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ABSTRACT 

Computer networks have changed radically in the last 10 years. Advances in 
computer networks and emergence of new network protocols require more 
flexibility and programmability in forwarding devices such as switches and routers. 
The main components of these devices are the control and data plane. The former 
instructs functionality and the latter just executes the dictated functionality. In the 
traditional philosophy for designing forwarding devices, the control and data plane 
were tightly coupled. With increase in the number and complexity of network 
protocols, this design principle proved to be inefficient. Software Defined 
Networking (SDN) breaks this tight coupling of the control and data plane. Under 
this network architecture, a central controller installs forwarding rules on the tables 
in forwarding devices. SDN-based forwarding devices only contain the data plane 
and the interface for communicating with the control plane. By matching the value 
of header fields against the installed rules, the data plane executes the corresponding 
actions. Research on SDN is done on the control and data planes as well as and the 
interface making their communication possible. 

In this dissertation, the focus is on the programmable data plane. It is the enabling 
component for protocol-independent packet processing. The most notable 
hardware architecture for programmable data plane is Reconfigurable Match Tables 
(RMT). Despite its capabilities, there are a number of shortcomings associated with 
it that make it unnecessarily complex, limit its flexibility and use the memory 
resources inefficiently. In response to these shortcomings, a new architecture has 
been designed and implemented. The packet parser in this new architecture does not 
employ Ternary Content Addressable Memory (TCAM). As a result, it reduces the 
area of memories required for Match-Action packet parsing by 50%. The area saving 
is used for providing packet preprocessing functionality in the packet parser. The 
crossbar alternatives for search key generation and action input selection have been 
explored and the most area-efficient alternatives has been selected. Yet another 
packet parser is designed whose supported throughput is 10 times that of RMT 
parser whereas the area increase factor is less than 2. Finally, a packet processing 
pipeline has been designed with enhanced level of flexibility and functionality. 
Despite the enhancements, it has 31% less area compared to the RMT pipeline. 
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1 INTRODUCTION 

Computer networks have been subject to fundamental changes during the last 
decade. As a result of these changes, programmability and the role of software has 
become an indispensable part of computer networks. Today, computer networks 
operate based on the Software Defined Networking (SDN) concept. The main idea 
in SDN is the separation of the control plane from the data plane of forwarding 
devices such as switches and routers. The control and data plane are the two main 
logical entities within forwarding devices. They perform routing and forwarding 
respectively. Routing is the process of determining the routes that packets must 
traverse for reaching their destination. The outcome of routing is filling in the 
corresponding database for routing. Forwarding is the process of finding the right 
interface to which an incoming packet must be directed. As a result, routing is a 
wider problem which involves all the nodes within a network whereas forwarding is 
a problem to be solved within a forwarding device only. This tight coupling of the 
control and data plane was the dominant logical architecture of the forwarding 
devices. By mid 2000s, a router deployed by service providers was based on 100 
million lines of source code [1]. Each new device had to add functionality on top of 
those of its predecessors. As a result, switches and routers were internally comprised 
of enormous logic to support all the network protocols that a potential customer 
may use. Obviously, not all of the functionalities of a commercial forwarding device 
could be utilized in a given deployment scenario. 

Another shortcoming of the tightly coupled model was that it was 
counterproductive to innovation in the area of computer networks. If the research 
body had proposals for new network protocols, they had to start writing proposals 
and submit them to Internet Engineering Task Force (IETF) for standardization 
which was a lengthy process. Even if the idea was turned into a standard, switch and 
router vendors had to implement the new functionality into the devices, thus adding 
a few more years. A prime example is that of VxLAN. The first switch chip that 
supported VxLAN appeared 3 years after VxLAN was standardized [2]. 

As a result of these shortcomings, the idea of separating the control and data 
plane took off. In order for this separation to work, an interface must be made 
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between the control and data planes. One of the first efforts in development of such 
an interface was Forwarding and Control Element Separation (ForCES) [3]. A 
working group of the same name was formed at IETF and took the task of providing 
a standard interface between the control and data planes. Through this interface, the 
control plane installs forwarding rules in the data plane [4]. The next major step was 
Ethane [5]. In this architecture, flow management is handled by a centralized 
controller. Ethane-capable switches maintain a connection with the centralized 
controller that contains an overall view of the network. Ethane failed to convince 
commercial switch vendors for adoption.  

A successful attempt was OpenFlow. First introduced in [6], it shared the main 
idea with Ethane. However, it was far more advanced. It provides a logical 
architecture for switches in which there are a number of tables containing forwarding 
rules. A match on a table results in the execution of actions associated with the 
matching entry.  OpenFlow has been a commercial success and OpenFlow-based 
switches are available on the market. Although OpenFlow performs the task of 
interfacing between the control and data plane very well, it is not flexible because it 
is dependent on a number of protocols.  

For the inception of truly SDN-based networks, further contributions were 
needed to support protocol-independent processing of packets. This required 
working on the data plane. The key to achieving this goal is support of 
programmability in the data plane. As a result of the clear need for the programmable 
data plane, efforts were made in both hardware and software. 

On the programming language level, P4 was introduced in [7]. It is a target-
independent language for describing packet processing behaviour in the data plane. 
It abstracts the underlying hardware as a series of Match and Action stages. Moving 
down to the Instruction Set Architecture (ISA) level, the term Protocol-oblivious 
Forwarding (POF) was first mentioned in [8]. It was continued in [9] and [10]. POF 
is a generic ISA for the processing of network packets. In a similar approach, 
NetASM was proposed as an intermediate representation in [11]. It is in the 
hardware-software interface of packet processing. On the hardware level, the 
Reconfigurable Match Tables (RMT) architecture appeared in 2013. It is a fully 
programmable protocol-independent architecture that sustains 640 Gigabits per 
second (Gbps) throughput. Clearly, RMT was not the first hardware architecture for 
packet processing, as Field-Programmable Gate Arrays (FPGAs) and Network 
Processors existed prior to RMT, but the innovation of RMT was maintaining 
programmability and performance. 
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Another development was the shift from middleboxes to commodity hardware for 
implementing network functions. Middleboxes are devices that perform non-
forwarding functions. These devices were becoming costly, hard to manage and they 
increased the failure points within the network [12]. Network Function 
Virtualization (NFV) is the proposed solution for solving these issues. A network 
function, such as Network Address Translation (NAT) can be instantiated on a 
server.  This class of network functions are referred to as Virtualized Network 
Functions (VNFs) [13]. The need for programmability manifested itself for 
implementing a wide range of network functions. However, packet processing on 
the general-purpose processor of a server has its own problems. The time between 
arrival of a packet at network interface card until being processed by the processor 
results in high latency. Moreover, even high-end processors can be overloaded with 
packets [14]. In order to solve these issues, SmartNICs appeared as a new class of 
Network Interface Cards (NICs) with enhanced functionality, performance and 
flexibility for offloading network functions and providing better performance [15]. 
SmartNICs come in a wide range of platforms such as Application-specific 
Integrated Circuit (ASIC), embedded processor, and FPGA for varying levels of 
flexibility and performance [16]. 

1.1 Objectives and scope 

In this dissertation, the focus is on architectural aspects of Match-Action packet 
processing. The implementation target is ASIC. Specifically, the focus is on the 
problem of programmable packet parsing and packet processing. Issues such as 
packet scheduling and switch fabric are not within the scope of this dissertation. In 
the contributions made in this thesis, the key objectives are programmability, low 
hardware complexity and sustaining line rate throughput of 640 Gbps and above. 

1.2 Research questions 

There are research questions common to both packet parsing and packet processing 
as well as research questions specific to each of the two problems. One of the most 
recurring questions common to both packet parsing and packet processing is the 
question of which architecture is better, pipelined or run-to-completion. In the case 
of run-to-completion, is it better to use conditional execution or branches in order 
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to support the high-throughput nature of packet processing? Since increasing the 
frequency is not possible beyond a point, what architectural techniques are beneficial 
for enhancing performance? 

1.2.1 Research questions specific to packet parser 

Regarding the packet parser, the author investigates how programmability is 
achieved without expensive lookup entities such as Ternary Content Addressable 
Memories (TCAMs). Ways of enhancing the performance of the parser without 
increasing the operating frequency are also explored. With increase in line rates and 
complexity of network protocols, the question is, whether the parser is supposed to 
perform parsing only? Is there any performance benefit in processing the packets as 
they arrive? 

1.2.2 Research questions specific to the packet processing subsystem 

As for the packet processing subsystem, the first step in designing architectures with 
reduced area is to find out the major contributors to area. Since efficient use of 
lookup resources is a key goal, the author investigates and provides solution for 
program control mechanisms other than matching while still providing wire-speed 
performance. Support of advanced workloads is also a design goal. Simultaneous 
support of diverse set of protocols requires deep instruction memories which in turn 
cause noticeable increase in total area. The question is, how is it possible to support 
as many actions as possible while keeping the area overhead of instruction memories 
low. 

Another research question relates to crossbars used for generating search keys, 
selecting operands to actions, and combining tables. Large crossbars occupy large 
area and make physical design challenging. Is it possible to use smaller crossbars in 
order to minimize the area while still maintaining programmability and performance? 
Is it feasible to combine as many match tables as required without large multiplexers? 
Minimizing recirculation is another research item addressed in this dissertation. 
Recirculation of packets increases packet processing latency and reduces throughput. 
What can be done in order to minimize the need for recirculating packets? Another 
question is whether the field referencing mechanisms in the latest programmable 
architectures are sufficient for supporting state of the art network protocols? 
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1.3 Research significance 

Research on programmable data plane is mainly done in research and development 
departments of leading switch and router vendors. The amount of academic research 
on this topic is very small. Consequently, the outcome of research is not available to 
the public. The research based on which this dissertation is written provides 
substantial insight into the state-of-the-art packet processing hardware. 
Programmable architectures for protocol-independent packet processing are still in 
their infancy. Many SDN-related standards and contributions such as [7] and [17] 
describe the switch as a logical entity. The designer is free in making design choices 
as long as the desired functionality is achieved. The requirement analysis and 
architectural exploration in this thesis paves the way for further contributions and 
innovations for high-performance programmable packet processing hardware. 

Performance in digital systems can be enhanced by increasing the operating 
frequency or replicating the functional units for providing parallelism. Upscaling the 
operating frequency is subject to physical limits. At 6.4 Terabits per Second (Tbps), 
there are 10 billion minimum-sized packets per second each of which requiring 
multiple cycles of processing. This means that even a processor with frequency of 
10 Gigahertz (GHz) will not be able to keep pace with the rate of packet arrival. 
There are physical barriers that hinder scaling the frequency of digital systems 
beyond 5 GHz. Even within the range of feasible operating frequency values, lower 
frequencies are preferred to avoid excessive power and heat dissipation. The only 
solution for terabit-level packet processing is replication of functional units. The 
significance of low-area design is that the savings in area can be exploited for 
providing more on-chip match tables and/or more computational units without 
violating area constraints. Integrating more match tables increases the lookup 
capacity. Instantiating more functional units enhances functionality and/or 
throughput. An entire packet processing pipeline can be replicated so that the 
arriving packets are divided into the available pipelines. 

The significance of supporting novel protocols by software means is obvious. 
Due to the time-consuming and costly nature of designing, implementing and 
verifying new hardware, it is best to have hardware that can be programmed for as 
many different purposes as possible. 
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1.4 Contributions and results 

Table 1 outlines the contributions made in this dissertation. 

Table 1. Contributions made in this dissertation 

Contribution Innovation Original 
Publication 

A low-area programmable packet 
parser 

Use of program control instead of TCAM PI, PII, PIII 

Packet pre-processor Enhancement of packet parser with packet 
processing functionality, processing packets on the 
fly 

PIV 

Alternative crossbar architectures Use of smaller crossbars while maintaining 
functionality 

PV 

A pipelined parser for 6.4 Tbps parsing Tenfold increase in throughput PVI 
A flexible packet processing pipeline 
with advanced addressing mode and 
more efficient use of lookup tables 

Custom action depth, advanced field referencing, 
unlimited table combination 

PVI 

1.5 Author’s contribution 

The author of this thesis has been the first author of all papers included in this 
dissertation. The contribution includes coming up with the research idea, software 
implementation of selected network protocols, architecting the design, Register-
Transfer Level (RTL) implementation, verification, and programming the 
implemented architecture. In addition, for PVI, the ASIC synthesis has also been 
done by the author of this dissertation. 

1.6 Thesis outline 

This thesis is organized as follows. Chapter 2 provides an in-depth overview of 
packet processing solutions and justifies the need for custom hardware architectures. 
Chapter 3 contains the first contribution, which is a fully programmable packet 
parser. Chapter 4 provides enhancements to the packet parser for packet processing. 
Chapter 5 compares crossbar alternatives for the Match-Action pipeline. Chapter 6 
provides an alternative packet parser for terabit-level packet parsing. Finally, chapter 
7 provides a new packet processing pipeline with enhanced level of flexibility. Finally, 
chapter 8 concludes the work. 
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2 PACKET PROCESSING 

Computer networks are the underlying means for communication of computer 
systems including servers, desktop computers, laptops, tablets, smart phones, and 
Internet of Things (IoT) devices. Internet is a prime example of a gigantic computer 
network. In computer networks, data traverses in the form of network packets. In 
order to simplify the design, operation, management, and troubleshooting of 
computer networks, networks are built of logical entities, each belonging to a layer. 
A reference model for this layered approach is the Open Systems Interconnection 
(OSI) model elaborated in [18]. Figure 1 illustrates the OSI model. 

 
Application layer 
Presentation layer 
Session layer 
Transport layer 
Network layer 
Data link layer 
Physical layer 

Figure 1. OSI Model 

The lowest layer is the physical layer. It deals with electrical, optical, or wireless 
signals. As such, it has no knowledge of the contents of these signals. An instance 
of a system operating at the physical layer can be found in [19]. The next layer is the 
data link layer. It deals with accessing the transmission medium and addressing of 
nodes within a single network. The next layer is the network layer. This layer solves 
the problem of communication between independent networks which means how a 
packet destined to a node in another network must reach the target network. The 
next layer is the transport layer, which is in charge of transmission of variable-length 
data segments between two logical end points. The upper layers deal with more 
application-oriented matters. It is thanks to this layered model that when sending an 
email, it is not of significance whether the recipient of the email is using the Internet 
on a wired or wireless connection. Neither is it necessary to know what operating 
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system the recipient has. The message is created at the application layer and 
submitted to the lower layers in turn. Each layer is concerned only with its own 
specific issues. At the recipient’s side, the flow of the corresponding packet(s) starts 
at the physical layer and moves upwards to the application layer. 

The layered approach allows for interoperability. As far as a given implementation 
of a layer’s functionality is fulfilled and the data is received and produced in the same 
format, different implementations can be swapped. Associated with each layer are a 
set of protocols each of which is a specific implementation of the tasks associated 
with the layer in question. For instance, the most dominant layer-2 protocol is 
Ethernet. The most dominant layer-3 protocol is the Internet Protocol (IP). 
Currently, IPv4 and IPv6 are being used on the Internet. At the transport layer, 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) are in 
common use. Each protocol has a header to wrap around the data it receives from 
the next higher layer protocol’s data. 

Packet processing refers to the operations performed on network packets. These 
operations are performed on the header(s) of network packets. It is also possible for 
the payload of the packet to undergo processing. For instance, in the case of packet 
fragmentation, the original packet is broken into multiple smaller packets each of 
which carries a fraction of the original payload. The payload may also be subject to 
encryption. Packet processing operations are executed in network switches, routers, 
Network Interface Cards (NIC), and in general-purpose processor as instructed by 
the operating system. This chapter provides an overview of packet processing 
operations and the packet processing solutions. 

2.1 Packet processing operations 

Packet processing operations can be classified based on different criteria. One such 
criterion is the direction of the packet. Processing on an incoming packet is called 
ingress processing while processing on an outgoing packet is called egress 
processing. Another classification is based on packet processing operations of which 
the most basic one is forwarding. Forwarding was discussed in the introductory 
section of chapter 1. Packet processing operations can be listed as follows: 

-Parsing 
-Integrity checking 
-Header field manipulation 
-Tunnelling 



 

25 

-State modification 
-Lookup 
-Classification 
-Fragmentation and reassembly 
-Traffic management 

Each of them will be discussed in more detail. 

2.1.1 Parsing 

Parsing is the first step in processing of packets. In this chapter it is categorized as 
one of the packet processing operations. In the chapters to follow, parser is the 
prelude to packet processing. During parsing, the headers present in a packet are 
recognized and consequently, the kind of processing required for the packet is 
determined. According to [20], parsing can be done as the packets arrive or after the 
packet has been received in its entirety. Parsers operating based on these two models 
are referred to as streaming and non-streaming parsers respectively. Parsing must 
not be confused with Deep Packet Inspection (DPI) in which the payload of the 
packet is subject to inspection. Packet parser deals only with the headers. 

2.1.2 Integrity checking 

The contents of a packet might become corrupted during transmission as a result of 
noise or other defects. The purpose of integrity checking is to detect errors within 
the header. Ethernet frames contain a Frame Check Sequence (FCS) field that carries 
an error detection code. It is calculated using 32-bit Cyclic Redundancy Check 
(CRC). In IPv4, checksum of the header is calculated and then compared with the 
value contained in the Header Checksum field. After each header field manipulation, 
the checksum is recalculated and written to the Header Checksum field. Header 
checksum in IPv4 is calculated using one’s complement addition [21]. 

2.1.3 Header field manipulation 

Manipulation of header fields is the most obvious form of packet processing. One 
of the examples of header field manipulation is decrementing the value of Time-to-



 

26 

Live (TTL) and Hop Limit fields within the IPv4 and IPv6 header respectively. 
Updating the value of checksum in IPv4 is another instance of header field 
manipulation.   

2.1.4 Tunnelling 

Tunnelling refers to the process of encapsulating a packet into another packet. It 
basically means adding a new header in front of the current header(s). One of the 
use cases for tunnelling is when a network cannot carry packets of a specific type. In 
this case, the packets have to be encapsulated in packets that can be transported by 
the network in question. For instance, if IPv6 packets need to traverse a network 
supporting only IPv4, IPv6 packets must be encapsulated into IPv4 as described in 
[22]. At the end of the so-called tunnel, the wrapping is removed. 

2.1.5 State modification 

Implementing the functionality of certain protocols requires maintaining state. A 
notable example is Transmission Control Protocol (TCP). Apart from such 
protocols, it is possible to associate some form of state with packets belonging to 
stateless protocols. For instance, a router can be configured to keep track of the 
payload length of IPv6 packets whose next header is UDP. With each IPv6 packet 
that fulfils this criterion, the router retrieves the state and adds the payload length of 
the packet to it. State modification may be used just for statistical or billing purposes 
and hence not affect the fate of packets. Alternatively, the value of the state may be 
used as basis for modifying header fields or even dropping packets for which a 
threshold value has been reached. 

2.1.6 Lookup 

Lookups are one of the most widely used operations in packet processing. The 
nature of packet processing requires that some fields be selected as the search key to 
be used for looking up a table and retrieving the associated data. For instance, when 
an Ethernet frame arrives in a switch, the destination address is used as a search key 
to look up into the forwarding table to find out the port to which the frame must be 
forwarded. When an Internet Control Message Protocol version 6 (ICMPv6) [23] is 



 

27 

encountered, the Type and Code fields must be used to obtain the correct 
instruction(s) for processing the ICMP message in question. Therefore, lookups are 
required both for retrieving data items and for program flow. Lookup can be 
regarded as a sub-operation of packet classification, which will be discussed shortly. 

2.1.6.1 Exact Matching 

Exact matching is a kind of matching in which an exact match for the search key in 
question is being searched. This kind of matching is encountered in forwarding of 
Ethernet frames. When presenting the Destination Media Access Control (MAC) 
address to the lookup table, an exact match is looked for. If a memory is used to 
host all possible MAC addresses, 248 entries are required because MAC addresses are 
48 bits wide. This amount of memory is gigantic. Instead of this naïve approach, 
hashing is used because a switch will deal with a far more limited range of MAC 
addresses rather than the whole address space. The major issue brought upon by 
hashing is that of collisions. It refers to the problem of distinct search keys being 
mapped to the same entry in the hash table. One of the most widely used solutions 
to this issue is cuckoo hashing [24]. 

2.1.6.2 Ternary Matching 

Ternary matching allows a third state in addition to the default zero and one states 
to be stored in the match table. One use case of ternary matching is Longest Prefix 
Matching (LPM) in which the stored entries contain a non-ternary part called prefix 
followed by the ternary part. In LPM, matching entry with the longest prefix is 
searched. TCAMs can provide the means for ternary matching because they can 
store don’t care bits as well. TCAMs have single-cycle latency [25] at the cost of area 
and power consumption. The area of a TCAM block is 6-7 times that of an Static 
Random Access Memory (SRAM) with equal size [26]. A TCAM consumes as much 
as 15 watts [27].  

2.1.7 Classification 

The purpose of classification is grouping packets into classes. Packets in a given class 
receive similar processing. The basis for classification is matching. Therefore, 
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classification is the outcome of an earlier match operation. The simplest form of 
classification is packet forwarding in which the basis for matching, and hence 
classification, is the destination address. All the packets having the same destination 
will be steered to the same port. More advanced packet classification involves using 
the value of multiple fields as the basis for matching. For instance, the 5-tuple refers 
to source IP address, destination IP address, protocol/next header, source port and 
destination port fields from IPv4/IPv6 and TCP/UDP. It is used for identifying a 
transport-layer session. Use of 5-tuple as the basis for classification has use cases in 
NAT [28] and traffic management purposes [29].  

2.1.8 Fragmentation and reassembly 

If the size of a packet is larger than the Maximum Transmission Unit (MTU) of the 
network connected to the outgoing port, the packet has to be fragmented. This 
means that the payload of the packet must be broken into fragments and each sent 
as an independent packet. In the header of each fragment, there should be sufficient 
information to allow the reassembly of the fragments in the receiving host. In IPv4, 
the routers fragment a packet if its size is above the MTU of the path it must be 
forwarded to. In IPv6, fragmentation is done only by the source node. The minimum 
supported MTU as required by IPv6 is 1280 bytes [30]. 

Use of fragmentation and reassembly of packets is not limited to IPv4 and IPv6. 
Rather, it is sometimes done inside a network switch or router. Variable-length 
packets are fragmented into smaller fixed-size units called cells for better management 
of resources such as the internal switching fabric and packet buffers. The packet is 
then reassembled before being sent out through an egress port. 

2.1.9 Traffic Management 

Traffic Management (TM) deals with the problem of differentiating treatment of 
certain packets. Not all packet processing systems implement TM. In the absence of 
TM, all packets are treated equally and forwarded in Best Effort (BE) mode. Traffic 
management is a collective term for a wide range of operations such as marking, 
traffic policing, priority-based packet scheduling and traffic shaping. For each of 
these operations, there are various algorithms. The purpose of TM is providing 
Quality of Service (QoS) and/or preventing congestion. A notable instance of traffic 
management mechanism for IP traffic is Differentiated Services (DiffServ) [31]. 
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2.2 Software-based packet processing solutions 

In this section packet processing solutions employing software are discussed. 
Software switches and routers provide switching and routing functionality on 
general-purpose computers by means of software. The benefit of software routers is 
their flexibility and use of commodity hardware. In addition to general-purpose 
programming languages such as C, custom programming languages for packet 
processing have emerged to describe packet processing functionality. The operating 
system kernel performs packet processing services to applications sending and 
receiving packets. For enhanced performance, the operating system kernel can be 
bypassed. This concept is known as user-space packet processing. Each of the 
aforementioned subjects are elaborated in the subsections that follow. 

2.2.1 Software Routers 

Click [32] is a flexible and configurable software router. Its original implementation 
achieves forwarding rate of slightly over 170 Megabits per second (Mbps). At the 
time Click was presented, processors were running at sub 1.0 Giga Hertz (GHz) 
frequencies. With increase in processor speeds software routers achieved better 
performance. RouteBricks [33], builds a software router made of four servers 
connected through a mesh topology. It achieves throughput of 35 Gbps.  

CuckooSwitch [34], is a software-based Ethernet switch. It has two underlying 
components: Intel Data Plane Development Kit (DPDK) and a scheme for ensuring 
consistency in spite of concurrent access of a writer and multiple readers. It achieves 
throughput of 92.22 Gbps. 

Another development that pushed research for software routers was the rise of 
virtual machines (VM). Software routers steer packets towards or out of virtual 
machines. Open vSwitch [35] is a virtual switch that achieves 18.8 Gbps throughput 
when used as an Ethernet switch. With increase in the number of protocols and 
correspondingly increase in the complexity of software routers, the need to make 
them programmable became ever evident. PISCES [36] is a programmable software 
switch. It achieves throughput of slightly over 10 Gbps in a benchmark in which 
minimum-sized Ethernet frames arrive.  
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2.2.2 Programming Languages 

As a general-purpose programming language, C can be used for implementing packet 
processing functionality. Linux kernel is implemented in C and contains components 
for processing of packets. C language does not natively support protocol-specific 
features such as variable-length fields and encapsulation. Apart from the limitations 
of C, the protocol format may be incompatible with the processing width and byte 
ordering of the computer that executes packet processing code written in a general-
purpose programming language. Consequently, the applications need to perform the 
required adjustments before using the value of a header field. A Domain-specific 
Language (DSL) for describing the format of packets overcomes these 
shortcomings. PacketTypes [37] is a language specialized for packet specification. In 
this language, the layout of fields within a packet as well as constraints on their values 
can be defined as a type. It has native support for encapsulation, variable-length 
fields, and optional fields. The principle operation in PacketTypes is checking their 
membership of packets in a type. PacketTypes has been used for network 
monitoring, packet classification, and formal declaration of protocol formats. 

P4 is a declarative domain-specific language for instructing the data plane on how 
the packets must be processed. P4 was first introduced in [7]. Many commercial 
switches today are P4-programmable. Currently, P4 has two releases, P414 and P416 
that are described in detail in [38] and [39] respectively. P4 is based on an abstraction 
of the data plane in which the parser is followed by a Match-Action pipeline. Using 
P4 language, the headers can be described. The description of headers contains an 
ordered list of header fields and their size. The parse graph can also be described. 
Tables are described in terms of their size, the search key, the kind of lookup and 
the action that must be executed upon match. Associated with each packet is a set 
of metadata items called intrinsic metadata. It contains information such as the port 
on which the packet has arrived, the port to which it must be forwarded, whether 
the packet is a clone or recirculated packet, and other relevant information. P4 
contains a number of primitive actions such as arithmetic and logical operations, 
header addition and removal, packet dropping, etc. More complex actions can be 
defined as a combination of primitive actions. 

Domino [40] is a domain-specific imperative language with syntax similar to C. It 
is used to express data plane algorithms. The central concept in Domino is packet 
transaction which is an atomically executed code block separated from other blocks. 
Packet transactions allow the programmer to focus on the operations that must be 
performed on a packet, rather than concurrency issue brought upon by other 
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packets. In other words, packet transactions provide the illusion that a packet arrived 
at a switch is processed to completion and then processing of the next packet starts. 
When compiled for execution, packet transactions run at line rate in a guaranteed 
manner. It achieves this by imposing certain constraints. For instance, it does not 
allow loops nor unstructured control flow statements such as goto statements. When 
dealing with an array element within a transaction, only one element is allowed. What 
triggers the execution of a packet transaction is a guard that is a predicate. For 
instance, a guard could be defined as a header field having a specific value. Once this 
predicate evaluates to true, the packet transaction associated with it is executed. 
Domino has been evaluated in terms of its expressiveness when used to implement 
various data plane algorithms for traffic engineering, congestion control, active 
queue management, network security and measurement. The authors have compared 
the number of lines of code (LoC) for the data plane algorithms written in Domino 
and P4. The LoC value for Domino is considerably smaller than those of P4. 

In chapter 1, ISA-level contributions such as POF and NetASM were mentioned. 
Describing desired packet processing functionality at ISA-level is cumbersome. 
However, this does not undermine the significance of ISA. A widely adopted ISA is 
of benefit to compiler development and hardware design. The compiler converts a 
given higher-level language to ISA-level representation. Hardware architects provide 
microarchitecture required for hardware implementation of the ISA in question. 

2.2.3 User-space Packet Processing 

Implementation of protocol stacks in operating systems has improved over the years. 
However, at high rates of packet arrival, these implementations lag behind. The 
survey in [41] has gathered the shortcomings of packet processing in OS from a 
number of research works. One of the notable shortcomings is the high cost of 
context switch to kernel and back to user space. Every time an application needs to 
receive a packet, it must make an OS system call. After the OS has taken control, 
another context switch is made back to the application. According to [42], as many 
as 1000 CPU cycles are consumed per packet in these context switches. The solution 
to this inefficiency is user-space packet processing in which the kernel is bypassed. 
This bypassing enables the packet buffers to be directly accessible from the user 
space. The other solutions required for mitigating inefficiencies of packet processing 
by kernel are sharing the packet buffer between user space and NIC, processing 
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packets in batches and supporting the multi-queue feature of modern NICs for load 
balancing [43]. 

Data Plane Development Kit (DPDK) is an open source set of libraries for fast 
packet processing in the user space. The purpose of DPDK is sending and receiving 
packets with minimum possible number of cycles. According to [44], the throughput 
of layer-3 forwarding of 64-byte packets with LPM as default lookup method using 
Intel NICs ranges from 29.76 to 74.4 Million packets per second (Mpps). For some 
packet processing functions, the throughput is hundreds of Mpps [45]. As of now, 
DPDK supports the dominant CPU architectures and NICs from different vendors. 
Instead of the interrupt-driven approach taken by the operating system’s kernel, it 
uses polling because when the rate of packet arrival is high, interrupt-driven 
approach is inefficient.  The other similar frameworks are netmap [46] and PFQ [47]. 

2.3 Hybrid packet processing solutions 

In addition to the software-based solutions, there are solutions implemented on 
FPGAs. FPGAs are devices with a pool of hardware resources that can be 
interconnected in order to achieve the desired hardware architecture. The desired 
hardware architecture is provided in the form of Hardware Description Languages 
(HDLs) such as Verilog and Very High-Speed Integrated Circuit Hardware 
Description Language (VHDL). In recent years, it has become possible to describe 
the desired functionality in higher-level languages such as C/C++. The concept of 
using higher-level languages for obtaining the corresponding functionality in 
hardware is called High-level Synthesis (HLS). So, FPGAs are hardware solutions 
but since they allow reconfigurability, they have flexibility characteristics similar to 
software. For this reason, it is considered as a hybrid solution.  

In 2010s, Graphics Processing Units (GPUs), received attention for use as the 
platform for execution of packet processing. GPUs are specialized processors for 
graphical operations such as high-performance rendering of images. The most 
notable architectural characteristic of GPUs is large pool of parallel resources for 
thread-level parallelism (TLP). 
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2.3.1 Solutions based on FPGAs 

NetFPGA is an open-source FPGA-based platform for implementing network 
processing functionality. There are 1 Gbps, 10 Gbps and 100 Gbps NetFPGA 
variants [48]. NetFPGA SUME [49] is the latest in the line-up of NetFPGA devices. 
It is a Peripheral Component Interconnect Express (PCIe) board containing four 10 
Gbps ports. The board hosts XILINX Virtex-7 690T device for custom logic 
realization. With more than 690K logic cells, 52,920 kb block Random Access 
Memory (RAM), and high-speed transceivers, it can be programmed for standalone, 
peripheral, and switch use cases. 

SwitchBlade [50] is a platform for rapid deployment of custom protocols. It is 
designed with the aim of providing the right balance between flexibility of software 
and performance offered by hardware. It is implemented on NetFPGA board. In 
SwitchBlade, workloads pertaining to multiple protocols can run in parallel. Each 
corresponding data plane is called a Virtual Data Plane (VDP). Functional units in 
SwitchBlade are organized in pipelined fashion. The main operations in the pipeline 
are preprocessing in which fields for matching are selected, hashing, matching and 
post-processing. Both LPM and exact matching are supported by SwitchBlade. In 
the experimentation performed by the authors, it has been used for IPv4 and IPv6 
forwarding, path slicing and OpenFlow switch. The forwarding rate of SwitchBlade 
is 1.5 × 106 packets per second (pps) for 64-byte packets. This translates to 732.42 
Mbps throughput. 

As mentioned earlier, the functionality of FPGAs is dependent on HDLs or 
languages such as C/C++. The fact is that many network innovators are not familiar 
with HDLs. Furthermore, even C/C++ languages are at a low abstraction layer for 
describing network processing functionality. For this reason, many FPGA-based 
platforms come with a toolchain that takes the desired functionality in a language 
close to networking. In [51], a complete solution is provided in which the 
functionality is described in high-level language called PX. The PX-specific compiler 
converts the code into the equivalent HDL and then to the bitcodes required for 
configuring the underlying FPGA platform. It achieves 100 Gbps throughput when 
dealing with minimum-sized Ethernet frames. 

In a similar approach, [52] accelerates network functions for commodity servers. 
It is programmed in a language called ClickNP. When configured as a firewall, it can 
process 64 million packets per second (Mpps) with each packet being 64 bytes. 
Another work in which a complete solution is provided is P4FPGA [53]. It is P4 
compiler with a custom backend for generating HDL code to be used as the input 
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to synthesis and place and route on FPGA. P4FPGA has been evaluated in terms of 
its capability to support different data plane applications. Match-Action processing 
for L2/L3 forwarding on P4FPGA takes 124 ns for packets whose size is up to 1024 
bytes. 

FPGAs have been extensively used for packet parsing. In these solutions, the 
header sequence is described in HDL or a higher abstraction layer. In [54], a domain-
specific language called PP is used for describing headers. Based on this description, 
the FPGA is configured for providing the desired implementation. For a stack 
containing Virtual Local Area Network (VLAN), IPv4/IPv6 and TCP/UDP, it 
achieves throughput values of 302 and 578 Gbps using 1024- and 2048-bit datapaths 
respectively. The latency figures are above 300 ns. However, it is stated that these 
figures are raw throughput values obtained by multiplying datapath width and 
operating frequency. The effect of short packets and quantization over wide word 
must be taken into account. As a result, the actual packet parsing throughput is less 
than the provided values. 

Since P4 language also describes headers, some solutions use it as the input to the 
tool chain that generates the HDL. This approach is used in [55] and [56] and the 
achieved throughput is 100 Gbps. The highest achieved parsing throughput using 
FPGAs is in [57] in which up to 1 Tbps throughput is achieved. 

2.3.2 Solutions based on GPUs 

PacketShader [58] uses the architectural features of GPUs to enhance the 
performance of software routers. In addition, I/O optimizations have been provided 
for implementing batch processing to eliminate the overhead caused by memory 
management on a per-packet basis. In IPv4 forwarding, PacketShader achieves 
throughput of almost 40 Gbps. For IPv6 forwarding, the throughput value is 38.2 
Gbps.  

The work in [59] considers both strong and weak points of GPUs. On the strong 
side, GPUs hide memory latency incurred by lookups by switching to another thread. 
General-Purpose Processors (GPPs) also support multithreading but they support 2 
or 4 threads. In GPUs, tens of threads are supported and the switching between 
them occurs very fast. On the weak side, the high memory access latency of GPUs 
is undesirable for packet processing. In addition, the memory bandwidth degrades 
in packet processing applications because random memory locations are accessed. 
The main argument of their work is that performance brought by GPUs is not due 
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to their computational capacity, rather due to efficient context switching in hardware. 
In order to emulate such efficient context switching in CPUs, a technique called G-
Opt is developed. It is based on group prefetching and fast context switching. It re-
orders code for concurrent memory access. This access pattern allows software 
pipelining. Use of G-Opt on GPPs yields throughput similar to GPUs. For instance, 
using 4 cores, G-Opt achieves throughput of close to 50 Mpps while with GPU this 
figure is 40 Mpps.  

APUNet [60] evaluates whether fast context switching in GPP can solve a wide 
range of network applications. The findings confirm that besides the fast context 
switching, the computational capacity of GPUs is indeed a key contributor to 
performance. However, a barrier to achieving the full performance gain of GPUs in 
packet processing is the transfer bottleneck of PCIe. Typical PCIe bandwidth is 
considerably smaller than that of GPU memory. In response, the authors suggest 
use of integrated GPU in which CPU and GPU share memory. As a result of this 
unified memory space, the data transfer overhead is eliminated. 

2.4 ASIC-based packet processing solutions 

So far, the relevant software and hybrid solutions have been reviewed. Software and 
virtual routers achieve throughputs in the range of tens of Gbps. FPGA-based 
solutions provide throughputs in the range of hundreds of Gbps. But as discussed 
earlier, FPGA-based solutions are based on a high- or low-level description of the 
workload. As a result of this, FPGA solutions contain hardware specific to a known 
set of protocols. This is in contrast with the protocol-independence principle of 
SDN. Solutions compliant with SDN do not contain any protocol-specific state. By 
removing this dependence on specific protocols from FPGAs, their performance 
will degrade. In addition, TCAMs are required in high-throughput environments 
because of their parallel search capability. In FPGAs, it is possible to achieve TCAM 
functionality by emulation. However, this is inefficient in terms of resource usage. 
Another issue with FPGAs is that they run at considerably lower frequencies when 
compared with ASICs. In Terabit-scale packet processing, the minimum required 
operating frequency is 1.0 GHz. Because of their low operating frequency, FPGAs 
rely on ultrawide datapaths. Multiplying datapath width by operating frequency gives 
a raw throughput value which is not achievable for small packets. This issue is 
discussed in [54]. The latency figures for parsing alone is in the range of hundreds of 
ns while commercial routers and switches perform entire processing in such a time 
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window [61]. This is confirmed by the line-up of high-end commercial products. As 
will be seen in sections 2.4.1 and 2.4.2, hardly any such device is built upon FPGAs. 
In this segment, the ASICs have no rivals. This is the motivation for using ASIC-
based solutions. 

2.4.1 Network Processors 

Network Processors (NPs) gained popularity in early to mid-2000s. They were 
basically processors with functional units optimized for processing packets. The 
focus, at that point, was not protocol-independence. Instead they contained the logic 
for implementing and accelerating the most commonly used network protocols. In 
[62], some of the shortcomings of NPs are presented. The main challenge in reaching 
high performance with NPs is the large gap between the processor and the memory. 
As opposed to GPPs, use of caching is of little help because locality of reference is 
missing in network processing. Instead, NPs mitigated this issue by using 
multithreading. When an NP core requests an item from memory, it switches to 
another thread. 

One of the most notable network processors was the Intel IXP2800 and 
IXP2850, the latter of which has integrated cryptographic units. The store-and-
forward packet processing is performed by 16 32-bit micro-engines, each of which 
can run 8 threads. The maximum operating frequency is 1.4 GHz. Each micro-
engine has an 8K instruction store. The micro-engines cooperate with each other for 
solving packet processing problems. The complete datasheet is available in [63]. 

Today network processors are not as widely used as early 2000s. However, there 
are a few of them in use. Cisco has a 400 Gbps multicore network processor which 
is comprised of 672 general-purpose processors [64]. Each of the processors has an 
8-stage pipeline. The instruction set contains network-specific instructions. It can be 
programmed in C and assembly language. Another notable network processor is 
Nokia NP4. It is a 3 Tbps network processor that supports deep packet lookups and 
real-time telemetry [65].  

2.4.2 Programmable Switch Chips 

In the post-NP era, Pipelined Lookup Grid (PLUG) [66] was one of the first 
architectures providing flexibility with the aim of supporting new protocols. It 
consists of a grid of tiles that can be combined for implementing different protocols. 
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In [20], a programmable packet parser was presented. It operates based on the 
Match-Action principle. Based on the action determined by its current state, it 
extracts a specific field of the arrived header to determine its next state. Actions 
associated with a given state determine what fields of the arrived header must be 
extracted and what fields must be written to the field buffer. This parser achieves 
throughput of 40 Gbps. 

RMT [26] contains 16 instances of the parsers presented in [20] and a 32-stage 
pipeline of Match and Action Units (MAU). The parsers write header fields to a 
4096-bit register called Packet Header Vector (PHV) which traverses through the 
pipeline. The PHV has 224 entries. The physical architecture of RMT closely 
resembles the switch abstraction made by P4. Inside each MAU, there are 16 
TCAMs, each being a 2K×40-bit unit. In addition, there are 106 SRAM blocks each 
of which is 1K×112 bits. These units can be flexibly assigned for exact match, action 
memory and statistics. What is meant by action memory is the parameters required 
for modification of header fields. Match crossbars generate the search key from the 
fields in PHV and present it to the ternary and exact match tables. The outcome of 
the match determines the actions to be executed.  The actions are executed by action 
engines. Each action engine is an Arithmetic Logic Unit (ALU) for modifying PHV 
entries. There is an action engine associated with each PHV entry. Figure 2 provides 
a high-level view into a MAU. Only one of the 224 ALUs is illustrated. The output 
of the ALU is modified header field. 

Figure 2. High-level view of the internal components of a MAU (adapted from [26]) 

If the dependencies in the program allow, it is possible to overlap the operation of 
MAU instances. In other words, it is not mandatory for MAUi to start match 
operation after action execution in MAUi-1 has been done. However, this 
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overlapping is not always possible due to dependencies. There are match 
dependencies and action dependencies. Match dependencies occur when field(s) 
modified by a MAU must be used as the search key in the subsequent MAU. In this 
case, the matching in subsequent MAU starts only after the action execution in 
current MAU is over. Action dependencies occur when field(s) modified by a MAU 
must be used as input(s) to action execution in the subsequent MAU. In this 
scenario, matching in subsequent MAU can overlap with action execution in current 
MAU. Figure 3 illustrates the two dependencies with respect to time. 

 
Match dependency 

Stage i Match Action   
Stage i+1   Match Action 

Action dependency 
Stage i Match Action   
Stage i+1  Match Action  

Figure 3. Match and Action dependencies in a Match-Action packet processing pipeline (adapted 
from [26]) 

The inter-MAU latency caused by match and action dependencies are 12 and 3 cycles 
respectively [67]. The delays are configured statically according to the dependencies 
present in the program. The parsers in RMT occupy a total area of 5.6 M gates after 
synthesis using an industry-standard 28-nm library. The area of the entire 
architecture has not been provided, though. Later on, RMT evolved into Protocol-
independent Switch Architecture (PISA), which is a P4-programmable architecture 
[68].  

The work in [40] provides a machine model for programmable switches. Banzai 
is the compiler target for the Domino language discussed earlier. Banzai models the 
Action part of the Match-Action pipeline. As such, it does not model the matching 
operations. Banzai’s pipeline does not stall and always sustains the line rate. The 
functional units at each stage of Banzai are called Atoms. They modify header fields 
and state in a single-cycle manner. In order to provide consistency when it comes to 
modifying state, atoms perform read, modify and write operations in a single cycle. 
After analysing various data plane algorithms, 8 different Atoms with different levels 
of complexity have been designed and synthesized using 32 nm process technology 
for running at 1.0 GHz frequency. Stateless Atoms, with an area of 1384 μm2, 
perform arithmetic and logic operations on header fields. Stateful atoms modify state 
variables. The basic stateful Atom type simply modifies state and has area of 431 
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μm2. More advanced stateful atoms contain logic for predicated assignment, 
assignment for both outcomes of a conditional evaluation, and nested conditional 
evaluation statements. The area of these atoms varies between 791 to 5997 μm2. 

Disaggregated RMT (dRMT) [69] is a Match-Action architecture similar to RMT, 
except that instead of a pipeline with 32 stages, it comprises 32 processors. 
Therefore, instead of a pipeline model, it is a run-to-completion model. Once a 
packet is assigned to a dRMT processor, it remains there until all the processing has 
been done. In addition, the tables are not attached to the processors. The processors 
are connected to table clusters via a crossbar. The processors contain 32 ALUs, as 
opposed to 224 in RMT. The motivation for disaggregating memory from action 
stages, is that if the memory resources within a stage are not used in one stage, they 
cannot be assigned to another stage. By providing a crossbar, the authors of dRMT 
provide this added flexibility to RMT. 

In addition to programmable packet parsing and processing, support for flexible 
packet scheduling is required as well. In [70], a hardware primitive for programmable 
packet scheduling has been designed. The primitive is called Push In First Out 
(PIFO). It is a priority queue to which items can be pushed to arbitrary positions 
according to their rank. However, dequeuing operation is applied only to the head. 
PIFO can be programmed to provide the functionality of different scheduling 
algorithms. It supports hierarchical scheduling of up to 5 levels with programmable 
scheduling for each level. It has been synthesized using 16 nm standard cell library. 
The synthesis results confirm that it can run at 1.0 GHz which makes it suitable for 
a switch with 64×10 Gbps ports. The results on area indicate that PIFO incurs only 
a 4% increase in chip area. A generalization of PIFO, referred to as Push In Extract 
Out (PIEO) is proposed in [71]. It improves the expressiveness of PIFO by allowing 
dequeuing to be applied not only to the head but to arbitrary positions as well. PIFO 
cannot be used for more general scheduling algorithms, such as Worst-case Fair 
Weighted Fair Queuing (WF2Q), in which the eligible item with highest rank must 
be scheduled. This is because in scheduling implemented by PIFO, the item with 
highest rank is always assumed to be eligible. Such scheduling algorithms require a 
primitive that can dynamically filter a subset of items and select the one with highest 
rank.  

One of the notable commercial products was Intel FM5000/FM6000 Ethernet 
switch chip that use a microcode-programmable packet processing pipeline called 
FlexPipe [72]. Although it is an Ethernet switch chip, it provides features such as a 
number of lookup tables that can be combined for flexible frame classification. In 
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addition, the Arithmetic and Logic Units (ALUs) provide a means for implementing 
custom actions. 

Netronom NFP-6000 is a programmable multi-core processor for data plane 
processing [73]. It consists of 120 programmable flow processing cores and 96 
packet processing cores. The amount of on-chip memory is 31 MB. It provides 200 
Gbps throughput for L2-L7 processing. It supports both exact and ternary matches. 
It is used in Netronome Agilio LX series of SmartNICs. 

Barefoot Tofino is a programmable Ethernet switch chip. Its internal architecture 
is called PISA, which is based on the RMT architecture. It is programmed using the 
P4 language. It sustains 6.4 Tbps aggregate throughput by integrating 4 pipelines into 
the chip [74]. Each of the four pipelines is very similar to RMT. In addition to packet 
forwarding, its programmability allows it to be used for telemetry and load balancing 
as well. Barefoot’s successor to Tofino is Tofino 2. Built using 7 nm processing 
technology, it sustains a doubled aggregate throughput of 12.8 Tbps by doubling the 
number of transistors to 21 billion [75]. 

The Unified Access Data Plane (UADP) is the ASIC in Cisco Catalyst 9000 
switches [76]. It consists of a flexible parser and pipeline. For some more advanced 
network functions such as fragmentation and encryption, it uses on-chip micro-
engines instead of the pipeline. The latest architectural variant is UADP 3.0. It 
sustains 1.6 Tbps aggregate throughput. Built on 16 nm process technology, it 
contains 19.2 billion transistors. It contains 36 MB memory for buffering. The width 
of its lookup tables allows storage of IPv6 address in their entirety. 

The most high-performance chip is currently the Broadcom Tomahawk 4. 
Designed for datacentre and cloud computing environments, it sustains aggregate 
throughput of 25.6 Tbps. It is built using 7 nm process technology [77].  

As can be seen, very little architectural information is available for commercial 
products. It is notable that the major vendors offer products with similar capabilities. 
A unifying characteristic of all in recent years has been emphasis on flexibility and 
programmability. 
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2.5 Summary of Packet Processing Solutions 

Table 2 summarizes and compares characteristics of the packet processing solutions 
reviewed in this chapter. 

 

Table 2. Summary and comparison of packet processing solutions 
Spectrum Solution Characteristics 

Maximum 
throughput 

Programmability Latency Commercial 
deployment 

Primary use 
case 

Power 
efficiency 

Market 
segment 

Software Software 
routers 

100 Gbps High Variable Yes Steering 
packets to and 
from virtual 
machines 

Low Entry-
level 

Programming 
languages 

Depends 
on the 
hardware 
target 

High Can be 
fixed or 
variable 

Yes Programming 
the packet 
processing 
system 

Depends 
on the 
target 
platform 

Entry-
level to 
high-
end 

User-space 
packet 
processing 

A few tens 
of gigabits 
per 
second 

High Variable Yes Bypassing the 
OS 

Low Entry-
level to 
mid-
range 

Hybrid FPGA Tens of 
gigabits 
per 
second 

High but 
requires 
knowledge of 
HDLs 

Can be 
fixed or 
variable 

Limited Prototyping, 
acceleration 

Low Mid-
range 

GPU Tens of 
gigabits 
per 
second 

High Variable Not for 
packet 
processing 

Using massive 
thread-level 
parallelism 

High Mid-
range 

Hardware Network 
Processor 

A few 
terabits 
per 
second 

High but may 
require 
assembly- or 
microcode-level 
programming 

Variable Limited Providing 
programmability 
into networking 
hardware 

High Mid-
range to 
high-
end 

Programmable 
switching 
chips 

Tens of 
terabits 
per 
second 

High Fixed Yes Providing 
programmability 
and guaranteed 
performance 
into networking 
hardware 

High High-
end 

 

2.6 Applications of Programmable Data Plane 

Programmable data plane enables innovation by providing the flexibility to 
implement different network protocols. In addition to this, they enable enhanced 
visibility into the network. This provides for more effective troubleshooting and 
diagnostic operations. As programmable data plane supports any protocol for which 
the corresponding functionality is written in software, a protocol could be designed 
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whose messages contain internal information of switches and routers. This 
information is updated as the packet belonging to this protocol traverses the 
network. This technique is referred to as In-band Network Telemetry (INT). A 
similar approach is taken in [78], in which sources of packets embed tiny packet 
programs (TPP) into packets for querying and manipulating network state. As the 
packet traverses the network, the containing TPP is executed on the switches and 
routers. This technique has become one of the most important use cases for 
programmable switch chips [79].  

Another novel application is load balancing which is critical in datacentres. 
Modern flexible switch chips contain a vast amount of memory that can be flexibly 
used for storing per-connection state. In [80], a layer-4 load balancer is implemented 
in P4 for execution on a modern switch ASIC. Using their approach, up to hundreds 
of load balancing servers can be replaced by one switch, thereby reducing the cost 
of load balancing by two orders of magnitude. This solution has also become an 
industry solution [81].  

One of the latest and most innovative use cases is offloading program execution 
to the switches. This concept is called in-network computing. Under this concept, 
the switches not only forward packets, they contribute to the processing of data 
contained in the packets as well. This is motivated by the fact that networking 
hardware are becoming more and more programmable. Furthermore, when 
computation is offered as a service, the packets must traverse the network until they 
reach the service provider’s server(s). If the forwarding devices on the path to the 
service provider can also take part in the processing, more processing power is 
achievable. In [82], the problem of convolutional neural networks has been analysed 
in terms of its suitability for in-network computing. Their analysis reveals that 
current network hardware can be used to accelerate neural network inference 
workload of datacenters. In [83], similar analysis is performed for implementing a 
line-following algorithm on a P4-programmable NIC. By carefully dividing the 
required calculations among the Match-Action stages, they can achieve 19 decisions 
per second on 640×480 greyscale images.  Some principles are provided in [84] for 
in-network computations. The authors suggest offloading primitive calculations 
rather than the whole application because the computational resources on switches 
are limited. Care should be taken so that failure of switches does not make 
computation by the server impossible. In addition, it should be possible to recover 
any lost data as a result of failure in switches. 

The programmable data plane has also become an enabler for 5G radio networks 
offering ubiquitous connectivity using technologies from radio, transport and cloud 
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domains [85]. There is growing interest in using packet-based networks such as 
Ethernet in the transport network. The flexible Radio Access Network (RAN), in 
collaboration with SDN and NFV allows to configure the network with different 
functional splits in transport network nodes [86]. This dynamic solution requires 
virtual resource instantiation needs, referred to as network slices. In addition, 
different standards such as [87], [88], [89] each require different packet format. A 
programmable packet processing system is required for implementing packet 
forwarding and performing the reconfigurations when a different functional split is 
required for changing slice requirements.  
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3 A NEW PROGRAMMABLE PACKET PARSER 

Packet parsing is the first step in processing of packets. It involves recognizing the 
headers present in a packet and extracting them for processing. In this chapter, a 
new programmable packet parser is presented. It uses program control instead of 
relying on TCAMs for maintaining state. The contents of this chapter are based on 
publications PI, PII, and PIII. 

3.1 A Closer Look at Packet Parsing 

In order for a packet parser to operate correctly, it must know the first header. When 
multiple headers must be parsed, the next header must be determined. Some headers 
have an indication of the header that follows. Examples of fields that contain this 
kind of indication are EtherType in Ethernet, Protocol in IPv4 and Next Header in 
IPv6, and Protocol Type in Generic Routing Encapsulation (GRE). For the headers 
that do not contain this indication, there must be a default header associated with 
them. Alternatively, the next header can be considered as the payload that is not 
subject to parsing. As far as a packet parser is concerned, the payload is the part of 
the packet that does not need parsing. For instance, a layer-2 switch is only 
concerned with layer-2 header such as Ethernet and the rest is treated as payload 
while it may indeed contain higher-layer headers. Another issue that the parser must 
be concerned with is determining the size of the header being parsed so that it knows 
the starting boundary of the next header or the payload. Some headers such as IPv4 
and GRE have variable length because they contain optional fields. On the other 
hand, headers such as IPv6 and Multiprotocol Label Switching (MPLS) have a fixed 
size. The extension headers of IPv6 protocol are independent headers and not part 
of the fixed IPv6 header. 

In addition to the points mentioned above, the packet parser must keep track of 
its progress within the stack of headers. Headers have different sizes. For instance, 
MPLS header has size of 32 bits while IPv6 has size of 320 bits. If the processing 
width is chosen to be 32 bits, the entire MPLS header fits into the data unit, while 
for IPv6 10 such data units are required. Conversely, if the data unit is chosen to be 
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320 bits, multiple headers of smaller size fit into the data unit. Due to this variety of 
header sizes, for all practical choices of processing width, there will be both smaller 
and larger headers. As a result, it is important for the packet parser to keep track of 
their progress. This means that packet parsing is a stateful operation. 

3.2 TCAM-based State Machine 

As mentioned earlier, packet parsing is a stateful operation. As such, the parser must 
maintain state. The packet parser in [20] and [26] operates in Match-Action mode. 
For matching, it generates 32-bit search keys from the arrived header. Assuming that 
the arrived header data contains EtherType field of the Ethernet header, it is 
extracted and used as a search key to determine the next header. The value of 
EtherType alone is not sufficient for correct state transition. For this reason, each 
field extracted from the header is appended with an 8-bit value that represents 
current state. The 40-bit search key is then presented to a 256 × 40-bit TCAM. With 
this addition, a given value of EtherType is distinguished from the same 16-bit value 
in another header and state transitions work correctly. Associated with each state is 
an action. The actions are stored in a 256 × 128-bit SRAM. Figure 4 illustrates the 
entities present in the parser. 

 

Figure 4. Parser used in RMT architecture (adapted from [26]) 
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Let’s assume that the datapath width of this parser can accommodate the minimum-
sized IPv4 header. When IPv4 header arrives, the value of Protocol field is extracted 
for determining the next header, but the size of the header must be determined as 
well. Because at this point it is not yet known whether what follows the minimum-
sized IPv4 is IPv4 optional fields or the next header. Therefore, the value of Internet 
Header Length (IHL), which contains the size of the header in terms of 32-bit words 
is also extracted and appended to the search key. Since the search key is now 
comprised of 2 header fields, the number of actual search keys is the result of 
multiplication of the number of possible values of the 2 fields. There are 11 valid 
values for IHL (0x5-0xF). Assuming that the parser is programmed to parse 8 
different headers following the IPv4 header, there are 88 entries within the TCAM 
for the next state transition. Therefore, 34 percent of the TCAM entries are used for 
IPv4 alone. The reason for this is that all actions are based on the match result and 
there is one lookup table for all matches, whether they are for determining the next 
header or the size of the header. Use of narrower datapath width is also inefficient 
because for multiword headers such as IPv4 and IPv6, more states will be required. 

The parser in RMT is not the only parser that employs TCAMs. The parser in 
[72] uses multiple instances of TCAM. The datapath width of this parser is 32 bits. 
The incoming data is written to an 88-byte bus. The parser is organized in a pipeline 
of slices. Each slice receives the 32-bit state output of its preceding slice and 32 bits 
of frame data. Together, they are used as a 64-bit search key for looking up into the 
TCAM located in the slice. The matching entry determines the action, which updates 
the state and defines how frame data should be written to the 88-byte bus. This 
parser is similar to RMT parser, except that there is a pipeline of TCAM-SRAM pairs 
instead of just one pair. 

3.3 An Alternative to TCAM-based State Machine 

TCAMs are very powerful devices for searching. Their ability to store don’t care 
values makes them a high-performance solution for LPM matching. However, prefix 
matching is not dealt with in packet parsing. The most area- and power-efficient 
means for programmable packet parsing is using program control instead of strict 
Match-Action using TCAM. Program control logic is far simpler than the logic of 
TCAM. With program control, the parser turns into a custom processor. Program 
control is also a form of state maintenance and transition because the value of 
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Program Counter (PC) can be considered state and the instruction it points to 
represents action. 

One of the important design choices is the processing width. It is important to 
note that wide processing width does not mean throughput higher than in 
architectures with narrower processing width. The reason for this is that when 
looking up the next header field, it takes a number of cycles until the result is 
available. During these cycles the parser must wait. The cycles are required for field 
extraction, lookup, and resolving. The chosen processing width is 32 bits. It is also 
possible for this parser to read 8 or 16 bits from the buffer of incoming packets, but 
the processing width is 32 bits. So, 8- and 16-bit reads from the buffer are retrieved 
in 32-bit zero-extended format. An instruction is associated with each processing 
unit. The instruction specifies what fields must be written to the PHV. In addition, 
they specify what fields must be extracted for determining the next header and the 
size of the header. The next header is determined by comparing the field containing 
indicator of next header with the values associated with the header under parsing. 
These values are stored in a parameter memory that can provide them in parallel. 
The comparisons are also done in parallel to speed up the process. Figure 5 illustrates 
the new packet parser that employs program control for state maintenance. 

Figure 5. The proposed packet parsing processor 
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The difference compared to the TCAM-based approach is that in this architecture 
there is a small number of comparison functional units for parsing different headers. 
They are loaded with the extracted value from the header and the parameter values. 
The extracted value of next header field is compared only with values associated with 
the header being parsed, whereas in TCAM-based approach this value is compared 
with all TCAM entries. Furthermore, there is no need to append a state-value to this 
field for comparison. The parse program for parsing IPv4 header has 15 instructions 
because IPv4 has 15 32-bit words. If minimum-sized IPv4 header is encountered, 
the instructions after the 5th instruction will be skipped.  

3.3.1 Functional Units 

The main functional units of this packet parser are listed in Table 3. 

Table 3. Functional units of the new packet parser 

Functional Unit Purpose 
Incoming Packets’ Buffer (IPB) Storing the incoming packets and providing them in 8-, 16-, and 

32-bit units upon request. 
Advanced Program Control Unit 
(APCU) 

Providing the correct instruction address to the PC. In addition, 
providing no-operation (NOP) instruction until the correct 
instruction reaches the functional units. 

Field Extractors (FE) Extracting the fields containing header size, payload size and next 
header 

Next Header Resolve Unit (NHRU) Compares the next header identifier with the values associated 
with header under parsing 

Branch Catalyst (BC) Speeds up multiway branching by comparing all ways in parallel. 
Useful for evaluating the value of multibit flag fields 

Branch Condition Evaluator (BCE) Evaluates the condition of the branch. If the branch condition is 
satisfied, program flow changes 

Header Size Counter Initialized to the size of current header. When reaches zero, 
causes a branch to the first instruction for parsing next header 

Payload Size Counter Initialized to the size of current header. When reaches zero, 
causes the APCU to branch to the beginning 

3.3.2 Instruction Format 

The instruction fields are elaborated in Table 4. There is an instruction field for each 
of the functional units present in this architecture. Therefore, the proposed 
architecture is a Very Long Instruction Word (VLIW) architecture. VLIW 
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architectures are discussed in detail in [90]. These architectures are also referred to 
as Explicitly Parallel Instruction Computing (EPIC) [91]. 

 

Table 4. Instruction fields 
Instruction field Width (bits) Purpose 
Branch condition 4 Specifies the condition for branch 
Branch type 3 Specifies the type of branch 
Branch offset 7 Offset for branching 
Field extraction opcode 0 5 The field to extract for branch catalyst 
Field extraction opcode 1 5 The field to extract for NHRU 
Field extraction opcode 2 6 The field to extract for BCE 
Field extraction opcode 3 5 The field to extract for header counter 
Field extraction opcode 4 5 The field to extract for payload counter 
PHV filler opcode 8 Specifies how the arrived header segment must be 

written to PHV 
Size of header segment 2 Requests a 1-, 2-, or 4-byte unit from the IPB 
Parameters Memory Address 5 Address of the entry containing parameters for parsing 

the header 
Stack in select 1 Whether the address of current or next instruction 

should be pushed to the stack 
Stack push 1 Causes the selected value to be pushed to the stack 

3.3.3 Instruction Pipeline 

The instruction pipeline stages are elaborated in Table 5. 
 

Table 5. Instruction pipeline stages 

Stage Outcome 
Instruction Fetch (FI) Instruction fetched from the instruction memory is 

written to instruction register 
Decode (D) The fetched instruction is validated and if necessary 

nullified 
Fetch Header (FH) An 8-, 16- or 32-bit unit of the arrived packet is 

written to the PHV 
Extract (X1) The programmer-specified portion of the latest 

arrived header segment is extracted 
Compare (X2) The extracted segment is subject to comparison or 

condition evaluation 
Resolve (X3) The outcome of comparison or condition evaluation 

is determined 
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3.4 Throughput Evaluation 

In this section the throughput of the designed packet parser is evaluated. The width 
of the datapath is 32 bits and the operating frequency is 1.19 GHz. This means that 
the maximum possible throughput will be 38.08 Gbps. The outcome of experiments 
reveals if this ideal throughput value will be achieved when different workloads are 
run on this architecture. The intention is to determine how many packet parser 
instances are required for sustaining aggregate throughput of 640 Gbps. 

3.4.1 Parsing Individual Headers 

The first step in the evaluation of the designed packet parser’s performance is 
measuring the achieved throughput when individual headers are parsed.  A number 
of headers have been chosen for this purpose as shown in Figure 6. For headers with 
variable length, the parsing time and achieved throughput depend on the size of 
header under parsing. Fixed size headers result in better throughput because no 
evaluation of fields indicating existence of optional fields is required.  

 

 

Figure 6. Throughput when parsing individual headers 
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Ethernet, IPv4 and IPv6 packets with payload size of 46, 128, 512, and 1024 bytes. 
The IPv4 packet under study has the minimum-size header. They have differing 
starting values because different headers result in different throughput values. As the 
payload size increases, the achieved throughput approaches the ideal throughput. As 
can be seen, larger packets result in better throughput. In different deployments, 
packets of different sizes will be encountered. In order to provide guaranteed 
performance, the lowest achieved throughput must be used as the basis. 

 

 

Figure 7. Resulting throughput when parsing Ethernet, IPv4, and IPv6 packets with 46-, 128-, 512-, 
and 1024-byte payload 
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Table 6. Achieved throughput when parsing basic and full header stacks 

Header stack Total size of headers (bits) Parsing time (cycles) Parsing throughput 

(Gbps) 

Basic 432 28 18.36 

Full 560 42 15.87 

It should be noted that the two stacks based on which the throughput values in Table 
6 have been achieved are not fixed stacks. In other words, each packet that has been 
parsed by this parser in this experiment could have had a different sequence of 
headers. The values in Table 6 correspond to those packets whose header sequence 
is according to the two header stacks mentioned above. If fixed headers were used, 
the resulting throughput would be higher. Both basic and full header stacks have 
Ethernet, IPv4 and TCP within them. However, the achieved throughput is lower 
than the resulting throughput when each of these headers were individually parsed. 
The reason for this is that when a branch must be made to the first instruction in 
charge of parsing the next header, a number of dead cycles are encountered during 
which parsing cannot occur. The number of these cycles increases if the latest header 
segment read from the buffer of incoming packets contains indication of next 
header. This is the case in Ethernet because the next header begins right after 
EtherType field. A similar condition occurs in MPLS as well. Although MPLS does 
not have a next header field, it does have an S bit that must be evaluated to determine 
if another MPLS label follows the current label. 

3.4.3 Enhancements for achieving higher throughputs 

In the performance evaluations so far, each instruction issues a read request to the 
buffer of incoming packets in order to retrieve a 32-bit header segment. For an 
ingress parser that parses the packets as they arrive, the number of cycles required 
for serving this request depends on port speed. With 10 Gbps ports, as in the case 
of ports in [26], it takes 3.2 ns until 32 bits arrive. This is equivalent to 4 cycles in a 
1.19 GHz system. During the cycles that the requested data is not available, no 
parsing can take place because the requested data is not available yet.  

Since the parser issues a read request in each instruction and each read request 
for retrieving 32 bits results in idle cycles, higher throughput and better utilization 
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of functional units is achieved if the parser switches to parsing a packet arriving on 
another port. If a parser is assigned to parse packets coming through four 10 Gbps 
ports and if it switches to parsing of the next port each cycle, by the time it reaches 
serving a given port again, 4 cycles have elapsed, and the data is ready. This means 
turning the packet parsing processor into a multithreaded processor with support 
for 4 threads. Each thread serves its corresponding port. For supporting 
multithreading, all components that maintain state must have an independent 
instance for their own thread. Stateful components include the program counter, 
APCU, PHV, header and payload counters. Field extractors, NHRU, BC, and BCE 
do not maintain state, and hence can be shared by different threads.  

Another technique that can be used for boosting throughput is reading header 
segments from the buffer in large bursts. Doing so requires some modification to 
the components used. For instance, the field extractors will require larger 
multiplexers. However, requests for large bursts can be issued when the payload of 
the packet is being forwarded. Reading in large bursts is only beneficial if during 
parsing of headers the parser has not kept pace with the rate of data arrival. 
Otherwise it causes stalls because it cannot increase the speed of the port. 

With the performance-enhancing techniques mentioned here, the question is, 
what is the right number of ports to assign to a packet parser instance. This is 
equivalent to the question of what is the ideal number of threads to support in each 
packet parsing processor? The next question to solve is what is the optimum size of 
header segment that must be requested in each instruction. As seen in the previous 
section, the greatest performance loss is encountered when program flow changes 
to parsing of next header. In order to better understand this, consider parsing of two 
consecutive headers Hi and Hi+1 shown in Figure 8. It is assumed that both headers 
are 32 bits wide. Therefore, one instruction per header is sufficient for parsing. 
Figure 9 illustrates timing diagram of the instruction pipeline when parsing the two 
headers. The next header indicator within Hi is extracted at tn+3. At tn+4, its value is 
compared with the expected next header indicator values. Based on the outcome of 
the comparison, the PC is loaded with the address of the instruction for parsing 
headeri+1 at tn+6. During the cycles tn+3 to tn+8 no header fields are written to the 
PHV. The goal is to choose the right number of ports to utilize the parser efficiently 
and avoid idle cycles. 

  Hi Field 0 Field 1 (Next Header) .      .      . Field m 
  Hi+1 Field 0 Field 1 .      .      . Field n 

Figure 8. Two consecutive 32-bit headers 
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Instruction Time 

tn tn+1 tn+2 tn+3 tn+4 tn+5 tn+6 tn+7 tn+8 tn+9 tn+10 tn+11 tn+12 

Instruction 

for Hi 

FI D FH X1 X2 X3        

Instruction 

for Hi+1 

       FI D FH X1 X2 X3 

Figure 9. Timing diagram for instruction pipeline when parsing two consecutive headers 

Figure 10 illustrates the timing diagram for the instruction pipeline of an 8-threaded 
packet parser that has been assigned parsing of packets arriving through 8 ports. 
Associated with each of the ports is a thread. At each cycle, the parser switches to 
the next thread. It is assumed that the same consecutive headers Hi and Hi+1 arrive 
through the ports. By the time the parser switches back to a given thread, the field 
extraction and loading of PC have been done, so there is no need for stalling. Those 
cycles that would have been wasted by stalling the pipeline are now used for parsing 
headers of packets coming through the other ports. This can be seen in the last row 
of Figure 10 where the instruction from thread corresponding to port Pj is fetched 
at tn+8. This instruction is used for parsing Hi+1. Now, the only question that must 
be solved is the size of header segment to read from the buffer in each instruction. 
It takes 8 cycles until the parser switches back to a given port. During these cycles, 
8 bytes have arrived. Therefore, each instruction reads 8 bytes. For headers whose 
size is not an integer multiple of 8 bytes, the corresponding instructions request reads 
of smaller units. 

Port Header tn tn+1 tn+2 tn+3 tn+4 tn+5 tn+6 tn+7 tn+8 tn+9 tn+10 tn+11 tn+12 tn+13 

Pj Hi FI D FH X1 X2 X3         

Pj+1 Hi  FI D FH X1 X2 X3        

Pj+2 Hi   FI D FH X1 X2 X3       

Pj+3 Hi    FI D FH X1 X2 X3      

Pj+4 Hi     FI D FH X1 X2 X3     

Pj+5 Hi      FI D FH X1 X2 X3    

Pj+6 Hi       FI D FH X1 X2 X3   

Pj+7 Hi        FI D FH X1 X2 X3  

Pj Hi+1         FI D FH X1 X2 X3 

Figure 10. Timing diagram for instruction pipeline of the 8-threaded packet parsing processor 
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3.5 Implementation Results 

With the modifications discussed above, a single parser can serve eight 10 Gbps 
ports. Therefore, the throughput of one packet parser instance is 80 Gbps. For 
support of 640 Gbps aggregate throughput, eight packet parser instances are 
required. Table 7 outlines the number of components required in each instance and 
the total area and power dissipation. The ASIC technology used is 28nm Fully 
Depleted Silicon on Insulator (FD-SOI). The operating conditions are (SS, 0.9V, 
125˚C). The synthesis tool under use is Synopsys Design Compiler J-2014.09-SP4. 

Table 7. Area and power dissipation values for components of an 80 Gbps packet parser 

Component Number of 
instances 

Total area (μm2) Total power (mW) 

PHV 8 149181.28 80.24 
APCU 8 3587.76 47.20 
Header counter 8 2766.08 11.36 
Payload counter 8 2766.08 11.36 
Instruction Memory (256×72) 1 44564.47 9.88 
Read port for Instruction Memory 1 10450.56 14.83 
Parameter Memory (32×448) 1 34426 3.46 
Read port for Parameter Memory 1 8684 42.74 
NHRU 1 920.33 0.73 
BC 1 452.49 0.48 
BCE 1 293.65 0.42 
Total - 258092.7 222.7 

The total area of an 8-threaded packet parser that sustains 80 Gbps throughput is 
258092.7 μm2. For sustaining aggregate throughput of 640 Gbps, 8 processor 
instances are required. Since the instruction memory and parameter memory are 
relatively small, they are hosted on memories made of registers. Therefore, 
independent read ports can be easily added. In other words, there is one instruction 
memory and one parameter memory for all 8 processor instances, each of which 
runs 8 independent threads. Another benefit of sharing the instruction and 
parameter memories is that initialization process takes less time. The area of this 
parser must be compared with RMT’s parser. In [26] parser components have been 
categorized into 4 classes. Table 8 outlines these classes and their corresponding 
components in the proposed architecture.  
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Table 8. Correspondence of packet parser components in RMT and the proposed 
architecture 

Component 
class 

Components in RMT parser Equivalent components in this architecture 

1 TCAM APCU, Parameter memory with 8 read ports 
2 SRAM Instruction memory with 8 read ports 
3 Header identification and field 

extraction 
NHRU, header counter, payload counter, BC, 
BCE 

4 PHV PHV 

The total area of components equivalent to the TCAM-SRAM pair is 0.79 M gates 
in this architecture. This is in contrast to the 1.6 M gate figure of RMT parsers. For 
class 3 component, the area in RMT and this architecture are 0.35 M and 0.17 M 
gates respectively. The total area for all PHV instances in this architecture is 3.65 M 
gates and matches the value provided in [26]. Total gate count is 4.6 M and 5.6 M 
gates in this architecture and RMT parser instances respectively. As will be discussed 
in the section to follow, the area difference increases as more parser instances are 
instantiated for supporting higher aggregate throughput values. 

3.5.1 Discussion of results 

A 50% saving in area has been achieved for Match-Action memories of the parser 
by implementing an alternative mechanism for protocol-independent packet parsing. 
In TCAM-based approach, the search key is compared with all entries of the TCAM 
whereas in this architecture the search key is compared with the relevant values only. 
In addition, since a non-lookup mechanism has been used for maintaining the 
boundary between headers, the number of next header entries does not need to be 
as many as the TCAM entries. Hence, these values are hosted on memories made of 
registers. For such memories it is easy to add an independent port. This is not 
possible with TCAMs. In TCAM-based solutions, as more parser instances are 
added, each instance must have its own TCAM instance. 

The area difference becomes more noticeable as the number of parser instances 
is increased for sustaining higher throughputs. In RMT parser, the TCAM-SRAM 
pair must be replicated for each parser instance. This approach is not scalable for 
instantiating tens of parser instances for achieving high throughputs. In this 
architecture, on the other hand, the memories are shared simply by adding extra read 
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ports. The elimination of TCAM is beneficial not only from chip area perspective, 
but from power dissipation point of view as well. According to [20], the power 
requirement for an 80 Gbps non-programmable packet parser that does not contain 
TCAM is around 400 mW. Comparing this figure with an instance of the designed 
80 Gbps packet parsers, programmability is achieved at roughly 50% of that power 
requirement. No power dissipation has been provided in [20] for TCAM-based 
programmable parser. For a programmable parser that employs TCAM the power 
dissipation is far above this figure. Information regarding TCAMs are scarce as they 
do not come with standard cell libraries by default. As a result, it is not possible to 
compare the power dissipation of the proposed solution with a TCAM-based parser. 
However, it can be confidently said that this architecture is far more power efficient. 

The achieved throughput can be enhanced by increasing the operating frequency. 
The fact that register-based memories have been used makes increasing the 
frequency a lot easier because registers are not the limiting factor in frequency 
scaling. The limiting factors are memories and the critical path of combinatorial 
components such as field extractors. By internally pipelining the field extractors, the 
potential timing constraint violations can be eliminated. Actual SRAMs and TCAMs, 
on the other hand, cannot be clocked beyond a certain point. The synthesis 
experimentations revealed that even at 2.0 GHz the timing constraints are still met. 
All the results in this chapter, however, correspond to operating frequency of 1.19 
GHz. 
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4 AN ON-THE-FLY PACKET PRE-PROCESSOR 

The implementation results of the programmable packet parser in the chapter 3 are 
promising. Due to the small area footprint of this parser, there is a lot of silicon real 
estate that can be utilized for enhancing functionality and throughput. In this 
chapter, packet processing capabilities will be provided for the packet parser of 
chapter 3. The content of this chapter is based on PIV. 

4.1 Use Cases for Processing Packets on the Fly 

Processing the packets as they arrive can enhance the throughput. The entity that is 
involved with the packets as they arrive is the packet parser. Therefore, on-the-fly 
packet processing is performed inside or in close proximity to the packet parser. 
Integrity checking operations such as checksum validation can be easily performed 
by the parser by adding a few functional units such as ALUs. Assuming that there is 
a parameter problem within the arrived packet, the following benefits are achieved: 

-If the packet must be discarded, it will not enter the pipeline. At high line rates, 
the packets compete for entering the pipeline. Less competition means less waiting 
time in the buffers and higher throughput for the rest of the packets. In addition, 
each packet consumes the computational and lookup resources of the system. By 
making the drop decision already at the parser, wasting units of the packet processing 
subsystem is avoided. 

-If a packet destined to the sender must be generated, the MAUs are visited with 
the correct lookup address. Otherwise, by the time parameter problem in the packet 
is detected, the table containing the address of the packet’s original source may have 
been passed. In this case, the packet must be recirculated which reduces throughput 
and increases latency. 

-Certain tasks such as packet fragmentation and reassembly are best handled by 
a processor rather than a pipeline. For this reason, flexible ASICs such as Cisco 
UADP contain micro-engines to handle such operations. 

Based on these reasons and considering the fact that the packet parser presented 
in chapter 3 is very lightweight, it is enhanced with packet processing functionality. 
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Since real packet processing involves looking up some form of destination address, 
the kind of packet processing dealt with in this chapter is packet pre-processing. 
However, it is also possible to include a tiny lookup table for highly recurring flows 
or those having high QoS requirements. Furthermore, the absence of lookup tables 
does not make this architecture less of a packet processor. An interface to lookup 
table(s) is sufficient for it to be considered as a full packet processor. 

4.2 Architecture 

Compared to packet parsing, packet processing is more complicated. Therefore, the 
fine-grain multithreaded processing model of the parser in chapter 3 must be turned 
into a simultaneously multithreading (SMT) in order to maintain line rate. It is still 
assumed that there are 64 × 10 Gbps ports in the system. At operating frequency of 
1.19 GHz, it takes 8 cycles for a 64-bit segment to arrive. Therefore, on average, 8 
single-cycle operations can be performed for each arriving segment. The PHV is 
written to by both the parser and the packet preprocessor containing a 32-bit ALU. 
1024 bits of the PHV are reserved for the packet preprocessor to write. The packet 
preprocessor can read from the entire PHV. When the PHV traverses through the 
pipeline, the values calculated by the packet preprocessor can be used in addition to 
the values written by the parser. For instance, the pipeline can be programmed to 
use the IPv4 address provided by the packet preprocessor as the search key. During 
parsing, the packet preprocessor checks the integrity of the IPv4 header. If all the 
header fields have correct value, the packet preprocessor copies the destination 
address to a known position within the 32 entries reserved for the packet 
preprocessor. On the other hand, if there is a parameter problem within the header, 
the packet preprocessor copies the source address to the designated entry so that an 
ICMP message is sent to the source of the packet. 

The preprocessor uses both branches and conditional execution for program 
control. Conditional execution is an efficient program control mechanism that 
avoids flushing of the pipeline. It is useful when a PHV entry must be modified only 
if a certain condition is fulfilled. However, in more complex programs, there is a 
need for branches. For instance, a header may contain different Type-Length-Value 
(TLV) messages, each of which requires different processing. In this scenario, 
conditional execution cannot be used as a replacement for branches because 
processing of each TLV requires a different subprogram. 
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4.3 Packet Preprocessor in Action 

In this section it will be seen how the packet preprocessing functional unit operates 
in parallel to the packet parsing system. Two use cases have been provided. 
Preprocessing of IPv4 packets and packet fragmentation. The operations for these 
two use cases are executed in ingress and egress respectively. Table 9 elaborates the 
register index range, width, and the component writing to each range of PHV entries. 

 

Table 9. Register index of PHV entries 

Index range Width (bits) Written to by 
R0-R31, R96-R127 8 Parser 
R32-R79, R128-R175 16 Parser 
R80-R95, R176-R191 32 Parser 
R192-R223 32 Preprocessor 

 

4.3.1 Preprocessing of IPv4 Header 

Processing of IPv4 packets requires a fair amount of integrity checking prior to 
address lookup. If these integrity checking operations reveal a parameter problem, 
the packet is discarded and a new IPv4 packet is generated destined to the source of 
the original packet. The new IPv4 packet contains an ICMPv4 Parameter Problem 
Message. Table 10 outlines the IPv4 header fields for which integrity checking must 
be performed. 

 

Table 10. Integrity checking operations on IPv4 header fields 

Header field Required checking 
Ver Must be equal to 4 
IHL Must be greater than or equal to 5 
Total Length Must be greater than or equal to 20 
TTL Must be greater than 0 
Checksum Must match the checksum calculated after packet arrival 

In RMT architecture, tables are divided into the stages. Operations such as checksum 
verification require a number of cycles. This requires use of multiple MAUs. During 
the cycles that checksum is being calculated, it is possible to look up either the source 
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IP address or the destination IP address, but not both. If a problem is found with 
the header, there is the possibility that the packet has gone past the table containing 
the matching entry for the source IP address. In this case, the packet must start from 
the beginning of the pipeline to look up the source address because the ICMP 
message must be sent to the packet’s source. By having the packet preprocessor take 
care of these operations, this kind of packet recirculation is avoided. Table 11 
contains instructions executed on the packet preprocessor for parsing and 
preprocessing IPv4 header. Registers in this table follow the numbering defined in 
Table 9. 

Table 11. Instructions executed on the packet preprocessor during arrival of IPv4 header 

Time Packet Parser Packet Preprocessor Comments 

t0 -   

t1 -   

t2 -   

t3 R0 <- (Ver, IHL)                                          
R32 <- (Ver, IHL, DSCP, ECN)             
R64 <- Total Length                                
R128 <- Identification                               
R160 <- (Flags, Fragment Offset) 

R192 <- R32 + R64 1st and 2nd words of IPv4 
header written to PHV 

t4 - R192 <- R192 + R128  

t5 - R192 <- R192 + R160  

t6 - R194 <- R0 AND 0x0000000F Retrieving IHL 

t7 - R195 <- SHR4(R0) Obtaining the value of Ver 

t8 - r0 <- R194 >= 0x5  

t9 - r0 <- R195 == 4  

t10 -   

t11 R1 <- TTL                                                        
R8 <- Protocol                                       
R33 <- (TTL, Protocol)                          
R65 <- Header Checksum                   
R129 <- upper_halfword(Source IP) 

R192 <- R192 + R33 3rd and 4th words of IPv4 
header written to PHV 
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R161 <- lower_halfword(Source IP)    
R176 <- Source IP 

t12 - R192 <- R192 + R65  

t13 - R192 <- R192 + R129  

t14 - R192 <- R192 + R161  

t15 - r0 <- R1 < 1 Checking TTL 

t16 -   

t17 -   

t18 -   

t19 R34 <- upper_halfword(Destination IP)  
R66 <- lower_halfword(Destination IP)   
R80 <- Destination IP 

R192 <- R192 + R34 5th word of IPv4 header written 
to PHV 

t20 - R192 <- R192 + R36  

t21 - R193 <- SHR16 R192  

t22 - R192 <- R192 + R193  

t23 - R192 <- NOT (R192)  

t24 - r0 <- R192 == R65 Comparing the calculated 
checksum with the value of 
Checksum field 

 

4.3.2 Fragmentation of IPv4 Packets 

Packet fragmentation is required when the size of a packet is greater than the MTU 
of the path to which it must be forwarded. In this case, the packet must be 
fragmented into multiple packets such that the size of each fragment is no more than 
the value of MTU. Figure 11 contains the algorithm for fragmenting IPv4 packets. 
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if(Total_Length > MTU) 
{ 
 if(DF == true) 
 { 
  send_icmp_destination_unreachable(); //Type = 3, Code = 4 
 } 
 else 
 { 
  payload_size = Total_Length - (IHL*4); 
  fragment_header = original_header; 
  NFB = (MTU - (IHL * 4))/8; 
  Append(NFB*8); 
  Fragment_offset = 0; 
  MF = true; 
  Total_Length = (IHL*4) + (NFB*8); 
  send(); 
  remaining_payload = payload_size - (NFB*8); 
  //And now for producing the other fragments 
  selectively_choose_options(byte_size_of_selected_options); 
  do 
  { 
   fragment_header_byte_size = byte_size_of_selected_options + 20; 
   Fragment_offset = Fragment_offset + NFB; 
   if(fragment_header_byte_size + remaining_payload > MTU) 
   { 
    MF = True; 
    NFB = (MTU - fragment_header_byte_size)/8; 
    append(NFB*8); 
    fragment_payload_size = NFB*8; 
    Total_Length = fragment_header_byte_size + (NFB*8); 
   } 
   else 
   { 
    MF = false; 
    fragment_payload_size = remaining_payload; 
    append(remaining_payload); 
    Total_Length = fragment_header_byte_size + remaining_payload; 
   } 
   send(); 
   remaining_payload = remaining_payload - fragment_payload_size; 
  }while(remaining_payload > 0); 
 } 
} 

Figure 11. Procedure for fragmenting IPv4 packets 

The procedure for fragmenting IPv4 packets is straightforward. However, the 
presence of IPv4 header options can make it a bit complicated because some options 
must be included in all fragments, some must be included only in the first fragment 
and some may be subject to removal in case of fragmentation. When fragmenting an 
IPv4 packet that contains options, for each option, it must be decided if the option 
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should be included in each of the fragments or not. Furthermore, the size of each of 
the options has an impact on the amount of payload data that can be included in the 
fragment. In the ingress pipeline, when a matching entry is found for the destination 
address of an IPv4 packet, the MTU of the corresponding path is also retrieved. 
Then, contents of the PHV are written to the buffer. Once the packet is scheduled 
for transmission, the egress parser retrieves the packet from the buffer and starts 
parsing. The most efficient way to handle fragmentation of IPv4 packets whose 
header contains options is to make the decision for each option during egress 
parsing. Furthermore, the packet preprocessor is the best computational component 
for maintaining a loop in which the required number of fragments are created. 
Assuming that the MTU is 576 bytes, consider the IPv4 datagram in Figure 12. This 
600-byte datagram contains Loose Source and Record Route. The MTU is 576 bytes, 
so the packet must be fragmented. The accompanying option must be included in 
all fragments. This packet will be fragmented into two packets. Table 12 contains 
instructions that are executed on the packet preprocessor for fragmenting the IPv4 
packet in Figure 12. Registers in this table follow the numbering defined in Table 9. 

Figure 12. IPv4 header containing option 

 

Version IHL = 0x9 DSCP ECN Total Length = 0x0258

Identification 000 Fragment Offset

TTL Protocol Header Checksum

Source IP Address

Destination IP Address

Type = 0x83 Length = 0x10 Pointer

First IP Address

Second IP Address

Third IP Address

Payload
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Table 12. Instructions executed by the egress parser 

Time Packet Parser Packet Preprocessor Comments 

t0 -   

t1 -   

t2 -   

t3 R0 <- (Ver, IHL)                                                                
R32 <- (Ver, IHL, DSCP, ECN)                                        
R64 <- Total Length                                                       
R128 <- Identification                                                      
R160 <- (Flags, Fragment Offset) 

R192 <- R0 AND 0x0000000F 1st and 2nd words of IPv4 header 
written to PHV.                           The 
value of IHL is obtained. 

t4 R1 <- TTL                                                                           
R8 <- Protocol                                                                     
R33 <- (TTL, Protocol)                                                     
R65 <- Header Checksum                                             
R129 <- upper_halfword(Source IP)                              
R161 <- lower_halfword(Source IP)                               
R176 <- Source IP 

R192 <- SHL2(R192) 3rd and 4th words of IPv4 header 
written to PHV.                          The 
value of IHL is multiplied by 4. 

t5 R34 <- upper_halfword(Destination IP)                           
R66 <- lower_halfword(Destination IP)                            
R80 <- Destination IP 

R203 <- 0 5th word of IPv4 header written to 
PHV.        R203 which is designated 
to contain byte size of all must-copy 
options is initialized 

t6 R2 <- Type                                                                         
R9 <- Length                                                                    
R16 <- Pointer                                                                      
R35 <- upper_halfword(option word)                               
R67 <- lower_halfword(option word)                                    
R81 <- option word 

r0 <- R2(7) 1st option word written to PHV.               
Checking the highest bit of Type 
field. 

t7 R82 <- option word (r0) R203 <- R203 + R9 2nd option word written to PHV               
Conditionally adding the size of 
current option to size of must-copy 
options. 

t8 R83 <- option word (r0) R193+0 <- R81+0 3rd option word written to PHV              
Conditionally copying current option 
to the space reserved for must-copy 
options. 

t9 R84 <- option word (r0) R193+1 <- R82+1 4th option word written to PHV        
Conditionally copying current option 
to the space reserved for must-copy 
options. 

t10  (r0) R193+2 <- R83+2 Conditionally copying current option 
to the space reserved for must-copy 
options. 

t11  (r0) R193+3 <- R84+3 Conditionally copying current option 
to the space reserved for must-copy 
options. 

t12    
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t13 R223 <- MTU R64 > R223 Total Length > MTU 

t14  -  

t15  -  

t16  R160(14) Evaluating DF 

t17  -  

t18  -  

t19  R204 <- R64 – R192 Calculating payload size 

t20  R205 <- R223 – R192  

t21  R205 <- SHR3(R205) Number of fragment blocks 

t22  R206 <- 0xABCDEFAB Code representing first fragment 

t23  R207 <- SHL3(R205) Number of payload bytes to be 
included in the fragment 

t24  Submit to egress Submit to the egress pipeline 

t25  R208 <- R204 – R207 Calculating the size of remaining 
payload 

t26  R209 <- R203 + 0x00000014 Calculating the size of fragment 
header 

t27  R160 <- R160 + R205 Updating fragment offset 

t28  R210 <- R208 + R209 Adding byte size of remaining 
payload and fragment’s header size 

t29  R210 > R223 Checking if the sum of size of header 
and remaining payload exceeds MTU 

t30  R206 <- 0xABCDEFAA Code representing last fragment 

t31  R211 <- R208 Fragment’s payload size 

t32  Submit to egress Submit to the egress pipeline 

t33  R208 <- R208 – R211 Updating remaining payload size 

t34  R208 > 0 Checking if there is payload 
remaining 
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Those options that must be included on all fragments are written to registers R193 
to R202 of the register space reserved for the packet preprocessor. In addition, the 
total size of these options is also stored so that the amount of payload to be 
appended to each fragment can be determined. As each fragment is sent, a code is 
written to a designated PHV entry. There are distinct codes for a non-fragment 
packet, first fragment, fragments after the first fragment and before the last one and 
the last fragment. The code is looked up in the egress pipeline and the instructions 
corresponding to each one of them is executed, as each of them requires different 
processing. For instance, for a packet that does not require fragmentation, the 
options written to registers R193-R202 are ignored. This is also true for the first 
fragment, as its header is exactly the same as that of the original packet.  

4.4 Implementation Results 

Table 13 outlines the total area and power for the components required in each 
packet preprocessor instance. The ASIC technology used is 28nm FD-SOI. The 
operating conditions are (SS, 0.9V, 125˚C). The synthesis tool under use is Synopsys 
Design Compiler J-2014.09-SP4. Timing constraints have been verified for operating 
frequency of 1.19 GHz. 

Table 13. Area and power dissipation of the components of a single packet preprocessor 

Component Area (μm2) Power dissipation (mW) 
Instruction decode, operand 
retrieval, and operand forwarding 

23161 33.5 

ALU 1044 3.5 
Program Control 448 5.9 
Instruction Memory (1K × 32b) 15717.60 3.69  

 

4.4.1 Discussion of results 

This architecture enables processing of packets as they arrive. Based on the reasoning 
in chapter 3, 8 bytes are read from IPB every 8 cycles. Instead of header segments 
sitting idle in the PHV until the rest of the header fields are written, processing starts 
already at this point. Although RMT architecture contains 7168 ALUs, some actions 
such as checksum calculation must be mapped to ALUs across different MAUs. For 
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such actions, presence of 224 ALUs in a single MAU is of little benefit. The proposed 
architecture reduces the chance of need for recirculation if the chain of MAUs is not 
sufficient for a given action. Another issue that this architecture solves is that RMT 
has match resources coupled with action resources. Each MAU contains 32K ternary 
entries and 106K exact match entries. It is possible to look up speculatively if the 
outcome of the action determines whether to match or not. However, if both 
outcomes of the action each require matching on the same tables but using different 
keys, speculation is not beneficial. This is problematic for use cases in which match 
resources from the whole chip must be combined. The main purpose of the 
architecture proposed in this chapter is to perform the required preprocessing so 
that the issues discussed here do not hinder throughput. 

In addition to the preprocessing IPv4 packets, a similar role can be taken for IPv6 
packets. For instance, it can check the value of Hop Limit field and if necessary, 
discard the packet or generate a message to the original sender of the packet. The 
actual list of use cases is limited only by the number and complexity of available and 
upcoming network protocols. The programmable nature of this architecture does 
not tie it to any specific set of protocols.  

Given that a single packet preprocessor sustains 10 Gbps throughput, the total 
area and power dissipation for 640 Gbps packet preprocessing is 2.58 mm2 and 2.98 
W respectively. These values are pessimistic because the instruction memory has 
been replicated per packet preprocessor instance due to unavailability of multiported 
SRAMs. For instance, in the presence of two-ported SRAM, the memory cells will 
be shared by two packet preprocessors. Hence the resulting area will be less than the 
value provided here. In order to interpret the area and power values properly, it 
should be considered that commercial switch chips are somewhere between 300 to 
700 mm2 in area and 150 to 350 W in power [69]. Therefore, the total area and power 
of the extra logic required for 640 Gbps packet preprocessing is negligible. Focusing 
on IPv4 traffic, the exact gain in throughput depends on the percentage of packets 
having a parameter problem or requiring fragmentation. For the latter, the proposed 
architecture acts as an enabler because in the absence of a processor-based 
component for calculating the fragmentation-specific parameters and sending the 
required number of fragments to the egress pipeline, fragmentation is not possible 
and the packet processing architecture simply has to drop the packets requiring 
fragmentation. 
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5 EXPLORING CROSSBAR ALTERNATIVES 

Crossbars are used extensively in programmable packet processing hardware for 
providing flexibility. Two primary use cases for crossbars are selecting the header 
fields for forming the search key and for selecting the input to ALUs. Since a 
programmable data plane allows any field to be used as the basis for forming the 
search key or for being the input to a given ALU, crossbars are one of the enabling 
components and main contributors to the area. In this chapter, further details are 
provided on the crossbars in RMT and the alternatives are explored for better area 
efficiency. The content of this chapter is based on PV. 

5.1 Crossbars in RMT 

In each of the 32 MAUs within RMT, two 640-bit search keys are generated from 
the 4096-bit PHV. One of the search keys is meant for TCAMs and the other for 
SRAM-based exact match tables. In [26], it is mentioned that each bit of the search 
key is driven by a 224-to-1 multiplexer, which is made of a binary tree of and-or-
invert (AOI22) gates. The provided area for this gate is 0.65 μm2. The total area for 
match key crossbars across the whole chip is 6 mm2. 

The fact that a 224-to-1 multiplexer has been used for every bit of the search key 
implies that there are certain constraints for selecting the input for match tables. For 
instance, the smallest unit for selection from the PHV is an entry within the PHV. 
Furthermore, there are constraints for placing fields of different width within the 
search key. The starting position for bytes, halfwords, and words in the resulting 
search key has a bit index, which is an integer multiple of 8, 16, and 32 respectively. 
Not all of the multiplexers require distinct select inputs. Some of the multiplexers 
can share the select lines. The total number of distinct select lines within a MAU is 
1280 bits.   

Action crossbars provide the operand inputs for each ALU in a given MAU. In 
RMT architecture, there are 8-bit, 16-bit and 32-bit ALUs. The action engines take 
input from the PHV and action memory. The first input to a given action engine is 
from the PHV. The second input is from the PHV or action memory. Smaller units 
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can be combined so that processing can be performed on a wider unit. For instance, 
two 8-bit units can be combined into a 16-bit operand. It is unclear whether this 
combination is performed by the action crossbars or by the action engines. In either 
case, it is obvious that 16-bit and 32-bit ALUs receive smaller units as input as well 
as PHV entries of identical width. In [26], it is mentioned that the area calculation 
for the action crossbar is similar to that of match crossbars. Since there is an ALU 
per PHV entry and that each ALU requires two operand inputs, two 4096-bit units 
must be generated out of PHV. This results in the total area of action crossbars to 
be over 38 mm2 which is equivalent to the area of 220 TCAM blocks.  

5.2 Crossbar alternatives 

It is important to explore crossbar alternatives because crossbars occupy a noticeable 
area and contain considerable amount of wires. In addition, the value for select lines 
must be stored in wide registers and/or memory blocks. This in turn increases area. 
This is specifically noticeable in an architecture such as RMT in which wide search 
keys are generated and there are numerous action engines requiring input. 

5.2.1 Alternative Match Crossbar 

In this scheme, the entries of each of the two 640-bit search keys are determined on 
a 32-bit basis. This can be referred to as word-level selection of match keys. For 
every 32-bit unit of the search key, it is possible to select the following combinations 
from the PHV: 

Four 8-bit units 
Two 8-bit units and a 16-bit unit 
Two 16-bit units 
One 32-bit unit 

For the combination in which there are two 8-bit units and a 16-bit unit, two valid 
arrangements are possible depending on whether the 16-bit unit comes before or 
after the two bytes. In order to select match key fields on a 32-bit basis, the 
multiplexers must be organized in two levels as illustrated in Figure 13. The first level 
contains multiplexers for selecting fields and the second level has one multiplexer 
for organizing the selected fields according to the combinations above. In this 
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alternative, the constraints mentioned in section 5.1 are satisfied. This scheme 
requires 1080 bits of select lines in each stage. 

 

 

Figure 13. Alternative match crossbar 
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5.2.2.1 Zero-extending Smaller Units 

In this system of multiplexers, as shown in Figure 14, the input to 8-bit ALUs is any 
of the 8-bit entries of the PHV. For 16-bit ALUs, each input can be any of the 16-
bit entries or any of the zero extended 8-bit entries. In a similar manner, for 32-bit 
ALUs, each input can be any of the 32-bit entries or any zero-extended 16-bit entry. 
This scheme requires 3328 select lines per stage. Under this scheme, the actual 
merging takes place by the ALUs. In addition, the parser presented in chapter 3 can 
be programmed to write an arrived 32-bit word as four 8-bit units, two 16-bit units 
and a 32-bit unit at the same time in order to tailor the content of headers to the way 
required by corresponding packet processing functions. As a result, the packet parser 
can also perform combination of smaller fields that happen to be adjacent in the 
header. This is illustrated in Figure 15. 

 

 

Figure 14. Action crossbar with zero-extension of smaller units 
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Figure 15. Operation of PHV filling logic when writing the third word of IPv4 header to PHV 

5.2.2.2 Combining Smaller Units 

Using this crossbar architecture, the input to 8-bit ALUs is any of the 8-bit entries 
of the PHV. For 16-bit ALUs, each input can be any of the 16-bit entries or any two 
8-bit entries combined together to form a 16-bit unit. In a similar manner, for 32-bit 
ALUs, each input can be any of the 32-bit entries or any two 16-bit entries combined 
together into a 32-bit unit. This scheme requires 5184 select lines per stage. This 
action input selection scheme is illustrated in Figure 16. 
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Figure 16. Action crossbar combining smaller units 
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options but since for 40 options, 6 bits of select input are required, the unused inputs 
to multiplexers are used to accommodate entries within other segments. Figure 17 
illustrates the structure required per segment. For the 16-bit multiplexers marked 
32×16b, there are 24 inputs coming from 16-bit PHV entries within the segment. 
The other 8 inputs come from other segments. With this structure, up to 160 fields 
from other segments can be read. 

 

 

Figure 17. Lightweight action crossbar with zero-extension of smaller units 
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storage required for select lines is considerably more because action crossbars have 
more select lines and the instruction memory has 32 entries. 

Table 14. Per stage area requirement of match crossbar variants 

Crossbar variant Crossbar area (mm2) Memory area (mm2) 
Original RMT 0.187 0.007 
Word-level selection 0.174 0.006 

 

Table 15. Per stage area requirement of action crossbar variants 

Crossbar variant Original size Lightweight crossbars 
Crossbar area 
(mm2) 

Memory area 
(mm2) 

Crossbar area 
(mm2) 

Memory area 
(mm2) 

Combination of 
smaller processing 
units 

0.730 0.967 0.203 0.685 

Zero-extension of 
smaller processing 
units 

0.553 0.625 0.148 0.457 

 

5.4.1 Discussion of results 

When using lightweight crossbars, the most important question is whether the use 
of smaller multiplexers can limit the programmability and performance of the 
architecture. Let’s consider the lightweight variant of action crossbars that combine 
smaller processing units. Inside each logical segment, there are 112 16-bit 
multiplexers, each having 8 unused inputs that can be used for reading entries 
residing in other logical segments. This means that it is possible to read 896 16-bit 
units that are not resident in a given segment. The total number of 16-bit entries 
across the whole PHV is 96. Therefore, even in case of segmentation of PHV and 
limited access to cross-segment fields, the functionality can be maintained by 
efficient use of resources. The only limitation is that when a field in another segment 
is required as input, the ALU that has access must be used for the required operation. 

As seen from the Tables 14 and 15, for match crossbars, word-level selection of 
match fields is slightly more area efficient. For action crossbars, zero-extending 
crossbars occupy smaller area. The lightweight variant brings further savings in area. 
In chapter 7, a packet processing pipeline whose all ALUs are 32 bits in width will 
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be presented. For this kind of ALU, the total number of input possibilities is more 
than each of the ALUs in RMT. Based on the insight gained in this chapter, the 
required optimizations will be applied to reduce the area. 
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6 TOWARDS TERABIT-LEVEL PACKET PARSING 

As line rates increase, the time window during which a new packet arrives shrinks. 
For instance, in 400 Gigabit Ethernet (GbE), minimum-sized packets arrive every 
1.67 ns. In a digital system operating at frequency of 1.0 GHz, this is hardly 
equivalent to 2 cycles. Even with minimum-sized Ethernet frames, it is possible for 
the frame to contain multiple headers. Parsing of multiple headers in a 2-cycle time 
window is not trivial unless the sequence of headers is known in advance. In this 
chapter, the details of an architecture for Terabit-level packet parsing will be 
presented. The content of this chapter is based on PVI. 

6.1 The Building Block for Terabit-level Packet Parsing 

The packet parser presented in chapter 3 uses a single packet parsing entity to parse 
all the headers within a packet. It uses program control to use the same functional 
units for parsing of all headers within a packet. Line rate is sustained because the 
packets arrive through 10 Gbps ports. The packet parser in this chapter, however, 
uses multiple parsing entities, each for one of the headers in the packet. The parsing 
entity is called header parser and it is the building block for Terabit-level packet 
parsing. These building blocks are put in series to form a pipelined packet parser. 
The first header parser parses the first header in the incoming packet. The second 
header parser parses the second header and so on. This is the requirement for 
Terabit-level switches in which each port operates at hundreds of Gbps. 

The header parsers together form a pipeline. In addition, each header parser is 
internally pipelined. The header data read from the buffer of incoming packets 
traverses the pipeline of header parsers. Figure 18 illustrates the internals of a header 
parser. The inputs to each header parser are the Header ID, header data and starting 
offset. The Header ID is a 4-bit identifier of the header that must be parsed. This 
ID is only of significance inside the architecture. It is used to retrieve the control 
signals for the functional units within the header parser. The control signals for 
parsing a given header are collectively referred to as Parse Control Word (PaCW). 
Each header parser determines the next header, calculates the size of current header 
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in order to provide the starting offset of next header and extracts fields of current 
header into the PHV. Output of each header parser is the input to the next header 
parser. For the first header, the header ID and starting offset are already set. Each 
header is parsed over 5 cycles. These cycles are outlined in the table 16. 

Table 16. Header parsing stages 

Cycle Operations 
1 PaCW is retrieved using the ID of the incoming packet 
2 Header fields containing indication of next header and header size are extracted. 
3 Extracted next header value is compared in parallel with 16 next header values corresponding to 

current header. In parallel, the extracted header size field goes through modification. 
4 The matching entry for next header is selected. The modified header size value goes through another 

round of modification. 
5 The size of header is now available. Up to 16 words within the header can be extracted in parallel for 

writing to PHV. 
 

Figure 18. Internals of Header Parser [PVI] 
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is considerably wider. It requests 64 bytes from the buffer of incoming packets. This 
means that an entire minimum-sized packet can be retrieved at once. Each header 
parser receives the starting offset from its previous header parser. It calculates the 
size of the header being parsed and adds it to the starting offset it received to provide 
the next header parser with the starting offset of the header that must be parsed. 

The fact that each header parser parses only one of the headers in the packet does 
not mean that the header parser has the capability to parse only one header. Rather, 
it can be programmed to parse 16 distinct headers. Consider the parse graph 
illustrated in Figure 19. If a packet parser made of header parsers is deployed in an 
environment in which header sequences within the packets are based on the parse 
graph in Figure 19, the first header parser parses Ethernet header. The second header 
parser must be programmed to parse IPv4, IPv6, VLAN, or MPLS. Every header 
parser finds out what the next header is and signals it to the next header parser. The 
third header parser must parse IPv4, IPv6, MPLS, or TCP. Interestingly, the second 
header parser also could parse IPv4, IPv6 and MPLS but for the third header only 
the third parser is used. 

 

 

Figure 19. Parse graph with three levels [PVI] 
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header parser may not be able to completely parse the header. In such a case, one 
header parser partially parses the header and the next header parser performs the 
rest of the parsing of the header in question. The operating frequency is 1.19 GHz. 
This means that a minimum-sized Ethernet frame is fetched every 0.84 nanoseconds. 
Therefore, one single packet parser sustains 800 Gbps throughput. For achieving 
higher throughputs, either the operating frequency must be increased, or the packet 
parser instances must be replicated. The latter is chosen because the packet parsers 
are very efficient in area. For a 6.4 Tbps switch, 8 packet parsers are required. 

6.3 Implementation Results 

Table 17 contains the area and power breakdown of the constituent components of 
a single header parser. The ASIC technology, backend tool, operating frequency and 
operating conditions are the same as in previous chapters. Based on the values of 
Table 17, Table 18 contains the total area and power requirements for 6.4 Tbps 
packet parsing. These parser instances have total area of 3.61 mm2 and total power 
dissipation value of 9.5 W.  

Table 17. Area and power dissipation of the components of a header parser (adjusted from 
PVI) 

Component Total area (μm2) Total power (mW) 
PaCW and Parameter Memories 30 K 52 
Field extractors and manipulators 15.9 K 21.64 
Comparators and resolving logic 1.1 K 0.96 
Total 47.0 K 74.6 

 
 

Table 18. Area and power dissipation of components required for 6.4 Tbps packet parsing 
(adjusted from PVI) 

Component Number of instances Total area (mm2) Total power (W) 
Header Parsers 64 3 4.7 
PHV 8 0.61 4.8 
Total - 3.61 9.5 



 

82 

6.3.1 Discussion of implementation results 

In order to sustain 6.4 Tbps throughput, 8 pipelined packet parser instances are 
needed. For this target throughput value, if the 80 Gbps parser presented in chapter 
3 is to be used, 80 instances will be needed. If the 40 Gbps parsers used in RMT 
architecture are to be used, 160 parsers would be needed. There is, however, a 
fundamental difference between the parser presented in this chapter when compared 
with the 80 Gbps parser and the 40 Gbps parser. The difference is that the parser in 
this chapter can parse packets coming from 800 Gbps ports. The parser in chapter 
3 and RMT are designed for 10 Gbps ports. 20 instances of RMT parser can sustain 
aggregate throughput from 80 ports of 10 Gbps which in total is 800 Gbps but they 
cannot parse packets arriving through a single 800 Gbps port. Similarly, the 80 Gbps 
parser cannot parse packets coming from an 800 Gbps port, no matter how many 
parsers have been instantiated. They can however, sustain aggregate 800 Gbps 
throughput. Despite this, let’s compare the area of a 6.4 Tbps packet parser 
presented in this chapter with the area of 80 instances of 80 Gbps packet parser and 
160 instances of RMT parser. The corresponding gate counts are 11 M, 46 M and 
56 M respectively. Therefore, the designed parser has 76% and 80% less area 
compared to parsers in chapter 3 and the RMT parsers instantiated for 6.4 Tbps.  It 
is worth mentioning that each header parser has its own memory instances. No 
sharing of memory has been used. 

At port speeds above 100 Gbps, it is challenging for processor-based solutions 
to keep pace with the rate of packet arrival. Each 800 Gbps packet parser pipeline 
of this chapter can sustain an unlimited stream of minimum-sized packets. If a 
processor-based architecture were to be used for an 800 Gbps port through which 
an unlimited stream of minimum-sized packets arrives, the requirements would be 
hardware support for an unlimited number of threads as well as speculative 
execution engines for each thread. The reason why speculative execution is required 
is that an entire packet arrives every clock cycle, i.e. every 0.84 ns, while the 
operations required for determining the next header require multiple cycles. Support 
for infinite number of threads means infinite amount of hardware, which is not 
feasible. The pipelined architecture with 8 stages sustains 800 Gbps throughput with 
far less complexity. Therefore, the fundamental research question of whether to use 
processor or pipeline has been answered. 
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7 A FLEXIBLE PACKET PROCESSING PIPELINE 

In this chapter the motivation and architectural details will be provided for a low-
area packet processing pipeline with enhanced level of flexibility and functionality. 
The content of this chapter is based on PVI. 

7.1 Motivation 

Since programmable data plane is a new research area, there have not been many 
hardware architectures fulfilling the criteria of programmability and performance. 
The dominant architecture is RMT. It sustains 640 Gbps throughput. A few years 
after RMT, a new architecture with modifications to RMT appeared. The new 
architecture was called disaggregated RMT (dRMT). Both architectures were 
discussed in chapter 2. dRMT is a run-to-completion architecture while RMT is a 
pipeline. For dRMT, the achievable throughput using all processor instances is at 
most 1 packet per cycle. Considering its 1.19 GHz operating frequency and 64-byte 
packets separated by 20-byte unit inserted by the physical layer, the maximum 
sustained throughput by dRMT is 800 Gbps. As discussed in chapter 6, a pipelined 
architecture is more suited to the nature of high-throughput packet parsing. The 
same applies to packet processing as well. Deep pipelines can accommodate extra 
processing required for some packets whereas in processor-based systems, the issue 
of extra processing can lengthen the interval at which a new packet must be accepted. 
The solution to this is simultaneous multithreading but as discussed in chapter 6, a 
pipelined architecture has far less complexity. Another benefit of pipelined 
architectures is that the instruction memory is divided into pipeline stages. In other 
words, each pipeline stage has a portion of the packet processing program. For run-
to-completion architectures, each processor instance must have the entire program. 
As a result, the number of processor instances and/or functional units within them 
must be subject to limits. Otherwise, the area increase can violate the constraints. 

The motivation behind this work is achieving an area-efficient architecture in 
order to minimize the overall area of multiple pipeline instances required for terabit-
level packet processing. In addition, the intention is to overcome RMT’s 
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shortcomings that unnecessarily increase the area, limit the supported workload and 
use memory resources inefficiently. These shortcomings are listed below: 

Lack of action depth 
Extensive use of matching for program control 
Limited field referencing 
High cost of table combination 

7.2 A New Architecture 

The underlying component of the new packet processing pipeline is a packet 
processing stage. Table 19 outlines the functional units available within each stage. 
Figure 20 illustrates the components within each stage. By having only one TCAM 
and one exact match table in each stage, the design is greatly simplified. The size of 
each table and their total number of instances are exactly the same as that of RMT 
architecture. This means that this architecture is a 512-stage pipeline.  

Table 19. Components in each stage of the proposed packet processing pipeline 

Functional unit Number of 
instances 

Purpose 

Field Extractors (FE) 18 Extract fields for modification of fields and state 
Field- and state-modifier (ALU) 8 ALUs for modifying content of header fields and state 
Search key generator (Match 
crossbar) 

2 Crossbars for selecting search key components for 
exact and ternary matching 

TCAM (2K×40) 1 Performing ternary matching 
Hash table (1K×64) 4 4-way hash table for exact matching 
Associated memories (1K×32) 12 Data associated with match entries in exact and ternary 

match tables 
 

7.2.1 Program Control 

A 10-bit tag is assigned to the packet by the packet parser based on the sequence of 
headers present in the packet. This tag precisely describes the processing that a 
packet requires. For instance, it can refer to an IPv4 packet that has TTL value of 
zero. As the PHV traverses the pipeline, this tag is used to retrieve the instructions 
for modifying header fields and state. However, this tag is not directly used because 
its direct use requires an instruction memory with 1K entries at each stage. 
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Figure 20. Packet processing stage [PVI] 
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In addition to large area, if a VLIW instruction differs only in the opcode of one of 
the functional units, a new instruction memory entry is required, which is inefficient 
in use of memory. Instead, at each stage the 10-bit tag is used as an index into a 1K 
× 64-bit memory. Each entry of this memory contains instruction pointers for each 
of the functional units present in a stage. Once the instruction pointer for each 
functional unit is available, they are used to retrieve the instruction from a 32-entry 
memory. Therefore, at each stage, 328 combinations are possible while in the naïve 
approach 1K entries are not sufficient for accommodating 328 combinations. 

The fact that the tag is used for retrieving the instructions at each stage, allows 
custom action depth. At each stage, the instructions related to the stage in question 
are executed. A sequence of instructions is divided into a number of stages. The tag 
can be changed throughout the pipeline. In addition to the 8 ALUs, there is also a 
condition evaluator that is present in each stage. It can compare the value of header 
fields or extract bits. When checking the value of TTL, this unit is used instead of 
using TTL as a search key for matching. 

7.2.2 Combining Tables 

Each of the match tables in the architecture is referred to as a physical table. On the 
other hand, a table required for a specific purpose is referred to as a logical table. 
For instance, it is possible to combine all ternary match tables for storing over 1 
million IPv4 prefixes. In this setting, the logical table with is entries  1048576
constructed using 512 physical tables each having 2K entries. If the required logical 
table is wider than a single physical table, each of the visited tables receives part of 
the search key that is designated for it. If the required logical table is deeper than a 
single physical table but has the same width, each of the visited tables receives the 
same search key. The first table that returns a match terminates the search. If the 
required logical table is both wider and deeper than a single physical table, both 
scenarios above are combined.  

When a large number of tables need to be combined, this way of combining tables 
results in high latency. For instance, in the case of logical table combining all TCAMs, 
there is a 512-cycle latency for visiting all tables. In order to reduce the latency in 
such scenarios, the designed architecture has an area-efficient mechanism for 
combining the tables. In order to elaborate this architecture, some definitions must 
be made. Pipeline stages are numbered 0 to 511. This 512-stage pipeline is made of 
32 smaller pipelines with 16 stages, each of which is called a PIPE16. The starting 
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index of each PIPE16 is an integer multiple of 16. The PIPE16 instances can be 
combined in a binary tree manner as can be seen in Figure 21. Note that the complete 
binary tree has 5 levels. Only a fraction of the pipeline configuration architecture is 
illustrated for clarity. 

 

 

Figure 21. A fraction of the pipeline reconfiguration architecture (adjusted from PVI) 
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physical table. It requires tables from eight PIPE16 instances. By providing the 
correct select values for the input multiplexers, eight PIPE16 instances can receive 
the same input and operate in parallel. By doing so, instead of 128 cycles, 16 cycles 
are required for visiting the tables.  

7.2.3 Action Input Selectors 

The PHV contains 128 32-bit words. It is also possible to extract four 8-bit units 
and three 16-bit units from each 32-bit word. Therefore, the action input selectors 
are 1024-to-1 multiplexers whose width is 32 bits. The area of such a multiplexer is 
8100 μm2 in 28 nm technology. At each stage of the pipeline, there are eight ALUs, 
each requiring two field extractors. In addition, the condition evaluator also requires 
a pair of field extractors. As a result, the area of field extractors within one stage of 
the pipeline is 145800 μm2 and the total area in the whole pipeline is 74.64 mm2, 
which is equivalent to the area of 429 instances of 2K × 32-bit TCAM. 

Due to the large area and based on the insight provided in chapter 5, it is wise to 
consider using smaller action input selectors. The optimization strategies discussed 
in chapter 5 are based on the principle of dividing the PHV into logical segments 
and limiting access to PHV entries belonging to other segments. The optimized field 
selection scheme of use divides the PHV into 8 logical segments, each of which 
contains one ALU instance. Inside each segment, there are 16 32-bit words. 
Considering the 8-bit and 16-bit units within the 16 32-bit words, the total number 
of options for field selection is 128. For PHV entries in other segments, it is only 
possible to access them in 32-bit units. If an 8-bit field from another segment is 
required, the whole 32-bit unit in which it is located is read. Therefore, the total 
number of options for each optimized action input selector is 240. The area of the 
optimized field selector is 36% of the area of the full field extractors. The first ALU 
and the condition evaluator still use the large field selectors. The other seven ALUs 
use the reduced field extractors. The area of field selectors per stage and across all 
stages is 79000 μm2 and 40 mm2, respectively. This is a 46% area reduction with 
respect to using full field extractors for all functional units. 

7.2.4 Pointer-based Header Field Referencing 

Sometimes the location of a field that needs to be retrieved as an operand or selected 
as the destination is not fixed within the header. In these cases, it cannot be accessed 
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by an absolute index. In Segment Routing (SR), the use of pointer-based field 
referencing is common. IPv6 Segment Routing Header (SRH) [92], contains a list of 
IPv6 addresses. The index of the IPv6 address that must be used as the destination 
address is pointed to by the Segments Left field. In the absence of more advanced field-
referencing mechanisms, the value of the pointer must be used as a search key. The 
outcome of the search is an instruction pointer that points to the correct instruction. 
However, the instructions that are stored for different values of the pointer all have 
the same opcode. The only difference is in the absolute value of source or destination 
indexes. This results in inefficient use of lookup and instruction memories.  

In this architecture, reading from or writing to a pointer-specified header field 
can be done without any lookup and using only one instruction. For using an 
operand that is referred to by a pointer, the pointer field is selected directly as the 
operand. The ALUs designed have opcode for pointer dereferencing. Once this 
operation has been executed, the value of the field that has been pointed to by the 
pointer is available at the specified location. For writing to a location pointed to by 
a pointer, the first source operand is the value to be written and the second operand 
is the pointer, both of which can be accessed using absolute address. The operation 
write to pointer-based location is executed. In this operation, the location specified 
by the pointer is accessed for writing. When this operation is executed, the writing 
ALU can override other ALUs because the write location may be located beyond the 
locations that the ALU in question writes to.  

7.3 Implementation results 

In this section, the implementation result of the proposed architecture are provided. 
Table 20 provides an area breakdown of the constituting components of a single 
packet processing stage. For those components of which multiple instances are 
present, the total area has been provided. As can be seen, the major contributors to 
the area are ternary and exact match tables followed by action input selectors. The 
ASIC technology, backend tool, operating frequency and operating conditions are 
same as in previous chapters. 
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Table 20. Area of the constituent components of a packet processing stage (adjusted from 
PVI) 

Component Total area (mm2) 
TCAM 0.180  
4-way Exact Match tables 0.125 
Field selectors 0.079 
Instruction Memory 0.032 
PID Map Table 0.031 
PHV 0.018 
Field- and State-Modifiers 0.012 
Search Key Selectors 0.009 
Total 0.486 

7.3.1 Comparison with other Match-Action Architectures 

In this section, the area of the proposed architecture is compared with that of RMT 
and dRMT. From the perspective of sustained throughput, these architectures are 
on par with each other. The proposed pipeline sustains 800 Gbps throughput. RMT 
can also sustain 800 Gbps if its operating frequency is scaled up to 1.25 GHz which 
is only marginally higher than 1.19 GHz of this architecture. For dRMT, 2 variants 
have been considered, each with a different value of Inter-Packet Concurrency 
(IPC). The values in Table 21 correspond to one MAU, one dRMT processor, and 
one packet processing stage in this architecture. Based on the values of Table 21, 
Table 22 contains the total area in the three architectures. What is meant by the 
crossbar area is the area of components required for combining tables. In this 
architecture, the components required for configuration of pipeline fit into this 
category. dRMT has more crossbar area because on top of table combination 
crossbars, there are crossbars for assigning table clusters to dRMT processors. All 
the three architectures have equal amount of memory for ternary and exact 
matching. 
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Table 21. Comparison of the area (mm2) of RMT, dRMT and the proposed architecture [PVI] 

Component RMT dRMT (IPC = 1) dRMT (IPC = 2) This architecture 
Match key config. 
Reg. 

0.021 0.012 0.015 0.000 

Match key 
crossbar 

0.187 0.150 0.217 0.009 

PHV 0.336 0.998 1.439 0.018 
Scratchpad N/A 0.156 0.156 N/A 
Action input 
selector 

1.448 0.523 0.964 0.079 

ALUs 0.200 0.050 0.050 0.012 
Action output 
selector 

N/A 0.147 0.147 0.000 

VLIW instruction 
table 

1.139 1.029 1.029 0.032 

Total 3.331 3.065 4.017 0.150 

 

Table 22. Total area for the three architectures under comparison [PVI] 

Architecture Non-crossbar area 
(mm2) 

Crossbar area (mm2) Total area (mm2) 

RMT 106.592 6 112.592 
dRMT (IPC = 1) 98.080 11.328 110.128 
dRMT (IPC = 2) 128.544 11.328 139.872 
This architecture 76.800 1 77.800 

 

7.3.2 Discussion of results 

The proposed architecture applies simplifications to RMT and also makes some 
enhancements. One important thing to note is that the presence of 32 MAUs in 
RMT architecture does not mean that it is a pipeline of 32 stages. Each MAU is 
internally pipelined because the operations that must be performed inside MAU 
require a number of cycles. These operations include search key generation, lookup, 
action memory access, instruction memory access, and action execution. 
Considering the number of latency cycles in match and action dependencies, the 
total number of physical stages in RMT and the proposed architecture are on par 
with each other. 
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The main motivation behind a long pipeline in which each stage contains only one 
ternary match table and one exact match table is eliminating the complex logic for 
combination of tables and allowing any number of tables to be combined for 
forming wider and/or deeper tables. Furthermore, some actions must be mapped to 
a chain of ALUs across multiple stages. One action stage after a match is not 
sufficient for complex actions. The operation executed in the ALUs in each MAU is 
dependent on the Match in the same MAU. A strong argument in favor of deep 
pipelines is that it is better to forward packets to a deep pipeline in which some 
operations, including both match and action, are executed speculatively, rather than 
a short pipeline in which packets are likely to be recirculated. Although a deep 
pipeline has high latency as its main characteristic, it provides guaranteed 
performance. Once the match result is ready, the outcome of unnecessary 
speculatively executed operations is discarded. 

One of the main design goals of this architecture was efficient use of memory 
resources. The RMT architecture uses match tables extensively for program control. 
This means that checking the value of TTL field also requires matching. This 
architecture, on the other hand, uses combinatorial logic for this purpose and 
reserves lookup tables for address lookup purposes. Another architectural 
enhancement introduced in this architecture was support of pointer-based 
addressing mode. The absence of this kind of addressing mode in RMT causes the 
instruction memory entries to be exponentially filled in an inefficient manner. 

Despite the enhancements, the proposed packet processing pipeline has 31% less 
area compared to the RMT architecture. This area saving is about 35 mm2. This is 
equivalent to 200 TCAM blocks of 2K×40b or more than 2200 instances of 1K×32b 
SRAMs. Integrating more memories increases the match and action capacity of the 
architecture, which is one of the performance metrics. Another benefit of an 
architecture with noticeable area savings is that it allows more instances being 
integrated into the chip while adhering to the overall area constraint. 
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8 CONCLUSION 

SDN has the concept of software controlling the network at its heart. Despite this, 
it has provided new opportunities for custom packet processing hardware. There has 
been a shift from network processors to custom programmable switch ASICs. NFV, 
as the other major development in computer networks, is about softwarization of 
network functions and decoupling them from middleboxes. However, it has also 
provided new opportunities for packet processing hardware by causing a shift from 
middleboxes to smartNICs. As a result, custom packet processing hardware has not 
been eliminated. There is a lot of room for innovation. Innovation is needed mostly 
in hardware architecture, not in ISA. Although the main focus of this thesis was 
packet processing architecture for switching and routing, the contributions made are 
also of benefit for architecting smartNICs as well.  

8.1 Research Findings 

This thesis answered many questions specific to the architectural choices. VLIW is 
a suitable parallel processing scheme for protocol-independent packet processing. In 
VLIW, parallelism is dictated explicitly by software. This is in line with the concept 
of software being in charge. Another benefit of VLIW is that the time required for 
implementation and verification is far less than that of processors with run-time 
scheduling hardware. Although neither RMT nor the pipelined architecture in 
chapter 7 are processors, the fact that they contain multiple ALUs per stage makes 
them fit the VLIW category. 

Deep pipelines and SMT are the dominant architectures for high-performance 
packet processing. In principle, every computation can be performed by a processor. 
SMT is the solution for sustaining throughput of packets arriving through ports 
whose speed is 100 Gbps and above. The major issue with SMT is that 
implementation complexity can get out of hand. When a large number of 
simultaneous threads must be supported, it is not possible to add an independent 
read port to the memory hosting instructions. A pipelined architecture can offer the 
same performance level using simpler hardware. However, there are certain tasks 
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that the pipelined architecture is not capable of. The conclusion is that both 
pipelined and processor-based architectures are required for high-performance 
protocol-independent packet processing. The ideal combination is a processor-based 
packet preprocessor, or a preprocessor coupled with a pipelined parser as the parsing 
and preprocessing subsystem and a pipeline for the packet processing subsystem. 

With respect to the question of achieving programmability in packet parsing 
without using TCAMs, it was seen that using simple binary matching of next header 
indicator against expected values results in far simpler and more power-efficient 
hardware. Determining the header size can be done by manipulating header size 
indicator or if necessary binary matching. As for enhancing the performance of 
packet parsers, using multithreading in which each thread is in charge of parsing 
packets arriving through the port to which the thread corresponds is effective. For 
further performance enhancement, the pipelined parser in which at each clock cycle 
an entire minimum-size frame is accepted is a promising solution. 

There are numerous cases in which the parser can assist packet processing. At a 
minimum, integrity checking operations can be easily performed by the parser. In 
addition, the process of fragmentation of variable-sized packets into fixed-size cells 
can also be handled by the parser. Since match field crossbars are one of the main 
contributors to area, the packet preprocessor can write the fields used for matching 
in a designated location of PHV. Doing so helps eliminate match crossbars or use 
far smaller ones. 

Deep programmable pipelines are a good match for flexible layer-2 and layer-3 
packet processing. However, some considerations must be taken into account to 
avoid excessive area and power dissipation. One such consideration concerns 
instruction memories. Since there is a vast number of memories for storing the 
instructions, it is necessary to keep the memories small. The way this was achieved 
in the pipeline of Chapter 7 was use of small instruction memories whose entries can 
be reused in an efficient manner. The next consideration deals with combination of 
lookup tables for making tables of custom size. The pipeline of Chapter 7 allows 
combination of an arbitrary number of tables with least possible amount of 
hardware. Finally, since each stage has multiple ALUs each of which requiring 2 
action input selectors that select from a large number of header fields, it is imperative 
to subject the number of inputs to some limit. For the designed pipeline, this was 
done by segmenting the PHV into smaller units. All the header fields in a given 
logical segment can be read in 3 different sizes while header fields in other segments 
are read only in 32-bit size, thereby reducing the number of inputs to the 
multiplexers. Regarding the action input selectors, it is important to note that direct 
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addressing of header fields is not sufficient. There must be support for pointer-based 
reads. The same applies for selecting action output destination. 

Performance comes not only from hardware, but from software as well. One of 
the performance-enhancing software techniques used in the designed pipeline was 
speculatively looking up tables and executing actions. This speculation is instructed 
by software. The width of PHV allows storing speculative results. From the 
perspective of throughput and latency, it is far better to speculatively perform 
matching and action execution rather than recirculating a packet. 

The most important finding of this dissertation is that achieving high 
performance and enhanced functionality does not necessarily come at the cost of 
increased complexity and power dissipation. The key to achieving high performance 
without increase in chip area and/or power requirements is making the right 
architectural choices. 

The findings of this dissertation can also be applied to FPGAs as well. Use of 
low-area hardware architectures is of significance in FPGAs especially because entry-
level FPGAs that are more accessible to the research community are more limited in 
available resources. Both packet parser variants can be implemented on FPGAs as 
well as they do not require TCAMs. However, some architectural modifications are 
required to compensate for the lower performance resulting from lower operating 
frequency of FPGAs.  

This dissertation provided insight into packet processing hardware. The insight 
is not only of significance to packet processing system architects, but to network 
protocol designers as well. Network protocols are designed mainly with the 
functional requirements in mind. After reading this dissertation, the protocol 
designer is familiar with the strengths and weaknesses of packet processing 
hardware. For instance, in protocols whose header is comprised of multiple words, 
it is more efficient to place the next header indicator as far as possible from the 
ending boundary of the header. Furthermore, variable-length headers should be 
avoided unless absolutely necessary as they put additional performance requirement 
on packet parsers. IPv6 is an example of a well-designed network protocol. Its 
enhancements compared to IPv4 are not limited to a much larger address space. The 
number of integrity checking operations required for IPv6 is considerably smaller 
than that of IPv4. In addition, the size of IPv6 header is fixed which eases the task 
of parser. Finally, the position of next header indicator is chosen such that there will 
be no need for idling the pipeline until the address of instruction for parsing next 
header becomes available. 
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8.2 Open Problems and Future Directions 

One of the open issues is the degree to which network operators are willing to 
support flexibility. For instance, one of the questions is whether the programmable 
data plane must be an architecture that supports flexibility on top of Ethernet or is 
it desirable to also support any protocol as the first protocol in the header stack of 
packets. This is a fundamental question as it affects the datapath width and the 
frequency of packet arrival. 

The next major open issue is programming of packet processing hardware. 
Network administrators prefer to use a high-level language for specifying network 
policies. There must be tools that translate the policies and provide the operation 
and configuration codes for the hardware. P4 is one such language. However, its 
program control mechanism is limited to Match and Action. The RMT architecture 
is in fact a compiler target for P4. An ideal solution is a language with high-level 
properties of P4 and yet with the ability to be mapped to various packet processing 
hardware architectures. 

As for future work, the author’s plan is to extend this research both in the 
hardware and software domains. In the hardware domain, the intention is to use 
both ASICs and FPGAs as the target platform in order to cover the following 
aspects: 

-Programmability of buffer management  
-Memory-efficient hash collision resolution 
-Enhancing the flexibility and throughput of the designed pipeline  

On the software side, the aim is to develop a tool that accepts packet processing 
requirements at a higher layer of abstraction and generates the configuration and 
operation codes for the pipeline. 
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a b s t r a c t 

Networking devices such as switches and routers have traditionally had fixed functionality. They have 

the logic for the union of network protocols matching the application and market segment for which 

they have been designed. Possibility of adding new functionality is limited. One of the aims of Software 

Defined Networking is to make packet processing devices programmable. This provides for innovation and 

rapid deployment of novel networking protocols. The first step in processing of packets is packet parsing. 

In this paper, we present a custom processor for packet parsing. The parser is protocol-independent and 

can be programmed to parse any sequence of headers. It does so without the use of a Ternary Content 

Addressable Memory. As a result, the area and power consumption are noticeably smaller than in the 

state of the art. Moreover, its output is the same as that of the parser used in the Reconfigurable Match 

Tables (RMT). With an area no more than that of parsers in the RMT architecture, it sustains aggregate 

throughput of 3.4 Tbps in the worst case which is an improvement by a factor of 5. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 

Software Defined Networking (SDN) is the key to deployment 

and management of complex networks. New network protocols 

are being proposed and standardized by both the industry and 

academia. The internals of the packet processing devices such as 

switches and routers can no longer accommodate the logic for the 

union of network protocols proposed and standardized so far. In- 

stead, the data plane of the packet processing systems must be 

protocol-independent and programmable, so that they can provide 

the functionality required for network protocols of present and fu- 

ture. This requires thorough analysis of the operations incurred in 

processing of packets. A common concern for programmable and 

protocol-independent data plane is that of performance. However, 

as we will see, such systems can be on par with the conventional 

systems due to simpler architecture which allows for further opti- 

mizations. 

Recently, there have been research efforts for realizing pro- 

grammable data plane. These efforts span over the software and 

hardware abstraction layers. The P4 language, first introduced in 

[1] , is a language for describing the forwarding behavior in packet 

processing systems. It describes packet processing in the form of 

match and action. In [2] , an intermediate representation for pro- 

grammable data plane is provided. It is a target-independent in- 

∗ Corresponding author. 

E-mail addresses: hesam.zolfaghari@tuni.fi (H. Zolfaghari), davide.rossi@unibo.it 

(D. Rossi), jari.nurmi@tuni.fi (J. Nurmi). 

struction set. It bridges the gap between high-level languages and 

hardware. A similar contribution is made in [3] . In [4] , a solution 

for providing programmable packet scheduling in switches is pro- 

vided. The most notable of research efforts for the hardware ar- 

chitecture of the programmable data plane are [5–7] . The architec- 

ture proposed in [6] is called Reconfigurable Match Tables (RMT). It 

contains the packet parser proposed in [5] and 32 stages of match 

and action. Any number of fields could be used to form a match 

key. The result of the match determines the processing that must 

be performed on header fields. The architecture in [6] has been 

commercialized and it is now the basis of the Protocol Indepen- 

dent Switch Architecture (PISA) used in Barefoot Tofino [8] . 

In this paper we are interested in the problem of packet pars- 

ing. There are countless papers in which FPGA-based parsers are 

proposed. [9–13] are just a few examples of such research efforts 

which achieve throughput on the scale of hundreds of Gigabits 

per second. However, it should be noted that these architectures 

achieve this throughput by means of operating on ultra-wide in- 

put due to their low frequencies. For instance, in [9] , the input 

width is 2048 bits. Obviously, no transmission medium can trans- 

fer this amount of data at once. In addition, due to the sequen- 

tial dependency of headers, each header must be parsed in turn 

in order to extract its fields and determine the following header. 

Therefore, there will be stalls and the flow of wide data could not 

be processed at every clock cycle unless the sequence of headers 

is known and remains unchanged. As a result, the actual through- 

put is far below the claimed figure. In addition, checksum verifi- 

cation which is needed in many packets must be calculated over 

https://doi.org/10.1016/j.micpro.2019.102910 

0141-9331/© 2019 Elsevier B.V. All rights reserved. 
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a number of cycles because the addition result must be accumu- 

lated and the clock cycle does not allow adding more than two 

operands. Therefore, it is best to read header data in smaller units 

and maintain a steady flow. In [10–13] packet parsers are synthe- 

sized from P4 definition of headers and parsers. This means that 

the synthesized architecture is protocol-specific. Having a fixed 

hardware which provides parsing capability for different headers 

by means of software is a far more robust solution and more com- 

patible with the goals of SDN. This is the approach taken by the 

industry and hardly any high-end commercial packet processing 

system is based on FPGAs. Packet parsers in high-end commercial 

devices parse packets without buffering them in advance. We take 

the same approach and present a programmable packet parser for 

Terabit-scale packet parsing. It could be used for parsing any L2- 

L4 header. It could also parse application-layer headers unless the 

header requires deep packet inspection capabilities, in which case 

the throughput deteriorates. 

2. State of the art in packet parsing 

In this section we investigate the architecture of two packet 

parsers in commercial use. The first one is the parser used in Intel 

FM50 0 0/FM60 0 0 Ethernet switches. The architecture of this switch 

is presented in detail in [14] . This switch series supports 640 Gbps 

aggregate throughput. The output of this parser contains a 40-bit 

vector of flags, checksum and an 88-byte bus containing header 

fields. This parser could be thought of as a state machine whose 

each iteration consumes successive 4-byte segments of the frame. 

The operation of this parser is specified by microcode. The parser 

is comprised of 28 slices each of which represents one of the tran- 

sitions of the parser’s state machine. Each slice receives as input 

4 bytes of the frame and the status of the preceding slice. These 

two inputs are concatenated to form a 64-bit search key which is 

provided to a Ternary Content Addressable Memory (TCAM). The 

result of the match determines the action. As a result of the ac- 

tion, the state of the slice as well as the status flags are updated 

and frame data is placed on the 88-byte bus. We do not investigate 

this architecture any further for two reasons. It requires microcode 

for programming and it is not protocol independent. It is an Ether- 

net switch and the flags are specific to protocols such as Ethernet, 

IPv4 and IPv6. 

We limit our focus to the parser used in [6] . It shares similar- 

ities such as use of TCAM and Action SRAM with the parser used 

in [14] . However, it is programmed using P4 and could be used to 

parse a wider range of headers. Internally, it is a state machine. As 

with any state machine, each state is associated with a number of 

actions. A schematic of this parser is illustrated in Fig. 1 . As we 

can see, the incoming header data is subject to being shifted and 

extracted in order to form a search key. The amount of shift and 

the field to be extracted are determined by the current state of the 

parser. The search key is comprised of the extracted header field as 

well as the present state of the parser. Together, they form a 40- 

bit key which is presented to a TCAM. The outcome of the match 

determines the next state. When the next header arrives, the state 

determined in the previous cycle is the present state. The present 

state also specifies how the arrived header must be extracted and 

written to the Packet Header Vector (PHV) which is a 4096-bit vec- 

tor comprised of 8-bit, 16-bit and 32-bit entries. Since the TCAM 

can lookup 40 bits at each clock cycle and the parser operates at 

clock frequency of 1.0 GHz, it provides 40 Gbps throughput. Pro- 

grammability is achieved by filling in two separate memory units. 

The first one is a TCAM-based match table. The second table is the 

SRAM associated with the TCAM. When a search key is presented 

to the TCAM, the matching entry will point to a memory location 

in the action table so that the associated action is executed. 

Fig. 1. Programmable parser in [6] . 

One of the shortcomings of the parser presented in [6] is that 

its Match-Action nature may result in the TCAM entries being filled 

in an inefficient manner. For instance, consider parsing of IPv4 

headers. At a minimum, the IHL and the Protocol field must be 

combined to form a search key. IHL has 11 valid values (0x5-0xF). 

Assuming that the parser is programmed to recognize 8 different 

next headers, there will be 88 search keys in the TCAM for only 

8 different next headers. A more efficient architecture could solve 

this problem. 

TCAMs are powerful devices for searching. When a search key is 

presented to the device, all entries are searched in parallel. There- 

fore, the outcome of the search is ready in one clock cycle. TCAMs 

allow storing don’t care bits. As a result, they are widely used for 

Longest Prefix Matching (LPM). Due to their robust search capabil- 

ities, they have large area footprint on the chip and the power dis- 

sipation figures are relatively high. With this in mind and consid- 

ering the fact that no address lookup is required in packet parsing, 

we are motivated to consider alternative ways for determining the 

next state of the parser while still maintaining the programmabil- 

ity and protocol-independence. 

It turns out that the most energy- and area-efficient way to ac- 

complish this is to convert the state machine in question to a pro- 

cessor in which the TCAM and its functionality is replaced by a 

program control unit. Such a unit, regardless of its degree of com- 

plexity, will be far simpler and more energy-efficient than a TCAM. 

The role of such a unit is to ensure that the right instruction is 

executed when each segment of the header arrives. We should de- 

sign parsing-specific branch types for the processor under devel- 

opment. Therefore, in this paper we will go through the process of 

converting a state machine for packet parsing to a processor. The 

main changes required are as follows: 

• Converting state-specific actions to instructions, or more specif- 

ically, to operation codes for functional units 

• Converting next state determination to next instruction’s ad- 

dress resolution 

3. Program flow in packet parsing 

The aim of packet parsing is to extract the incoming header so 

that the packet processing system could perform the required pro- 

cessing on the extracted header fields. Therefore, the general rule 

is that the parser is not concerned with the content of the header. 

For instance, header fields such as destination address do not af- 

fect parsing. However, there are fields whose value have impact on 

parsing. For instance, in IPv4, the value of Internet Header Length 
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(IHL) specifies the length of the header. The parser must examine 

the value of such fields for correct operation. 

In order to be able to design an efficient program control logic, 

we must analyze the nature of program flow in packet parsing pro- 

grams. A parse program for a given header is comprised of a num- 

ber of instructions, each of which is associated with one of the 

segments of the packet header. A header segment could be of 8-, 

16- or 32-bit size. Each of the instructions specifies how its associ- 

ated header segment must be placed into the containers within 

the PHV. Moreover, if the header segment in question contains 

fields indicating size of header, size of payload or next header, it 

instructs the extraction and use of these fields in order to per- 

form branches within the parse program or branches to parse pro- 

gram for another header. One of the most common branches are 

the ones that jump to the code segment in charge of parsing the 

next header. This kind of branch occurs once the current header 

has been fully parsed. Branches are sometimes required within a 

subroutine or code segment that parses a given header. For in- 

stance, presence of some header fields are signaled by flag fields 

which need to be evaluated for correct branches. If optional fields 

are not present, the instructions in charge of parsing them must 

be skipped. Branches are sometimes required based on the value 

of non-flag header fields. For instance, in Ethernet frames, if the 

value of EtherType field is 1500 or below, it should be interpreted 

as the size of the payload in bytes. Otherwise, the value should be 

used as the basis for determining payload type. 

4. A new programmable packet parser 

In this section we present the architectural details of our novel 

programmable packet parser. Incoming packets go through a buffer 

called Incoming Packets’ Buffer before being read by the parser. 

However, the packets need not be buffered in their entirety before 

the parsing can start. The parser is indeed a streaming parser. The 

aim of the buffer is to control the size of header data that each 

instruction operates upon. Moreover, different headers have differ- 

ent sizes. For instance, minimum-sized IPv4 header is comprised 

of 20 bytes while the Ethernet frame is made up of 14 bytes. IPv4 

header could be read and operated upon in 4-byte units while for 

the Ethernet header it could be read in a sequence of two 4-byte 

and one 2-byte units. In the absence of such a buffer, header data 

must be read in the smallest unit common among different head- 

ers which is inefficient and throughput-degrading. The parser has 

two sets of output ports. The first set of ports are the ones through 

which the extracted header fields will be output to be written into 

the PHV. The second set of ports is used to forward the payload of 

the packet which is not subject to parsing to a buffer. As we could 

see in Fig. 2 , the new packet parser is comprised of Header Parser 

and Payload Forwarder. 

Fig. 2. The new packet parser. 

4.1. Header parser 

Header Parser is the entity in charge of parsing headers. It reads 

the header in 4-byte units from the Incoming Packets’ Buffer. Due 

to the presence of multiple fields in each header segment, it is 

beneficial performance-wise to employ some form of parallelism. 

We have chosen explicit parallelism as the parallelism model. It is 

a software-defined form of parallelism and suits the Software De- 

fined Networking paradigm very well. Protocol-independent net- 

working hardware is unaware of protocols and cannot dynami- 

cally schedule the instructions at run-time. Instead, all instruction 

scheduling tasks must be handled by software. Explicit parallelism 

achieves this by explicitly specifying the required parallelism. An- 

other benefit of such architectures is their simplicity and shorter 

design and verification time. Such architectures have wide instruc- 

tions. Basically, there is an instruction field for each of the pro- 

grammable functional units. The generic name for this class of pro- 

cessors is Very Long Instruction Word (VLIW). VLIW processors are 

discussed in detail in [15] . Our packet parser is based on the packet 

parsers proposed in [16-17] . 

The main components of the Header Parser are PHV Filler and 

Advanced Program Control Unit. 

4.1.1. PHV filler 

This unit places the arrived header segment into PHV entries. It 

has 16 modes of operation. Fig. 3 shows the input and output ports 

of the PHV Filler. It extracts the incoming header segment into any 

combination of 8-, 16- and 32-bit units in a way that the sum of 

the size of the units equals the size of the input header segment. 

The PHV is organized in 7 separate banks each connected to an 

output port of the PHV Filler. This separation allows writing to dif- 

ferent locations in the PHV simultaneously. These banks together 

form the entire PHV. At any given instance in time, a maximum of 

4 PHV banks receive data to be written. 

The PHV Filler has no knowledge of protocols and header struc- 

tures. It must be programmed for correct functionality. The Ad- 

vanced Program Control Unit is in charge of ensuring that this unit 

receives the correct operation code. 

4.1.2. Advanced Program Control unit (APC) 

Advanced Program Control Unit is the brain of the system. It 

provides the right instruction for a given header word. It does so 

according to the control signals that it constantly monitors as well 

as the branch type specified in the current instruction. Among the 

control signals, reset has the highest priority and it causes the APC 

Fig. 3. PHV filler. 
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Fig. 4. A series of type-length-value sub-headers. 

to jump to the initial subroutine. Internally, the APC consists of the 

following units. 

4.1.2.1. Header counter. The Header Counter is a counter that is 

initialized with the size of the header. After initialization, it will 

count downwards with arrival of each header segment. Upon ex- 

piry, it signals an interrupt to the APC at which point parsing of 

next header or forwarding of the payload must begin. 

4.1.2.2. Payload counters. There are four Payload Counters in the 

APC. They are used to hold two distinct values: 

• Size of sub-headers 
• Size of packet payload or the entire packet 

What is meant by a sub-header is a part of a header which has 

a specified size and associated data. They do not have next header 

indicator because they are part of a main header which may or 

may not have next header indicator. For instance, IPv4 options are 

optional extensions to the IPv4 header. IPv4 options except the ba- 

sic ones have a Length field specifying the size of the option. When 

a Payload Counter is used to hold the size of sub-headers, the stack 

is initialized with a return address so that once the option has 

been parsed, a return could be made to the return address at the 

top of stack. Alternatively, a Payload Counter is initialized with the 

size of the payload or entire packet if any of the headers has a field 

containing these values. The counter is initialized by the Header 

Parser but it is used by the Payload Forwarder. 

4.1.2.3. Stack. The APC contains a stack to which the address of 

the current or following instruction can be pushed. If any of the 

Payload Counters expires and the Stack is non-empty, the address 

at the top of the Stack is popped and loaded into the Program 

Counter. As mentioned above, the stack is used in conjunction with 

the Payload Counters. Assume that a header contains a number of 

sub-headers each of which has a Type identifier, a Length indica- 

tor and the associated data. This is illustrated in Fig. 4 . In the parse 

program, one of the instructions must be designated for extracting 

the Type and Length for branching to the right set of instructions 

and initializing a Payload Counter. The address of this instruction is 

pushed to the stack. Each time a sub-header is parsed, the Payload 

Counter expires and the address at the top of the stack is loaded 

into the program counter so that the next sub-header could be 

evaluated and parsed. This process continues until the main header 

is over. 

4.1.2.4. Next Header Resolve Unit (NHRU). The parser needs to know 

the next header and the address of the subroutine in charge of 

parsing the next header. For instance, in IPv4 the Protocol field in- 

dicates the next header. This unit determines the next header and 

provides the starting address of the subroutine in charge of pars- 

ing the next header. Fig. 5 illustrates the internals of this unit. As 

Fig. 5. The internal components of the NHRU. 

we can see, there is a dedicated extraction engine for this unit. It 

extracts the field containing the identifier of the next header. The 

value of this field will be compared against a set of expected values 

in parallel to resolve the next header. We call this set of expected 

values a comparand set. In our architecture, each entry within the 

comparand set is 16 bits wide and the memory storing them can 

provide 8 entries in parallel. There are 8 comparators operating in 

parallel. Associated with each comparand is its corresponding sub- 

routine address. Comparands and associated memories are hosted 

on two distinct memory units. The memory hosting associated ad- 

dresses also provides eight entries in parallel. The number of com- 

parands required for determining the next header may be larger 

than a memory word can accommodate at each address. In such a 

case, more than one memory address holds comparands. Similarly, 
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Table 1 

Control signals monitored by the APC. 

Control signal Corresponding action 

Reset Jump to the first instruction 

Expiry of header counter Jump to subroutine in charge of parsing the next header or start payload forwarding 

Expiry of any of the payload counters Jump to the address at the top of stack if stack is non-empty else start payload forwarding 

Branch type in the fetched instruction Depending on the branch type, load the program counter with the value provided by the NHRU, BC or BCE 

the associated addresses will occupy more than one memory en- 

try. For this reason, the memory interface submodule is initialized 

with the number of times to access the two memory units until 

a match is found. To avoid wasted cycles, the entries should be 

filled in decreasing order of prevalence. In other words, the most 

expected values should be placed in the first comparand memory 

location that is accessed. For instance, a comparand set for resolv- 

ing the next header of IPv4 is {0x0 0 01, 0x0 0 02, 0x0 0 06, 0x0 0 09, 

0x0 011, 0x0 029, 0x0 033, 0x0 073}. They are all standardized val- 

ues. The corresponding entry in the memory hosting associated ad- 

dresses will have starting address for parsing of ICMP, IGMP, TCP, 

IGP, UDP, IPv6, AH and L2TP headers respectively. There is also a 

default address that is provided to Next Header Resolve Unit in 

case none of the comparands results in a match. The Next Header 

Resolve Unit has status signals in-progress and ready to guide the 

APC in determining the address of the next instruction. 

4.1.2.5. Branch Catalyst (BC). Some headers have optional fields 

whose presence is indicated by flag bits. A very good example of 

such a header is that of Generic Routing Encapsulation (GRE). This 

header has three flag bits, each signaling the presence of its cor- 

responding field. Therefore, there are 8 possibilities that need to 

be evaluated without degrading throughput. The purpose of the 

Branch Catalyst is to speed up branching by extracting the flag bits 

using a dedicated extraction engine and comparing the extracted 

flag(s) against all valid values at once to resolve the branch in a 

real-time manner. Architecturally, it is similar to the Next Header 

Resolve Unit, except that only one access is made to the memory 

units hosting comparands and associated memory addresses. 

4.1.2.6. Branch Condition Evaluator (BCE). This unit extracts the 

programmer-specified segment of header using its built-in extrac- 

tion engine and checks whether it evaluates to true according to 

the programmer-specified condition and reference value. The eval- 

uation result is provided to the APC to resolve the branches. 

The control signals based on which the APC operates are out- 

lined in decreasing order of priority in Table 1 . 

Fig. 6 illustrates a high-level view of the internals of the Header 

Parser. 

Fig. 6. Internals of the explicitly parallel header parser. 
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Fig. 7. Instruction pipeline of the parser. 

4.2. Payload forwarder 

The Payload Forwarder is the unit in charge of forwarding the 

payload of the packet into a buffer to which modified header 

fields will be written once the processing of the packet is done. 

The Payload Forwarder can read the Incoming Packets’ Buffer in 

32-Byte units which is 8 times wider than the widest unit the 

Header Parser could read. Payload Forwarding is more straightfor- 

ward than header parsing. It uses the value of the Payload Counter 

which contains the remaining size of the payload to determine the 

size of data it requests from the buffer until the Payload Counter 

expires. 

5. Pipelined organization 

For operation at 2.0 GHz frequency, fetching and execution of 

instructions occur separately and in a pipelined manner. As each 

functional unit has its own field within the instruction, there is lit- 

tle need for instruction decoding. The functional units within the 

parser perform the execution stage. As we saw in Fig. 6 , the inter- 

nals of the packet parser are also pipelined. Therefore, the execu- 

tion stage is made up of the following single-cycle stages. 

5.1. Fetch header (FH) 

At this stage, as much of the header as specified by the instruc- 

tion is retrieved for operations at the upcoming stages. 

5.2. Extraction (EX) 

At this stage, the retrieved header segment is subject to extrac- 

tion by extraction engines and PHV Filler. 

5.3. Writeback (WB) 

At this stage the extracted fields are written to the PHV. 

Resolving the branches occurs at the beginning of the execution 

stage, i.e., at the FH stage. Branches have a penalty of one cycle. 

Fig. 7 illustrates the instruction pipeline. 

6. Instruction format 

The instructions are 96 bits wide and comprised of 21 fields. 

Table 2 specifies the instruction fields, their width and use. 

The instructions do not need decoding and can be fed to the 

packet parser once they have been fetched. A No Operation (NOP) 

instruction has value of zero for all extraction mode fields and the 

size of next header segment field. 

7. Parsing example 

7.1. Parsing Ethernet 

In this section we illustrate how a parsing subroutine written 

in P4 could be mapped to and executed on our parser. Figs. 8 and 
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Table 2 

Instruction fields. 

Instruction field Width (bits) Use 

Branch type 2 Specifies the type of branch 

Branch condition 3 Specifies the branch condition for conditional branch instructions 

Extraction mode_0 5 Specifies the extraction mode for the extraction engine dedicated to Next Header Resolve Unit 

Extraction mode_1 5 Specifies the extraction mode for the extraction engine reserved for Branch Catalyst Unit 

Extraction mode_2 5 Specifies the extraction mode for the extraction engine dedicated to Branch Condition Evaluator 

Extraction mode_3 5 Specifies the extraction mode for the extraction engine reserved for Header Counter 

Extraction mode_4 5 Specifies the extraction mode for the extraction engine designated for Payload Counters 

Address_0 6 Next Header Comparands’ Starting Address 

Next header resolve 

iterations 

7 Specifies the number of consecutive memory locations the Next Header Resolve unit may access 

starting from the initial address until a match is found 

Address_1 6 Branch Catalyst Comparands’ Address 

Address_2 6 Header Counter Target Value Address 

Address_3 6 Payload Counters’ Target Value Address 

Header segment size 2 Specifies the size of header segment to operate on. Valid sizes are 0 byte, one byte, two bytes 

and 4bytes 

PHV filler operation 

mode 

4 Determines how the incoming header should be broken down into fields. 

PHV_address_0 4 The location of the extracted field in the first bank containing 8-bit entries 

PHV_address_1 4 The location of the extracted field in the second bank containing 8-bit entries 

PHV_address_2 6 The location of the extracted field in the third bank containing 8-bit entries, in the first bank 

containing 16-bit entries as well as in the bank containing 32-bit entries 

PHV_address_3 6 The location of the extracted field in the fourth bank containing 8-bit entries as well as in the 

second bank containing 16-bit entries 

Stack data in select 1 Selects whether the value to be pushed into the stack is the address of the current instruction 

or the following instruction 

Stack push 1 Instructs a push operation to the stack 

Unused 7 Currently unused 

Fig. 8. Header defintion for Ethernet. 

Fig. 9 illustrate the Ethernet header and parser definition in P4 re- 

spectively. 

As we can see, the subroutine for parsing Ethernet, has the 

statement extract, which indicates that fields of this header must 

be extracted. On our parser, parsing of Ethernet is done using 4 

instructions as shown in Fig. 10 . The P4 source code also specifies 

selecting the parsing function for the next header based on the 

value of Ethertype field. 

I 0 reads 4 bytes from the buffer at t 1 and writes it to a 4-byte 

container within the PHV at t 3 . These 4 bytes are part of the 6-byte 

Destination MAC address. The next instruction, I 1 also reads 4bytes 

but writes them to two distinct 2-byte containers because the first 

2 bytes belong to the Destination MAC address while the second 2 

bytes belong to the Source MAC Address. The third instruction, I 2 , 

reads the lower 4 bytes of the Source MAC Address and writes it 

to a 4-byte container. By now, contents of Destination and Source 

Address fields are in the PHV. Instruction I 3 whose branch type in- 

dicates a jump to the address provided by the NHRU, reads the 2- 

byte Ethertype field at t 4 , extracts it at t 5 for writing to the PHV. At 

the same time, the field extractor in the NHRU extracts it for using 

it to find out the next header. At the same time, the memory ad- 

dress containing the comparands for Ethernet’s next header is pro- 

vided to the memory hosting the values. At t 6 , Ethertype is written 

to a 2-byte container within the PHV. In parallel, Ethertype value is 

Fig. 9. Source code for parsing Ethernet header in P4 language. 

compared with the values at the memory address provided in the 

previous clock cycle. These values are 0x8100, 0x8847, 0x0800 and 

0x86DD. They have been loaded into the memory in advance. At 

t 7 , the comparison result is evaluated and the instruction address 

associated with the matching entry is selected. For instance, if the 

Ethertype had value of 0x86DD, the address of the subroutine con- 

taining the instructions for parsing IPv6 header is selected. At t 8 , 

the address selected in the previous clock cycle is loaded into the 

program counter. 

7.2. Parsing IPv4 header 

Fig. 11 illustrates the definition of IPv4 header in P4 language. 

Parsing of IPv4 header is more complex than parsing Ethernet 

header because its length is variable. The fixed part contains five 
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Fig. 10. Instructions for parsing the Ethernet header. 

Fig. 11. Definition of IPv4 header in P4. 

32-bit words. Up to ten 32-bit words may exist after the fixed 

words. 

Fig. 12 illustrates the pipeline stages of the executed instruc- 

tions for parsing minimum-sized IPv4 header. At t 2 , the first in- 

struction is in the Extract stage of the instruction pipeline. Paral- 

lel to the extraction performed by the PHV Filler, the extraction 

engine in the Header Counter extracts the IHL field and the ex- 

traction engine in the Payload Counter extracts Total Length. At t 3 , 

the extraction performed by the PHV Filler is written to the PHV. 

Furthermore, both Header Counter and Payload Counter are initial- 

ized. Therefore, starting from t 4 , their value will be decremented 

based on the size of the header segment read from the buffer at 

each clock cycle. Again, at t 4 , header fields in the second word of 

the header are written to the PHV. At the same time, the value of 

the Protocol field is extracted by the NHRU in order to start resolv- 

ing the next header. The third, fourth and fifth header words are 

written at t 5 , t 6 and t 7 respectively. Execution of I 4 causes expiry 

of the Header Counter. As a result, at t 8 , the first instruction from 

the subroutine for parsing the next header must be fetched. 

Table 3 

Time required for parsing of different headers. 

Header Shortest parsing time (cycles) Longest parsing time (cycles) 

IPv4 8 18 

IPv6 13 13 

MPLS 4 4 

Ethernet 7 7 

TCP 8 18 

VxLAN 5 5 

GRE 4 12 

L2TP 10 13 

8. Experimental results and discussion 

In this section, we evaluate the performance of the parser in 

terms of how well it could parse individual headers as well as 

stacks of headers when operating at a clock frequency of 2.0 GHz. 

After this evaluation, we present the implementation details of the 

parser. 

8.1. Parsing individual headers 

We have chosen a number of commonly used protocols for this 

purpose. Table 3 contains the time taken to parse the chosen head- 

ers. 

The difference in parsing time for some headers is due to vari- 

able length of some headers such as GRE. For fixed headers such 

as IPv6, parsing time is constant. There are interesting observations 

to make from Table 3 . For instance, maximum-sized L2TP header 

contains 128 bits and it takes 13 cycles to fully parse this header. 

This is the same duration required for parsing of IPv6 header that 

consists of 320 bits. The reason for this is the fixed nature of IPv6 

header. L2TP header is a variable-sized header in which existence 

of some fields are indicated by flags located in the first 16 bits 

of the header. The parser must extract these flags and use them 

to make the right branch in the program. Fig. 13 illustrates the 

instruction pipeline diagram for parsing the minimum-sized L2TP 

header. At time instance t 3 the Branch Catalyst unit starts compar- 

ing the flags with programmer-specified values. Comparisons are 

Fig. 12. Instruction pipeline diagram for parsing IPv4 header. 
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Fig. 13. Instruction pipeline diagram for parsing L2TP header. 

Fig. 14. Instruction pipeline diagram for parsing Ethernet and branching to its next header. 

performed in parallel in order to minimize wasted cycles. At t 6 the 

correct instruction is fetched. 

8.2. Parsing header stacks 

Next, we consider a number of header stacks. We have chosen 

the following header stacks: 

1-Ethernet-IPv4-TCP 

2-Ethernet-IPv6-TCP 

3-Ethernet-IPv6-ICMPv6 (Destination unreachable) 

4-Ethernet-MPLS (three stacks)-IPv6-UDP 

The time required for parsing these stacks is presented in 

Table 4 . Workload number 4 results in the smallest throughput 

value which is slightly over 27 Gbps. 

Similar to the case of parsing individual headers, we can ob- 

serve variations in throughput. Fig. 14 illustrates the instruction 

pipeline diagram for parsing the Ethernet header and a potential 

next header. 

The next header indicator is located in the last 16 bits of Ether- 

net header. At t 4 the instruction in FH stage contains branch type 

of next header, therefore the fetched instruction has to be flushed. 

At t 6 the process of finding the next header begins. At t 9 the in- 

struction in the subroutine in charge of parsing the next header 

is fetched. Conversely, headers such as that of IPv6 have different 

characteristics. Fig. 15 illustrates the instruction pipeline diagram 

for parsing IPv6 and branching to the subroutine in charge of pars- 

ing the header following IPv6 header. As can be seen, there is only 

one wasted cycle. The reason for this is that the Next Header field 

is located at the second word of the IPv6 header and by the time 

the header is entirely parsed, the address of next header subrou- 

tine has been resolved. 

Table 4 

Time required for parsing of four different header stacks. 

Protocol stack Total size of headers (bits) Parsing time (cycles) 

1 432 25 

2 592 28 

3 656 35 

4 592 43 

Table 5 

Area results for different components of the parser. 

Component Area (μm 

2 ) Area (Gate count) 

Advanced program control 342 698 

Header parser 3800 7761 

Payload forwarder 1393 2845 

Parameter memories 30,864 63,002 

Packet Header Vector 15,976 32,631 

Instruction memory 93,052 190,057 

Total area 145,427 358,838 

Table 6 

Power dissipation of different components of the parser. 

Component Power dissipation (mW) 

Advanced program control 1 

Header parser 9 

Payload forwarder 4 

Parameter memories 90 

Packet Header Vector 54 

Instruction memory 291 

Total power dissipation 449 

8.3. Implementation details 

The architecture is implemented in VHDL. We have synthe- 

sized it on 28 nm UTBB FD-SOI technology in worst-case operat- 

ing conditions (1.0 V, ss, 125 °C) using Synopsys Design Compiler J- 

2014.09-SP4. Power analysis was also performed in worst-case op- 

erating conditions at the supply voltage of 1.0 V (ss, 125 °C). We 

have verified that all timing constraints are met for operation at 

the frequency of 2.0 GHz. 

Tables 5 and 6 present area and power dissipation results for 

the components comprising one parser instance. The total area 

consumed by 16 parser instances in the RMT architecture is 1.7 

mm 

2 in 28 nm ASIC technology. 1 Total gate count is 5.6 M of which 

over 1 M is contributed by the TCAM [6] . 16 parser instances sus- 

tain aggregate throughput of 640 Gbps. We must now determine 

how many instances of the new programmable parser are required 

for sustaining the aggregate throughput of 640 Gbps. A distinctive 

feature of this parser is that it provides variable latency when 

parsing different headers. Let’s take the most demanding work- 

load from Table 4 in which parsing of the headers in the last 

1 Source: Private correspondence with designers of RMT parser. 
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Fig. 15. Instruction pipeline diagram for parsing IPv6 and branching to its next header. 

workload takes 43 cycles which is roughly equal to 22 nanosec- 

onds. This translates to a throughput of about 27 Gbps which is 

the least achievable throughput value compared to the other work- 

loads. This throughput figure is more than enough for the aggre- 

gate traffic from two 10 Gbps ports. Therefore, in a switch with 

64 10 Gbps ports, 32 parser instances are enough. This analysis is 

based on extreme conditions but in order to provide a guaranteed 

lower bound on the throughput, we do not consider more opti- 

mistic workloads. 

When calculating the total area of multiple instances of our 

parser, we must bear in mind that not all the components need 

to be replicated. The parameter memories and instruction memory 

will be shared by all the parser instances. Each parser instance will 

have independent access. In our architecture, the TCAM is replaced 

by the APC. Since it uses some of the functional units required for 

parsing, we take the sum of the area of both in order to com- 

pare the resulting value with that of TCAMs. In our architecture, 

the total area of units in charge of determining the next state is 

163,408 μm 

2 which translates to 334 K gates. 2 This is 66% reduc- 

tion in area of next state resolving logic. Total area of parsers in 

this organization is 0.8 mm 

2 or 1.6 M gates. Compared to 1.7 mm 

2 , 

this is a 53% reduction in area. If we use the area required by 

the parser instances in RMT, we could fit 128 parser instances. To- 

gether, they support aggregate throughput of 3.4 Terabit per sec- 

ond. 

Since there is no mention of RMT parser’s power dissipation fig- 

ure, it is not possible to perform a precise comparison for power 

dissipation. However, due to large difference in area and elimina- 

tion of TCAM, the power savings must also be noticeable. 

9. Conclusion and future work 

In this paper we presented a novel programmable packet parser 

that does not rely on a TCAM to provide the required function- 

ality. We designed all the functional units required for protocol- 

independent packet parsing. Our design of a packet parsing- 

oriented program control unit resulted in 53% saving in area com- 

pared to the parser used in the RMT architecture. 

We saw that different headers exhibit different behaviors and 

affect the throughput of the parser differently. For some headers, 

a protocol-independent parser cannot provide the same through- 

2 The gate count is obtained by dividing the area by the area of the smallest 

NAND2 gate in the deployed 28 nm ASIC library. 

put as a dedicated parser and that is the cost of programmability. 

However, the benefits of programmability and protocol indepen- 

dence outweigh the occasional wasted cycles. Moreover, consider- 

ing the fact that packet processing resources such as lookup tables 

are shared among packets arriving from different ports, and that 

packets have to wait for their turn to use shared resources, there 

is no point in maintaining maximum possible throughput in packet 

parsing as there will be cycles in which packets have to wait dur- 

ing packet processing. 

As for future work, we would like to investigate the through- 

put gain achievable by not binding the parser instances to ports 

and instead assigning the arrived packet to a free packet parser in- 

stance. In addition, the decoupling of header parsing and payload 

forwarding logic allows overlapping of payload forwarding with 

parsing of a new packet’s header. This results in more efficient 

use of system resources and improvement in throughput. The exact 

amount of improvement is dependent on traffic patterns and must 

be investigated. Another area which could further be explored is 

enhancing the throughput of a single parser instance. This is pos- 

sible by running the parser at higher frequencies. In order to scale 

the frequency noticeably further, we must optimize the code and 

increase the depth of the instruction pipeline as well as the regis- 

ters in the functional units. Another way to increase the through- 

put is to read header words in units larger than 32 bits. 
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void process_ipv4_packet(ipv4_packet *p) 
{ 
 verify_ipv4_packet(p); 
 check_TTL(p -> TTL); 
 update_checksum(p); 
 lookup_destination_address(p -> 
Destination_Address); 
 check_DF(p -> flags); 
} 
void verify_ipv4_packet(ipv4_packet *p) 
{ 
 verify_version(p); 
 verify_IHL(p); 
 verify_Total_Length(p); 
 verify_checksum(p);  
} 
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void check_TTL(ipv4_packet *p) 
{ 
 if(p -> TTL == 0) 
 { 
                       insert_ICMPv4_header(BAD_HEADER); 
                       drop(p); 
 } 
} 
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ABSTRACT Computer networks are in the Software Defined Networking (SDN) and Network Function

Virtualization (NFV) era. SDN brings a whole new set of flexibility and possibilities into the network. The

data plane of forwarding devices can be programmed to provide functionality for any protocol, and to perform

novel network testing, diagnostics, and troubleshooting. One of themost dominant hardware architectures for

implementing the programmable data plane is the Reconfigurable Match Tables (RMT) architecture. RMT’s

innovative programmable architecture enables support of novel networking protocols. However, there are

certain shortcomings associated with its architecture that limit its scalability and lead to an unnecessarily

complex architecture. In this paper, we present the details of an alternative packet parser and Match-

Action pipeline. The parser sustains tenfold throughput at an area increase of only 32 percent. The pipeline

supports unlimited combination of tables at minimum possible cost and provides a new level of flexibility

to programmable Match-Action packet processing by allowing custom depth for actions. In addition, it has

more advanced field-referencing mechanisms. Despite these architectural enhancements, it has 31 percent

less area compared to RMT architecture.

INDEX TERMS Software defined networking, programmable packet processing, low-area hardware,

programmable data plane.

I. INTRODUCTION
Computer and communication networks have been subjected

to a significant paradigm change in the last decade, leading

to the emergence and subsequent consolidation of network

programmability solutions and technologies, such as Soft-

ware Defined Networking (SDN) [1] and programmable data

plane [2]. In particular, the innovation introduced by SDN

is represented by the separation of the control plane from

the data plane, which have been traditionally co-existent and
tightly coupled within network forwarding devices, such as

switches and routers. Due to the increasing complexity of

modern networks and the high level of flexibility required

by newly emerging services, this tight coupling caused sig-

nificant complications in managing network infrastructures,

The associate editor coordinating the review of this manuscript and

approving it for publication was Yulei Wu .

forcing operators and service providers to adopt solutions that

were strictly dependent on the features offered by specific

equipment vendors [3].

With the separation between control and data planes, SDN-

enabled devices can specialize on how packet processing

and forwarding operations can be efficiently executed in the

data plane, whereas the decision on what kind of processing

must be performed and where to forward each packet (or

flow of packets) is left to a logically centralized component

located in the control plane, the so-called SDN controller.
This approach opens a completely new set of possibilities

to make the network truly programmable: once an open and

standard interface has been defined between control and

data planes, the SDN controller can be used as a means

to instruct network devices on how to act on the pack-

ets in the data plane, independently of any vendor-specific

implementation.
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The most noteworthy and widespread SDN control plane

solution is represented by the OpenFlow protocol [4], which

allows SDN applications to abstract the network infrastruc-

ture and program the behavior of the underlying set of for-

warding nodes in terms of Match-Action packet processing.

A set of matching rules (including wildcards) is applied to

layer-2 to layer-4 header fields in order to specify packet

flows with arbitrary levels of granularity. Then, each packet

of a given flow is treated according to the actions spec-

ified in the corresponding matching rule. This approach

simplifies internal switch operations and, at the same time,

allows unprecedented flexibility in traffic control and steering

capability.

However, the programmability features offered by Open-

Flow at the control plane are limited by the dependence on a

set of pre-defined protocol headers and on a static processing

pipeline inside the switches. Therefore, a step forward is

represented by the inception of programmable data plane

approaches, such as protocol-oblivious forwarding [5] and

the P4 language [6]. More specifically, the latter allows to

dynamically reconfigure the data plane processing system at

deployment time, making it protocol independent as well as

target independent, thus giving programmers the possibility

to describe the packet-processing pipeline in an abstract way

independent of the specific hardware solution adopted.

In this scenario, the SDN concept has become a key

enabler also for 5G networks where radio, transport and cloud

domains cooperate to offer ubiquitous connectivity services

to people and objects [7]. To meet the performance require-

ments of an unpredictable amount of different applications,

flexible and scalable architectures and functionalities are

introduced in 5G deployments. In addition, the trend is to

consider commercially available packet-based solutions in

the transport network, e.g., the Ethernet standard. Recently,

the new concept of flexible Radio Access Network (RAN)

has been considered that, coupled with Network Function

Virtualization (NFV) and SDN control capability, allows

to configure the network with different functional splits in

transport network nodes [8]. This solution is expected to be

dynamic enough to face with virtual resource instantiation

needs, the so-called network slices, and can require different

packet formats as specified by the relevant standards [9]–

[11]. In this context, the possibility to have a programmable

packet processing pipeline is crucial to implement high speed

flexible forwarding. Reconfigurations may be needed when a

different functional split is required to meet changing slice

requirements.

As a result of these efforts to make the network truly

programmable, both in the control and the data plane,

there is a clear need for flexible and protocol-independent

hardware-based packet processing systems. One of the ref-

erence architectures based on the Match-Action principle is

represented by the ReconfigurableMatch Tables (RMT) [12],

also adopted by commercial switch chips such as Barefoot

Tofino [13]. However, as we will see in section 2, there are

a number of limitations associated with this architecture. As

a result of these limitations, the architecture is unnecessarily

complex.

From the perspective of hardware architecture, the pro-

grammable data plane is still in its infancy. In this paper,

we present a programmable packet parser and a flexible

packet processing pipeline. The parser sustains aggregate

throughput of 6.4 Tbps which is 10 times that of the parser

in RMT architecture, but the area increase is only 32%. The

packet processing pipeline allows unlimited combination of

lookup table resources with the minimum possible hardware

costs. As a result of this support for unlimited table combi-

nations, the resources are more efficiently used. In addition,

it allows the action depth to be freely determined by the

programmer. We achieve area reduction of up to 44% with

respect to the latest Match-Action architectures.

The remainder of the paper is organized as follows.

In section 2, we discuss related work and main motivations

behind our approach. The main contributions of this work,

a new packet parser and a flexible packet processing pipeline,

are discussed in sections 3 and 4 respectively. The contribu-

tions are evaluated in section 5, followed by a conclusion on

this work.

II. RELATED WORK AND MOTIVATIONS
A. RELATED WORK
The first attempt to separate IP control and forwarding func-

tions was made within the Internet Engineering Task Force

(IETF) Network Working Group and resulted in the For-

warding and Control Element Separation (ForCES) archi-

tecture [14], [15]. These documents define the framework,

including the primary functions of a forwarding element and

the communication requirements between forwarding and

control elements. Then, the Ethane network architecture was

introduced, in which the traffic flow management is handled

by a centralized controller [16]. An Ethane-capable switch

establishes a connection with the controller that contains the

overall image of the network. The switches do not need to dis-

cover and locally store the network topology, which greatly

reduces the state that must be maintained by the switches.

The next major breakthrough toward the SDN approach

as we know it today was the introduction of OpenFlow as a

standard protocol for communication between the data plane

and the control plane [4]. The early motivation of running

experimental protocols on real network infrastructures led

to the availability of commercial Ethernet switches enabled

to OpenFlow and implementing the Match-Action packet

processing dictated by that control plane protocol. More

specifically, all OpenFlow switch operations are based on

a set of tables against which cross-layer packet headers are

matched, and each table entry specifies a given action or set

of actions to be applied to each matching packet. Typical

actions include forwarding the packet to one or multiple out-

put ports, dropping the packet, rewriting some of the header

fields, or sending the packet to the OpenFlow controller for

further analysis and decision making.
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The idea of a logically centralized controller, which is the

pivotal concept in SDN, simplifies the internal operations to

be performed by network nodes. It also encourages the idea of

making them protocol-independent, so that by installing any

set of rules in the tables inside the switches, their behavior can

be programmed accordingly. The term Protocol-Oblivious

Forwarding was coined, and a generic high-level instruction

set was presented in [5]. In a similar attempt, but with a

lower layer of abstraction, an instruction set was presented

in [17] in order to act as an intermediate layer between many

packet processing hardware architectures and packet process-

ing software. In other words, it acts as a target-independent

machine model.

On the programmable data plane level, the P4 language

was introduced in [6]. In P4, the problem of process-

ing packets is formulated in the form of Match-Action

processing. However, unlike OpenFlow, P4 abstracts the

switch as a programmable parser followed by a protocol-

independent Match-Action pipeline. Contrary to the primi-

tive and protocol-specific actions defined in OpenFlow, the

actions in P4 are not tied to any specific protocol. P4 also

allows definition of compound actions by combining the

primitive actions. It should be noted that OpenFlow and

P4 are meant for different purposes, namely communicat-

ing with the central controller and programming the data

plane respectively, but since both define actions and a similar

abstraction of the switch, we made a comparison of the two

here.

Custom architectures with varying levels of programma-

bility for processing of network packets gained popularity

both in research and industry in late 1990s and early 2000s.

In those days, these devices were called protocol processors

and later on network processors. The major hurdle for the

widespread adoption of these devices was the complex pro-

cedure for programming of some of these devices as some

of them required microcode-style programming. In addition,

each vendor had its proprietary means of programming their

devices. For this reason, network processors failed to gain

widespread popularity.

As a result of research efforts on separation of for-

warding and control plane of networking devices that later

on led to introduction of Software Defined Networking

(SDN), the need for hardware-based packet processing sys-

tems re-emerged. However, this time with special focus on

protocol-independence and programmability. The new term

was programmable data plane. Since the debut of the concept,

there have not been many architectures for this purpose.

Themost dominant architecturewas first introduced in [12]

and [18]. It is based on the Match-Action principle, meaning

that programmer-specified header fields are used to form a

search key which is provided to a match table. The outcome

of the match determines the action, which is the required pro-

cessing on the packet. In [19], high-speed packet processing

is addressed in both software and hardware domains. On the

software side, it provides guidelines for arranging packet

processing programs for high-throughput execution. On the

hardware side, it provides alternative architectures for action

units of Match-Action switches. The work in [20] decouples

the sets of match tables from action stages and replaces

the action stages of RMT with packet processors. Due to

this disaggregation, the architecture is called Disaggregated

RMT (dRMT). Each dRMT processor operates in run-to-

completion mode. Once a packet is sent to a dRMT processor,

it remains there until the entire program is executed. There-

fore, a single dRMT processor is comparable to the entire

RMT pipeline in terms of functionality.

Commercial programmable switch chips have replaced

fixed-function chips. Examples of these devices includeBare-

foot Tofino [21] and Tofino 2 [22], Broadcom Trident 3 [23],

Tomahawk 3 [24], Tomahawk 4 [25], and Innovium Teralynx

[26]. An interesting observation is that most of these architec-

tures are similar in that they contain a programmable packet

parser followed by a flexible pipeline with a number of stages

and tables. The difference is in the supported throughput,

supported workloads, size of tables, programmability, and

flexibility.

In the meantime, numerous solutions based on Field Pro-

grammable Gate Array (FPGA) have appeared. FPGAs run at

considerably lower frequencies compared to ASICs. In order

to sustain high throughputs, the FPGA is configured to imple-

ment protocol-dependent hardware for the workload that

is to be run on the device. This means that the architec-

ture contains protocol-specific state. This is in contrast to

architectures such as RMT that contain no protocol-specific

state and achieve functionality for different protocols via

purely software means. Another issue with using FPGAs

for packet processing is that Ternary Content Addressable

Memory (TCAM) has to be emulated through the embedded

memory blocks.With protocol-specific hardware architecture

and ultrawide datapath, FPGAs achieve raw throughput in the

range of a few hundred Gbps for packet parsing as in [27]. For

packet processing, the achievable throughput is in the range

of 100 Gbps [28], [29]. For Terabit-level throughput, ASICs

are the only solution. Therefore, FPGA-based solutions are

not within the scope of this paper.

1) A CLOSER LOOK AT MATCH-ACTION ARCHITECTURES
The Protocol Independent Switch Architecture (PISA) has its

roots in the RMT architecture that first appeared in [12]. It is

currently the underlying basis of commercial products such

as Barefoot Tofino and Tofino 2. According to [30], Barefoot

Tofino contains 4 pipelines, each of which is based on RMT.

In this paper we refer to RMT and PISA interchangeably

despite potential differences. The two main components of

PISA are the parser instances and the pipeline. The parsers

extract a part of the arrived header and append a tag to it to

form a search key which is presented to a TCAM. The out-

come of this matching determines the action to be performed.

The main action for the parser is to write the header fields

to a 4-Kb register called Packet Header Vector (PHV). The

pipeline consists of 32 Match-Action stages through which

the PHV traverses. Each stage starts by generating a search
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FIGURE 1. Delaying Match and Action as a result of dependencies.

key and providing it to the exact and ternary match tables.

The outcome of the match then determines the instructions

that must be executed by the action engines.

Depending on the dependency in the packet processing

program running on the architecture, it is possible that match-

ing in the next stage begins while action execution in the

current stage is still ongoing, or alternatively, the next stage

has to wait until the current action execution is entirely over

until matching in the next stage begins. Match dependencies

occur when a field under modification in a stage must be

used for forming the search key in the subsequent stage.

Action dependencies occur when field being modified in an

action stage needs to be used as input for action in subsequent

action stage. Fig. 1 illustrates the timing of Match-Action

operations in two consecutive Match-Action stages in case of

dependencies. It should be noted that both match and action

operations take a number of cycles each.

Each of the Match-Action stages contains 16 TCAM

blocks for ternary matching. In addition, there are 106 SRAM

blocks that can be configured for exact match, action, and

statistics purposes. The dimensions of TCAMs and SRAMs

are 2K × 40 and 1K × 112 bits respectively. The action

subunit contains 224 action engines, one for each PHV entry.

Each Match-Action stage is referred to as a physical stage

because it directly corresponds to its physical implemen-

tation. Sometimes, the match capacity of a physical stage

is not sufficient for the required use case. In these cases,

the capacity from multiple physical stage can be combined.

The combined stages are referred to as a logical stage. For

instance, it is possible to combine all 32 Match-Action stages

into one logical stage in order to store 1 million IPv4 prefixes

in all the TCAMs available on the chip.

dRMT [20] is also a Match-Action architecture but instead

of being a pipeline, it is a processor or in other words, a

run-to-completion architecture. As a result, each processor

must have the entire packet processing program in its instruc-

tion memory. The overall dRMT architecture consists of 32

Match-Action processors each of which contains 32 action

engines. As opposed to the RMT architecture in which a

set of lookup tables are assigned to stages, in dRMT, sets

of tables called clusters can be selected to be assigned to

a given processor by means of crossbars. As such dRMT

has disaggregated the packet processing units and the lookup

tables.

One of the major design choices for hardware-based packet

processing systems is that of pipeline versus processor.

We believe that a pipelined architecture such as that of RMT

is more suited to packet processing for a number of reasons:

Packets arrive at high speeds and must each undergo a set

of steps. A pipeline achieves this inherently. If a pipeline is

deep enough, the extra processing required by a packet can

be accommodated without hurting throughput. In a run-to-

completion processor, if a packet requires extra processing,

the processor cannot accept a new packet at the designated

interval unless it supports a large number of independent

threads to avoid falling behind. The high-end commercial

products we referred to earlier use pipelined architecture.

Second, the RMT architecture already has quite a lot of

crossbars. dRMT architecture goes even further by allowing

table clusters to be assigned to the processors. Crossbars

contribute to the area and power dissipation of the chip.

Last but not least, the run-to-completion nature of dRMT

limits the number of action engines and the depth of the

instruction memory attached to them. Because the packet

remains assigned to a dRMT processor until all required

processing is done, the instruction memory in each dRMT

processor contains the whole program, while in a pipelined

architecture, the program is divided into instruction memory

in each stage. In order to increase the supported throughput,

multiple dRMT processors are instantiated. The contents of

the instruction memory of different processor instances is

identical. Therefore, we must limit the number of Arithmetic

Logic Unit (ALU) instances to limit the overall memory size

across all processor instances.

B. MOTIVATION
Themotivation behind this work is overcoming the shortcom-

ings in the PISA architecture. These shortcomings result in

a high area overhead and inefficient use of resources such

as match tables and instruction memories. We explore these

shortcomings in this section.

1) SHORTCOMINGS OF CURRENT MATCH-ACTION
ARCHITECTURES
Based on the discussion above, we maintain our main focus

on the RMT architecture. These shortcomings are as follows:

Use of TCAMs for packet parsing: TCAMs are powerful

devices for matching. They can search all their entries in

parallel and provide the matching entries in one clock cycle.

The capability to store don’t care values and the availability

of a built-in priority encoder makes them perfect for wildcard

and longest prefix matching (LPM). However, wire-speed

packet parsing could be performed more area- and power-

efficiently without using TCAMs.

Lack of action depth: In the PISA architecture, there is only

one stage of action execution after each match stage. Actions

such as IPv4 checksum verification and calculation require a

number of action stages. In order to fulfill such criteria in the

PISA architecture, match tables in the next match stage must

be used for the same purpose, which is wasteful. An improved

PISA must have configurable action depth. In other words,

what is desired is Match + ∑
Action.
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Match-based program control: PISA architecture strictly

uses matching for program control. For instance, in order to

check if the Hop Limit of an IPv6 packet is zero, it matches it

against the entries of a table. This strict use of lookup tables

for program control wastes match entries. As we will see,

there are alternative means for program control whereas for

address lookup there is no other alternative other than using

TCAM- or SRAM-based tables.

Limited field referencing: PISA architecture allows only

directly specified header fields to be used as source

operands or the destination. Some protocols require more

advanced means of addressing the header fields. For instance,

the field for reading or writing could be specified by another

header field. Using a header field that acts like a pointer as a

search key to obtain an instruction that directly specifies the

right field leads to inefficient filling of instruction memory

entries.

High cost of table combination: The PISA architecture

supports table combination for making wider and/or deeper

tables in each match stage. Hardware support for table com-

bination can be very complex. Due to the large number of

combinations and complexity of combining states, an area-

efficient way to provide hardware support for table com-

binations is allowing groups of 2n tables to be combined.

In such as system, if, for instance, a given logical table has the

width of 120 bits and depth of no more than 6144, the actual

table will be 160 bits wide and has depth of 8192. This

table is 1.7 times larger than the required table. Providing

hardware support for any combination is very expensive due

to the number of possible combinations. It is not clear to

what degree hardware support for combining tables has been

provided in PISA. In case of limited support, tables will be

assigned inefficiently, and capacity will be lost. Conversely,

if full support is provided, the hardware cost is very high.

In order to increase the utilization of tables, a tag can be

appended to the search key so that the table could be reused

for as many purposes as there are different combinations

of the tag value. If there are not enough tables remaining

for the lookup requirements of a packet, the packet must

be recirculated to access the tables that it had surpassed

in the first round of traversing the pipeline. Recirculation

cuts throughput of the pipeline by half. In addition, once a

packet is about to be recirculated, it has to compete with

other packets that try to enter the pipeline. However, if we

could assign no more than the required number of tables for

building a logical table, tables would be assigned in a far

more efficient manner. In addition, this gives the possibility

to provide narrower physical tables. This results in significant

savings in area.

2) SIGNIFICANCE OF LOW-AREA MATCH-ACTION PIPELINES
Low-area architectures enable lower fabrication costs and

increase production yield. When it comes to packet process-

ing architectures, low area becomes critical because these

architectures contain substantial amount of memory for exact

and ternary match tables. Savings in area allow integrating

more on-chip memories for match tables, thereby increasing

the match capacity, which is one of the metrics for evaluating

switch chips.

When it comes to Terabit-level packet processing, the issue

of low area becomes far more crucial because pipeline

instances must be replicated in order to sustain through-

put. For instance, Barefoot Tofino contains four independent

pipelines [30]. Each packet processing pipeline in a high-end

programmable switch contains hundreds of memory blocks.

Area optimizations ensure that physical constraints are met

and that the pipeline instances can fit into the chip. Therefore,

in the architecture presented in this paper, low-area design is

a key goal.

III. A NEW PROGRAMMABLE PACKET PARSER
A packet is made up of a number of headers. The parser

starts with the first header and finds its way into subsequent

headers. How deep the parser digs into the packet depends on

the number of headers present in the packet and functionality

of the parser. A network switch is concerned with layer-

2 headers, whereas a router or layer-3 switch uses the contents

of layer-3 headers as well. Therefore, the functionality of the

device in which the parser is deployed defines how deep the

headersmust be parsed. Layer-4 systems such as TCPOffload

Engines require the contents of the layer-4 header. The most

extreme case of parsing a packet is Deep Packet Inspection

(DPI) in which the payload of the packet is examined as well.

DPI ismore advanced than packet parsing as it has to be aware

of the patterns of application data in the subject application.

We are not concerned with DPI in this paper.

A packet parser operates in state machine manner for

traversing headers. Even the simplest parsers that only parse

one header need to maintain states to provide the required

functionality when dealing with the header and payload of

the packet. For correct operation, the parser requires precise

information regarding the following points:

• Current header under parsing

• Progress made so far in parsing the current header

• Next header

• Size of current header

• Whether current header is the last header

• When to switch to parsing the next header

Packet parsing is a straightforward problem. What makes

parsing of some headers more complex than that of others is

their variable length. With such headers, calculating the size

of the header in a real-time manner considering the line rate

could become challenging. For instance, in Generic Routing

Encapsulation (GRE) header, presence of four of the fields

are dependent on the value of three flag bits. The total size

of the GRE header varies depending on which flags are set.

As another example, in an Ethernet frame, if the value of

EtherType field is 0×8100, VLAN tag is present. This adds

4 bytes to the size of the header. Some headers have a field

indicating the size of the header. However, such indications

use different encodings. For instance, in IPv4 header, the size

VOLUME 8, 2020 98933



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

FIGURE 2. Parsing of headers in a pipelined manner.

of the header in terms of the number of 32-bit words is indi-

cated by the IHL field. In IPv6 Extension Headers, the size

of the extension header in terms of number of bytes minus

the first 8 bytes is given. Therefore, the parser must interpret

these values correctly for correct operation.

The toughest workload for a packet processing sys-

tem including the parser is when a minimum-sized packet

arrives every clock cycle. This requires the toughest perfor-

mance guarantees because minimum-sized packets strain the

resources of the system. In other words, it is easier to achieve

higher throughputs when non-minimum-sized packets arrive

because the payload of the packet does not require processing.

Therefore, it relaxes the strain on the resources of the system.

However, for the throughput figure of a packet processing

system to be reliable, minimum-sized packets are the basis

for evaluation. In an 800 Gigabit/s link, a new Ethernet frame

arrives every 0.84 nanoseconds. This means that a system

operating at clock frequency of 1.19 GHz that reads an Ether-

net frame every clock cycle can sustain 800 Gbps throughput.

If each frame contains multiple headers that must be parsed,

they cannot be parsed in one clock cycle and the parser

lags behind. The solution is to have the packet go through

a number of header parsers, each in charge of parsing one

of the headers in the packet. Fig. 2 illustrates the stages that

four packets will go through with respect to time. P.Hn refers

to parsing of nth header within the packet. In this illustration,

it is assumed that each of the four packets has four headers

to be parsed and that parsing of each of the headers takes one

clock cycle.

These header parsers are equal in the generic parsing func-

tionality. However, each one of them is specialized for parsing

the headers of a specific layer. This means that the first header

parser is programmed to parse all possible headers that appear

first in the packet. The second header parser has the program

to parse all the headers that appear as second header in the

packet and so on. Fig. 3 is an illustration of a parse graph

with three levels.

Parse graph is a tree-like data structure with nodes corre-

sponding to headers. Nodes in level n of the tree represent

possible nth header of the packet. For instance, in Fig. 3,

the second header of the packet in this setting could be IPv4,

IPv6, VLAN, or MPLS. If the header parser discussed so far

is to be used for parsing packets based on this parse graph

pattern, the first header parser must have the program to

parse Ethernet header. The next header parser must have the

programs for parsing IPv4, IPv6, VLANandMPLS. The third

header parser must be able to program IPv4, IPv6, MPLS and

FIGURE 3. Parse graph with three levels.

FIGURE 4. A packet parser with four header parsers.

TCP. One important observation is that some headers appear

in more than one level. For instance, in the parse graph of

Fig. 3, IPv4 and IPv6 headers can appear both as second and

third headers. In order to sustain the throughput, second and

third header parsers must both have the program to parse

these headers. Another interesting observation is that two

distinct headers of a given layer can both have the same next

header. Referring back to the parse graph in Fig. 3, both

IPv4 and IPv6 can have MPLS as the next header. In the

implementation, both these cases must bemapped to the same

program.

Fig. 4 illustrates the packet parser that Fig. 2 is based on.

Each header parser provides the starting offset of the next

header to the subsequent header parser. Fig. 5 illustrates a

high-level view of the internals of the header parser. The

functional units within the header parser are used for finding

out the next header, calculating the size of the header, and

writing the header fields to PHV entries. These functional

units operate in a manner similar to the corresponding func-

tional units in [31].

Internally in our packet parser, each header is represented

by a 4-bit Header ID. This representation is only of signif-

icance for programming the parser and is independent of

encodings used in headers. This value is used to retrieve

the Parse Control Word (PaCW) which provides the control

signals for the functional units within the header parser.

Information in the PaCW is the minimum information

required for correctly parsing a header. The fields within the

PaCW and their descriptions are outlined in Table 1. In addi-

tion to the PaCW, there are some data associated with each

of the headers supported by a header parser. Table 2 outlines
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FIGURE 5. High-level view of the header parser.

FIGURE 6. Internals of the header parser.

these data. Fig. 6 illustrates the internals of the packet parser

in more detail.

The fixed latency for parsing of headers by a header parser

is 5 cycles. Since a header parser is internally pipelined, it can

be thought of as having five single-cycle stages. Therefore, it

could accept a new packet on each clock cycle.

Each header parser can be programmed to parse up to

16 distinct headers. The internal stages of the header parser

are as follows:

• Retrieval of PaCW: The PaCW is fetched from the

PaCW Store based on the header ID provided by the

previous header parser. If this is the first header parser,

the correct header ID has already been configured.

• Next Header and Header Size field extraction: In this

stage, the fields that contain indication of the next header

and header size are extracted using field extractors (FE).

If such fields are not present, the PaCW instructs the

parser to use other means for calculating the next header

and header size.

• Comparison: The value of fields extracted in the previ-

ous cycle is compared with the data associated with the

header in question. Meanwhile the shifter is shifting the

value of the field containing the header size if the PaCW

instructs it to do so.

• Resolving: The highest-priority matching entry is used

as the basis for determining the next header and current

header size. At the same time, an ALU modifies the

original or shifted value of the header field containing

the header size.

• Header field extraction: In this stage, fields of the header

are extracted to be written into the PHV.

As we can see from Fig. 6 and the stages elaborated above,

neither finding out the next header nor calculating the header

size requires the use of TCAM in our architecture. For finding

out the next header, the value of the next header field is

extracted and compared in parallel with 16 values associated

with the current header. If there is no next header field, default

header associated with the current header is selected. For

calculating header size, the field containing header size is

extracted and passed through a shifter and an ALU. It is also

possible to assign the default size of the current header as

header size.

Asmentioned earlier, themain building block of our packet

parser is the header parser. When dealing with use cases and

packets that have more than one header for parsing, using

more than one header parser inside the packet parser allows

the flow of one minimum-sized packet per clock cycle to

progress without stall. Header parser n parses the nth header.

Otherwise the packet has to be recirculated in which case

throughput is degraded. Another benefit of having multiple

header parsers inside the packet parser is that if a header is

too complex to be parsed using the resources of one header

parser, it is parsed by more than one header parser. In this

case, each one of the header parsers involved partially parses

the header until it is fully parsed.

A. PARSING EXAMPLES
1) PARSING GRE HEADER
The GRE header starts with a nibble containing three flag

bits indicating presence of three 32-bit words in the header.

In the first parsing stage, the PaCW for parsing GRE header

is fetched. In the second stage, the Protocol Type field in the

GRE header is extracted using the byte offset information in

PaCW. The most efficient way of calculating the header size

is by extracting the flag bits and mapping each value to the

corresponding header size. Otherwise, the flag bits have to

be added one by one and the result must be multiplied by

4 to obtain the header size in bytes. Therefore, in this stage,
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TABLE 1. Parse control word (PaCW) entries.

the flags are also extracted. In the third stage, the value of

the Protocol Type field is compared with the comparands.

In parallel, the value of flags is also compared with all the

possible values. In the fourth stage, the associated data of

highest-prioritymatching entry is selected for next header and

header size. In the final stage of parsing, all the header fields

present in the header are written to the PHV in parallel.

2) PARSING IPv6
IPv6 header is relatively straightforward to parse. In the first

stage of parsing, the PaCW corresponding to IPv6 header

is retrieved. In the second stage, based on the information

contained in the PaCW and the starting offset provided to

the header parser, the Next Header field is extracted. Since

the size of IPv6 header is fixed, the PaCW does not contain

any information regarding the location of a field specifying

the header size. Instead, it contains value of 40 as the default

header size. In the third stage of parsing, the value contained

in Next Header field is compared in parallel with 16 compara-

nds to find a match. In the fourth stage, the highest-priority

TABLE 2. Data associated with each header.

FIGURE 7. Internals of a packet processing stage.

matching comparand is used as the basis for determining

the next header. In the final stage, the ID of next header is

presented to the next header parser and all fields contained in

the IPv6 header are written to the PHV in parallel.

IV. A FLEXIBLE PACKET PROCESSING PIPELINE
The packet processing pipeline is made of packet processing

stages each of which performs part of the processing. Fig. 7 is

an illustration of a packet processing stage, which is the

98936 VOLUME 8, 2020



H. Zolfaghari et al.: Flexible Software-Defined Packet Processing Using Low-Area Hardware

fundamental building block of this pipeline. The number of

these stages is 512, indexed from 0 to 511. During these

stages, action execution as well as matching overlap. The set

of packet processing operations within a stage is determined

by the packet ID assigned by the parser. The packet ID can

be modified in the pipeline as a result of condition evalua-

tion or an earlier match operation.

Besides action execution in each stage, an exact match

operation is executed in which the hashed values of an exact

match search key is presented to a 4-way hash table to retrieve

the data associated with it. A ternary match operation is

also executed in which the table hosting the search keys is

a ternary table, meaning that it can store don’t care values as

well.

The main functional units within a packet processing stage

are as follows:

• Field extractors (FEs): Extract 8-, 16- and 32-bit fields

from the PHV for processing.

• Field- and state-modifiers: There are eight field- and

state-modifiers in each stage. They perform logical and

arithmetic operations on header fields and state. Field

modifiers are 32-bit units that take two inputs. The first

input is either a header field or state, and the second input

is either a header field or an immediate value. Each field

modifier can write to 16 designated locations within the

PHV.

• Search key generators: Construct a 40-bit search key by

selecting the constituent fields from the PHV.

• TCAM: Each packet processing stage contains one

2048-entry TCAM. It takes a search key as input and

provides match lines at the upcoming cycle. There are

as many match lines as the number of entries within the

TCAM. A value of 1 at a given position in the match

line indicates that the corresponding entry matched the

search key.

• Hash tables: Each stage contains four hash tables for 4-

way hashing. Each table is constructed using a 1K× 64-

bit SRAM block. Hash tables contain key-value entries.

Key is the search key and the value is a 10-bit tag, also

referred to as packet ID (PID).

Once an exact match search key is provided, it is hashed in

order to retrieve the position of the search key within the hash

table. All ways are accessed in parallel. The value associated

with the matching way is selected. The tag becomes the new

tag, which is the basis for instruction and data retrieval.

Both ternary and exact match tables have memories asso-

ciated with them. They contain packet processing parameters

such as header templates and header field values or statistical

state associated with a search key. The choice of whether to

use the TCAM or the hash tables depends on the kind of

search required. For instance, for looking up IPv4 addresses,

the TCAMs are great because they can perform single-cycle

LPM search. If, on the other hand, the Tag for processing an

IPv6 Extension Header is to be obtained, the hash tables must

be used.

A. PROGRAM CONTROL
The instructions to execute at each stage are determined by

the value of a 10-bit tag. This tag is first set by the parser.

This tag is used to retrieve the instructions at each stage.

It gives detailed information about the packet. For instance,

a given value could be used for an IPv6 packet whose Hop

Limit is zero. In this case, the instructions for making an

ICMPv6 Time Exceeded Message are fetched. When using

the same tag in a number of stages, part of the required

actions is executed in each of the stages involved and thereby

the requirement of custom action depth is achieved. What

makes this architecture flexible is that the 10-bit tag could be

changed as the packet traverses the pipeline. These features

allow implementation of actions that are far more complex

than OpenFlow v1.5.1 [32] actions. Each stage has the fol-

lowing functional units for program control:

• PID Map Table: This table maps the 10-bit ID of

the incoming packet to a 64-bit value which contains

instruction pointers for each of the functional units

within the packet processing stage. This means that each

functional unit has a separate instruction memory that

can be independently addressed. By using this tech-

nique, many distinct instruction combinations can be

achieved without using a deep instruction memory. The

mapping for each PID and each stage is decided by the

programmer. The PID map table is allocated from the

SRAM blocks available at each stage. Therefore, it does

not consume any additional area compared to SRAM

blocks in RMT and dRMT.

• Condition evaluator: This unit performs operations such

as bit extraction and magnitude comparison. The result

of this unit’s operation can be used to change the 10-bit

tag, which in turn changes the program flow.

In this architecture, there are condition flags to represent the

status of the latest lookup in ternary and exact match tables.

The evaluation of these flags can also be the basis for program

control.

B. COMBINING TABLES
A 512-stage pipeline is a deeply pipelined architecture. The

latency is directly associated with the number of stages.

Before reaching a verdict on the latency of this pipeline, let’s

review some of the latency figures of the original PISA archi-

tecture when it comes to dependencies. In the original PISA

architecture, there is a 12-cycle latency for match depen-

dencies and 3-cycle latency for action dependencies [33].

The reason for this is that if, under dependency conditions,

the operation of functional units of different match stages

is overlapped, the old header field values will be used for

search key generation or action execution. Therefore, delays

are configured to ensure that the succeeding match stage will

use the updated PHV.

In our architecture, accessing each table takes a cycle.

Two cycles after accessing the match table, the outcome of

whether a match was found or not is known. In case of
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positive match, another two cycles are required to obtain the

corresponding value stored in the associated memory. The 4-

cycle latency after accessing tables is a fixed value, whether

one table has been accessed or multiple tables. The two

tables that are visited during the cycles required for retrieving

the associated data are simply ignored. No stalling or delay

configuration occurs in our architecture. The cost of losing

two tables is considerably less than that of losing 16 tables,

as is the case in RMT. The two ignored tables could be used

for speculative lookup. This way, possible wasting of lookup

resources is eliminated.

Any number of tables could be combined for making wider

and/or deeper tables. As the packet traverses the pipeline, one

table is visited at each stage. If a logical table wider than

a physical table is desired, at each stage part of the whole

search key is presented to the lookup table within the stage.

The resultingmatch lines are transferred from one stage to the

next stage and ANDed together until the whole search key

has been looked up. Then the final match line which is the

result of AND operation on all of the match lines is used to

retrieve the associated state. For making a logical table whose

depth is more than a single physical table, the entries of the

logical table could be arranged in such a way that physical

tables that are visited first have higher priority. The same

search key is presented to all the tables involved. Once a

match is found, the packet’s tag is changed to indicate that the

packet no longer requires the same lookup procedure.Making

wider and deeper tables is similar and contains both of the

procedures mentioned here.

Our flexible pipeline has the means to reduce the latency

when a considerable number of physical tables must be

combined for accommodating more entries. Each 16-stage

unit whose starting index is an integer multiple of 16 is

called a PIPE16. Therefore, there are 32 PIPE16 instances

in our pipeline, indexed from 0 to 31. The output of

a PIPE16 instance is the input to its successor PIPE16.

PIPE16 instances can be configured to run in parallel to

reduce the latency when 32, 64, 128, 256, or 512 tables

are to be combined for making deeper tables. For instance,

if the desired depth of a logical table is 64 times that of a

single physical table, four PIPE16 instances run in parallel

and latency is cut by a factor of four. In this scenario, all

the four PIPE16 instances receive the same PHV as input.

The pipeline stage that follows these four parallel PIPE16

instances takes the PHV output of the PIPE16 instances that

has had the highest priority. The input to the PIPE16 instances

can be configured. A 64-bit software-defined Pipeline Con-

figurationWord (PiCW) sets the desired configuration.When

running PIPE16 instances in parallel, 100% utilization of the

tables involved is achieved if the desired number of physical

tables is a power of two. If this is not the case and utilization

of tables is the most high-priority criterion, the pipeline can

be configured for its conventional configuration, in which

each stage receives the output of its immediately preceding

stage. Fig. 8 illustrates the pipeline and the components that

make the reconfiguration possible. For space-saving reasons,

FIGURE 8. Pipeline configuration components.

only the first four PIPE16 instances are shown. The illustrated

architecture is repeated for the rest of the PIPE16 instances

and the resulting binary tree has three more levels. The key

component that picks the higher-priority match outcome is

a priority-based 2-to-1 multiplexer. The select line for these

priority-based multiplexers are set by the match found flags

of the two PIPE16 instances that provide their output to the

priority MUX. They also multiplex the value of match found

flag so that the next-level multiplexers can function correctly.

By having a binary tree of these components, it is possible to

run selected PIPE16 instances in parallel. The other compo-

nent required for the configuration is the set of multiplexers

that provide the input to PIPE16 instances. PiCW is the set

of values for the select lines of these multiplexers. If the

pipeline is configured in its basic form in which the packets

have to traverse all the stages, the latency is 430 nanoseconds

because the operating frequency is 1.19 GHz. The terabit-

level switches of Nexus 9200 family from Cisco have latency

figures close to two microseconds [34]. Therefore, even the

worst-case latency of our architecture is in reasonable range.

What is meant by input to a PIPE16 instance is the input to

the first stage within the PIPE16 in question. For instance,

input to PIPE1630 means input to stage 480, which is the

first stage within PIPE1630. For all stages after the first stage

of a PIPE16 instance, the only input is the output of the

preceding stage. For instance, for stage 17 which is located

in PIPE161but is not its first stage, the only input option the

output of stage number 16.

C. INPUTS TO FIELD- AND STATE-MODIFIERS
Field extractors provide the input to the functional units

including field- and state-modifiers. The PHV contains 128

32-bit words. This translates to 384 16-bit and 512 8-bit units

as well. The reason why there are 384 16-bit units is that for

a given PHV word called wordi, wordi(31:16), wordi(23:8),

and wordi(15:0) are extracted as 16-bit units. Field extractors

are in fact multiplexers with 1024 inputs. Each of the field-

and state-modifying instructions have fields for specifying

the location of a field within the PHV. When 8- and 16-bit

fields are selected, they are zero-extended to 32 bits. Field

extractors are one of the major contributors to chip area due to
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FIGURE 9. Instruction memory layout for pointer-based write.

the number of pipeline stages and the fact that each field- and

state-modifier requires two field extractors. Therefore, it is

desirable to evaluate the possibility of optimizations for sav-

ing area. In [35] different alternatives for field extractors are

compared. We consider two optimization strategies. In both

strategies, it is assumed that the PHV is logically divided into

eight equally sized groups.

Based on the observation that it is not necessary for all field

extractors to be able to read from the whole PHV, each field-

and state-modifier is allowed to access all of the fields within

its group but only some of the entries of other groups. In other

words, cross-group field retrieval is more limited. In the

second optimization strategy, full field extraction capability

is available for entries of a group. However, entries of other

groups are read only in 32-bit units in order to reduce the

number of inputs to the multiplexer and thus have a lighter

multiplexer. If an 8- or 16-bit field from the entries pertaining

to other groups is required, it must be extracted using the

field- and state-modifiers.

Both optimization strategies result in use of multiplexers

with 240 inputs as field extractors which occupy 36% of

the area of 1024-input multiplexers. The resulting saving is

not limited to the crossbars. The number of SRAM blocks

required to hold Very Long InstructionWord (VLIW) instruc-

tion slots will be reduced too because the instructions will

slightly shrink.

D. MORE ADVANCED MEANS OF HEADER FIELD
REFERENCING
As mentioned earlier, one of the limitations of the PISA

architecture is that its sole means of referencing header fields

is directly specifying them in the instruction. If one of the

header fields is a pointer specifying the header field for

reading or writing, the pointer field has to be used as a search

key. The outcome of this match points to the instruction that

reads from or writes to the correct field within the PHV. This

causes the instruction memory to be inefficiently filled by

instructions that are in principle the same. Fig. 9 illustrates

the layout of the instruction memory when one of the fields

in the header contains the index of the field to which a value

must be written. This writing is achieved by using the MOVE

instruction. There is an action engine for each PHV entry and

each VLIW instruction slot corresponds to an action engine.

As we can see, all these instructions are in principle the

same. The only difference is the location of theVLIW instruc-

tion slot containing the MOVE instruction. The PHV in RMT

architecture contains 224 fields of three different widths.

There is an action engine per PHV field. In the worst case,

as many as 224 instruction entries will be filled according to

the pattern in Fig. 9.

In our architecture, we do not need to use any form of

matching in such scenarios. Field modifiers have a specific

opcode for reading the content of a header field whose loca-

tion is specified by a pointer. The location of the pointer

within the PHV must be known in advance so that it could be

directly referenced. After reading the pointer and executing

this opcode, the field referenced by the pointer is provided at

the output of the field modifier. In addition to this, there is

an opcode for writing to a field specified by a pointer. When

this opcode is executed, the location pointed to by the pointer

is assigned the intended value even if the destination field

is beyond the range of locations to which the writing field

modifier can write. For this to be feasible, the writing field

modifier overrides all other field modifiers.

E. PACKET PROCESSING EXAMPLES
1) IPv6 SEGMENT ROUTING
Segment Routing (SR) is a type of source routing in which

the source determines the nodes that a packet must visit. SR

has been discussed in detail in [36]. SR can be implemented

using MPLS or IPv6. In the latter case, an IPv6 extension

header called Segment Routing Header (SRH) is required.

Here we consider SR using IPv6 SRH. In this packet pro-

cessing walkthrough, we assume that a router based on the

architecture proposed in this paper is the endpoint for the

arriving IPv6 packet. This means that Destination Address

(DA) is the same as the router’s address. We also assume that

Hop limit is greater than 1 and that SRH immediately follows

the fixed IPv6 header. Fig. 10 contains the pseudo-code that

must be executed on our architecture.

Since IPv6 extension headers are all independent headers,

the SRH has already been parsed by the parser and the cor-

responding 10-bit tag has been assigned. Each of the header

fields referred to in Fig. 10 have a determined place within

the PHV.

Fig. 11 illustrates the outline of PHV after parsing is com-

plete. The instructions executed in each stage are outlined

in Table 3. It is assumed that R124, R125, R126 and R127

contain the IPv6 address assigned to the device.

Processing in stage 0 begins by comparing DA with

the address assigned to the device. After each comparison

instruction there is a change label instruction to change the

program flow if necessary. Four comparisons are required

because IPv6 addresses are 128 bits wide. Selecting the cur-

rent segment from the list of segments requires pointer-based

read. Before pointer-based read can be done, the value of the

pointer must be manipulated so that it points to the correct

PHV entry.

Due to the width of IPv6 addresses, writing the segment

pointed to by the updated value of Segments Left takes four
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FIGURE 10. Pseudo-code for IPv6 SRH processing.

FIGURE 11. Outline of PHV after the parsing is complete.

cycles (stages 8 to 11). As soon as the first word of the

new IPv6 DA is known, ternary lookup begins (stage 9).

An interesting observation is that Segments Left, which acts

TABLE 3. Instructions executed in each stage for IPv6 SRH Processing.

as a pointer, is already updated in stage 0, so that the process

of retrieving the segment to which it points can be started

although at this point it is not clear whether it contains a

positive value. This kind of execution is speculative. If at
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TABLE 4. Tags used in processing of IPv6 SRH.

FIGURE 12. Outline of PHV after the parsing is complete.

any point the value of Segments Left turns out to be invalid,

the changes can be discarded.

As we can see, the label modification instruction has been

extensively used. Table 4 contains the designated labels and

their meaning. In this table, labels are referred to with letters

because their actual value is implementation-specific and is

not of significance in the discussion here. Each of these

labels is the basis for retrieving the instructions in each stage.

Change of label causes change in program flow.

2) 5G FRONTHAUL TRAFFIC
Common Public Radio Interface (CPRI) is an interface-

defining standard for communication between Radio Equip-

ment Control (REC) and Radio Equipment (RE) using the

fronthaul transport network. eCPRI is the enhanced CPRI.

It connects the eREC and eRE via transport network. eCPRI

messages can be encapsulated in Ethernet or IP packets. Here

we consider the encapsulation in Ethernet.

Fig. 12 illustrates outline of PHV after parsing is complete.

R0-R3 contain Ethernet header, R4 contains eCPRI common

header and R5-R7 contain eCPRI Generic Data Transfer

message.

The parser has already marked the packet as an eCPRI

message. The 1-byte field Message Type from the eCPRI

common header is selected as an exact match search key.

In this scenario, the value of this field indicates the presence

of Generic Data Transfer message after the common header.

eCPRImessages have an identifying field called PC_ID at the

beginning of the eCPRI message. Depending on the message

type, the width of this field is a byte, 2 bytes or 4 bytes.

We cannot know the width of this field until the outcome of

looking up Message Type is available. To reduce the latency,

we generate three exact match search keys, each correspond-

ing to the 3 different sizes of PC_ID field. This way, we don’t

have to wait until the outcome of matching Message Type is

available. It is also beneficial from the perspective of using

TABLE 5. Area and power of header parser components.

TABLE 6. Area and power dissipation of 6.4 Tbps packet parser.

the tables efficiently because by the time the outcome of

matchingMessage Type is available, two tables are traversed.

The outcome of matching PC_ID reveals how the data in the

eCPRI message must be handled.

V. EVALUATION AND DISCUSSION
The packet parser and the packet processing pipeline

have been implemented using VHDL. The implementation

has been synthesized using Synopsys Design Compiler J-

2014.09-SP4 on 28 nm FD-SOI technology. The results cor-

respond to supply voltage of 0.9 V and worst-case oper-

ating conditions (ss, 125◦C). The implementation meets

the timing constraints at operating frequency of 1.19 GHz.

Post-synthesis simulation has been performed using Mentor

Questa.

A. PACKET PARSER RESULTS
Table 5 presents the area and power dissipation of the main

constituent components of a single header parser instance.

The total area of a header parser instance is 47000 μm2

and the total power dissipation is 74.6 mW. Table 6 out-

lines the area and power dissipation of components of a

6.4 Tbps packet parser that can parse packets with depth of

eight headers. This packet parser is made of eight pipelines

of header parsers. Each such pipeline contains eight header

parser instances and can sustain throughput of 800 Gbps.

By having eight of these pipelines in parallel, aggregate

throughput of 6.4 Tbps can be supported.

The total area of all packet parser instances required for

6.4 Tbps throughput is 3.617 mm2 or 7.38 M gates. The total

area of packet parsers in [12] is 5.6 M gates for 640 Gbps

throughput. For reaching 6.4 Tbps throughput, the number

of parser instances must be increased by a factor of 10.

This causes the resulting total area to be 56 M gates. This

means that we have increased the throughput by a factor

of 10 whereas the increase in area has been only 32 %. The

area difference is equivalent to the area of 137 instances of

2048 × 32 TCAM blocks.
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TABLE 7. Area of the components in a packet processing stage.

B. PACKET PROCESSING PIPELINE RESULTS
Table 7 contains details on the area of themain components of

a single packet processing stage. The components in the table

are ordered according to their area. For components having

multiple instances in each stage, the total area of the instances

is given.

As we can see, the major contributor to the area is the

TCAM. The next major contributors to the area are field

selectors. In section 4 we discussed optimizations for field

selectors. The area of the proposed lightweight field selec-

tors is 36% of the original field selectors. In addition, using

these crossbars causes the width of field- and state-modifying

instructions to shrink. In this optimization, the first field

modifier and the condition evaluator still use the large input

selectors. The other field modifiers use the light-weight input

selectors. By using the lightweight field selectors, an area

equivalent to 37 mm2 can saved. This saving is equivalent

to the area of 214 TCAM blocks of 2K × 32 bits.

All the memories used for storing PIDs, instructions, and

search keys are industry-standard dual-ported memories. The

control plane can write to these memories while the device

is operating. It does so by communicating with the central-

ized controller using a protocol such as OpenFlow. The area

occupied by the memories comes not only from components

required for reading, writing, and storing data, but also from

built-in test components.

C. COMPARISON WITH OTHER MATCH-ACTION
ARCHITECTURES
In this section, we compare the area of our architecture with

that of RMT and dRMT. Table 8 compares the area of dif-

ferent components in each stage of the three architectures

under comparison. Since dRMT architecture is a processor,

the values correspond to one processor instance. For dRMT,

we have considered two variants each with a different value

for Inter-Packet Concurrency (IPC). It is assumed that all

these architectures have equal amount of memory to host both

ternary and exact match search keys as well as the data associ-

ated with them. The values for RMT and dRMT architectures

have been taken from [20] and converted into values that

would be obtained after synthesis using 28 nm technology.

We have, however, taken the value of match crossbars and

TABLE 8. Area per stage (mm2).

ALUs from [12]. According to [12], the total area of match

key crossbars in RMT architecture is 6 mm2, which means

that in each stage the area of match crossbars is 0.187 mm2.

From the values in the table we can see a noticeable

difference in the area of PHV when comparing the area of

PHV in our architecture with that of RMT or dRMT archi-

tecture variants. The key to understanding this difference is

understanding that a stage in RMT architecture is a logical

stage. In our architecture, on the other hand, all stages are

physical. Each of theMatch-Action units in RMT is internally

pipelined because there are quite many operations such as

search key generation, header field retrieval, match result

combination, memory access, etc. taking place in each logical

stage and since RMT operates at 1.0 GHz frequency, there is

no way that all these operations can take place in one cycle.

Therefore, the PHV must be propagated from one physical

stage to the next stage. The actual number of physical stages

in RMT can be estimated based on the match and action

latency values. As a result, the fact that our architecture

has 512 stages does not mean that the overall cost of PHV

instances in our architecture is more than that of RMT archi-

tecture. In fact, the total area of PHV instances in the two

architectures are on par with each other.

Table 8 has an entry called Match key configuration reg-

ister. In our architecture, we have a lookup instruction for

ternary matching and another instruction for exact matching.

In the decode stage of both these instructions the com-

ponents of the search key are selected in the decode stage.

Therefore, we do not have any register to hold match key

configuration. This indicates that our architecture is more

flexible in supporting diverse set of search keys.

One of the issues with the analysis in [20] is the way the

area of ALUs has been estimated. From [12], the authors

of [20] have used the 7.4% share of contribution of action

engines to overall area as the basis for calculating the area
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of ALUs. In order to obtain the total area of RMT, they have

used the 200 mm2 value from [18]. This value represents a

lower bound on the area of a commercial 640 Gbps switch

chip. There is no evidence that this value represents the total

area of RMT. Besides that, the process technology associated

with this value has not been mentioned in [18]. Another issue

with the values calculated by [20] is that the ratio of the

area of ALUs in RMT and dRMT is inconsistent with the

number and width of ALUs used in the two architectures.

According to our experiments, the area of a 16-bit ALU is

half the area of the corresponding 32-bit ALU. Similarly,

the area of an 8-bit ALU is a quarter of the area of the 32-

bit ALU with same functionality. Instead of the estimation in

[20], we use the per-bit gate count provided in [12] because

it is based on results from implementation. According to

[12], each action engine requires less than 100 gates per bit.

Based on this assumption, the area of a 32-bit action engine is

around 1500 μm2. We assume that all action engines used in

the three architectures being compared are equal in internal

architecture.

As for action output selectors, each ALU in our architec-

ture writes to a fixed set of locations within the PHV. The

ALUs together cover the whole PHV. The area of action

output selectors in our architecture is almost zero in mm2

scale.

Based on the values of Table 8, Table 9 contains the area

for all stages of the two pipelined architectures and in the

case of dRMT architecture variants, the area for all proces-

sors. Furthermore, the area for table combination logic is

provided. In dRMT architecture, there is logic for both table

combination within a cluster and assignment of clusters to

processors. In our architecture, there is tiny logic for config-

uring the organization of pipeline. This area corresponds to

the multiplexers providing input to the PIPE16 instances and

the 2-to-1 priority-based multiplexers receiving the output of

certain PIPE16 instances.

According to Table 9, RMT architecture has 44 % more

area than our architecture. dRMT variants have 41 % and 79

%more area than our architecture despite lacking the features

of the architecture presented in this work. In order to be able

to interpret these numbers, we should compare them with the

latest area figures for commercial switch ASICs, which are

300-700 mm2 [20]. All the architectures under comparison

are within this range. However, our architecture is notably

ahead of others in area-efficiency. The savings in area can be

used for integrating more TCAMs and/or exact match tables

and thereby increasing the match capacity of the system.

VI. CONCLUSIONS
In this paper, we presented the architecture of a pro-

grammable packet parser and a flexible packet processing

pipeline. The parser supports 6.4 Tbps throughput without

relying on expensive TCAMs. As a result, its area is very

modest for its level of performance. The packet processing

pipeline allows fine-grained table assignment and unlimited

combination of tables at minimum possible cost. It also pro-

TABLE 9. Area for all processors plus interconnect (mm2).

vides more advanced features such as custom action depth,

alternative program control, and an addressing mode for

pointer-based read and write. All of this is achieved while

still being considerably more area efficient than the current

Match-Action architectures, namely the RMT and dRMT

architectures.

Chip area is a measure of complexity of the logic inside

a chip. For a given functionality and performance level,

a chip with lower area is more desirable. Digital ICs are

subject to various constraints. One such constraint is area.

The significance of low-area design is that the savings in area

could be used for providing more complex logic for enhanced

functionality. In packet processing architectures, this saving

can be exploited for more functional units. By doing so,

the functionality and/or supported throughput of the system

will be enhanced.

Performance comes not only from the hardware side, but

from the software side as well. One of the techniques used

in the packet processing examples presented in this paper

was software-based speculative execution. When a match is

in progress, the possible actions can be executed specula-

tively. When the match result is ready, the outcome of the

corresponding action is committed, and the other results are

discarded. By doing so, the overall latency of match and

action is reduced.

As for future work, we intend to work further on the

architecture for supporting higher throughputs and providing

further flexibility. The idea of breaking the pipeline into

PIPE16 instances with the aim of reducing latency when

deeper tables are required, can be expanded for having mul-

tiple independent pipelines, each of which processes packets

with the same packet processing requirements. This enhances

packet-level parallelism. Each packet is dispatched to the

corresponding pipeline depending on its needs. Different

pipelines deal with different packets. The architectural com-

ponents required are dispatch logic and independent deparser

at the end of each independent pipeline. We also plan to

develop a P4 compiler for this architecture.
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