 320 bits. The reason for this is the fixed nature of IPv6

header. L2TP header is a variable-sized header in which existence

of some fields are indicated by flags located in the first 16 bits

of the header. The parser must extract these flags and use them

to make the right branch in the program. Fig. 13 illustrates the

instruction pipeline diagram for parsing the minimum-sized L2TP

header. At time instance t 3 the Branch Catalyst unit starts compar-

ing the flags with programmer-specified values. Comparisons are

Fig. 12. Instruction pipeline diagram for parsing IPv4 header.

H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910 9

Fig. 13. Instruction pipeline diagram for parsing L2TP header.

Fig. 14. Instruction pipeline diagram for parsing Ethernet and branching to its next header.

performed in parallel in order to minimize wasted cycles. At t 6 the

correct instruction is fetched.

8.2. Parsing header stacks

Next, we consider a number of header stacks. We have chosen

the following header stacks:

1-Ethernet-IPv4-TCP

2-Ethernet-IPv6-TCP

3-Ethernet-IPv6-ICMPv6 (Destination unreachable)

4-Ethernet-MPLS (three stacks)-IPv6-UDP

The time required for parsing these stacks is presented in

Table 4 . Workload number 4 results in the smallest throughput

value which is slightly over 27 Gbps.

Similar to the case of parsing individual headers, we can ob-

serve variations in throughput. Fig. 14 illustrates the instruction

pipeline diagram for parsing the Ethernet header and a potential

next header.

The next header indicator is located in the last 16 bits of Ether-

net header. At t 4 the instruction in FH stage contains branch type

of next header, therefore the fetched instruction has to be flushed.

At t 6 the process of finding the next header begins. At t 9 the in-

struction in the subroutine in charge of parsing the next header

is fetched. Conversely, headers such as that of IPv6 have different

characteristics. Fig. 15 illustrates the instruction pipeline diagram

for parsing IPv6 and branching to the subroutine in charge of pars-

ing the header following IPv6 header. As can be seen, there is only

one wasted cycle. The reason for this is that the Next Header field

is located at the second word of the IPv6 header and by the time

the header is entirely parsed, the address of next header subrou-

tine has been resolved.

Table 4

Time required for parsing of four different header stacks.

Protocol stack Total size of headers (bits) Parsing time (cycles)

1 432 25

2 592 28

3 656 35

4 592 43

Table 5

Area results for different components of the parser.

Component Area (μm

2) Area (Gate count)

Advanced program control 342 698

Header parser 3800 7761

Payload forwarder 1393 2845

Parameter memories 30,864 63,002

Packet Header Vector 15,976 32,631

Instruction memory 93,052 190,057

Total area 145,427 358,838

Table 6

Power dissipation of different components of the parser.

Component Power dissipation (mW)

Advanced program control 1

Header parser 9

Payload forwarder 4

Parameter memories 90

Packet Header Vector 54

Instruction memory 291

Total power dissipation 449

8.3. Implementation details

The architecture is implemented in VHDL. We have synthe-

sized it on 28 nm UTBB FD-SOI technology in worst-case operat-

ing conditions (1.0 V, ss, 125 °C) using Synopsys Design Compiler J-

2014.09-SP4. Power analysis was also performed in worst-case op-

erating conditions at the supply voltage of 1.0 V (ss, 125 °C). We

have verified that all timing constraints are met for operation at

the frequency of 2.0 GHz.

Tables 5 and 6 present area and power dissipation results for

the components comprising one parser instance. The total area

consumed by 16 parser instances in the RMT architecture is 1.7

mm

2 in 28 nm ASIC technology. 1 Total gate count is 5.6 M of which

over 1 M is contributed by the TCAM [6] . 16 parser instances sus-

tain aggregate throughput of 640 Gbps. We must now determine

how many instances of the new programmable parser are required

for sustaining the aggregate throughput of 640 Gbps. A distinctive

feature of this parser is that it provides variable latency when

parsing different headers. Let’s take the most demanding work-

load from Table 4 in which parsing of the headers in the last

1 Source: Private correspondence with designers of RMT parser.

10 H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910

Fig. 15. Instruction pipeline diagram for parsing IPv6 and branching to its next header.

workload takes 43 cycles which is roughly equal to 22 nanosec-

onds. This translates to a throughput of about 27 Gbps which is

the least achievable throughput value compared to the other work-

loads. This throughput figure is more than enough for the aggre-

gate traffic from two 10 Gbps ports. Therefore, in a switch with

64 10 Gbps ports, 32 parser instances are enough. This analysis is

based on extreme conditions but in order to provide a guaranteed

lower bound on the throughput, we do not consider more opti-

mistic workloads.

When calculating the total area of multiple instances of our

parser, we must bear in mind that not all the components need

to be replicated. The parameter memories and instruction memory

will be shared by all the parser instances. Each parser instance will

have independent access. In our architecture, the TCAM is replaced

by the APC. Since it uses some of the functional units required for

parsing, we take the sum of the area of both in order to com-

pare the resulting value with that of TCAMs. In our architecture,

the total area of units in charge of determining the next state is

163,408 μm

2 which translates to 334 K gates. 2 This is 66% reduc-

tion in area of next state resolving logic. Total area of parsers in

this organization is 0.8 mm

2 or 1.6 M gates. Compared to 1.7 mm

2 ,

this is a 53% reduction in area. If we use the area required by

the parser instances in RMT, we could fit 128 parser instances. To-

gether, they support aggregate throughput of 3.4 Terabit per sec-

ond.

Since there is no mention of RMT parser’s power dissipation fig-

ure, it is not possible to perform a precise comparison for power

dissipation. However, due to large difference in area and elimina-

tion of TCAM, the power savings must also be noticeable.

9. Conclusion and future work

In this paper we presented a novel programmable packet parser

that does not rely on a TCAM to provide the required function-

ality. We designed all the functional units required for protocol-

independent packet parsing. Our design of a packet parsing-

oriented program control unit resulted in 53% saving in area com-

pared to the parser used in the RMT architecture.

We saw that different headers exhibit different behaviors and

affect the throughput of the parser differently. For some headers,

a protocol-independent parser cannot provide the same through-

2 The gate count is obtained by dividing the area by the area of the smallest

NAND2 gate in the deployed 28 nm ASIC library.

put as a dedicated parser and that is the cost of programmability.

However, the benefits of programmability and protocol indepen-

dence outweigh the occasional wasted cycles. Moreover, consider-

ing the fact that packet processing resources such as lookup tables

are shared among packets arriving from different ports, and that

packets have to wait for their turn to use shared resources, there

is no point in maintaining maximum possible throughput in packet

parsing as there will be cycles in which packets have to wait dur-

ing packet processing.

As for future work, we would like to investigate the through-

put gain achievable by not binding the parser instances to ports

and instead assigning the arrived packet to a free packet parser in-

stance. In addition, the decoupling of header parsing and payload

forwarding logic allows overlapping of payload forwarding with

parsing of a new packet’s header. This results in more efficient

use of system resources and improvement in throughput. The exact

amount of improvement is dependent on traffic patterns and must

be investigated. Another area which could further be explored is

enhancing the throughput of a single parser instance. This is pos-

sible by running the parser at higher frequencies. In order to scale

the frequency noticeably further, we must optimize the code and

increase the depth of the instruction pipeline as well as the regis-

ters in the functional units. Another way to increase the through-

put is to read header words in units larger than 32 bits.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

Acknowledgment

We hereby express our gratitude to professor Nick McKeown

from Stanford University for providing us with the details on the

area of the parser used in [6] . We would also like to thank Mr. Glen

Gibb for providing us with invaluable comments and insight. We

acknowledge the Finnish DELTA network and The Pekka Ahonen

Fund for providing partial funding for this project.

References

[1] P. Bosshart , D. Daly , G. Gibb , M. Izzard , N. McKeown , J. Rexford , D. Walker , P4:
programming protocol-independent packet processors, ACM SIGCOMM Comp.

Commun. Rev. 44 (3) (2014) 87–95 .

H. Zolfaghari, D. Rossi and J. Nurmi / Microprocessors and Microsystems 72 (2020) 102910 11

[2] M. Shahbaz , N. Feamster , The case for an intermediate representation for pro-
grammable data planes, in: Proceedings of the 1st ACM SIGCOMM Symposium

on Software Defined Networking Research, ACM, 2015, June, p. 3 .
[3] H. Song , Protocol-oblivious forwarding: unleash the power of SDN through a

future-proof forwarding plane, in: Proceedings of the Second ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking, ACM, 2013, August,

pp. 127–132 .
[4] A. Sivaraman , S. Subramanian , M. Alizadeh , S. Chole , S.T. Chuang , A. Agrawal ,

N. McKeown , Programmable packet scheduling at line rate, in: Proceedings of

the 2016 ACM SIGCOMM Conference, ACM, 2016, August, pp. 44–57 .
[5] G. Gibb , G. Varghese , M. Horowitz , N. McKeown , Design principles for packet

parsers, in: Architectures for Networking and Communications Systems, IEEE,
2013, October, pp. 13–24 .

[6] P. Bosshart , G. Gibb , H.S. Kim , G. Varghese , N. McKeown , M. Izzard ,
M. Horowitz , Forwarding metamorphosis: fast programmable match-action

processing in hardware for SDN, ACM SIGCOMM Comput. Commun. Rev. 43

(4) (2013) 99–110 .
[7] A . Sivaraman , A . Cheung , M. Budiu , C. Kim , M. Alizadeh , H. Balakrishnan ,

S. Licking , Packet transactions: high-level programming for line-rate switches,
in: Proceedings of the 2016 ACM SIGCOMM Conference, ACM, 2016, August,

pp. 15–28 .
[8] Barefoot Networks, “The World’s Fastest and Most Programmable Net-

works,” [Online]. Available: https://barefootnetworks.com/resources/worlds-

fastest-most-programmable-networks/ .
[9] M. Attig , G. Brebner , 400 Gb/s programmable packet parsing on a single FPGA,

in: 2011 ACM/IEEE Seventh Symposium on Architectures for Networking and
Communications Systems, IEEE, 2011, October, pp. 12–23 .

[10] J. Santiago da Silva , F.R. Boyer , J.M. Langlois , P4-Compatible high-level synthe-
sis of low latency 100 Gb/s streaming packet parsers in FPGAs, in: Proceedings

of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate

Arrays, ACM, 2018, February, pp. 147–152 .
[11] P. Benáček , V. Puš, H. Kubátová, T. Čejka , P4-To-VHDL: automatic generation

of high-speed input and output network blocks, Microprocess. Microsyst. 56
(2018) 22–33 .

[12] Benácek, P., Puš, V., & Kubátová, H. (2017). Automatic generation of 100 Gbps
packet parsers from P4.

[13] J. Cabal , P. Benáček , L. Kekely , M. Kekely , V. Puš, J. Ko ̌renek , Configurable FPGA

packet parser for terabit networks with guaranteed wire-speed throughput, in:
Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Pro-

grammable Gate Arrays, ACM, 2018, February, pp. 249–258 .
[14] Intel® Ethernet Switch FM60 0 0 Series Product Brief https://www.intel.com/

content/dam/www/public/us/en/documents/product-briefs/ethernet-switch-
fm60 0 0- series- brief.pdf .

[15] J.A. Fisher , P. Faraboschi , C. Young , VLIW processors: once blue sky, now com-

monplace, IEEE Solid-State Circuits Mag. 1 (2) (2009) .
[16] H. Zolfaghari , D. Rossi , J. Nurmi , An explicitly parallel architecture for packet

parsing in software defined networks, in: 2018 IEEE 29th International Con-
ference on Application-specific Systems, Architectures and Processors (ASAP),

IEEE, 2018, July, pp. 1–4 .

[17] H. Zolfaghari , D. Rossi , J. Nurmi , Low-latency packet parsing in software de-
fined networks, in: 2018 IEEE Nordic Circuits and Systems Conference (NOR-

CAS): NORCHIP and International Symposium of System-on-Chip (SoC), IEEE,
2018, October, pp. 1–6 .

Hesam Zolfaghari is a doctoral student at Tampere Uni-

versity. His-research interest is design of programmable

and protocol-independent packet processors for Software
Defined Networking with special focuses on low on-chip

area, low power dissipation and minimized packet pro-
cessing latency. This includes design of abstraction lay-

ers starting from the instruction set all the way down to
the microarchitecture of both packet parsing and packet

processing subsystems within high-performance switches

and routers.

Davide Rossi , received the PhD from the University of

Bologna, Italy, in 2012. He has been a post doc researcher
in the Department of Electrical, Electronic and Informa-

tion Engineering “Guglielmo Marconi” at the University of
Bologna since 2015, where he currently holds an assistant

professor position. His research interests focus on energy

efficient digital architectures in the domain of heteroge-
neous and reconfigurable multi and many-core systems

on a chip. In these fields he has published more than
80 paper in international peer-reviewed conferences and

journals.

D. Sc. (Tech) Jari Nurmi is Professor at Tampere Univer-
sity (formerly Tampere University of Technology), Finland

since 1999. He works on embedded computing, wire-
less localization, and software-defined radio/networks. He

held various positions at TUT 1987–1994 and was the

Vice President of SME VLSI Solution Oy 1995–1998. Since
2013 he is also a partner at research spin-offs. He has

supervised 25 PhD and 138 MSc theses, and been oppo-
nent/reviewer of 40 PhD theses worldwide. He is senior

member of IEEE, and in steering committees of three in-
ternational conferences (chairman in two). He has edited

five Springer books, and published over 350 international

publications.

PUBLICATION
IV

An Explicitly Parallel Architecture for Packet Processing in Software Defined Networks

H. Zolfaghari, D. Rossi and J. Nurmi

2019 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of
System-on-Chip (SoC), 1-7

doi: 10.1109/NORCHIP.2019.8906959

Publication reprinted with the permission of the copyright holders

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse
any of Tampere University’s products or services. Internal or personal use of this material is permitted. If
interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for
creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest Library,
or the Archives of Canada may supply single copies of the dissertation.

1
2
3
4
5
6

7
8
9

10
11
12
13
14
15

void process_ipv4_packet(ipv4_packet *p)
{
 verify_ipv4_packet(p);
 check_TTL(p -> TTL);
 update_checksum(p);
 lookup_destination_address(p ->
Destination_Address);
 check_DF(p -> flags);
}
void verify_ipv4_packet(ipv4_packet *p)
{
 verify_version(p);
 verify_IHL(p);
 verify_Total_Length(p);
 verify_checksum(p);
}

1
2
3
4
5
6
7

void check_TTL(ipv4_packet *p)
{
 if(p -> TTL == 0)
 {
 insert_ICMPv4_header(BAD_HEADER);
 drop(p);
 }
}

-

PUBLICATION
V

Reducing Crossbar Costs in the Match-Action Pipeline

H. Zolfaghari, D. Rossi and J. Nurmi

2019 IEEE 20th International Conference on High Performance Switching and Routing (HPSR), 1-6

doi: 10.1109/HPSR.2019.8808105

Publication reprinted with the permission of the copyright holders

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of Tampere University’s products or services. Internal or personal use of this material is
permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or
promotional purposes or for creating new collective works for resale or redistribution, please go to
http://www.ieee.org/publications_standards/publications/rights/rights_link.html
to learn how to obtain a License from RightsLink. If applicable, University Microfilms and/or ProQuest
Library, or the Archives of Canada may supply single copies of the dissertation.

PUBLICATION
VI

Flexible Software-Defined Packet Processing Using Low-Area Hardware

H. Zolfaghari, D. Rossi, W. Cerroni, H. Okuhara, C. Raffaelli and J. Nurmi

IEEE Access, vol. 8 (2020), 98929-98945

doi: 10.1109/ACCESS.2020.2996660

Publication reprinted with the permission of the copyright holders

Received April 26, 2020, accepted May 15, 2020, date of publication May 22, 2020, date of current version June 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2996660

Flexible Software-Defined Packet Processing
Using Low-Area Hardware
HESAM ZOLFAGHARI 1, (Graduate Student Member, IEEE),
DAVIDE ROSSI 2, (Member, IEEE), WALTER CERRONI 2, (Senior Member, IEEE),
HAYATE OKUHARA 2, (Member, IEEE), CARLA RAFFAELLI 2, (Senior Member, IEEE),
AND JARI NURMI 1, (Senior Member, IEEE)
1Electrical Engineering Unit, Tampere University, 33720 Tampere, Finland
2Department of Electrical, Electronic, and Information Engineering, University of Bologna, 40126 Bologna, Italy

Corresponding author: Hesam Zolfaghari (hesam.zolfaghari@tuni.fi)

This work was supported in part by the 5G-FORCE Project, Finnish DELTA Doctoral Training Network, the Grant awarded by the Nokia

Foundation, and the collaboration grant provided by HiPEAC network.

ABSTRACT Computer networks are in the Software Defined Networking (SDN) and Network Function

Virtualization (NFV) era. SDN brings a whole new set of flexibility and possibilities into the network. The

data plane of forwarding devices can be programmed to provide functionality for any protocol, and to perform

novel network testing, diagnostics, and troubleshooting. One of themost dominant hardware architectures for

implementing the programmable data plane is the Reconfigurable Match Tables (RMT) architecture. RMT’s

innovative programmable architecture enables support of novel networking protocols. However, there are

certain shortcomings associated with its architecture that limit its scalability and lead to an unnecessarily

complex architecture. In this paper, we present the details of an alternative packet parser and Match-

Action pipeline. The parser sustains tenfold throughput at an area increase of only 32 percent. The pipeline

supports unlimited combination of tables at minimum possible cost and provides a new level of flexibility

to programmable Match-Action packet processing by allowing custom depth for actions. In addition, it has

more advanced field-referencing mechanisms. Despite these architectural enhancements, it has 31 percent

less area compared to RMT architecture.

INDEX TERMS Software defined networking, programmable packet processing, low-area hardware,

programmable data plane.

I. INTRODUCTION
Computer and communication networks have been subjected

to a significant paradigm change in the last decade, leading

to the emergence and subsequent consolidation of network

programmability solutions and technologies, such as Soft-

ware Defined Networking (SDN) [1] and programmable data

plane [2]. In particular, the innovation introduced by SDN

is represented by the separation of the control plane from

the data plane, which have been traditionally co-existent and
tightly coupled within network forwarding devices, such as

switches and routers. Due to the increasing complexity of

modern networks and the high level of flexibility required

by newly emerging services, this tight coupling caused sig-

nificant complications in managing network infrastructures,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

forcing operators and service providers to adopt solutions that

were strictly dependent on the features offered by specific

equipment vendors [3].

With the separation between control and data planes, SDN-

enabled devices can specialize on how packet processing

and forwarding operations can be efficiently executed in the

data plane, whereas the decision on what kind of processing

must be performed and where to forward each packet (or

flow of packets) is left to a logically centralized component

located in the control plane, the so-called SDN controller.
This approach opens a completely new set of possibilities

to make the network truly programmable: once an open and

standard interface has been defined between control and

data planes, the SDN controller can be used as a means

to instruct network devices on how to act on the pack-

ets in the data plane, independently of any vendor-specific

implementation.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 98929

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

The most noteworthy and widespread SDN control plane

solution is represented by the OpenFlow protocol [4], which

allows SDN applications to abstract the network infrastruc-

ture and program the behavior of the underlying set of for-

warding nodes in terms of Match-Action packet processing.

A set of matching rules (including wildcards) is applied to

layer-2 to layer-4 header fields in order to specify packet

flows with arbitrary levels of granularity. Then, each packet

of a given flow is treated according to the actions spec-

ified in the corresponding matching rule. This approach

simplifies internal switch operations and, at the same time,

allows unprecedented flexibility in traffic control and steering

capability.

However, the programmability features offered by Open-

Flow at the control plane are limited by the dependence on a

set of pre-defined protocol headers and on a static processing

pipeline inside the switches. Therefore, a step forward is

represented by the inception of programmable data plane

approaches, such as protocol-oblivious forwarding [5] and

the P4 language [6]. More specifically, the latter allows to

dynamically reconfigure the data plane processing system at

deployment time, making it protocol independent as well as

target independent, thus giving programmers the possibility

to describe the packet-processing pipeline in an abstract way

independent of the specific hardware solution adopted.

In this scenario, the SDN concept has become a key

enabler also for 5G networks where radio, transport and cloud

domains cooperate to offer ubiquitous connectivity services

to people and objects [7]. To meet the performance require-

ments of an unpredictable amount of different applications,

flexible and scalable architectures and functionalities are

introduced in 5G deployments. In addition, the trend is to

consider commercially available packet-based solutions in

the transport network, e.g., the Ethernet standard. Recently,

the new concept of flexible Radio Access Network (RAN)

has been considered that, coupled with Network Function

Virtualization (NFV) and SDN control capability, allows

to configure the network with different functional splits in

transport network nodes [8]. This solution is expected to be

dynamic enough to face with virtual resource instantiation

needs, the so-called network slices, and can require different

packet formats as specified by the relevant standards [9]–

[11]. In this context, the possibility to have a programmable

packet processing pipeline is crucial to implement high speed

flexible forwarding. Reconfigurations may be needed when a

different functional split is required to meet changing slice

requirements.

As a result of these efforts to make the network truly

programmable, both in the control and the data plane,

there is a clear need for flexible and protocol-independent

hardware-based packet processing systems. One of the ref-

erence architectures based on the Match-Action principle is

represented by the ReconfigurableMatch Tables (RMT) [12],

also adopted by commercial switch chips such as Barefoot

Tofino [13]. However, as we will see in section 2, there are

a number of limitations associated with this architecture. As

a result of these limitations, the architecture is unnecessarily

complex.

From the perspective of hardware architecture, the pro-

grammable data plane is still in its infancy. In this paper,

we present a programmable packet parser and a flexible

packet processing pipeline. The parser sustains aggregate

throughput of 6.4 Tbps which is 10 times that of the parser

in RMT architecture, but the area increase is only 32%. The

packet processing pipeline allows unlimited combination of

lookup table resources with the minimum possible hardware

costs. As a result of this support for unlimited table combi-

nations, the resources are more efficiently used. In addition,

it allows the action depth to be freely determined by the

programmer. We achieve area reduction of up to 44% with

respect to the latest Match-Action architectures.

The remainder of the paper is organized as follows.

In section 2, we discuss related work and main motivations

behind our approach. The main contributions of this work,

a new packet parser and a flexible packet processing pipeline,

are discussed in sections 3 and 4 respectively. The contribu-

tions are evaluated in section 5, followed by a conclusion on

this work.

II. RELATED WORK AND MOTIVATIONS
A. RELATED WORK
The first attempt to separate IP control and forwarding func-

tions was made within the Internet Engineering Task Force

(IETF) Network Working Group and resulted in the For-

warding and Control Element Separation (ForCES) archi-

tecture [14], [15]. These documents define the framework,

including the primary functions of a forwarding element and

the communication requirements between forwarding and

control elements. Then, the Ethane network architecture was

introduced, in which the traffic flow management is handled

by a centralized controller [16]. An Ethane-capable switch

establishes a connection with the controller that contains the

overall image of the network. The switches do not need to dis-

cover and locally store the network topology, which greatly

reduces the state that must be maintained by the switches.

The next major breakthrough toward the SDN approach

as we know it today was the introduction of OpenFlow as a

standard protocol for communication between the data plane

and the control plane [4]. The early motivation of running

experimental protocols on real network infrastructures led

to the availability of commercial Ethernet switches enabled

to OpenFlow and implementing the Match-Action packet

processing dictated by that control plane protocol. More

specifically, all OpenFlow switch operations are based on

a set of tables against which cross-layer packet headers are

matched, and each table entry specifies a given action or set

of actions to be applied to each matching packet. Typical

actions include forwarding the packet to one or multiple out-

put ports, dropping the packet, rewriting some of the header

fields, or sending the packet to the OpenFlow controller for

further analysis and decision making.

98930 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

The idea of a logically centralized controller, which is the

pivotal concept in SDN, simplifies the internal operations to

be performed by network nodes. It also encourages the idea of

making them protocol-independent, so that by installing any

set of rules in the tables inside the switches, their behavior can

be programmed accordingly. The term Protocol-Oblivious

Forwarding was coined, and a generic high-level instruction

set was presented in [5]. In a similar attempt, but with a

lower layer of abstraction, an instruction set was presented

in [17] in order to act as an intermediate layer between many

packet processing hardware architectures and packet process-

ing software. In other words, it acts as a target-independent

machine model.

On the programmable data plane level, the P4 language

was introduced in [6]. In P4, the problem of process-

ing packets is formulated in the form of Match-Action

processing. However, unlike OpenFlow, P4 abstracts the

switch as a programmable parser followed by a protocol-

independent Match-Action pipeline. Contrary to the primi-

tive and protocol-specific actions defined in OpenFlow, the

actions in P4 are not tied to any specific protocol. P4 also

allows definition of compound actions by combining the

primitive actions. It should be noted that OpenFlow and

P4 are meant for different purposes, namely communicat-

ing with the central controller and programming the data

plane respectively, but since both define actions and a similar

abstraction of the switch, we made a comparison of the two

here.

Custom architectures with varying levels of programma-

bility for processing of network packets gained popularity

both in research and industry in late 1990s and early 2000s.

In those days, these devices were called protocol processors

and later on network processors. The major hurdle for the

widespread adoption of these devices was the complex pro-

cedure for programming of some of these devices as some

of them required microcode-style programming. In addition,

each vendor had its proprietary means of programming their

devices. For this reason, network processors failed to gain

widespread popularity.

As a result of research efforts on separation of for-

warding and control plane of networking devices that later

on led to introduction of Software Defined Networking

(SDN), the need for hardware-based packet processing sys-

tems re-emerged. However, this time with special focus on

protocol-independence and programmability. The new term

was programmable data plane. Since the debut of the concept,

there have not been many architectures for this purpose.

Themost dominant architecturewas first introduced in [12]

and [18]. It is based on the Match-Action principle, meaning

that programmer-specified header fields are used to form a

search key which is provided to a match table. The outcome

of the match determines the action, which is the required pro-

cessing on the packet. In [19], high-speed packet processing

is addressed in both software and hardware domains. On the

software side, it provides guidelines for arranging packet

processing programs for high-throughput execution. On the

hardware side, it provides alternative architectures for action

units of Match-Action switches. The work in [20] decouples

the sets of match tables from action stages and replaces

the action stages of RMT with packet processors. Due to

this disaggregation, the architecture is called Disaggregated

RMT (dRMT). Each dRMT processor operates in run-to-

completion mode. Once a packet is sent to a dRMT processor,

it remains there until the entire program is executed. There-

fore, a single dRMT processor is comparable to the entire

RMT pipeline in terms of functionality.

Commercial programmable switch chips have replaced

fixed-function chips. Examples of these devices includeBare-

foot Tofino [21] and Tofino 2 [22], Broadcom Trident 3 [23],

Tomahawk 3 [24], Tomahawk 4 [25], and Innovium Teralynx

[26]. An interesting observation is that most of these architec-

tures are similar in that they contain a programmable packet

parser followed by a flexible pipeline with a number of stages

and tables. The difference is in the supported throughput,

supported workloads, size of tables, programmability, and

flexibility.

In the meantime, numerous solutions based on Field Pro-

grammable Gate Array (FPGA) have appeared. FPGAs run at

considerably lower frequencies compared to ASICs. In order

to sustain high throughputs, the FPGA is configured to imple-

ment protocol-dependent hardware for the workload that

is to be run on the device. This means that the architec-

ture contains protocol-specific state. This is in contrast to

architectures such as RMT that contain no protocol-specific

state and achieve functionality for different protocols via

purely software means. Another issue with using FPGAs

for packet processing is that Ternary Content Addressable

Memory (TCAM) has to be emulated through the embedded

memory blocks.With protocol-specific hardware architecture

and ultrawide datapath, FPGAs achieve raw throughput in the

range of a few hundred Gbps for packet parsing as in [27]. For

packet processing, the achievable throughput is in the range

of 100 Gbps [28], [29]. For Terabit-level throughput, ASICs

are the only solution. Therefore, FPGA-based solutions are

not within the scope of this paper.

1) A CLOSER LOOK AT MATCH-ACTION ARCHITECTURES
The Protocol Independent Switch Architecture (PISA) has its

roots in the RMT architecture that first appeared in [12]. It is

currently the underlying basis of commercial products such

as Barefoot Tofino and Tofino 2. According to [30], Barefoot

Tofino contains 4 pipelines, each of which is based on RMT.

In this paper we refer to RMT and PISA interchangeably

despite potential differences. The two main components of

PISA are the parser instances and the pipeline. The parsers

extract a part of the arrived header and append a tag to it to

form a search key which is presented to a TCAM. The out-

come of this matching determines the action to be performed.

The main action for the parser is to write the header fields

to a 4-Kb register called Packet Header Vector (PHV). The

pipeline consists of 32 Match-Action stages through which

the PHV traverses. Each stage starts by generating a search

VOLUME 8, 2020 98931

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 1. Delaying Match and Action as a result of dependencies.

key and providing it to the exact and ternary match tables.

The outcome of the match then determines the instructions

that must be executed by the action engines.

Depending on the dependency in the packet processing

program running on the architecture, it is possible that match-

ing in the next stage begins while action execution in the

current stage is still ongoing, or alternatively, the next stage

has to wait until the current action execution is entirely over

until matching in the next stage begins. Match dependencies

occur when a field under modification in a stage must be

used for forming the search key in the subsequent stage.

Action dependencies occur when field being modified in an

action stage needs to be used as input for action in subsequent

action stage. Fig. 1 illustrates the timing of Match-Action

operations in two consecutive Match-Action stages in case of

dependencies. It should be noted that both match and action

operations take a number of cycles each.

Each of the Match-Action stages contains 16 TCAM

blocks for ternary matching. In addition, there are 106 SRAM

blocks that can be configured for exact match, action, and

statistics purposes. The dimensions of TCAMs and SRAMs

are 2K × 40 and 1K × 112 bits respectively. The action

subunit contains 224 action engines, one for each PHV entry.

Each Match-Action stage is referred to as a physical stage

because it directly corresponds to its physical implemen-

tation. Sometimes, the match capacity of a physical stage

is not sufficient for the required use case. In these cases,

the capacity from multiple physical stage can be combined.

The combined stages are referred to as a logical stage. For

instance, it is possible to combine all 32 Match-Action stages

into one logical stage in order to store 1 million IPv4 prefixes

in all the TCAMs available on the chip.

dRMT [20] is also a Match-Action architecture but instead

of being a pipeline, it is a processor or in other words, a

run-to-completion architecture. As a result, each processor

must have the entire packet processing program in its instruc-

tion memory. The overall dRMT architecture consists of 32

Match-Action processors each of which contains 32 action

engines. As opposed to the RMT architecture in which a

set of lookup tables are assigned to stages, in dRMT, sets

of tables called clusters can be selected to be assigned to

a given processor by means of crossbars. As such dRMT

has disaggregated the packet processing units and the lookup

tables.

One of the major design choices for hardware-based packet

processing systems is that of pipeline versus processor.

We believe that a pipelined architecture such as that of RMT

is more suited to packet processing for a number of reasons:

Packets arrive at high speeds and must each undergo a set

of steps. A pipeline achieves this inherently. If a pipeline is

deep enough, the extra processing required by a packet can

be accommodated without hurting throughput. In a run-to-

completion processor, if a packet requires extra processing,

the processor cannot accept a new packet at the designated

interval unless it supports a large number of independent

threads to avoid falling behind. The high-end commercial

products we referred to earlier use pipelined architecture.

Second, the RMT architecture already has quite a lot of

crossbars. dRMT architecture goes even further by allowing

table clusters to be assigned to the processors. Crossbars

contribute to the area and power dissipation of the chip.

Last but not least, the run-to-completion nature of dRMT

limits the number of action engines and the depth of the

instruction memory attached to them. Because the packet

remains assigned to a dRMT processor until all required

processing is done, the instruction memory in each dRMT

processor contains the whole program, while in a pipelined

architecture, the program is divided into instruction memory

in each stage. In order to increase the supported throughput,

multiple dRMT processors are instantiated. The contents of

the instruction memory of different processor instances is

identical. Therefore, we must limit the number of Arithmetic

Logic Unit (ALU) instances to limit the overall memory size

across all processor instances.

B. MOTIVATION
Themotivation behind this work is overcoming the shortcom-

ings in the PISA architecture. These shortcomings result in

a high area overhead and inefficient use of resources such

as match tables and instruction memories. We explore these

shortcomings in this section.

1) SHORTCOMINGS OF CURRENT MATCH-ACTION
ARCHITECTURES
Based on the discussion above, we maintain our main focus

on the RMT architecture. These shortcomings are as follows:

Use of TCAMs for packet parsing: TCAMs are powerful

devices for matching. They can search all their entries in

parallel and provide the matching entries in one clock cycle.

The capability to store don’t care values and the availability

of a built-in priority encoder makes them perfect for wildcard

and longest prefix matching (LPM). However, wire-speed

packet parsing could be performed more area- and power-

efficiently without using TCAMs.

Lack of action depth: In the PISA architecture, there is only

one stage of action execution after each match stage. Actions

such as IPv4 checksum verification and calculation require a

number of action stages. In order to fulfill such criteria in the

PISA architecture, match tables in the next match stage must

be used for the same purpose, which is wasteful. An improved

PISA must have configurable action depth. In other words,

what is desired is Match + ∑
Action.

98932 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

Match-based program control: PISA architecture strictly

uses matching for program control. For instance, in order to

check if the Hop Limit of an IPv6 packet is zero, it matches it

against the entries of a table. This strict use of lookup tables

for program control wastes match entries. As we will see,

there are alternative means for program control whereas for

address lookup there is no other alternative other than using

TCAM- or SRAM-based tables.

Limited field referencing: PISA architecture allows only

directly specified header fields to be used as source

operands or the destination. Some protocols require more

advanced means of addressing the header fields. For instance,

the field for reading or writing could be specified by another

header field. Using a header field that acts like a pointer as a

search key to obtain an instruction that directly specifies the

right field leads to inefficient filling of instruction memory

entries.

High cost of table combination: The PISA architecture

supports table combination for making wider and/or deeper

tables in each match stage. Hardware support for table com-

bination can be very complex. Due to the large number of

combinations and complexity of combining states, an area-

efficient way to provide hardware support for table com-

binations is allowing groups of 2n tables to be combined.

In such as system, if, for instance, a given logical table has the

width of 120 bits and depth of no more than 6144, the actual

table will be 160 bits wide and has depth of 8192. This

table is 1.7 times larger than the required table. Providing

hardware support for any combination is very expensive due

to the number of possible combinations. It is not clear to

what degree hardware support for combining tables has been

provided in PISA. In case of limited support, tables will be

assigned inefficiently, and capacity will be lost. Conversely,

if full support is provided, the hardware cost is very high.

In order to increase the utilization of tables, a tag can be

appended to the search key so that the table could be reused

for as many purposes as there are different combinations

of the tag value. If there are not enough tables remaining

for the lookup requirements of a packet, the packet must

be recirculated to access the tables that it had surpassed

in the first round of traversing the pipeline. Recirculation

cuts throughput of the pipeline by half. In addition, once a

packet is about to be recirculated, it has to compete with

other packets that try to enter the pipeline. However, if we

could assign no more than the required number of tables for

building a logical table, tables would be assigned in a far

more efficient manner. In addition, this gives the possibility

to provide narrower physical tables. This results in significant

savings in area.

2) SIGNIFICANCE OF LOW-AREA MATCH-ACTION PIPELINES
Low-area architectures enable lower fabrication costs and

increase production yield. When it comes to packet process-

ing architectures, low area becomes critical because these

architectures contain substantial amount of memory for exact

and ternary match tables. Savings in area allow integrating

more on-chip memories for match tables, thereby increasing

the match capacity, which is one of the metrics for evaluating

switch chips.

When it comes to Terabit-level packet processing, the issue

of low area becomes far more crucial because pipeline

instances must be replicated in order to sustain through-

put. For instance, Barefoot Tofino contains four independent

pipelines [30]. Each packet processing pipeline in a high-end

programmable switch contains hundreds of memory blocks.

Area optimizations ensure that physical constraints are met

and that the pipeline instances can fit into the chip. Therefore,

in the architecture presented in this paper, low-area design is

a key goal.

III. A NEW PROGRAMMABLE PACKET PARSER
A packet is made up of a number of headers. The parser

starts with the first header and finds its way into subsequent

headers. How deep the parser digs into the packet depends on

the number of headers present in the packet and functionality

of the parser. A network switch is concerned with layer-

2 headers, whereas a router or layer-3 switch uses the contents

of layer-3 headers as well. Therefore, the functionality of the

device in which the parser is deployed defines how deep the

headersmust be parsed. Layer-4 systems such as TCPOffload

Engines require the contents of the layer-4 header. The most

extreme case of parsing a packet is Deep Packet Inspection

(DPI) in which the payload of the packet is examined as well.

DPI ismore advanced than packet parsing as it has to be aware

of the patterns of application data in the subject application.

We are not concerned with DPI in this paper.

A packet parser operates in state machine manner for

traversing headers. Even the simplest parsers that only parse

one header need to maintain states to provide the required

functionality when dealing with the header and payload of

the packet. For correct operation, the parser requires precise

information regarding the following points:

• Current header under parsing

• Progress made so far in parsing the current header

• Next header

• Size of current header

• Whether current header is the last header

• When to switch to parsing the next header

Packet parsing is a straightforward problem. What makes

parsing of some headers more complex than that of others is

their variable length. With such headers, calculating the size

of the header in a real-time manner considering the line rate

could become challenging. For instance, in Generic Routing

Encapsulation (GRE) header, presence of four of the fields

are dependent on the value of three flag bits. The total size

of the GRE header varies depending on which flags are set.

As another example, in an Ethernet frame, if the value of

EtherType field is 0×8100, VLAN tag is present. This adds

4 bytes to the size of the header. Some headers have a field

indicating the size of the header. However, such indications

use different encodings. For instance, in IPv4 header, the size

VOLUME 8, 2020 98933

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 2. Parsing of headers in a pipelined manner.

of the header in terms of the number of 32-bit words is indi-

cated by the IHL field. In IPv6 Extension Headers, the size

of the extension header in terms of number of bytes minus

the first 8 bytes is given. Therefore, the parser must interpret

these values correctly for correct operation.

The toughest workload for a packet processing sys-

tem including the parser is when a minimum-sized packet

arrives every clock cycle. This requires the toughest perfor-

mance guarantees because minimum-sized packets strain the

resources of the system. In other words, it is easier to achieve

higher throughputs when non-minimum-sized packets arrive

because the payload of the packet does not require processing.

Therefore, it relaxes the strain on the resources of the system.

However, for the throughput figure of a packet processing

system to be reliable, minimum-sized packets are the basis

for evaluation. In an 800 Gigabit/s link, a new Ethernet frame

arrives every 0.84 nanoseconds. This means that a system

operating at clock frequency of 1.19 GHz that reads an Ether-

net frame every clock cycle can sustain 800 Gbps throughput.

If each frame contains multiple headers that must be parsed,

they cannot be parsed in one clock cycle and the parser

lags behind. The solution is to have the packet go through

a number of header parsers, each in charge of parsing one

of the headers in the packet. Fig. 2 illustrates the stages that

four packets will go through with respect to time. P.Hn refers

to parsing of nth header within the packet. In this illustration,

it is assumed that each of the four packets has four headers

to be parsed and that parsing of each of the headers takes one

clock cycle.

These header parsers are equal in the generic parsing func-

tionality. However, each one of them is specialized for parsing

the headers of a specific layer. This means that the first header

parser is programmed to parse all possible headers that appear

first in the packet. The second header parser has the program

to parse all the headers that appear as second header in the

packet and so on. Fig. 3 is an illustration of a parse graph

with three levels.

Parse graph is a tree-like data structure with nodes corre-

sponding to headers. Nodes in level n of the tree represent

possible nth header of the packet. For instance, in Fig. 3,

the second header of the packet in this setting could be IPv4,

IPv6, VLAN, or MPLS. If the header parser discussed so far

is to be used for parsing packets based on this parse graph

pattern, the first header parser must have the program to

parse Ethernet header. The next header parser must have the

programs for parsing IPv4, IPv6, VLANandMPLS. The third

header parser must be able to program IPv4, IPv6, MPLS and

FIGURE 3. Parse graph with three levels.

FIGURE 4. A packet parser with four header parsers.

TCP. One important observation is that some headers appear

in more than one level. For instance, in the parse graph of

Fig. 3, IPv4 and IPv6 headers can appear both as second and

third headers. In order to sustain the throughput, second and

third header parsers must both have the program to parse

these headers. Another interesting observation is that two

distinct headers of a given layer can both have the same next

header. Referring back to the parse graph in Fig. 3, both

IPv4 and IPv6 can have MPLS as the next header. In the

implementation, both these cases must bemapped to the same

program.

Fig. 4 illustrates the packet parser that Fig. 2 is based on.

Each header parser provides the starting offset of the next

header to the subsequent header parser. Fig. 5 illustrates a

high-level view of the internals of the header parser. The

functional units within the header parser are used for finding

out the next header, calculating the size of the header, and

writing the header fields to PHV entries. These functional

units operate in a manner similar to the corresponding func-

tional units in [31].

Internally in our packet parser, each header is represented

by a 4-bit Header ID. This representation is only of signif-

icance for programming the parser and is independent of

encodings used in headers. This value is used to retrieve

the Parse Control Word (PaCW) which provides the control

signals for the functional units within the header parser.

Information in the PaCW is the minimum information

required for correctly parsing a header. The fields within the

PaCW and their descriptions are outlined in Table 1. In addi-

tion to the PaCW, there are some data associated with each

of the headers supported by a header parser. Table 2 outlines

98934 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 5. High-level view of the header parser.

FIGURE 6. Internals of the header parser.

these data. Fig. 6 illustrates the internals of the packet parser

in more detail.

The fixed latency for parsing of headers by a header parser

is 5 cycles. Since a header parser is internally pipelined, it can

be thought of as having five single-cycle stages. Therefore, it

could accept a new packet on each clock cycle.

Each header parser can be programmed to parse up to

16 distinct headers. The internal stages of the header parser

are as follows:

• Retrieval of PaCW: The PaCW is fetched from the

PaCW Store based on the header ID provided by the

previous header parser. If this is the first header parser,

the correct header ID has already been configured.

• Next Header and Header Size field extraction: In this

stage, the fields that contain indication of the next header

and header size are extracted using field extractors (FE).

If such fields are not present, the PaCW instructs the

parser to use other means for calculating the next header

and header size.

• Comparison: The value of fields extracted in the previ-

ous cycle is compared with the data associated with the

header in question. Meanwhile the shifter is shifting the

value of the field containing the header size if the PaCW

instructs it to do so.

• Resolving: The highest-priority matching entry is used

as the basis for determining the next header and current

header size. At the same time, an ALU modifies the

original or shifted value of the header field containing

the header size.

• Header field extraction: In this stage, fields of the header

are extracted to be written into the PHV.

As we can see from Fig. 6 and the stages elaborated above,

neither finding out the next header nor calculating the header

size requires the use of TCAM in our architecture. For finding

out the next header, the value of the next header field is

extracted and compared in parallel with 16 values associated

with the current header. If there is no next header field, default

header associated with the current header is selected. For

calculating header size, the field containing header size is

extracted and passed through a shifter and an ALU. It is also

possible to assign the default size of the current header as

header size.

Asmentioned earlier, themain building block of our packet

parser is the header parser. When dealing with use cases and

packets that have more than one header for parsing, using

more than one header parser inside the packet parser allows

the flow of one minimum-sized packet per clock cycle to

progress without stall. Header parser n parses the nth header.

Otherwise the packet has to be recirculated in which case

throughput is degraded. Another benefit of having multiple

header parsers inside the packet parser is that if a header is

too complex to be parsed using the resources of one header

parser, it is parsed by more than one header parser. In this

case, each one of the header parsers involved partially parses

the header until it is fully parsed.

A. PARSING EXAMPLES
1) PARSING GRE HEADER
The GRE header starts with a nibble containing three flag

bits indicating presence of three 32-bit words in the header.

In the first parsing stage, the PaCW for parsing GRE header

is fetched. In the second stage, the Protocol Type field in the

GRE header is extracted using the byte offset information in

PaCW. The most efficient way of calculating the header size

is by extracting the flag bits and mapping each value to the

corresponding header size. Otherwise, the flag bits have to

be added one by one and the result must be multiplied by

4 to obtain the header size in bytes. Therefore, in this stage,

VOLUME 8, 2020 98935

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 1. Parse control word (PaCW) entries.

the flags are also extracted. In the third stage, the value of

the Protocol Type field is compared with the comparands.

In parallel, the value of flags is also compared with all the

possible values. In the fourth stage, the associated data of

highest-prioritymatching entry is selected for next header and

header size. In the final stage of parsing, all the header fields

present in the header are written to the PHV in parallel.

2) PARSING IPv6
IPv6 header is relatively straightforward to parse. In the first

stage of parsing, the PaCW corresponding to IPv6 header

is retrieved. In the second stage, based on the information

contained in the PaCW and the starting offset provided to

the header parser, the Next Header field is extracted. Since

the size of IPv6 header is fixed, the PaCW does not contain

any information regarding the location of a field specifying

the header size. Instead, it contains value of 40 as the default

header size. In the third stage of parsing, the value contained

in Next Header field is compared in parallel with 16 compara-

nds to find a match. In the fourth stage, the highest-priority

TABLE 2. Data associated with each header.

FIGURE 7. Internals of a packet processing stage.

matching comparand is used as the basis for determining

the next header. In the final stage, the ID of next header is

presented to the next header parser and all fields contained in

the IPv6 header are written to the PHV in parallel.

IV. A FLEXIBLE PACKET PROCESSING PIPELINE
The packet processing pipeline is made of packet processing

stages each of which performs part of the processing. Fig. 7 is

an illustration of a packet processing stage, which is the

98936 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

fundamental building block of this pipeline. The number of

these stages is 512, indexed from 0 to 511. During these

stages, action execution as well as matching overlap. The set

of packet processing operations within a stage is determined

by the packet ID assigned by the parser. The packet ID can

be modified in the pipeline as a result of condition evalua-

tion or an earlier match operation.

Besides action execution in each stage, an exact match

operation is executed in which the hashed values of an exact

match search key is presented to a 4-way hash table to retrieve

the data associated with it. A ternary match operation is

also executed in which the table hosting the search keys is

a ternary table, meaning that it can store don’t care values as

well.

The main functional units within a packet processing stage

are as follows:

• Field extractors (FEs): Extract 8-, 16- and 32-bit fields

from the PHV for processing.

• Field- and state-modifiers: There are eight field- and

state-modifiers in each stage. They perform logical and

arithmetic operations on header fields and state. Field

modifiers are 32-bit units that take two inputs. The first

input is either a header field or state, and the second input

is either a header field or an immediate value. Each field

modifier can write to 16 designated locations within the

PHV.

• Search key generators: Construct a 40-bit search key by

selecting the constituent fields from the PHV.

• TCAM: Each packet processing stage contains one

2048-entry TCAM. It takes a search key as input and

provides match lines at the upcoming cycle. There are

as many match lines as the number of entries within the

TCAM. A value of 1 at a given position in the match

line indicates that the corresponding entry matched the

search key.

• Hash tables: Each stage contains four hash tables for 4-

way hashing. Each table is constructed using a 1K× 64-

bit SRAM block. Hash tables contain key-value entries.

Key is the search key and the value is a 10-bit tag, also

referred to as packet ID (PID).

Once an exact match search key is provided, it is hashed in

order to retrieve the position of the search key within the hash

table. All ways are accessed in parallel. The value associated

with the matching way is selected. The tag becomes the new

tag, which is the basis for instruction and data retrieval.

Both ternary and exact match tables have memories asso-

ciated with them. They contain packet processing parameters

such as header templates and header field values or statistical

state associated with a search key. The choice of whether to

use the TCAM or the hash tables depends on the kind of

search required. For instance, for looking up IPv4 addresses,

the TCAMs are great because they can perform single-cycle

LPM search. If, on the other hand, the Tag for processing an

IPv6 Extension Header is to be obtained, the hash tables must

be used.

A. PROGRAM CONTROL
The instructions to execute at each stage are determined by

the value of a 10-bit tag. This tag is first set by the parser.

This tag is used to retrieve the instructions at each stage.

It gives detailed information about the packet. For instance,

a given value could be used for an IPv6 packet whose Hop

Limit is zero. In this case, the instructions for making an

ICMPv6 Time Exceeded Message are fetched. When using

the same tag in a number of stages, part of the required

actions is executed in each of the stages involved and thereby

the requirement of custom action depth is achieved. What

makes this architecture flexible is that the 10-bit tag could be

changed as the packet traverses the pipeline. These features

allow implementation of actions that are far more complex

than OpenFlow v1.5.1 [32] actions. Each stage has the fol-

lowing functional units for program control:

• PID Map Table: This table maps the 10-bit ID of

the incoming packet to a 64-bit value which contains

instruction pointers for each of the functional units

within the packet processing stage. This means that each

functional unit has a separate instruction memory that

can be independently addressed. By using this tech-

nique, many distinct instruction combinations can be

achieved without using a deep instruction memory. The

mapping for each PID and each stage is decided by the

programmer. The PID map table is allocated from the

SRAM blocks available at each stage. Therefore, it does

not consume any additional area compared to SRAM

blocks in RMT and dRMT.

• Condition evaluator: This unit performs operations such

as bit extraction and magnitude comparison. The result

of this unit’s operation can be used to change the 10-bit

tag, which in turn changes the program flow.

In this architecture, there are condition flags to represent the

status of the latest lookup in ternary and exact match tables.

The evaluation of these flags can also be the basis for program

control.

B. COMBINING TABLES
A 512-stage pipeline is a deeply pipelined architecture. The

latency is directly associated with the number of stages.

Before reaching a verdict on the latency of this pipeline, let’s

review some of the latency figures of the original PISA archi-

tecture when it comes to dependencies. In the original PISA

architecture, there is a 12-cycle latency for match depen-

dencies and 3-cycle latency for action dependencies [33].

The reason for this is that if, under dependency conditions,

the operation of functional units of different match stages

is overlapped, the old header field values will be used for

search key generation or action execution. Therefore, delays

are configured to ensure that the succeeding match stage will

use the updated PHV.

In our architecture, accessing each table takes a cycle.

Two cycles after accessing the match table, the outcome of

whether a match was found or not is known. In case of

VOLUME 8, 2020 98937

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

positive match, another two cycles are required to obtain the

corresponding value stored in the associated memory. The 4-

cycle latency after accessing tables is a fixed value, whether

one table has been accessed or multiple tables. The two

tables that are visited during the cycles required for retrieving

the associated data are simply ignored. No stalling or delay

configuration occurs in our architecture. The cost of losing

two tables is considerably less than that of losing 16 tables,

as is the case in RMT. The two ignored tables could be used

for speculative lookup. This way, possible wasting of lookup

resources is eliminated.

Any number of tables could be combined for making wider

and/or deeper tables. As the packet traverses the pipeline, one

table is visited at each stage. If a logical table wider than

a physical table is desired, at each stage part of the whole

search key is presented to the lookup table within the stage.

The resultingmatch lines are transferred from one stage to the

next stage and ANDed together until the whole search key

has been looked up. Then the final match line which is the

result of AND operation on all of the match lines is used to

retrieve the associated state. For making a logical table whose

depth is more than a single physical table, the entries of the

logical table could be arranged in such a way that physical

tables that are visited first have higher priority. The same

search key is presented to all the tables involved. Once a

match is found, the packet’s tag is changed to indicate that the

packet no longer requires the same lookup procedure.Making

wider and deeper tables is similar and contains both of the

procedures mentioned here.

Our flexible pipeline has the means to reduce the latency

when a considerable number of physical tables must be

combined for accommodating more entries. Each 16-stage

unit whose starting index is an integer multiple of 16 is

called a PIPE16. Therefore, there are 32 PIPE16 instances

in our pipeline, indexed from 0 to 31. The output of

a PIPE16 instance is the input to its successor PIPE16.

PIPE16 instances can be configured to run in parallel to

reduce the latency when 32, 64, 128, 256, or 512 tables

are to be combined for making deeper tables. For instance,

if the desired depth of a logical table is 64 times that of a

single physical table, four PIPE16 instances run in parallel

and latency is cut by a factor of four. In this scenario, all

the four PIPE16 instances receive the same PHV as input.

The pipeline stage that follows these four parallel PIPE16

instances takes the PHV output of the PIPE16 instances that

has had the highest priority. The input to the PIPE16 instances

can be configured. A 64-bit software-defined Pipeline Con-

figurationWord (PiCW) sets the desired configuration.When

running PIPE16 instances in parallel, 100% utilization of the

tables involved is achieved if the desired number of physical

tables is a power of two. If this is not the case and utilization

of tables is the most high-priority criterion, the pipeline can

be configured for its conventional configuration, in which

each stage receives the output of its immediately preceding

stage. Fig. 8 illustrates the pipeline and the components that

make the reconfiguration possible. For space-saving reasons,

FIGURE 8. Pipeline configuration components.

only the first four PIPE16 instances are shown. The illustrated

architecture is repeated for the rest of the PIPE16 instances

and the resulting binary tree has three more levels. The key

component that picks the higher-priority match outcome is

a priority-based 2-to-1 multiplexer. The select line for these

priority-based multiplexers are set by the match found flags

of the two PIPE16 instances that provide their output to the

priority MUX. They also multiplex the value of match found

flag so that the next-level multiplexers can function correctly.

By having a binary tree of these components, it is possible to

run selected PIPE16 instances in parallel. The other compo-

nent required for the configuration is the set of multiplexers

that provide the input to PIPE16 instances. PiCW is the set

of values for the select lines of these multiplexers. If the

pipeline is configured in its basic form in which the packets

have to traverse all the stages, the latency is 430 nanoseconds

because the operating frequency is 1.19 GHz. The terabit-

level switches of Nexus 9200 family from Cisco have latency

figures close to two microseconds [34]. Therefore, even the

worst-case latency of our architecture is in reasonable range.

What is meant by input to a PIPE16 instance is the input to

the first stage within the PIPE16 in question. For instance,

input to PIPE1630 means input to stage 480, which is the

first stage within PIPE1630. For all stages after the first stage

of a PIPE16 instance, the only input is the output of the

preceding stage. For instance, for stage 17 which is located

in PIPE161but is not its first stage, the only input option the

output of stage number 16.

C. INPUTS TO FIELD- AND STATE-MODIFIERS
Field extractors provide the input to the functional units

including field- and state-modifiers. The PHV contains 128

32-bit words. This translates to 384 16-bit and 512 8-bit units

as well. The reason why there are 384 16-bit units is that for

a given PHV word called wordi, wordi(31:16), wordi(23:8),

and wordi(15:0) are extracted as 16-bit units. Field extractors

are in fact multiplexers with 1024 inputs. Each of the field-

and state-modifying instructions have fields for specifying

the location of a field within the PHV. When 8- and 16-bit

fields are selected, they are zero-extended to 32 bits. Field

extractors are one of the major contributors to chip area due to

98938 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 9. Instruction memory layout for pointer-based write.

the number of pipeline stages and the fact that each field- and

state-modifier requires two field extractors. Therefore, it is

desirable to evaluate the possibility of optimizations for sav-

ing area. In [35] different alternatives for field extractors are

compared. We consider two optimization strategies. In both

strategies, it is assumed that the PHV is logically divided into

eight equally sized groups.

Based on the observation that it is not necessary for all field

extractors to be able to read from the whole PHV, each field-

and state-modifier is allowed to access all of the fields within

its group but only some of the entries of other groups. In other

words, cross-group field retrieval is more limited. In the

second optimization strategy, full field extraction capability

is available for entries of a group. However, entries of other

groups are read only in 32-bit units in order to reduce the

number of inputs to the multiplexer and thus have a lighter

multiplexer. If an 8- or 16-bit field from the entries pertaining

to other groups is required, it must be extracted using the

field- and state-modifiers.

Both optimization strategies result in use of multiplexers

with 240 inputs as field extractors which occupy 36% of

the area of 1024-input multiplexers. The resulting saving is

not limited to the crossbars. The number of SRAM blocks

required to hold Very Long InstructionWord (VLIW) instruc-

tion slots will be reduced too because the instructions will

slightly shrink.

D. MORE ADVANCED MEANS OF HEADER FIELD
REFERENCING
As mentioned earlier, one of the limitations of the PISA

architecture is that its sole means of referencing header fields

is directly specifying them in the instruction. If one of the

header fields is a pointer specifying the header field for

reading or writing, the pointer field has to be used as a search

key. The outcome of this match points to the instruction that

reads from or writes to the correct field within the PHV. This

causes the instruction memory to be inefficiently filled by

instructions that are in principle the same. Fig. 9 illustrates

the layout of the instruction memory when one of the fields

in the header contains the index of the field to which a value

must be written. This writing is achieved by using the MOVE

instruction. There is an action engine for each PHV entry and

each VLIW instruction slot corresponds to an action engine.

As we can see, all these instructions are in principle the

same. The only difference is the location of theVLIW instruc-

tion slot containing the MOVE instruction. The PHV in RMT

architecture contains 224 fields of three different widths.

There is an action engine per PHV field. In the worst case,

as many as 224 instruction entries will be filled according to

the pattern in Fig. 9.

In our architecture, we do not need to use any form of

matching in such scenarios. Field modifiers have a specific

opcode for reading the content of a header field whose loca-

tion is specified by a pointer. The location of the pointer

within the PHV must be known in advance so that it could be

directly referenced. After reading the pointer and executing

this opcode, the field referenced by the pointer is provided at

the output of the field modifier. In addition to this, there is

an opcode for writing to a field specified by a pointer. When

this opcode is executed, the location pointed to by the pointer

is assigned the intended value even if the destination field

is beyond the range of locations to which the writing field

modifier can write. For this to be feasible, the writing field

modifier overrides all other field modifiers.

E. PACKET PROCESSING EXAMPLES
1) IPv6 SEGMENT ROUTING
Segment Routing (SR) is a type of source routing in which

the source determines the nodes that a packet must visit. SR

has been discussed in detail in [36]. SR can be implemented

using MPLS or IPv6. In the latter case, an IPv6 extension

header called Segment Routing Header (SRH) is required.

Here we consider SR using IPv6 SRH. In this packet pro-

cessing walkthrough, we assume that a router based on the

architecture proposed in this paper is the endpoint for the

arriving IPv6 packet. This means that Destination Address

(DA) is the same as the router’s address. We also assume that

Hop limit is greater than 1 and that SRH immediately follows

the fixed IPv6 header. Fig. 10 contains the pseudo-code that

must be executed on our architecture.

Since IPv6 extension headers are all independent headers,

the SRH has already been parsed by the parser and the cor-

responding 10-bit tag has been assigned. Each of the header

fields referred to in Fig. 10 have a determined place within

the PHV.

Fig. 11 illustrates the outline of PHV after parsing is com-

plete. The instructions executed in each stage are outlined

in Table 3. It is assumed that R124, R125, R126 and R127

contain the IPv6 address assigned to the device.

Processing in stage 0 begins by comparing DA with

the address assigned to the device. After each comparison

instruction there is a change label instruction to change the

program flow if necessary. Four comparisons are required

because IPv6 addresses are 128 bits wide. Selecting the cur-

rent segment from the list of segments requires pointer-based

read. Before pointer-based read can be done, the value of the

pointer must be manipulated so that it points to the correct

PHV entry.

Due to the width of IPv6 addresses, writing the segment

pointed to by the updated value of Segments Left takes four

VOLUME 8, 2020 98939

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 10. Pseudo-code for IPv6 SRH processing.

FIGURE 11. Outline of PHV after the parsing is complete.

cycles (stages 8 to 11). As soon as the first word of the

new IPv6 DA is known, ternary lookup begins (stage 9).

An interesting observation is that Segments Left, which acts

TABLE 3. Instructions executed in each stage for IPv6 SRH Processing.

as a pointer, is already updated in stage 0, so that the process

of retrieving the segment to which it points can be started

although at this point it is not clear whether it contains a

positive value. This kind of execution is speculative. If at

98940 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 4. Tags used in processing of IPv6 SRH.

FIGURE 12. Outline of PHV after the parsing is complete.

any point the value of Segments Left turns out to be invalid,

the changes can be discarded.

As we can see, the label modification instruction has been

extensively used. Table 4 contains the designated labels and

their meaning. In this table, labels are referred to with letters

because their actual value is implementation-specific and is

not of significance in the discussion here. Each of these

labels is the basis for retrieving the instructions in each stage.

Change of label causes change in program flow.

2) 5G FRONTHAUL TRAFFIC
Common Public Radio Interface (CPRI) is an interface-

defining standard for communication between Radio Equip-

ment Control (REC) and Radio Equipment (RE) using the

fronthaul transport network. eCPRI is the enhanced CPRI.

It connects the eREC and eRE via transport network. eCPRI

messages can be encapsulated in Ethernet or IP packets. Here

we consider the encapsulation in Ethernet.

Fig. 12 illustrates outline of PHV after parsing is complete.

R0-R3 contain Ethernet header, R4 contains eCPRI common

header and R5-R7 contain eCPRI Generic Data Transfer

message.

The parser has already marked the packet as an eCPRI

message. The 1-byte field Message Type from the eCPRI

common header is selected as an exact match search key.

In this scenario, the value of this field indicates the presence

of Generic Data Transfer message after the common header.

eCPRImessages have an identifying field called PC_ID at the

beginning of the eCPRI message. Depending on the message

type, the width of this field is a byte, 2 bytes or 4 bytes.

We cannot know the width of this field until the outcome of

looking up Message Type is available. To reduce the latency,

we generate three exact match search keys, each correspond-

ing to the 3 different sizes of PC_ID field. This way, we don’t

have to wait until the outcome of matching Message Type is

available. It is also beneficial from the perspective of using

TABLE 5. Area and power of header parser components.

TABLE 6. Area and power dissipation of 6.4 Tbps packet parser.

the tables efficiently because by the time the outcome of

matchingMessage Type is available, two tables are traversed.

The outcome of matching PC_ID reveals how the data in the

eCPRI message must be handled.

V. EVALUATION AND DISCUSSION
The packet parser and the packet processing pipeline

have been implemented using VHDL. The implementation

has been synthesized using Synopsys Design Compiler J-

2014.09-SP4 on 28 nm FD-SOI technology. The results cor-

respond to supply voltage of 0.9 V and worst-case oper-

ating conditions (ss, 125◦C). The implementation meets

the timing constraints at operating frequency of 1.19 GHz.

Post-synthesis simulation has been performed using Mentor

Questa.

A. PACKET PARSER RESULTS
Table 5 presents the area and power dissipation of the main

constituent components of a single header parser instance.

The total area of a header parser instance is 47000 μm2

and the total power dissipation is 74.6 mW. Table 6 out-

lines the area and power dissipation of components of a

6.4 Tbps packet parser that can parse packets with depth of

eight headers. This packet parser is made of eight pipelines

of header parsers. Each such pipeline contains eight header

parser instances and can sustain throughput of 800 Gbps.

By having eight of these pipelines in parallel, aggregate

throughput of 6.4 Tbps can be supported.

The total area of all packet parser instances required for

6.4 Tbps throughput is 3.617 mm2 or 7.38 M gates. The total

area of packet parsers in [12] is 5.6 M gates for 640 Gbps

throughput. For reaching 6.4 Tbps throughput, the number

of parser instances must be increased by a factor of 10.

This causes the resulting total area to be 56 M gates. This

means that we have increased the throughput by a factor

of 10 whereas the increase in area has been only 32 %. The

area difference is equivalent to the area of 137 instances of

2048 × 32 TCAM blocks.

VOLUME 8, 2020 98941

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

TABLE 7. Area of the components in a packet processing stage.

B. PACKET PROCESSING PIPELINE RESULTS
Table 7 contains details on the area of themain components of

a single packet processing stage. The components in the table

are ordered according to their area. For components having

multiple instances in each stage, the total area of the instances

is given.

As we can see, the major contributor to the area is the

TCAM. The next major contributors to the area are field

selectors. In section 4 we discussed optimizations for field

selectors. The area of the proposed lightweight field selec-

tors is 36% of the original field selectors. In addition, using

these crossbars causes the width of field- and state-modifying

instructions to shrink. In this optimization, the first field

modifier and the condition evaluator still use the large input

selectors. The other field modifiers use the light-weight input

selectors. By using the lightweight field selectors, an area

equivalent to 37 mm2 can saved. This saving is equivalent

to the area of 214 TCAM blocks of 2K × 32 bits.

All the memories used for storing PIDs, instructions, and

search keys are industry-standard dual-ported memories. The

control plane can write to these memories while the device

is operating. It does so by communicating with the central-

ized controller using a protocol such as OpenFlow. The area

occupied by the memories comes not only from components

required for reading, writing, and storing data, but also from

built-in test components.

C. COMPARISON WITH OTHER MATCH-ACTION
ARCHITECTURES
In this section, we compare the area of our architecture with

that of RMT and dRMT. Table 8 compares the area of dif-

ferent components in each stage of the three architectures

under comparison. Since dRMT architecture is a processor,

the values correspond to one processor instance. For dRMT,

we have considered two variants each with a different value

for Inter-Packet Concurrency (IPC). It is assumed that all

these architectures have equal amount of memory to host both

ternary and exact match search keys as well as the data associ-

ated with them. The values for RMT and dRMT architectures

have been taken from [20] and converted into values that

would be obtained after synthesis using 28 nm technology.

We have, however, taken the value of match crossbars and

TABLE 8. Area per stage (mm2).

ALUs from [12]. According to [12], the total area of match

key crossbars in RMT architecture is 6 mm2, which means

that in each stage the area of match crossbars is 0.187 mm2.

From the values in the table we can see a noticeable

difference in the area of PHV when comparing the area of

PHV in our architecture with that of RMT or dRMT archi-

tecture variants. The key to understanding this difference is

understanding that a stage in RMT architecture is a logical

stage. In our architecture, on the other hand, all stages are

physical. Each of theMatch-Action units in RMT is internally

pipelined because there are quite many operations such as

search key generation, header field retrieval, match result

combination, memory access, etc. taking place in each logical

stage and since RMT operates at 1.0 GHz frequency, there is

no way that all these operations can take place in one cycle.

Therefore, the PHV must be propagated from one physical

stage to the next stage. The actual number of physical stages

in RMT can be estimated based on the match and action

latency values. As a result, the fact that our architecture

has 512 stages does not mean that the overall cost of PHV

instances in our architecture is more than that of RMT archi-

tecture. In fact, the total area of PHV instances in the two

architectures are on par with each other.

Table 8 has an entry called Match key configuration reg-

ister. In our architecture, we have a lookup instruction for

ternary matching and another instruction for exact matching.

In the decode stage of both these instructions the com-

ponents of the search key are selected in the decode stage.

Therefore, we do not have any register to hold match key

configuration. This indicates that our architecture is more

flexible in supporting diverse set of search keys.

One of the issues with the analysis in [20] is the way the

area of ALUs has been estimated. From [12], the authors

of [20] have used the 7.4% share of contribution of action

engines to overall area as the basis for calculating the area

98942 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

of ALUs. In order to obtain the total area of RMT, they have

used the 200 mm2 value from [18]. This value represents a

lower bound on the area of a commercial 640 Gbps switch

chip. There is no evidence that this value represents the total

area of RMT. Besides that, the process technology associated

with this value has not been mentioned in [18]. Another issue

with the values calculated by [20] is that the ratio of the

area of ALUs in RMT and dRMT is inconsistent with the

number and width of ALUs used in the two architectures.

According to our experiments, the area of a 16-bit ALU is

half the area of the corresponding 32-bit ALU. Similarly,

the area of an 8-bit ALU is a quarter of the area of the 32-

bit ALU with same functionality. Instead of the estimation in

[20], we use the per-bit gate count provided in [12] because

it is based on results from implementation. According to

[12], each action engine requires less than 100 gates per bit.

Based on this assumption, the area of a 32-bit action engine is

around 1500 μm2. We assume that all action engines used in

the three architectures being compared are equal in internal

architecture.

As for action output selectors, each ALU in our architec-

ture writes to a fixed set of locations within the PHV. The

ALUs together cover the whole PHV. The area of action

output selectors in our architecture is almost zero in mm2

scale.

Based on the values of Table 8, Table 9 contains the area

for all stages of the two pipelined architectures and in the

case of dRMT architecture variants, the area for all proces-

sors. Furthermore, the area for table combination logic is

provided. In dRMT architecture, there is logic for both table

combination within a cluster and assignment of clusters to

processors. In our architecture, there is tiny logic for config-

uring the organization of pipeline. This area corresponds to

the multiplexers providing input to the PIPE16 instances and

the 2-to-1 priority-based multiplexers receiving the output of

certain PIPE16 instances.

According to Table 9, RMT architecture has 44 % more

area than our architecture. dRMT variants have 41 % and 79

%more area than our architecture despite lacking the features

of the architecture presented in this work. In order to be able

to interpret these numbers, we should compare them with the

latest area figures for commercial switch ASICs, which are

300-700 mm2 [20]. All the architectures under comparison

are within this range. However, our architecture is notably

ahead of others in area-efficiency. The savings in area can be

used for integrating more TCAMs and/or exact match tables

and thereby increasing the match capacity of the system.

VI. CONCLUSIONS
In this paper, we presented the architecture of a pro-

grammable packet parser and a flexible packet processing

pipeline. The parser supports 6.4 Tbps throughput without

relying on expensive TCAMs. As a result, its area is very

modest for its level of performance. The packet processing

pipeline allows fine-grained table assignment and unlimited

combination of tables at minimum possible cost. It also pro-

TABLE 9. Area for all processors plus interconnect (mm2).

vides more advanced features such as custom action depth,

alternative program control, and an addressing mode for

pointer-based read and write. All of this is achieved while

still being considerably more area efficient than the current

Match-Action architectures, namely the RMT and dRMT

architectures.

Chip area is a measure of complexity of the logic inside

a chip. For a given functionality and performance level,

a chip with lower area is more desirable. Digital ICs are

subject to various constraints. One such constraint is area.

The significance of low-area design is that the savings in area

could be used for providing more complex logic for enhanced

functionality. In packet processing architectures, this saving

can be exploited for more functional units. By doing so,

the functionality and/or supported throughput of the system

will be enhanced.

Performance comes not only from the hardware side, but

from the software side as well. One of the techniques used

in the packet processing examples presented in this paper

was software-based speculative execution. When a match is

in progress, the possible actions can be executed specula-

tively. When the match result is ready, the outcome of the

corresponding action is committed, and the other results are

discarded. By doing so, the overall latency of match and

action is reduced.

As for future work, we intend to work further on the

architecture for supporting higher throughputs and providing

further flexibility. The idea of breaking the pipeline into

PIPE16 instances with the aim of reducing latency when

deeper tables are required, can be expanded for having mul-

tiple independent pipelines, each of which processes packets

with the same packet processing requirements. This enhances

packet-level parallelism. Each packet is dispatched to the

corresponding pipeline depending on its needs. Different

pipelines deal with different packets. The architectural com-

ponents required are dispatch logic and independent deparser

at the end of each independent pipeline. We also plan to

develop a P4 compiler for this architecture.

REFERENCES
[1] N. Feamster, J. Rexford, and E. Zegura, ‘‘The road to SDN: An intellectual

history of programmable networks,’’ ACM SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[2] R. Bifulco and G. Rétvári, ‘‘A survey on the programmable data plane:

Abstractions, architectures, and open problems,’’ in Proc. IEEE 19th Int.
Conf. High Perform. Switching Routing (HPSR), Bucharest, Romania,

Jun. 2018, pp. 1–7.

VOLUME 8, 2020 98943

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

[3] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, ‘‘A survey on software-

defined networking,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,

pp. 27–51, 1st Quart., 2015.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, ‘‘OpenFlow: Enabling innovation

in campus networks,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[5] H. Song, ‘‘Protocol-oblivious forwarding: Unleash the power of SDN

through a future-proof forwarding plane,’’ in Proc. 2nd ACM SIGCOMM
Workshop Hot Topics Softw. Defined Netw. (HotSDN), 2013, pp. 32–127.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,

C. Chlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘P4:

Programming protocol-independent packet processors,’’ SIGCOMMCom-
put. Commun. Rev., vol. 44, pp. 87–95, Jul. 2014.

[7] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,

M. S. Berger, and L. Dittmann, ‘‘Cloud RAN for mobile networks—

A technology overview,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 405–426, 1st Quart., 2015.

[8] L. M. P. Larsen, A. Checko, and H. L. Christiansen, ‘‘A survey of the func-

tional splits proposed for 5G mobile crosshaul networks,’’ IEEE Commun.
Surveys Tuts., vol. 21, no. 1, pp. 146–172, 1st Quart., 2019.

[9] eCPRI Interface Specification V1.2-Common Public Radio Interface, Eric-
sson AB, Huawei Technol., NEC Corp., CPRI, Nokia, Espoo, Finland,

Jun. 2018.

[10] IEEE Approved Draft Standard for Packet-Based Fronthaul Transport
Networks, IEEE Standard P1914.1/D5.3, Sep./Nov. 2019, pp. 1–92.

[11] IEEE Standard for Radio over Ethernet Encapsulations and
Mappings, IEEE Standard 1914.3-2018, Oct. 2018, pp. 1–77,

doi: 10.1109/IEEESTD.2018.8486937.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,

F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-

grammable match-action processing in hardware for SDN,’’ in Proc. ACM
SIGCOMM Conf., Hong Kong, Aug. 2013, pp. 99–110.

[13] Barefoot Networks. The World’s Fastest & Most Programmable
Networks. Accessed: Apr. 25, 2020. [Online]. Available: https://www.

barefootnetworks.com/resources/worlds-fastest-most-programmable-

networks/

[14] H. Khosravi and T. Anderson, Requirements for Separation of IP Control
and Forwarding, document RFC 3654, IETF, Nov. 2003.

[15] L. Yang, R. Dantu, T. Anderson, and R. Gopal, Forwarding and Control
Element Separation (ForCES) Framework, document RFC 3746, IETF,

Apr. 2004.

[16] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

‘‘Ethane: Taking control of the enterprise,’’ in Proc. Conf. Appl., Tech-
nol., Archit., Protocols Comput. Commun. (SIGCOMM), Kyoto, Japan,
Aug. 2007, pp. 1–12.

[17] M. Shahbaz and N. Feamster, ‘‘The case for an intermediate representation

for programmable data planes,’’ in Proc. 1st ACM SIGCOMM Symp.
Softw. Defined Netw. Res. (SOSR), Santa Clara, CA, USA, Jun. 2015,

pp. 1–6.

[18] G. Gibb, G. Varghese, M. Horowitz, and N. McKeown, ‘‘Design principles

for packet parsers,’’ in Proc. Archit. Netw. Commun. Syst., San Jose, CA,

USA, Oct. 2013, pp. 13–24.

[19] A. Sivaraman, A. Cheung, M. Budiu, C. Kim, M. Alizadeh,

H. Balakrishnan, G. Varghese, N. McKeown, and S. Licking, ‘‘Packet

transactions: High-level programming for line-rate switches,’’ in Proc.
Conf. ACM SIGCOMM Conf. (SIGCOMM), Florianópolis, Brazil, 2016,
pp. 15–28.

[20] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Vargaftik, A. Berger,

G. Mendelson, M. Alizadeh, S.-T. Chuang, I. Keslassy, A. Orda, and

T. Edsall, ‘‘DRMT: Disaggregated programmable switching,’’ in Proc.
Conf. ACMSpecial Interest GroupDataCommun., LosAngeles, CA,USA,
Aug. 2017, pp. 1–14.

[21] Barefoot Networks. World’s Fastest P4-Programmable Ethernet
Switch ASICs. Accessed: Apr. 25, 2020. [Online]. Available:

https://www.barefootnetworks.com/products/brief-tofino/

[22] Barefoot Networks. Second-Generation of World’s Fastest P4-
Programmable Ethernet Switch ASICs. Accessed: Apr. 25, 2020. [Online].
Available: https://www.barefootnetworks.com/products/brief-tofino-2/

[23] Broadcom. High-Capacity StrataXGS Trident 3 Ethernet
Switch Series. Accessed: Apr. 25, 2020. [Online]. Available:

https://www.broadcom.com/products/ethernet-connectivity/switching/

strataxgs/bcm56870-series

[24] Broadcom. 12.8 Tb/s StrataXGS Tomahawk 3 Ethernet Switch
Series. Accessed: Apr. 25, 2020. [Online]. Available: https://www.

broadcom.com/products/ethernet-connectivity/switching/strataxgs/

bcm56980-series

[25] Broadcom. 25.6 Tb/s StrataXGS Tomahawk 4 Ethernet Switch
Series. Accessed: Apr. 25, 2020. [Online]. Available: https://www.

broadcom.com/products/ethernet-connectivity/switching/strataxgs/

bcm56990-series

[26] Innovium. Teralynx: The World’s Most Scalable Switch Family-1.2 Tbps
Through 12.8 Tbps With Industry Leading Analytics, Lowest Latency
and Programmability. Accessed: Apr. 25, 2020. [Online]. Available:

https://www.innovium.com/teralynx/

[27] M. Attig and G. Brebner, ‘‘400 Gb/s programmable packet parsing on a

single FPGA,’’ inProc. ACM/IEEE 7th Symp. Archit. Netw. Commun. Syst.,
Brooklyn, NY, USA, Oct. 2011, pp. 12–23.

[28] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore, ‘‘NetF-

PGA SUME: Toward 100 Gbps as research commodity,’’ IEEE Micro,
vol. 34, no. 5, pp. 32–41, Sep. 2014.

[29] G. Brebner and W. Jiang, ‘‘High-speed packet processing using reconfig-

urable computing,’’ IEEE Micro, vol. 34, no. 1, pp. 8–18, Jan./Feb. 2014.
[30] P. Bosshart, ‘‘Programming forwarding planes at terabit/s speeds,’’ pre-

sented at the Hot Chips, Symp. High Perform. Chips, 2018. [Online].

Available: https://www.hotchips.org/archives/2010s/hc30/

[31] H. Zolfaghari, D. Rossi, and J. Nurmi, ‘‘A custom processor for protocol-

independent packet parsing,’’ Microprocessors Microsyst., vol. 72,

Feb. 2020, Art. no. 102910.

[32] Open Networking Foundation. (Mar. 26, 2015). OpenFlow Switch Speci-
fication Version 1.5.1. [Online]. Available: https://www.opennetworking.
org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

[33] G. Gibb, ‘‘Reconfigurable hardware for software-defned networks,’’ Ph.D.

dissertation, Dept. Elect. Eng., Stanford Univ., Stanford, CA, USA, 2013.

[Online]. Available: https://stacks.stanford.edu/file/druid:ns046rz4288/

gibb-thesis-augmented.pdf

[34] CISCO. Nexus 9200 Compare Models. Accessed: Apr. 25, 2020. [Online].
Available: https://www.cisco.com/c/en/us/products/switches/nexus-9000-

series-switches/nexus-9200-models-comparison.html

[35] H. Zolfaghari, D. Rossi, and J. Nurmi, ‘‘Reducing crossbar costs in the

match-action pipeline,’’ in Proc. IEEE 20th Int. Conf. High Perform.
Switching Routing (HPSR), Xi’an, China, May 2019, pp. 1–6.

[36] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and

R. Shakir, Segment Routing Architecture, document RFC8402, IETF,

Jul. 2018.

HESAM ZOLFAGHARI (Graduate Student Mem-

ber, IEEE) is currently pursuing the Ph.D. degree

with Tampere University. His research interests are

design of programmable and protocol-independent

packet processors for software defined networking

with special focuses on low on-chip area, low-

power dissipation, and minimized packet process-

ing latency. This includes design of abstraction

layers starting from the instruction set all the way

down to the microarchitecture of both packet pars-

ing and packet processing subsystems within high-performance switches and

routers.

DAVIDE ROSSI (Member, IEEE) received the

Ph.D. degree from theUniversity of Bologna, Italy,

in 2012. He has been a Postdoctoral Researcher

with the Department of Electrical, Electronic and

Information Engineering ‘‘Guglielmo Marconi,’’

University of Bologna, since 2015, where he cur-

rently holds an assistant professor position. His

research interests focus on energy efficient digital

architectures in the domain of heterogeneous and

reconfigurable multi and many-core systems on

a chip. This includes architectures, design implementation strategies, and

runtime support to address performance, energy efficiency, and reliability

issues of both high end embedded platforms, and ultra-low-power computing

platforms targeting the Internet of Things (IoT) domain. In these fields he has

published more than 100 articles in international peer-reviewed conferences

and journals. He was a recipient of the Donald O. Pederson Best Paper

Award, in 2018.

98944 VOLUME 8, 2020

H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

WALTER CERRONI (Senior Member, IEEE) is

currently an Assistant Professor of communication

networks with the University of Bologna, Italy.

His recent research interests include software-

defined networking, network function virtualiza-

tion, service function chaining in cloud computing

platforms, intent-based northbound interfaces for

multidomain/multitechnology virtualized infras-

tructure management, and modeling and design of

inter-data and intra-data center networks. He has

coauthored more than 120 articles published in well renowned international

journals, magazines, and conference proceedings. He serves/served as a

Series Editor for IEEE Communications Magazine, an Associate Editor for

the IEEE COMMUNICATIONS LETTERS, and a Technical Program Co-Chair of the

IEEE-sponsored international workshops and conferences.

HAYATE OKUHARA (Member, IEEE) received

the Ph.D. degree fromKeio University, Kanagawa,

Japan, in 2018. He is currently a Postdoc-

toral Researcher with the Department of Elec-

trical, Electronic and Information Engineering

‘‘Guglielmo Marconi,’’ University of Bologna,

Bologna, Italy. His research interest includes low-

power VLSI system design.

CARLA RAFFAELLI (Senior Member, IEEE)

received the M.Sc. and Ph.D. degrees in electronic

and computer engineering from the University of

Bologna, Italy, in 1985 and 1990, respectively. She

is currently an Associate Professor with the Uni-

versity of Bologna. She is the author or coauthor

of more than 150 conference papers and journal

articles mainly in the field of optical networking

and network performance evaluation. Her research

interests include performance analysis of telecom-

munication networks, switch architectures, optical networks, and 5G net-

works. She actively participated in many National and International research

projects, such as the EU funded ACTS-KEOPS, the IST-DAVID and the

e-photon/One and BONE networks of excellence. She has served as a Tech-

nical Program Committee Member in several Top International Conferences,

such as ICC and ONDM and the Technical Program Committee Co-Chair in

ONDM 2011. Since October 2013, she has been a member of the editorial

board of the journal Photonic Network Communications (Springer). She is

the Director of the International Telecommunications Engineering master’s

degree at the University of Bologna. She regularly acts as a Reviewer of top

international conferences and journals.

JARI NURMI (Senior Member, IEEE) has been

working as a Professor with the Electrical Engi-

neering Unit, Tampere University, TAU (formerly

Tampere University of Technology, TUT), Fin-

land, since 1999. He is currently working on

embedded computing systems, system-on-chip,

approximate computing, wireless localization,

positioning receiver prototyping, and software-

defined radio and -networks. He holds various

research, education, and management positions at

TUT, since 1987. He was the Vice President of the SME VLSI Solution Oy,

from 1995 to 1998. He has supervised 25 Ph.D. and over 140 M.Sc. theses.

He has edited five Springer books and has published over 350 international

conference papers and journal articles and book chapters. He is a member

of the Technical Committee on VLSI Systems and Applications at the IEEE

CASS. He is also an Associate Editor/Handling Editor of three international

journals.

VOLUME 8, 2020 98945

