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Millimetre-wave (mmWave) is an extremely valuable sensing technology for the detection of 
objects and providing the range, velocity, and angle of these objects. A mmWave radar, having 
synergies with the multi-beam light detection and ranging (LiDAR) and cameras, has been con-
sidered as a must-have sensor in the connected and autonomous vehicles (CAV) in the future 
intelligent transportation systems (ITS). Besides the traditional target detection and ranging func-
tions, the mmWave radar is expected to perform more intelligent tasks to improve road safety, for 
example recognizing the targets, especially the vulnerable road users like pedestrians and cy-
clists. mmWave radars are also used in indoor environments due to its high capability of working 
in low visibility conditions, such as smoke and debris. mmWave radar can provide the exact loca-
tion of the human presence in the indoor environment with very high accuracy. 

The first part of the thesis addresses the radar basics and principles, followed by a detailed 
discussion on FMCW radar. Also, the first part describes the micro-Doppler (µ-D) in the radar 
system. The second part of the thesis concentrates on the machine learning basics followed by 
the detailed discussion on the convolutional neural networks (CNN), recurrent neural networks 
(RNN).  

The third part of the thesis describes a simulation study of the µ-D signatures of the pedestrian 
and cyclist based on mmWave vehicle radar and investigates the recognition capabilities through 
both the CNN, RNN and mixed convolutional and recurrent approach respectively. The result 
demonstrates the usability of the mmWave radar µ-D information and complementary with the 
video and laser data streams in the CAV auto-piloting. A paper ‘’Shallow Neural Networks for 
mmWave Radar Based Recognition of Vulnerable Road Users’’ has been published in the IEEE 
Xplore with this simulation study.  

The fourth part of the thesis concentrates on the experimental study of an object (human) 
detection in the indoor environment by using the Texas Instruments mmWave RADAR module. 
The experimental study results show the target movement in real-time by azimuth-static heatmap, 
range-doppler heatmap, and range-profile. The acquired data from the experiments are analyzed 
and demonstrated in the X-Y scatter plot which gives the analytical view of the target (human) 
movements. 

 
 

     Keywords: mmWave, RADAR, automated vehicles, micro-Doppler, object recognition, CNN, 
RNN, IWR6843ISK, Texas Instruments.  
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1. INTRODUCTION 

Road safety is one of the essential factors for publicizing the auto-pilot vehicles and 

intelligent transportation system (ITS). Protection of the vulnerable transportation 

participants, such as pedestrians and cyclists, draws increasing public concern with the 

news on 3 accidents caused by self-driving cars [1]. World Health Organization (WHO) 

reports over half of the 1.35 million deaths in road accidents are vulnerable road users 

[2]. To reduce fatalities in the accidents, sensor technologies and the intelligent 

signal/data inferring methods play the key role in the future connected and autonomous 

vehicles (CAV) [3]. 

The modern vehicle has integrated with variety of sensors for modelling and interpreting 

the static and dynamic road environmental factors. Often, we can easily find camera, 

radar, ultrasound and light detection and ranging (LiDAR) on commodity or trial vehicles. 

Regarding the environmental modelling, especially detection and recognition of the road 

users like pedestrians and cyclists, camera and LiDAR are two most discussed sensors. 

Dash board mounted cameras have been actively used for pedestrian detection and 

similar research topics in the last decade, due to the available dataset contributions in 

the community and rapid development of the neural network (NN). As high-resolution 

sensor, both video and Lidar data are able to capture rich details information for tracking, 

recognition, even identification of the targets on the road. However, both sensors suffer 

from the range constraint caused by light condition and dispersion effects due to the high 

dense particles in raining, fogy or snowing weather conditions. According to the 

experimental result in [4], radar sensor shows obvious advantage in such situation.  

Different kinds of radar are used for human target detection. This has been widely 

researched over the years. Multiple-input multiple-output ultra-wideband (MIMO-UWB) 

radar uses short impulse as shown in [5] and has the bandwidth of 500MHz or more 

which is used for positional estimation for its high resolution and accuracy. The location 

of the human body is estimated by two or more radar terminals. The distance between 

the single radar terminal and the target shall be determined. The target location is 

determined by the distance from each radar terminal and the terminal position. The UWB 

signal is transmitted from the transmitter with the pulse-repetition frequency of 𝑓𝑅𝐸𝐹. 

modulated impulse signal is used as UWB signal. The reflected signal is received by the 

receiver from the human body. After identification, the analog-to-digital converter 
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quantizes the signal, and each pulse is integrated. The integrated signal is used to 

measure the human body's distance. UWB signals are transmitted and received from 

more than two radar terminals and distances are measured. The position of the human 

body is then determined from the distances to the position of the radar terminals. Based 

on the cross-correlation, dual station step frequency continuous wave radar (SFCW 

radar) is used for target detection, shown in [6]. Cross-correlation procedure is conducted 

on the pre-processed pulse signals of two SFCW radars at separate positions in order 

to produce a correlation coefficient matrix. The constant false alarm (CFAR) detection is 

then used to extract the ranges between each target and the two radars from the 

correlation matrix, respectively. Finally, human target positions are determined using a 

triangulation localization algorithm. 

Human motion can cause frequency shift of a radar echo signal, and then generate 

corresponding Doppler signatures. Thus, Doppler can also be used to detect human 

motion. Chen et al.[7] proposed the concept that an object or any structures on the object 

may have mechanical vibrations or rotations, called micro-motion dynamics. The micro-

Doppler (𝜇 − 𝐷) effect is the applied frequency modulation that creates sidebands 

outside of the main Doppler frequency due to the motion or movement of the target called 

the 𝜇 − 𝐷 effect. It is possible to consider a 𝜇 − 𝐷 signal as a unique signature of a motion 

triggered by the human body. The 𝜇 − 𝐷 signatures can identify the target characteristics. 

In the 𝜇 − 𝐷 , the Doppler effect is more sensitive to the higher frequency band. For 

millimeter-wave radar, Doppler bandwidth and Doppler precision are better, and it is 

easier to distinguish the 𝜇 − 𝐷 signature from various targets. Using doppler frequency, 

the kinetic properties of humans can be determined [8]. 

In automotive and mobile applications, Millimeter-wave (mmWave) radar is emerging as 

an affordable low-power range sensor. In low visibility conditions, such as in the 

presence of smoke and debris, it can function well, fitting the payloads of resource-

constrained robotic platforms, which is why it has been widely studied in indoor 

environments. MilliMap, a learning-based inductive method is demonstrated [9] for 

obtaining dense occupancy grid maps from lowcost mmWave radar (AWR1443) 

sensors, using self-supervision from partial labels from a lidar. Single-chip low-cost 

mmWave radar as an advanced technology offers an alternative and complementary 

approach for comprehensive ego-motion estimation in indoor location-based systems, 

rendering it feasible on resource-constrained platforms thanks to low power consumption 

and fast device integration. Milli-RIO, is shown in [10], an MMWave radar-based solution 

making use of a single-chip low-cost radar and inertial measurement unit sensor to 
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estimate six-degrees-of-freedom ego-motion of a moving radar in the indoor 

environments. 

The mmWave radars working on 24 and 77 GHz are commonly used in the modern 

vehicles, for example, the long-range radar for active cruise control, short-/medium-

range radar for cross-traffic alert, rear collision warning and spot detection. Most of the 

current applications for vehicles still focus on target detection, ranging and instant 

velocity estimation functions of radar. In fact, the intelligent functions, such as target 

recognition, motion classification and high-resolution imaging of modern radars, 

especially on the mmWave bands, can play more important roles in CAVs. 

This thesis concerns the potential of the mmWave radar 𝜇 − 𝐷 in road user recognition. 

The 𝜇 − 𝐷 effect was comprehensively elaborated by Victor Chen in [7].Then, It has been 

widely researched for human activity recognition[11], vital sign detection[12], [13] in 

security[14] and healthcare[15]. The Doppler effect has also received attention by the 

ITS communities and has been widely investigated for collision prevention [16], vehicle 

classification [17], driver status monitoring [18] and pedestrian characterization [19]. Due 

to the fact that most current on-vehicle radars are not able to continuously output the 

Doppler record, the aforementioned works are based on the controlled experimental 

environments. Then, compared to camera and LiDAR, there is lack of 𝜇 − 𝐷 data 

including road users of the real trails to be used for recognition modeling. Then, due to 

these data availability issues, it is worth using simulation strategies in present studies. 

The scope of this thesis includes includes; i) Frequency-Modulated Continuous Wave 

(FMCW)  radar followed by its basic discussion on the range measurement, velocity 

measurement, and angle estimation; ii) 𝜇 − 𝐷 effect for target detection; iii) machine 

learning basics.  

Structure of the following thesis are, simulation study for 𝜇 − 𝐷 recognition, i) the 𝜇 − 𝐷 

simulation method is introduced for simulation of the pedestrian and cyclists data on the 

road; ii) the simulated dataset is used for recognition modeling using the convolutional 

and recurrent neural network strategies; iii) the pros and cons of CNN, RNN and mixed 

convolutional-recurrent approaches for 𝜇 − 𝐷 signature-based vulnerable road users 

recognition are compared and discussed; iv) to identify the favorable NN layer for the 

𝜇 − 𝐷 data, only one or two layers shallow CNN, RNN or mixed structures are used. The 

identified favorable NN layers can be connected for further performance improvement in 

future work. 

An experimental study for target (human) detection in the indoor environments, i) the TI 

evaluation module (EVM) is used for target detection in a controlled indoor environment; 
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ii) experimental study has done with TI mmWave demo visualizer; iii) the experimental 

dataset used to demonstrate the movement of the target; iv) an experimental study has 

done with the help of MATLAB; and v) these dataset  gives the information about the 

frame number, total target, target number, and the coordinates (x, y, z), doppler (m/s), 

and intensity of the target which is analyzed and demonstrated. 

The rest of the thesis is organized as follows. In chapter 2, background studies related 

to the thesis has been presented. Chapter 3, continuous with it and explored the machine 

learning basics followed by the feature extraction, classification, and Neural Networks 

(NN) is presented. In chapter 4, a simulation study for µ-D signatures recognition is pre-

sented. In chapter 5, an experimental study for object (human) detection in the indoor 

environment by using the Texas Instruments (TI) mmWave RADAR module is demon-

strated.  
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2. FMCW RADAR 

In this chapter, background studies related to the thesis have been presented. This 

chapter consists of two sections. They are (i) Radar basic; (ii) FMCW radar. 

2.1 Radar Basics 

An abbreviation for Radio Detecting And Ranging is the term RADAR. In general, 

modulated waveforms and directional antennas are used by radar systems to transmit 

electromagnetic energy to a particular location in space to scan for objects. Objects 

(targets) will reflect parts of this energy (radar returns or echoes) back to the radar within 

a search volume. The radar receiver then processes these echoes to extract target 

information such as velocity, range, angular position, and other target characteristics for 

detection. Radars can be designed to see through conditions such as fog, snow, rain, 

darkness, etc which are impervious to normal human vision. In addition, radar has a clear 

advantage of detection and range measurement and this is probably the most significant 

attribute it provides [20]. 

2.1.1 Radar Applications 

The high-tech RADAR has broader implementation fields, i.e. Anti-collision aircraft 

systems, air and ground traffic control systems, detection systems, air defense systems, 

weather tracking systems, anti-missile systems, microwave astronomy systems, 

underwater RADARs for submarines, missile guidance systems, remote sensing, 

geological surveys, height and depth measurements, etc. RADAR has become a high-

end surveillance device that focuses on and controls the entire globe. Nowadays, it is 

getting more and more popular. Radar are also used for indoor human activity 

recognition[11], vital sign detection[12], [13] in security[14] and healthcare[15]. Radars 

have been installed on the ground and identify objects on the ground, at sea, in the air, 

and in space for air traffic control (ATC), aircraft navigation, space, ship navigation and 

safety, military area, Remote sensing for monitor meteorological patterns in the 

atmosphere and law enforcement, etc [21]. 

2.1.2 Radar Operation and Basic Diagram 

The fundamental theory on which RADAR works is similar to that of the reflection of 

sound waves [21]. RADAR uses beams of electromagnetic radiation for target 

identification and location. In short, its functioning may be summarized as seen below: 
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• RADAR transmits electromagnetic signals in all directions through the antenna.  

• The function of a power amplifier (PA) is to raise the power level of the input 

signal. 

• These radiated waves are intercepted by reflecting objects (targets) and reflected 

in all directions.  

• The receiver in the RADAR system acquires some of the reflected waves. 

• The low-noise amplifier (LNA) of the receive path is used to capture and amplify 

a very low-power, low-voltage signal plus associated random noise that the 

antenna presents to it within the bandwidth of interest. 

• Via digital signal processing and amplification, the received signal is further 

analyzed, then a determination to determine the presence of the reflected signal 

from the target is taken at the reception output. If the target is present, it gets its 

position and other details [21]. 

 

 

 

 

 

 

 

 

Figure 2.1 Simplified radar block diagram. 

2.1.3 Radar Frequencies  

In general, RADARs run in a frequency spectrum that ranges from 220MHz to 35GHz. 

Typically, the radar range is measured in the Nautical mile. 1 Nautical mile is equivalent 

to 1.852Km. Figure 2.2 displays the electromagnetic spectrum reflecting the range of 

traditional radar.  

Millimeter band has extremely high frequency (EHF) designation for the band of radio 

frequencies in the electromagnetic spectrum from 30 to 300 gigahertz (GHz). Radio 

waves in this band have wavelengths from ten to one millimeter, so it is also called the 

millimeter band, and radiation in this band is called millimeter waves. Millimeter-wave 

bands brought an attractive solution for vehicular communication. These are short-range 

frequencies that offer high capacity and superfast response times. 
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Figure 2.2 Radar frequencies and electromagnetic spectrum. 

2.1.4 Radar Equation 

The radar equation can be written as a, 

                           𝑅𝑚𝑎𝑥 = √
𝑝𝑡𝐺𝑅𝑥𝐺𝑇𝑥𝑐2𝜎𝑁𝑇𝑟

𝑓𝑐
2×(4𝜋)3×𝑘𝑇×𝑁𝐹×𝑆𝑁𝑅𝑑𝑒𝑡

4
                                                 (2.1)                            

Where, 

          𝑝𝑡→ 𝑇𝑥  output power 𝐺𝑅𝑥 

          𝐺𝑇𝑥→ 𝑅𝑥 and 𝑇𝑥 antenna gain 

          𝜎 → RCS of the object 

          𝑁 → Number of chirps 

          𝑇𝑟→ Chirp time 

          𝑁𝐹 → Noise figure of the receiver 

          𝑆𝑁𝑅𝑑𝑒𝑡→ Minimum SNR required by the algorithm to detect an object 

          𝑘→ Boltzman constant 

2.1.5 Radar Cross Section 

Radar cross-section (RCS) is a calculation of how a radar target is observable. A greater 

RCS means that an object is identified more quickly. An object reflects to the source a 

restricted amount of radar energy. The factors that influence this include: 

• The material of which the target is made. 

• The size of the target compared to the illuminating radar beam wavelength. 

• Target absolute size. 

• The angle of the event (angle where the radar beam reaches a certain part of the 
target, which depends on the form of the target and its direction to the source of 
the radar). 

• The angle of reflection. 

• Transmitted and the received radiation polarization with respect to the orientation 
of the object.  

A target's radar cross-section is the (fictional) region the intercepts the amount of 

electricity. When spread uniformly in both directions, it generates an echo equal to that 

of the target on the radar.  
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In other terms, 

𝜎 =  
𝑝𝑜𝑤𝑒𝑟 𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑜𝑤𝑎𝑟𝑑 𝑠𝑜𝑢𝑟𝑐𝑒/𝑢𝑛𝑖𝑡 𝑠𝑜𝑙𝑖𝑑 𝑎𝑛𝑔𝑙𝑒

𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦/4𝜋
                                            (2.2) 

 

                           𝜎 =  𝑙𝑖𝑚
𝑅→∞

4𝜋𝑅2 |
𝐸𝑅

𝐸𝑖
|

2
                                                                          (2.3) 

Where 𝑅→Distance between radar and target. 

           𝐸𝑅→ Reflected field strength of radar. 

           𝐸𝑖 →Incident field strength of a target. 

2.1.6 Radar Signal Processing 

The signal processing is that part of the system which separates targets from the clutter 

on the basis of Doppler content and amplitude characteristics. Radar returns from each 

pulse repetition interval (PRI) are stored in memory for further processing.  

• Fast time processing: Fast time refers to the different time slots composing a 

PRI, sampling rate dependent. This comparison of a single pulse and its echo to 

capture time delay when the peak power is detected. Range resolution inversely 

proportional to pulse (sweep) duration, proportional to bandwidth.  

            Match filter (impulse response):  

                ℎ(𝑡) =  𝑎𝑥∗(−𝑡)         [∙]∗ → Conjugation (in case 𝑥(𝑡) is a complex signal)    (2.4) 

            Output for range bins by filtering received signal: 

               𝑦(𝑡) =  ∫ 𝑥𝑟 ℎ(𝑡 − 𝜏)𝑑𝜏         (Cross-correlation of 𝑇𝑥 and 𝑅𝑥 signal)                (2.5)        

• Slow time processing: Slow time updates every PRI. Slow time process multiple 

pulses and their echoes at one operation. It has benefits of (i) SNR gain of 

Integration of pulse/sweeps; (ii) Doppler processing; (iii) Radar imaging.  

• Information cube: Information Cube is an extension to Data Matrix including 

spatial sampling. In cases that the radar uses multiple receiving channels, the 

data matrices from each receiver are stacked to form a data cube.  

2.1.7 Limiting Factors of the Radar 

Some of the limiting factors of a radar are described in [22], 

Beam path and range: The line of sight (LOS), the maximum non-ambiguous range, 

Radar sensitivity, and the power of the return signal as computed in the radar equation 

can affect the radar performance. 



9 
 

Noise: Signal noise, created by all electronic components, is an intrinsic cause of 

spontaneous variations in the signal. 

Interference: The unintentional man-made electromagnetic interference also affects 

radar performance.  

Clutter: Clutter is an electromagnetic wave that is reflected from unwanted objects from 

the environments which affect the radar performances.  

Jamming: Intentional jamming, in terms of noise or incorrect targets, by an electronic 

counter measuring device can drop the radar performance.  

2.2 FMCW Radar 

A special kind of radar sensor that radiates continuous transmitting power like a basic 

continuous-wave radar (CW-Radar) is the FMCW radar (Frequency-Modulated 

Continuous Wave Radar). In comparison to this CW radar, the FMCW radar may adjust 

its operating frequency during the calculation, i.e. the frequency (or phase) modulation 

of the transmitting signal. Radar measurement possibilities via runtime measurements 

are only theoretically feasible with this frequency (in-phase) shifts. The drawback of basic 

CW radar systems without frequency modulation is that it does not determine the target 

range because it lacks the timing mark required to allow the sensor to precisely time the 

interval of transmission and reception and translate it into range. Such a time reference 

may be created by the frequency modulation of the transmitted signal to calculate the 

distance of stationary artifacts. In this technique, a signal is transmitted which periodically 

increases or decreases in frequency. When an echo of a signal is received, this 

frequency transition becomes a delay like the pulse radar technique (by runtime shift). 

However, in pulse radar, the runtime must be explicitly calculated. In FMCW radar, the 

variations in phase or frequency between the signal currently sent and the signal 

received are measured instead [23]. 

Basic features of frequency modulated continuous wave are, 

• Capacity to measure very narrow target ranges (the minimum measured range 

is equivalent to the wavelength transmitted). 

• Ability to calculate the target range and its relative velocity simultaneously. 

• Strong high degree of range estimation accuracy. 

• Signal processing after blending is carried out at a low-frequency level, making 

the realization of the processing circuits considerably simpler. 

• Protection in the absence of high peak intensity pulse radiation. 
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2.2.1 FMCW Radar Operation 

The FMCW radar is describe from Figure 2.1,   

• A chirp is generated by a synthesizer (synth).  

• A transmit antenna (Tx ant) transmits the chirp.  

• A reflected chirp captured by the receive antenna (Rx ant) is produced by the 

reflection of the chirp by an object.  

• To generate an intermediate frequency (IF) signal, a "mixer" combines the Rx 

and Tx signals. A frequency mixer is an electronic component that combines two 

signals to create a new signal with a new frequency. 

2.2.2 Chirp 

In radar systems, the basic principle is the propagation of an electromagnetic signal 

reflected in its direction by objects. A signal frequency increases linearly with time on 

FMCW radars is known as a chirp signal [24] shown in Figure 2.3.  

       𝑥t = 𝑠𝑖𝑛(𝑤t𝑡 + 𝜙t)                                                     (2.6)  

Where 𝑤 is the angular frequency and 𝜙 is the phase of the signal.  

 

 

 

 

 

 

 

 

 

Figure 2.3 A chirp signal with amplitude as a function of time. 

2.2.3 Range Measurement 

To measure range, An FMCW radar system transmits a chirp signal and captures the 

signals reflected by objects in its path. A signal’s frequency increases linearly over time 

with a slope of 𝑆, with frequency 𝑓 and with total chirp time of 𝑇𝑐. Assuming there is an 

object in front of the radar at a distance of 𝑑, a chirp will reach the object in the time 𝑡 =

𝑑

𝑐
, since it propagates at the speed of light, 𝑐.  
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The signal is then reflected and arrives back at the radar after the same amount of time 

𝑡, making the total round-trip time. 

        𝜏 =  
2𝑑

𝑐
                                                                  (2.7) 

 

 

 

 

 

 

 

                         (a)                                                (b) 

Figure 2.4 IF frequency is constant (a), Multiple IF tones for multiple-object detec-
tion (b). 

At the radar, the reflected signal is received and sent to a mixer along with the originally 

transmitted signal. A mixer takes two sinusoids and gives the output. Let’s say, 𝑥1 =

𝑠𝑖𝑛(𝑤1𝑡 + 𝜙1) 𝑎𝑛𝑑 𝑥2 = 𝑠𝑖𝑛(𝑤2𝑡 + 𝜙2) are these signals. Hence in the mixer,  

𝑥𝑜𝑢𝑡 = 𝑠𝑖𝑛[(𝑤1 − 𝑤2)𝑡 +  (𝜙1 − 𝜙2)]                                     (2.8) 

Now, Figure 2.4 (a), for one object in front of the radar, Rx chirp is the delayed version 

of Tx chirp with round trip delay (𝜏) and slope (S). The mixer output is the difference of 

instantaneous frequency of the Tx chirp and Rx chirp as shown in Figure 2.4 (a), this is 

a straight line. Therefore, frequency of this tone is, 

𝑆𝜏  =
𝑆2𝑑

𝑐
                                                               (2.9) 

Now considering more than one object, radar transmitting a single chirp, and multiple 

reflected chirps are generated from different objects. Each delayed by a different amount 

depending on the distance to that object. So, the IF signal will have tones corresponding 

to each of these reflections. And the frequency of these tones is directly proportional to 

the range. The mixer output will consist of several different frequencies shown in figure 

2.4 (b). Therefore, a range-FFT is applied to the mixer output to identify the different 

distances of objects but resolution also needs to be considered to identify the amount of 

space between two objects and still mixer shows the tones of those frequencies. The 

resolution of the range-FFT is given by 

𝑑𝑟𝑒𝑠  =  
𝑐

2𝐵
                                                          (2.10) 

where 𝐵 is the bandwidth swept by the chirp (𝐵 =  𝑆𝑇𝑐), and the maximum unambiguous 

range is given by,  
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                                                     𝑑𝑚𝑎𝑥 =
𝐹𝑠𝑐

2𝑠
                                                                  (2.11) 

where 𝐹𝑠 is the analog to digital converters (ADCs) sampling rate of the radar [24]. 

2.2.4 Velocity Measurement 

To measure the velocity of a target the phase is needed. The phase of the mixer output 

is determined by the difference in the initial phase of the two signals. An FMCW radar 

transmits two chirps, separated by 𝑇𝑐, in-order to determine velocity. To detect the 

object's range (range-FFT), each reflected chirp is processed by FFT. In the same 

location, but with a different phase, the range-FFT corresponding to each chirp will have 

peaks. The calculated difference in phase corresponds to a motion inside the 𝑣𝑇𝑐 object. 

    
                     Figure 2.5 Velocity measurement with two chirps. 

The phase difference is defined by the equation  

∆𝜙 = 4𝜋𝑣𝑇𝑐/𝜆                                                        (2.12) 

Can be written as,  

 𝑉 =  𝜆∆𝜙/4𝜋𝑇𝑐                                                      (2.13) 

There will be ambiguity as velocity based on the phase difference. The measurement is 

unambiguous only if ⌈∆𝜙⌉ < 𝜋. Maximum relative speed (𝑉𝑚𝑎𝑥) measured by two chirps 

spaced 𝑇𝑐 apart, Higher 𝑉𝑚𝑎𝑥 required shorter transmission times between two chirps. If 

several moving objects with differing velocities are at the time of measurement, all at the 

same distance from the radar, the two-chirp velocity measurement system does not 

operate. As these objects are at the same distance, with identical IF frequencies, they 

can produce reflective chirps. As a result, the range-FFT would result in a single peak, 

which from both of these equi-range objects reflects the cumulative signal. It would not 

operate for a simple phase contrast method. In this situation, more than two chirps must 

be emitted by the radar system to determine the speed. It transmits a series of 𝑁 equally 

spaced chirps. It's called a chirp frame for this group of chirps [24]. 
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3. MACHINE LEARNING BASICS 

In this chapter of machine learning basics, the feature extraction and classification, and 

Nural Networks (NN) have been presented.  

Machine learning is a data analysis method that automates the analytical models. It is a 

part of artificial intelligence focused on the premise that systems, with minimal human 

interaction, can learn from data, recognize patterns, and develop decisions. Like 

statistical models, machine learning is aimed at understanding the structure of the data, 

fitting theoretical distributions to well-understood data. There is a hypothesis behind the 

model that is mathematically proven with statistical simulations, but this includes data to 

satisfy some strong assumptions as well. The machine learning has evolved based on 

the ability to use algorithms to evaluate data for structure. The test for a machine learning 

model is not a theoretical test that confirms a null hypothesis, but a validation error on 

new data. Since machine learning also uses an iterative technique to learn from data, it 

is simple to automate learning. Up until a robust pattern is found, passes are run through 

the data. For feature extraction and classification, machine learning approaches can be 

effectively used and are also applicable to biometric systems. Biometrics deals with 

people's identification based on physiological and behavioral attributes. Biometric 

recognition utilizes automated recognition approaches and this is why machine learning 

is closely linked to it [26] [27]. 

3.1 Feature Extraction and Classification 

Nowadays it is becoming more common to work with a bigger dataset which has hundred 

of features or even more. If the number of features in a dataset becomes similar or bigger 

than the number of observations stored in a dataset, then this will most likely lead to 

overfitting of a Machine Learning algorithm. To avoid this type of problem, dimensionality 

reduction techniques (Feature Extraction) or regularization can be applied. The 

dimensionality of a dataset is equal to the number of variables in the machine learning 

used to represent it. This technique certainly reduces the risk of overfitting but there are 

also many other advantages, for instance, improved data visualization, accuracy 

improvements, overfitting risk reduction, speed up in training [28]. 

For pattern recognition, feature extraction is very important which deals with the 

transformation of data from original data space to a feature space. Dimensionality is the 

same for both feature space and data space but the dimensionality of the space of the 
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feature can be minimized (reduction of dimensionality) when the transformation is 

selected correctly, and the data can be decorrelated. The methods of data transformation 

can be linear or non-linear. Linear methods can be of the 2nd order(e.g. Factor Analysis, 

Principal Component Analysis (PCA), Linear Multilayer Perceptron (MLP), Linear PCA 

networks,) or of higher-order (e.g. Independent Component Analysis (ICA), Projection 

Pursuit). Examples of nonlinear methods are Nonlinear PCA applied by nonlinear MLP 

[27]. 

3.1.1 Feature Extraction Methods 

There are several approaches that the term machine learning encompasses. Examples 

of them are PCA, Kernel Methods – KPCA (Kernel PCA), Linear Discriminant Analysis 

(LDA), Support Vector Machines (SVM), Generalized Discriminant Analysis (GDA), 

Active Appearance Methods (AAM), Local Binary Patterns (LBP), Active Shape Methods 

(ASM), etc [27]. 

3.2 Classification 

Support Vector Machine (SVM), Random forest, and k-Nearest Neighbors (K-NN) are 

briefly explained in this section. However, These classifications are not used directly in 

this thesis, Henceforth, the classifications are described shortly in the section. 

3.2.1 Support Vector Machine (SVM) 

A linear model for classification and regression problems is SVM or Support Vector 

Machine. For several practical issues, it can overcome linear and non-linear issues and 

perform well. The SVM principle is simple: the algorithm produces a line or hyper-plane 

that divides the data into groups.  

 

                                            

 

 

 

                             

 

Figure 3.1 SVM Hyperplane [30]. 
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At first, SVMs find a separating line (or hyperplane) between data of two classes. SVM 

is an algorithm that takes the data as an input and outputs a line that separates those 

classes if possible. The data points between the hyperplane are classified to a certain 

class (eg. green and red as in Figure 3.1). The difference between the hyperplane and 

the first point (for all the various classes) on each side of the hyperplane is a measure of 

certain the algorithm is regarding its classification decision. The bigger the distance and 

the more certain that SVM is making an accurate decision.  

Support Vectors are considered the data points nearest to the hyperplane. Support 

Vectors evaluate the hyperplane's orientation and position in-order-to optimize the 

margin of the classifier (and thus the classification score). Depending on the applications, 

the number of Support Vectors the SVM algorithm can use can be randomly selected. 

Two main types of SVM classification algorithms are used one is hard margin another is 

soft margin [29].  

3.2.2 Random Forest 

A Random Forest is just a bunch of bundled Decision Trees. The basic concept behind 

a random forest is to combine multiple decision-making trees into a single model. 

Predictions made by decision trees (or humans) individually may not be correct, but 

taken together, the predictions would be on average closer to the mark. They can also 

manage categorical characteristics very well. This algorithm can handle high 

dimensional spaces as well as a large number of training examples [31] [32]. 

3.2.3 k-Nearest Neighbors (K-NN) 

A supervised learning algorithm used for both regression and classification is k-Nearest 

Neighbors (KNN). The KNN algorithm does not calculate a predictive model from a 

training dataset, as in logistic or linear regression, to make a prediction. Indeed, a 

predictive model need not be developed by KNN. To be able to make a prediction, 

without any training process, a KNN uses the dataset to generate a result. 

The mean (or median) of the y variables of the K nearest observations would be used 

for predictions if KNN is used for a regression problem. If KNN is used for a classification 

problem, the mode of the variables y of the K closest observations that will be used for 

predictions is the mode (the value that occurs most often). It is robust to noisy training 

data and is effective in the case of a large number of training examples [32] [33]. 
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3.3 Neural Networks 

Neural networks are a clear example of methods of deep learning with attractive features. 

Since the majority of real signals are nonlinear, non-stationary, and non-Gaussian, 

conventional methods are sub-optimal. With such signals, neural networks can simply 

function and can produce optimum performance. Neural networks and deep learning 

currently provide the best solutions to many problems in image recognition, speech 

recognition, and natural language processing. 

3.3.1 Convolutional Neural Network 

Convolution Neural Network (CNN) also called feedforward NN is one of the most 

common deep learning algorithms, a form of commonly used deep learning method in 

which a model learns to conduct classification tasks directly from images, video, text, or 

audio. For finding patterns in images to recognize objects, faces, and scenes, CNNs are 

particularly useful. They learn from image data directly, use patterns to classify images, 

and eliminate the need for manual extraction of features. This network is usually used 

for object recognition, object detection, and computer vision such as self-driving vehicles, 

etc.  

CNN Architecture: 

 

                                

 

 

 

 

                                

                           Figure 3.2 The CNN architecture.  

A convolutional neural network can have lots of layers according to the task and each of 

the layers learns to detect different features of an image. Filters are applied at different 

resolutions to each training image, and each convoluted image's output is used as the 

input to the next layer. The most common layers are convolution, ReLU or activation, 

and pooling in the CNN. 

• Convolution layers: Convolution uses a set of convolutional filters to place the 

input images, each of which activates certain features of the images.  
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• Rectified linear unit (ReLU) or activation: By mapping negative values to zero 

and maintaining positive values, the rectified linear unit (ReLU) enables faster 

and more efficient training. This is sometimes referred to as activation because 

the next layer is carried forward by only the activated features. 

• The pooling layer is responsible for the convolved feature's spatial size reduction. 

This is to reduce the computational power required through dimensionality 

reduction to process the data. Also, it is useful for extracting rotational and 

positional invariant dominant characteristics, thus maintaining the model's 

process of effective training. There are two types of pooling average pooling and 

max pooling.  

These operations are repeated over and over within the layers and with each layer’s 

network learn to identify different features.  After learning the features in these layers 

CNN shifts to classification layers. The next-to-last layer is a fully connected layer that 

produces a K-dimensional vector, where K is the number of classes that can be predicted 

by the network. For each class of any image being classified, this vector contains the 

probabilities. To provide the classification output, the final layer of the CNN architecture 

utilizes a classification layer such as softmax [34]. 

Mathematical Operation of CNN: 

Considering a CNN with L convolutional layers, a mapping relation 𝑓(𝑋0; 𝜃) =  ℝ𝑁0 →

ℝ𝑁𝐿. ℝ𝑁𝐿  exist between the input layer and the last convolution layer where 𝑁0 > 𝑁𝐿  due 

to the shared weights in the convolution step and pooling that makes a significant 

reduction in the number of weights. The 𝑙𝑡ℎ layer 𝑟𝑙 depends on both the output of 

(𝑙 − 1)𝑡ℎ layer and a set of weights 𝜃𝑙 belonging to 𝜃 =  {𝜃1, . . . . 𝜃𝑙}, denoting the set of 

all parameters of the 𝐿 layers of the network. The mathematical operation in a local 

receptive field of the 𝑙𝑡ℎ convolution and activation layers can be described as: 

                                                      𝑓𝑙(𝑋𝑙−1; 𝜃𝑙) = 𝛿(𝑍𝑙𝑋𝑙−1; 𝑏𝑙)                                                 (3.1) 

where 𝑍𝑙 ∈  ℝ𝐾𝑙𝐾𝑙 , with 𝐾𝑙 the size of the kernel window, that is applied as a sliding 

window on the local areas of 𝑋𝑙−1 ∙  𝑏𝑙 ∈  ℝ𝑁𝑙, is the bias in the 𝑙𝑡ℎ layer and 𝛿(∙) is called 

the activation function that induces non-linearity into the features. After the 𝐿 layers of 

deep extracted features, there are the decision layers, where the similarity of the feature 

into the classes is quantified. For example, as probabilities for assigning the features into 

one of the classes. 

Usually, the last layers include a fully connected layer (FCL). In order to train the network, 

to find the optimum weights, a loss function for minimization or performance for 
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maximization is used. Considering the vector of image labels as 𝑌 and the predicted 

labels as 𝑌̂, then the loss function for CNN can be defined as: 

    𝐿𝑜𝑠𝑠 (𝜃) =  
1

𝑆
 ∑ 𝑙𝑜𝑠𝑠(𝑦𝑖̂, 𝑦𝑖) 𝑆

𝑖 = 1                                                (3.2) 

Where 𝑆 is the size of the training dataset. The goal of the training process is to find out 

the values of the parameter set 𝜃 that minimizes the 𝐿𝑜𝑠𝑠(𝜃). The metric of the loss 

function can be mean equared error (MSE) or categorical cross-entropy (CC). The most 

popular training process method is stochastic gradient descent (SGD) [35]. In the work, 

the input data sample 𝑋0 for training is the 2D 𝜇 − 𝐷 signature D from STFT [36]. 

3.3.2 Recurrent Neural Network 

Recurrent Neural Network (RNN) is another deep learning architecture that processes 

the sequences of the data by using feedback connections. For example, it is used for the 

analysis of time-series such as speech and video data. The instant Doppler detection in 

the 𝜇 − 𝐷 signatures can be considered as a one-time instance of a sequential event. 

RNN keeps track of temporal dependencies in the input sequences. RNNs may use their 

internal state (memory) to handle sequences of inputs, unlike feed-forward neural 

networks. All the inputs are independent of each other in other neural networks, but all 

the inputs are related to one another in RNN. The problem with RNN is they might have 

good short-term memory but handling the long or big data this performed badly. Long-

Short Term Memory Networks or LSTMs is an RNN variant that addresses the former's 

long-term memory problem. In this thesis, the LSTM [37] is used for the analysis of the 

𝜇 − 𝐷 signatures as time-series data. 

Long Short-Term Memory Networks (LSTM): The LSTM has a more complex cell 

structure than the regular recurrent neuron which allows better regulate the function of 

learn and forget. The function in the LSTM is controlled by cell state (cell memory). 

Basically, the cell state encodes the data of the inputs (relevant info) observed (at every 

step) up to that point. Another state in the LSTM is the hidden state (cell output) which 

is an output of the cell denoted by ‘h’. The regular RNN has no cell state often denoted 

by ‘c’ (‘g’ for cell candidate), therefore RNN suffers for accessing the information a long 

time ago. The hidden state is used in the LSTM for prediction which contains the 

information of previous input along with current input [38].  
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                             Figure 3.3 LSTM cell view [38]. 

An LSTM has three of these gates, to protect and control the cell state. The input gate, 

the cell, will determine whether or not to change the cell state. The cell can delete its 

memory with the forgotten gate, and with the output gate, the cell can determine whether 

or not to make the output information available. 

1. Input Gate: Also called the save vector. These gates decide which information 

should enter in the cell state or long-term memory and which information should 

save in the cell state or should be forgotten. From the Figure 3.3, the tanh 

activation function squashed the input between -1 to 1. Then this squashed input 

(from tanh) is multiplied by the output of the input gate elementwise. The input 

gate is effectively a hidden layer of sigmoid enabled nodes, with weighted 𝑥𝑡 and 

input values ℎ𝑡−1, which outputs values between 0 and 1, and when multiplied by 

an input decides the inputs are turned on and off. 

2. Forget gate: The forget gate is sometimes called the remember vector. By 

multiplying 0 to a position in the matrix, the output of the forget gate informs the 

cell state what data to forget. If the output of the forget gate is 1, it will hold the 

information in the cell state. 

3. Output Gate: The output gate is often referred to as the focus vector. It ultimately 

highlights, out of all possible values from the matrix (long memory), which 

information can pass on to the next hidden state [39]. 

The trainable weights of LSTM layers are Input Weights 𝑊 =  [𝑊𝑖, 𝑊𝑓 , 𝑊𝑔, 𝑊𝑜]
𝑇
, the Re-

current Weights 𝑅 =  [𝑅𝑖, 𝑅𝑓 , 𝑅𝑔, 𝑅𝑜]
𝑇
, and the Bias 𝑏 =  [𝑏𝑖, 𝑏𝑓 , 𝑏𝑔, 𝑏𝑜]

𝑇
,. Assume the in-

put time sequence is 𝑋, ℎ𝑡 and 𝑐𝑡 are the output (or hidden) state and cell state of the 

time step 𝑡.  
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The update of cell and output states can be described as follows: 

                               𝑐𝑡  = 𝑓𝑡 ° 𝑐𝑡−1 + 𝑖𝑡 ° 𝑔𝑡                                                  (3.3) 

                               ℎ𝑡  =  𝑜𝑡 ° 𝛿𝑐 (𝑐𝑡)                                                         (3.4) 

where 𝜊 denotes the element-wise product of vectors, 𝛿𝑐  denotes the state activation 

function.  ℎ𝑜 and  𝑐𝑜 are initialized to 0. The update of the gates and cell candidate can 

be described as follows: where ∑  =  [𝛿𝑔 , 𝛿𝑔, 𝛿𝑐 , 𝛿𝑔]
𝑇
is the activation vector, and 𝛿𝑔 is the 

gate activation function, and [. ]𝑇 is the transposition of a vector. In the RNN context, the 

input time sequence 𝑋 for training 𝜇 − 𝐷 is signature 𝐷 obtained from STFT. The column 

vector 𝑑𝑡 in 𝐷 is the time sequence status at time 𝑡 which corresponds to 𝑥𝑡 in [39][40]. 

3.3.3 CNN-LSTM Network 

The convolutional model is good at representing the spatial features and the recurrent 

model is good at revealing the temporal feature of the input data. Thus, a CNN-LSTM 

model is developed by connecting the features of the early layers of CNN to the LSTM 

network. Therefore, the model benefits from both sequential deep spatial features and 

LSTM temporal features for analysis of the mmWave radar 𝜇 − 𝐷 signatures of 

vulnerable road user's movements. 

 

                               Figure 3.4 CNN-LSTM model. 

3.3.4 Model Implementation  

In this thesis, The CNN, LSTM, and CNN-LSTM models are implemented in Matlab.  The 

Matlab functions are used to train and test the data set. Matlab® pedestrian backscatter 

signal function and Matlab® backscatter radar signal function are used to generate 

pedestrian and the cyclist model, respectively, details are described in the next chapter. 

 



21 
 

4. SIMULATIONS STUDY OF MICRO DOPPLER 
RECOGNITION 

In this chapter, a simulation study for micro doppler recognition has been presented. This 

chapter consists of five sections (i) micro-doppler signature, (ii) simulation setting and 

scenario description, (iii) datasets description, (iv) target recognition performance, and 

(v) identify the favorable NN layer for the 𝜇 − 𝐷 data. 

4.1 Micro Doppler Signature 

The 𝜇 − 𝐷 effect, induced by micromotions (vibration or rotation) of a target or structures 

on the target, can be derived from the theory of the electromagnetic back-scattering field. 

In this paper, we used a simplified model to interpret the 𝜇 − 𝐷 phenomenon. Assume 

an object is moving with radial velocity 𝑣 with respect to the radar. The Doppler shift 𝑓𝐷 

induced by this object can be written as 

                 𝑓𝐷  =  2𝑓𝑐
𝑣

𝑐
                                                          (4.1) 

where 𝑓𝑐 is the carrier frequency, 𝑐 is the free-space propagation speed. When handling 

a complex target, which is composed of 𝑁 moving parts and each moving part has 

distinguishable time-varying motion status 𝑣𝑖(𝑡). Assume the reflected signal from the 

𝑖𝑡ℎ part can be denoted by 𝑟𝑖 (𝑡)  =  𝛼𝑖𝑠(𝑡 − 𝜏𝑖)𝑒𝑗2𝜋𝑓𝐷𝑖𝑡. 𝑓𝐷𝑖 is the Doppler shift caused by 

the 𝑖𝑡ℎ moving part, 𝛼𝑖 and 𝜏𝑖 are the amplitude coefficient the signal delay from the 𝑖𝑡ℎ  

part. The reflected signal of the whole target on the receiver side can be considered as 

the sum of reflections from all parts and the additive white Gaussian noise (AWGN) which 

is denoted by 𝑛 in equation (4.2) 

                             𝑟(𝑡) =  ∑ 𝑟𝑖(𝑡) +  𝑛𝑖                                                    (4.2) 

This assumption is more realistic for road users such as pedestrians or cyclists. As 

shown in Figure 4.1, the Doppler observation of the walking human is caused by the 

combined effect of the bulk torso rocking and partial rotations of legs and arms. The 

Doppler shifts of a cyclist can be considered as the result of the bulk human body, bike 

frame, quick spinning wheels, and rotating legs. The receiving signal 𝑟(𝑡) contains 

multiple Doppler (frequency) components because of the complex target motion status. 

However, the Doppler shifts can not be directly observed from equation (4.2). 
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Figure 4.1 Walking padestrian observed by the radar 

Usually, short-time Fourier transform (STFT) is applied on the radar receiving signal 𝑟(𝑡) 

to visualize the 𝜇 − 𝐷. The STFT of the receiving signal 𝑟(𝑡) is shown as below: 

    𝑆𝑇𝐹𝑇{𝑟(𝑡)}(𝜏, 𝑓) = ∫ 𝑟(𝑡)𝜔(𝑡 − 𝜏)𝑒𝑗2𝜋𝑓𝑡−∝

∝
𝑑𝑡                                 (4.3)                                  

where 𝑤(𝜏) is the window function, commonly a window centered around zero (e.g., 

Hann, Gaussian, or Kaiser window). The STFT of the signal 𝑟(𝑡) shows the distribution 

of energy in the two-dimension (2D) time-frequency space. Depending on the target 

motion status, this energy distribution varies so that different motions result in different 

energy distribution patterns. Thus, STFT can be used to recognize different types of road 

users based on the on-vehicle mmWave radar data. Also, the real STFT pattern is 

influenced by the orientation, distance, and direction of the target with respect to the 

radar, as well as the operating frequency of the radar system. The result of the STFT 

operation is a 2D matrix with complex entries.  

In practice, the phase information of the entries are usually ignored, and the normalized 

logarithmic magnitudes of the entries in the 2D matrix are considered. They are called 

𝜇 − 𝐷 signature and denoted by 𝒟. There are two ways to interpret the 𝒟. First, it can be 

treated as an image and convolutional models can be employed to recognize different 

𝜇 − 𝐷 signatures. Second, the 𝒟 can be treated as a sequence. Each column of 𝒟, 𝑑𝑡𝑖 , 

corresponds to a Doppler detection at the time 𝑡𝑖 . Then, the 𝒟 can be recognized by 

using recurrent models. 

4.2 Simulation Parameter Settings  

In this thesis, to generate the radar returns from objects, the parameters were set up as 

follows;  

• Radar operating parameters: In this section, the waveform bandwidth, 

sampling frequency, carrier frequency, and waveform repetition time has been 

set up. 
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• Radar parameter: Radar position, velocity is defined here. The Matlab® phased 

platform function is used to define these parameters.  

• Radar waveform setting: The sample rate, sweep time, sweep bandwidth has 

been set up. 

• Simulation setup: The maximum pedestrian and cyclist speed were set up. The 

oversampling factor and simulation time duration were set up.  

• Signal initialization: Finally, the signal was initialized and lock the area of 

interest.  

4.3 Simulation Settings and Scenario Description 

In this thesis, for generating different 𝜇 − 𝐷 samples of pedestrians and cyclists a four 

steps procedure was developed. 

• S1-target scattering modeling: For the pedestrian object, the stick man model 

in [40] is used, which is also used by Matlab® pedestrian backscatter signal 

function [41]. The backscatter signal function produces an entity that simulates 

signals from a walking pedestrian. The pedestrian walking model coordinates the 

motion of 16 body parts in order to simulate natural motion. The model also 

simulates the reflectivity of each portion of the body. From this model, the 

direction and velocity of each segment and the overall backscattered radiation 

can be obtained as the body travels. After creating the pedestrian model the 

Matlab® move function is used to move the pedestrian and Matlab® reflect 

function is used to get reflection from the pedestrian.  There are more moving 

parts in the cyclist object. The Matlab® backscatter radar signal function [42] is 

used to generate the cyclist model, The model simulates backscattered radar 

signals reflected from a moving bicyclist. Both the bicycle and its rider make up 

the bicyclist. Henceforth, The model also takes the number of spokes, gear 

transmission rates, and pedaling status into account. 

• S2-trajectory generation: For both pedestrian and cyclist objects, the initial 

heading measured in the xy-plane from the x-axis towards y-axis in units of 

degrees, walking speed is set to 1.4 times of the pedestrian height set in the 

Height property [Initial position, Heading, Speed] is defined to describe the 

trajectory. The detailed distribution of these parameters are in Table 4.1.  

• S3-propagation modeling: Free space propagation models are used in both 

pedestrian and cyclist simulation. Signal propagation speed, signal carrier 

frequency, and sample rate are the main property of the free space propagation 
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is used. The two-way propagation was set to perform round-trip propagation 

between the source and destination. 

• S4-𝝁 − 𝐃 signature generation: The backscattered signal from either 

pedestrian or cyclist are fed to STFT to obtain the 𝜇 − 𝐷 signature for recognition. 

The STFT parameters are listed in Table 4.1. The setting of the simulation in this 

work are shown in Table 4.1. 

Table 4.1 𝝁 − 𝑫 signature generation settings of the pedestrian and cyclist 
objects. 

 Pedestrian Cyclist 

Object 
Properties 

Height 
𝑈(1.5,  2) 

in m  

Spokes 36 

Gear rate 
𝑈(1,  10) 

in m/s 

Pedaling 𝐵𝑒𝑟𝑛(0.5) 

Motion 
Properties 

Initial 
Position 

𝑈([−10,  10][5,  45]) 
in m 

Initial Position 
𝑈([−10,  10][5,  45]) 

in m 

Heading 
𝑈(−180,  180) 

in degree 
Heading 

𝑈(−180,  180) 
in degree 

Speed 
𝑈(0,  1.4 ×  ℎ𝑒𝑖𝑔ℎ𝑡)  

in m/s 
Speed 

𝑈(0.5,  6 )  
in m/s 

Radio 
Propagation 

Propagation 
Speed 

3× 108 m/s 
Propagation 

Speed 
3× 108 m/s 

Carrier 
Frequency 

24 𝐺𝐻𝑧 
Carrier 

Frequency 
24 𝐺𝐻𝑧 

STFT 
Parameters 

Window 
Type 

Kaiser Window Type Kaiser 

FFT size 200 FFT size 200 

Overlap rate 6 Overlap rate 6 

 

where the overlap rate in Table 4.1 is defined as the ratio of window size and shift step 

size. Based on the parameters in Table 4.1, the 𝜇 − 𝐷 dataset can be generated that 

covers random factors such as, the size of the object (impact radar RCS), moving 

orientation, initial position, moving speed, etc. Thus, the trained neural network models 

will be more robust against the target variation. 
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Figure 4.2 Illustration of the simulated 𝜇 − 𝐷 samples of the pedestrian and cyclist. 

4.4 Datasets Description 

Five datasets are created to train the CNN, LSTM, and CNN-LSTM models for 

simulation. The main difference between the datasets is the duration of the 𝜇 − 𝐷 

signature samples as shown in Table 4.2. The duration of the 𝜇 − 𝐷 is indicated by the 

number of the time bins of D. Each dataset contains 25000 labeled samples that cover 

five road scenarios: single pedestrian (1 ped), single cyclist (1 cyc), two pedestrians (2 

ped), two cyclists (2 cyc), one pedestrian & one cyclist (ped+cyc) and 80% of randomly 

sampled data are used as a training set and the rest 20% samples are used as a testing 

set. Example samples of the five cases are shown in Figure. 4.3. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Example of the 2-second duration of Doppler signature sample 

(400 × 144 pixel image) of the five road user cases in Set-4. 
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Each 𝜇 − 𝐷 signature example in Figure 4.3 contains 400 Doppler (frequency) bins 

and 144-time bins.  

Table 4.2 Five datasets for modeling and test experiments 

Dataset Set-1 Set-2 Set-3 Set-4 Set-5 

Duration 0.5 sec 1.0 sec 1.5 sec 2.0 sec  

Time bins 36 72 108 144 𝒩(72,14) 

4.5 Target Recognition Performance 

Different numbers of time bins are considered to test the impact of Doppler recording 

duration on the recognition performance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4 One-layer CNN (a), two-layers CNN (b) CNN, (c) One layer LSTM, and 
(d) CNN-LSTM structures used for mmWave 𝜇 − 𝐷 signature recognition. 

Only two simple CNNs are used to test the availability of 𝜇 − 𝐷 recognition in this 

simulation: one-layer and two-layer CNN in Figure 4.4 (a) and (b). The dense layer type, 

activation function, and loss function used in the two CNNs are used and a simple shal-

low one-layer LSTM NN in Figure 4.4 (c) as is used to demonstrate the capability of 

recurrent models. For the benefit from both sequential deep spatial features and LSTM 

temporal features for analysis of the mmWave radar 𝜇 − 𝐷 signatures of vulnerable road 

users movements, in the CNN-LSTM in Figure 4.4 (d), the input of the LSTM network is 

connected to the CNN and re-train.  
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4.5.1 Feature and Classification Based Performance 

• One- and two-layer CNN Performance using Set-4: In the convolutional layer 

of the one-layer CNN, 16 2D feature maps of size 10×10 is used. This is followed 

by applying a rectified linear unit (ReLU) activation and 10×10 max-pooling 

layers. In the case of the two layer CBNN, the first convolution layer uses the 

same number and type of filters as the one-layer CNN, while the second 

convolutional layer uses 32 filters of size 5×5 followed by ReLU activation and 

5×5 average pooling layers.  

 

 

 

 

 

 

 

 

(a) One-layer CNN                                     (b) Two-layer CNN  

Figure 4.5 Confusion matrixes of (a) one-layer CNN, (b) two-layer CNN. 

Regarding the output, both the one- and two-layer CNN use the combination of 

fully connected, softmax, and classification layers. The training time varies 

depending on the various factors such as MiniBatchSize, execution environment 

(gpu, cpu) and MaxEpochs, etc. For this experiment, the MiniBatchSize and 

MaxEpochs are 64 and 60 has been taken respectively. The overall recognition 

accuracy of the One- and two-layer CNNs are 0.8426 and 0.9202 and the 

confusion matrices are shown in Figure. 4.5 (a) and (b) revealing that the 

increased convolutional layer boosts the performance significantly but increasing 

the layers in the network required more time to perform shown in Table 4.3. 
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(a) Single layer CNN 

 

 

 

 

 

 

 

 

 

 

 

 

                                                         (b) Two-layer CNN 

Figure 4.6 (a) Single-layer CNN and (b) Two-layer CNN training progress. 

It can be clearly seen from Figure 4.6 (a) and (b) performance graph didn’t show 

many changes after the 30 iterations for both two-layer CNN and single layer 

CNN but certainly, 60 apoches provided a little bit better performance for both NN 

structures.  
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      Table 4.3 Requirement time for two layers CNN and single-layer CNN. 

NN structure Time Epoch 

Two-layer CNN 543 minutes 60 

Single-layer CNN 473 minutes 60 

                     

• One-layer LSTM Performance with Set-4: In this thesis, a bidirectional LSTM 

layer is used. The output layers are the same as the CNN models setup. The 

MaxEpochs and MiniBatchSize are 60 and 27 taken respectively. The recognition 

accuracy of the single-layer LSTM model with 400 hidden units is 0.8218, shown 

as the confusion matrix in Figure 4.7 (a).  

  Table 4.4 single layer LSTM performance with different number of hidden 
units for 2-second duration set-4. 

Number of HUs 50 100 200 400 

One-layer LSTM 
accuracy 

0.7780 0.8044 0.8166 0.8218 

 

 

 

 

 

 

 

 

 

                               (a)                                                              (b)  

Figure 4.7 (a) Confusion matrix of single-layer LSTM with 400 HU, (b) LSTM 
recognition accuracy with different number of HU. 

For the LSTM NNs, the number of HUs impacts the recognition performance. In 

Table 4.4, we show how the increase in the HUs improves the performance of 

the LSTM.  

• CNN-LSTM Model Performance on Set-4: In this CNN-LSTM model, the 𝜇 − 𝐷 

sample is first fed to a convolutional layer and the number of filters and size are 

defined. The MiniBatchSize and Maxepochs are used same as the one-layer 

CNN. Then, the output of the previous layer are fed to the LSTM layer which has 

400 HUs.  
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(b) 

Figure 4.8 (a) CNN-LSTM Confusion matrix, (b) Training progress. 

The overall recognition accuracy of the CNN-LSTM model reaches to 0.8686. 

The confusion matrix is shown in Figure 4.8 (a) and training progress is shown in 

Figure 4.8 (b) 

• Recognition with different 𝝁 − 𝑫 durations: Using the 2-second 𝜇 − 𝐷 

samples in Set-4, all the convolutional, recurrent, and CNN-LSTM models 

achieve over 80% recognition accuracy. However, short reaction time is already 

a favorable feature in the road traffic scenarios. Thus, the performance of the 

models is tested when using different 𝜇 − 𝐷 sample durations for Set-1 to 4. The 
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same network layer structures and training setups as the previous sections are 

used. 

Table 4.5 Classification performances of one- and two-layer CNN, one-
layer LSTM, and CNN-LSTM models using different 𝝁 − 𝑫 signature dura-

tions. 

 Set-1 
0.5 Sec 

Set-2 
1.0 Sec 

Set -3 
1.5 Sec 

Set-4 
2.0 Sec 

One-layer CNN 0.8288 0.8544 0.8726 0.8426 

One-layer LSTM 0.7608 0.7810 0.8302 0.8040 

Two-layer CNN 0.8710 0.9042 0.9158 0.9202 

CNN-LSTM 0.8106 0.8172 0.8480 0.8686 

 

From Table 4.5, it can be observed that the longer 𝜇 − 𝐷 signature duration 

resulted in higher recognition accuracy in general. 

 

 

 

 

 

 

 

 

 

Figure 4.9 Recognition accuracy with different 𝜇 − 𝐷 duration. 

However, the conclusion is not always stand, due to the capability of the shallow 

NNs. For example, the performance of 2-second duration Set-4 drop in both one-

layer CNN and one-layer LSTM cases. That is because the single NN layer may 

not be able to cope with both spatial and/or sequential features of the long 𝜇 − 𝐷 

data. Due to their deeper structure, the two-layer CNN and CNN-LSTM models 

can handle the long duration data well, as shown in Table 4.5. 

• Recognition accuracy in random 𝝁 − 𝑫 sample duration: In the previous 

sections, the recognition performances were evaluated by using the Set-1 to 4 

that contain uniformed 𝜇 − 𝐷 sample durations, which are not common in 

practice. This section will evaluate the models using Set-5 that contains 𝜇 − 𝐷 

samples with random durations.  
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The recognition accuracies are shown in Table 4.6 using the same network 

structures and training setups in the previous experiments.  

 

Table 4.6 classification performances of one- and two-layer CNN, one-
layer LSTM, and CNN-LSTM models on set-5. 

 1L CNN 1L LSTM 2L CNN CNN-
LSTM 

Accuracy 0.8166 0.6224 0.8528 0.8212 

 

From the result in Table 4.6, we can clearly see that the performance of the one-

, two-layer CNN models and one-layer LSTM model drop by 4~6%, 5~6%, and 

14~20% respectively when comparing the fix duration datasets (e.g. Set-2, Sect-

3). While the CNN-LSTM model shows improvement when comparing with the 

Set-2 and only around 1% drop when comparing with Set-3. Also, with further 

optimization of the convolutions layers and length of the HU, the CNN-LSTM is 

expected to outperform other models meanwhile demonstrates robustness to the 

randomness of the 𝜇 − 𝐷 duration. 

4.5.2 NN Based Performance 

• Convolution Model: From the recognition accuracy results in Figure 4.5 (a), (b), 

and Table 4.5, is concluded that despite of the additional complexity to the model, 

increasing the number of layers positively improves the performance. In addition, 

the performance drop of one-layer CNN model in the case of the 2-second 

duration dataset shown in Table 4.5, is evidence that the number of convolutions 

layers is more important for longer periods signals and deeper features are 

required in these cases. 

• Recurrent Model: The results in Figure. 4.7 (a) and Table 4.5, show that the 

recognition accuracy of the one-layer LSTM model is not as high as one-layer 

CNN due to the lack of spatial feature representation. However, it shows some 

level of robustness for longer durations of the 𝜇 − 𝐷 samples. Furthermore, As 

shown in Table 4.4, the number of hidden units is a key factor for the recognition 

capability of the longer 𝜇 − 𝐷 sequence. 

• CNN-LSTM Model: The CNN-LSTM model takes the advantage of the spatio 

representation of 2D  𝜇 − 𝐷 samples from the convolutional layer and temporal 

feature from LSTM layer. Thus, this model shows robustness for 𝜇 − 𝐷 datasets 
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with the dataset of random 𝜇 − 𝐷 sample durations, which is a promising sign for 

practical applications. 

• Potential problems in practice: The current work is conducted based on the 

simulation 𝜇 − 𝐷 datasets. Though the simulation datasets provide diverse 

variables for testing the strengthen and weakness of different models, there are 

other factors which are difficult to be include in the simulation data. For example, 

the noise and interferences of the reflections from others. 

4.6 Conclusion 

In this chapter, a simulation study of 𝜇 − 𝐷 signature of vulnerable road users (pedestrian 

and cyclist) was carried out. In the absence of 𝜇 − 𝐷 data from road trials, the simulation 

data still valuable for developing and testing the object recognition methods. CNN, 

LSTM, and CNN-LSTM models are tested for different road scenarios and varying Dop-

pler record duration. The preliminary results show that the pedestrian and cyclist 𝜇 − 𝐷 

signatures originated from the mmWave is distinguishable with even shallow one or two-

layers neural networks. In general, the two-layer convolutional models outperform the 

recurrent model (LSTM in this paper). However, it is sensitive to 𝜇 − 𝐷 signature duration. 

This fact is against the requirement of an agile response in an urgent situation. The LSTM 

recurrent model presents stability over different 𝜇 − 𝐷 durations. The CNN-LSTM model 

combines merits from both convolutional and recurrent models, especially in the case of 

random duration 𝜇 − 𝐷 samples in practical situations. 
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5. EXPERIMENTAL STUDY FOR TARGET 
(HUMAN) DETECTION 

In this chapter, an experimental study has been presented by the Texas Instruments (TI) 

mmWave Evaluation Module (EVM). This chapter consists of the sections (i) a detailed 

description of the IWR6843ISK module and mmWAVEICBOOST; (ii) experiments with 

TI mmWave demo visualizer followed by result and discussion, (iii) experimental study 

with MATLAB program followed by result and discussions. The Experiments has been 

conducted in the indoor environment. Millimeter-wave (mmWave) radar hardware is used 

in this thesis is an affordable low-power range sensor and can identify the target within 

100 meters.  

5.1 Hardware 

The IWR6843ISK and MMWAVEICBOOST are specific hardware introduced by Texas 

Instruments used in this thesis for the experimental study. The IWR6843ISK device 

consists of whole mmWave blocks, customer-programmable DSP, customer-

programmable MCU and has three transmitters and four receivers with the analog 

baseband signal chain. This system is used as a radar-on-a-chip in application cases 

with modest memory, processing power, and application code size specifications. This 

may be cost-sensitive implementations of industrial radar sensing. Examples are 

• Sensing at the industrial level  

• Sensor fusion for factory automation with radar  

• Monitoring of traffic intersections with radar  

• Industrial surveillance 

• Gesturing  

• People counting  

• Object detections  

For signal processing, radar signals for FFT, amplitude, tracking, and other uses, the 

IWR6843ISK has an integrated DSP. This board act as a radar front-end board because 

this contains a 60 Gigahertz transceiver in which on the PCB board or on the packager 

the antennas are attached. The MMWAVEICBOOST is an add-on board used for the 

mmWave sensor from TI, used with all starter kits to provide the mmWave sensors with 

more interfaces and PC compatibility. The MMWAVEICBOOST Using a capture board 

such as the DCA1000 evaluation module, the MMWAVEICBOOST board provides an 
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interface for the mmWave Studio tool to configure the Radar system and capture raw 

analog-to-digital converter (ADC) data. The EVM antenna module IWR6843ISK and 

MMWAVEICBOOST has everything needed to start developing the interface for on-chip 

C67x DSP core and low-power ARM R4F controllers. The EVM provides an interface 

through 40-pin LaunchPad™/BoosterPack™ connectors for the MSP43xx boards [43]. 

5.2 Functional Block Diagram of IWR6843ISK 

 

Figure 5.1 Functional diagram of IWR6843ISK [43]. 

The IWR6843ISK functional block diagram consists of RF and analog sub-system, which 

including the synthesizer, PA, LNA, amplifier, IF, and ADC, are part of the RF and analog 

subsystem. The crystal oscillator and temperature sensors are also included in that 

subsystem. The three transmitting channels can be operated in 1.3-V mode, up to a 

maximum of two at a time (simultaneously). The simultaneous operation of the three 

transmission channels is only enabled with 1-V LDO bypass and PA LDO disabled mode 

for beamforming purposes, as needed.  

The Clock Subsystem of IWR6843 generates 60 to 64 GHz from a 40-MHz crystal input 

reference.  Three parallel transmission chains consist of the IWR6843 transmission 

subsystem, each with independent phase and amplitude control. For MIMO radar, the 

system supports 6-bit linear phase modulation, Tx Beam shaping Applications, and 

minimize intervention. Programmable backoff for device optimization is also supported 

by the transmission chains. Four parallel channels compose of the IWR6843 receiving 
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subsystem. An LNA, IF filtering, A2D conversion, mixer, and decimation constitute a 

single receive channel. For device optimization, all four receive channels may be active 

at the same time as an individual power-down option is also available.  

DSP subsystem that comprises TI's high-performance C674x DSP (IWR6843 only), 

high-performance high-bandwidth interconnect (128-bit, 200MHz), and related 

peripherals-four data transmission DMAs.  LVDS for measurement output, L3 data cube 

memory for radar, ADC buffers, CRC generator, and data handshake memory. The 

master subsystem manages all device peripherals and device housekeeping operations. 

The Master subsystem includes the processor Cortex-R4F (Master R4F) and related 

peripherals and housekeeping components such as DMAs, CRC and Peripherals (I2C, 

SPIs, CAN, UART, PWM, PMIC clocking module and others) connected via Peripheral 

Central Resource (PCR interconnect) to the Master Interconnect [43]. 

5.3 MMWAVEICBOOST Hardware and Block Diagram 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) Front view                                                 (b) Rear view 

                 
                Figure 5.2 MMWAVEICBOOST (a) Front view (b) Rear view [43]. 
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Figure 5.3 Block Diagram of MMWAVEICBOOST[43]. 

5.4 Experiment with the TI mmWave Demo Visualizer 

Experiments have been done by using TI mmWave demo visualizer. This is Texas In-

struments gallery APP is used for configuring the mmWave sensor and identifying the 

object in a certain range which is generated by the mmWave SDK demo. This app is 

used in conjunction of the evaluation module and mmWave SDK demo.  

 

Figure 5.4 GUI of the mmWave demo visualizer.[44] 

For the experiment, SOP is selected in functional mode. The mmWave sensor is con-

nected to the PC by XDS110 UART interface and power up the sensor by 5V power 

supply. The browser, mmWave device, and serial port are sets up as shown in Figure 

5.4 [44]. 



38 
 

5.4.1 Configuration 
 

• The platform is selected to the xWR6843. 

• SDK version is selected to the 3.2 

• Antenna config (Azimuth res-deg) is selected to the 4Rx, 2Tx (15 degrees). 

• Selected the best range resolution in the desirable configuration. 

• Frequency band wide band (60 to 64 GHz) is selected[44]. 

5.4.2 Scene Selection 
  

• Frame rate: Frame rate (fps) is selected to 4fs for the range azimuth heat map 

and range doppler heat map.  

• Range resolution: Amount of separation between objects or points in the cloud 

defined by the range resolution(m), 0.041 meters of range resolution is selected 

for the experiment.  

• Maximum Unambiguous Range(m): Maximum unambiguous range is selected 

to the 10 meters.  

• Maximum Radial Velocity (m/s): Maximum radial velocity is selected to 2.0 me-

ters per second. 

• Radial Velocity Resolution: Radial velocity resolution is selected 0.24 me-

ters/second. 

5.4.3 Plot Selection 
 

1. Scatter plot: Scatter plot provides the detected object numbers sent out by the 

targets to the EVM and displays it on the doppler range plot and scatter plot. 

2. Range Profile: Range profile enables the log-magnitude range profile infor-

mation at zero doppler to be sent out by the target and show it on the range profile 

plot. 

3. Range Azimuth Heat Map: Range azimuth heat map to send all range bins and 

all antennas to the zero Doppler radar cube matrix for out and display it on the 

range azimuth heatmap plot. 

4. Range Doppler Heat Map: Range doppler heat map enables to send the whole 

detector matrix to the target (mmWave sensor) unit [45]. 
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5.5 Experiment Scenario Description 

Four experiments have been conducted with the mmWave demo visualizer. The first 

experiment was done with an object at a distance of 1.0 meter from the mmWave sensor 

device. The 2nd and 3rd experiments were done with a distance of 1.5 meters and 2 

meters respectively. For the 4th experiment, a metal object with a height and width of 

1m was moved from 2 meters to 1 meter towards the mmWave sensor device shown in 

Figure 5.5. 

 

Figure 5.5 Experiment illustration for the static object (human) (a), (b), (c) at a 
distance 1m, 1.5m, 2m respectively and human walking (d) towards the 

mmWave sensor from 2m distance. 

5.6 Experiment Procedure 

The experiment procedure is described below step by step, 

• The EVM was flashed and the image was loaded by the UniFlash tool. 

• The SOP mode was changed from the flashing mode to FUNCTIONAL mode. 

• The MMWAVEICMODE was set to the STANDALONE mode. 

• The evaluation module was connected with the PC by the XDS110 Emula-

tor/UART interface and the sensor device powered up by the 5V power supply. 

• From the mmWave demo visualizer, serial ports were configured in the ‘configure’ 

tab. 

• The configuration, scene selection, and plot selection have been done according 

to the 5.5.1 and 5.5.2 sections. 
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• Finally, the configuration was sent to the mmWave device and the data was 

logged for 5 seconds.  

5.7 Result and Discussion 

5.7.1 Experiment with Static Target and Moving Target 

The data is logged when a static object (human) was at a distance of 1.0 meters, 1.5 

meters, and 2 meters from the mmWave sensor for 5 seconds, and the total data was 

plotted in an X-Y scatter plot. This logged data gives the results with the information 

about the Frame Number, Total Target, Target Number, X (m), Y (m), Z (m), Doppler 

(m/s), and Intensity of the target.  

For the first experiment, 5 frame numbers were generated with 47 of total targets. For 

the second experiment, 8 frame numbers and 64 total targets were generated and in the 

third experiment, 7 frame numbers and 64 total targets were generated. In these 

experiments, the maximum intensity of 111.2(log), 105.5(log), and 101.9(log) was 

recorded, respectively. From Figure 5.6 (a), (b), and (c) the circle size of the dots 

indicates the doppler of the object. The color of the dots indicates the intensity of the 

power of the target and blue to yellow color indicates the minimum to the maximum 

intensity of the target. It can be clearly seen most of the circle sizes are identical because 

of zero movements of the target (object) during the experiments. It also can be seen that 

the maximum intensity of the target is recorded at around 1m,1.5m, and 2m distance by 

the yellow circle shown in the figures. The intensity was high for the 1m distance object 

due to the shorter distance of the object than the 1.5m and 2m distance. Similarly, 

Intensity was lowest for the 2m distance object due to the higher distance than the other 

experiments. There is some scattered circle can be seen in the scatter plot due to the 

presence of other objects in the experimental environment, but the intensity of these 

circles is mostly below 90 (log) and has zero doppler. 

In the 4th experiment, a metal object with a height and width of 1m was moved towards 

the mmWave sensor device from 2 meters distance to 1-meter distance and the data 

was logged for 5 seconds. The maximum intensity of 115.5 (log) was recorded during 

this experiment.  

From Figure 5.6(d), it can be seen that the highest intensities are between the 2m and 

1m distance indicated by the yellow circle. The Doppler can also be identified for the 

change in the circle size between the 2m and 1m distance. 
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                 (c)                                                                    (d) 

Figure 5.6 X-Y scatter plot for the static object (human) at a distance 1m(a), 
1.5m(b), 2m(c), and the object moving towards mmWave sensor from 2m(d). 

5.8 Experiment with Matlab 

Real-time data is captured by the mmWave radar board using the Matlab based on the 

mmWave demo from the Texas instrument. For the experiments with Matlab, the SOP 

configuration and mux configuration were the same as the mmWave demo visualizer 

experiment. EVM was powered ‘on’ by the 5V power supply and the sensor device is 

connected with the laptop. At the very first, the initial properties are defined for the radar 

set up, the azimuth resolution, range resolution, maximum unambiguous range, 

maximum radial velocity, frame duration, range detection threshold, Doppler detection 

thresholds are predefined in the cfg file is uploaded to the script. The frame rate 3fps, 

range resolution 0.044 (m), maximum unambiguous rage 3.95 (m), maximum radial 

velocity 0.17 (m), maximum radial resolution 0.33 (m/s) has taken for the experiment. 
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                           Figure 5.7 mmWave sensor setup with the laptop. 

5.8.1 Radar Set up 

For serial port configuration, The UART COM port was configured and the Baudrate was 

set to 115200. Similarly, DATA COM port was configured and Baudrate was set up to 

921600. The function was set up to read the configuration file and parse the configuration 

file. The Channel, profile, and frame parameters were configured. In the channel 

configuration, the antennas were configured. In the profile configuration, starting 

frequency, Idle time, ramp end time, number of ADC samples were configured. Chirp 

start index, chirp end index, number of loops, number of frames, frame periodicity are 

configured in the frame configuration. The number of chirps per frame, number of Dop-

pler bins, Number of range bins, range resolutions, range index to meters, maximum 

range, maximum velocity etc are also configured for setting up the RADAR.   

 
 

Figure 5.8 Radar configuration procedure 

The serial port configuration sends the CLI command to the radar which provides the 

outputs of the serial targets for the data and CLI ports. In parse configuration, the 
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configuration file was parsed to extract the configuration parameters. This returns the 

parameter dictionary with the extracted values. Finally, the configuration was sent to the 

sensor device. The radar set up processing flow is shown in Figure 5.8. 

5.8.2 Experiment Scenario Description 

For the experiments with the mmWave sensor, a corridor of 9 meters long and 2.5 meters 

in width was chosen.  

 

       

 

 

 

 

 

 

(a) Target at 2m distance.                         (b) Target at  4m distance. 

           

 

 

 

 

 

 

 

                                     (c) Target at 7m distance. 

Figure 5.9 Experiment illustration for the object (human) walking towards the 
mmWave sensor from the distance of 2m(a), 4m(b), and 7m(c). 

The experimental environment had a metal door at a distance of 3.25 meters from the 

mmWave sensor with a width of 95 cm on the right side of the corridor. There were three 

other doors in the experiment environment, two were on the left side of the corridor and 

one was in front of the corridor. The width of all the doors was 95 cm. For the real-time 
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experiment, three experiments were conducted, one by one. The three experiments were 

done for the moving object (human) walking towards the mmWave sensor from the 2m, 

4m, and 7m distance respectively shown in Figure 5.9 (a), (b), and (c).   

5.8.3 Data Processing 

The data processing consists of taking ADC samples as input and producing detected 

objects (point-cloud and other information) to be shipped out of UART port to the PC. 

The algorithm processing is realized using the Data Path Manager (DPM) registered 

object detection Data Path Chain (DPC) shown in Figure 5.10. The output packet with 

the detection information is sent out every frame through the UART. Each packet consist 

of the header and the number of TLV items containing data information and each TLV 

item consists of type, length, and payload information. Since output packet length 

depends on the number of detected objects and it can vary from frame to frame. The end 

of the output packets is padded so that the total packet length is always multiple of 32 

bits.  The frame numbers, detected points, 3D positions, the velocity of the target given 

by the function which returns a Boolean variable that stores data if data was correct. The 

detected objects contain the range, angle, and velocity information of the target from the 

sensor device, and the coordinates (x, y, z) are in Q format in the descriptor field.  

 

                            Figure 5.10 Data Processing chain 

5.8.4 Data Structure 

The data structure of the header, detected objects, range profile, azimuth static heatmap, 

and doppler range heatmap [45].  
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• Header and Detected Objects Data Structure:  

Table 5.1 Header data structure and detected objects data structure  

 

Header 

MagicWord (8 bytes) 

Version (4 bytes) 

Total Packet Length (4 bytes) 

Total Packet Length (4 bytes) 

Frame Number (4 bytes) 

Time (CPU Cycles) (4 bytes) 

Number of Detected Objects (4 bytes) 

Number of Data Structures in package (4 bytes) 
 

Detected Objects 

Structure Tag (4 bytes) 

Length of Structure (4 
bytes) 

Descriptor (4 bytes) 

Object Struct  
(while (i++ != #DetObj)) 

Range Index (2 bytes) 

Doppler Index (2 bytes) 

Peak Value (2 bytes) 

X coordinate (2 bytes) 

Y coordinate (2 bytes) 

Z coordinate (2 bytes) 

   

• Range Profile: 

The range profile is extracted from the payload of the output packet from UART. 

The range profile contains a structure tag and the length of the structure. They 

also contain 1D array of log magnitude Range FFTs. In the Matlab function, the 

object is detected by range profile with  

Size = RangeBins ×  4 bytes                                              (5.1) 

where range bins are the discrete boxes in which the range-FFT divides the sig-

nals.  

 

 

                                               Figure 5.11 Range Profile. 
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To generate the range profile, ADC sample is configured in the cfg file which is 

256. As mentioned in section 2.2.3, The IF signal will have tones corresponding 

to each of the reflected signals and the frequency of these tones is directly pro-

portional to the range. In Figure 5.11 it can be clearly seen that the object de-

tected points in a certain range. The range profile at zero doppler for a static 

object indicated by the blue color and the orange dots show the detected objects 

at the 0th doppler range bin.  

 

• Azimuth Static Heatmap:   

The Azimuth static heatmap is extracted from the payload of the output packet 

from UART and set up the parameters for plotting in the GUI monitor with 256 

range bins and 64 angle bins. In the Matlab function, the size of the heatmap is 

given by, 

𝑆𝑖𝑧𝑒 = 𝑅𝑎𝑛𝑔𝑒 𝑏𝑖𝑛𝑠 ×  𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠 ×   4 𝑏𝑦𝑡𝑒𝑠                     (5.2) 

the column-based number of angle bin point FFT is taken with padded zeros (ap-

pendix: Case mmwave demo UART azimuth static heatmap). The heat map is a 

matrix which then provides the elements consist of intensities and its indexes are 

arbitrary quantities. From Figure 5.12, it can be seen that the object is detected 

in the range of 2 meters and gives the estimation angle of the object. Heatmap 

shows the result at the 0th doppler of the radar cube matrix and all antennas and 

all range bins. 

 

 

               Figure 5.12 Azimuth-Range Heatmap.      
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• Range-Doppler Heatmap: 

Similarly, the range doppler heatmap is extracted from the payload of the output 

packet from UART. For plotting the range doppler heatmap, The length of the 

heatmap is defined in the Matlab function (Appendix: Case mmw demo range 

doppler heatmap). Then The size of the heat map is given by,  

𝑅𝑎𝑛𝑔𝑒 𝑏𝑖𝑛𝑠 ×  𝐷𝑜𝑝𝑝𝑙𝑒𝑟 𝑏𝑖𝑛𝑠 ×  4 𝑏𝑦𝑡𝑒𝑠                              (5.3) 

Where, 𝐷𝑜𝑝𝑝𝑙𝑒𝑟 𝑏𝑖𝑛𝑠 =  𝐶ℎ𝑖𝑟𝑝𝑠 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒 / 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑡𝑒𝑛𝑛𝑎𝑠      (5.4) 

The result of the heatmap taken doppler values as its row indices and range value 

as its column indices. Figure 5.13 shows the result of the maximum doppler and 

minimum doppler at different ranges indicated by the red and blue color respec-

tively. The red color indicates the maximum doppler captured in the given frame 

which is 1-2 meters in the experiment.  In range and doppler coordinates, this 

plot shows the entire radar cube matrix using the heatmap plot. 

  

.  

Figure 5.13 Doppler-Range Heatmap 

5.9 Result and Discussion 

5.9.1 Target at 7m Distance 

The following results were captured by performing a test in the corridor where a target 

(human) was walking from 7 meters distance to the mmWave sensor while the results 

were being logged and plotted as shown in Figure 5.15.  From Figure 5.14(a), the range-

doppler heat map contained 256 range bins and 16 doppler bins performed a range FFT 

corresponding to each chirp and after all individual chirps in frame, it performed Doppler 
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FFT which shown the target movement (red circle) at around 7.0 meters distance in the 

heatmap.  

 

 

 

 

 

 

 

 

 

 

 

 

                                        

                                  (a)                                                                          (b) 

Figure 5.14 Range-doppler Heatmap(a), Azimuth static heatmap(b) for a target 
(human) walking towards EVM from around 7 meters distance. 

The azimuth-static heatmap in Figure 5.14(b), The result is illustrated in the heatmap for 

∓ 600 angular field of view (FoV) with 64 angle bins and 150(4𝑅𝑥 , 2𝑇𝑥) azimuth resolution 

provide the angle of target by using multiple 𝑅𝑥  antennas. This plot displays the radar 

cube matrix for zero doppler only but across all range bins and all antennas. This can be 

seen from the heat map, The angle of the target within (5-10) degrees at around the 7-

meter range.  

The target movement can be easily shown in the x-y scatter plot in Figure 5.15 where 

circle size indicates the doppler and color of the circle indicate the intensity of the target. 

when target moved towards the EVM, the intensity (color of the dots) becomes higher.  
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Figure 5.15 X-Y scatter plot for a moving target towards EVM from 7m. 

5.9.2 Target at 4m Distance 

The following results were captured by performing a test in the corridor where a target 

(human) was walking from 4 meters distance to the mmWave sensor while the results 

were being logged and plotted as shown in Figure 5.17.   

 

 

 

 

 

 

                              
 
 
 
 
 
 
 
 
 
 
 
 
 

                                     (a)                                                                  (b) 

Figure 5.16 Range-doppler Heatmap(a), Azimuth static heatmap(b) for a target 
(human) walking towards EVM from around 4 meters distance.  
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From Figure 5.16 (a), the range-doppler heat map contained 256 range bins and 16 

doppler bins performed a range FFT corresponding to each chirp and after all individual 

chirps in frame, it performed Doppler FFT which shown the target movement(red circle) 

at around 4.0 meters distance in the heatmap.  

The azimuth-static heatmap in Figure 5.16 (b), The result is illustrated in the heatmap for 

∓ 600 angular field of view (FoV) with 64 angle bins and 150(4𝑅𝑥 , 2𝑇𝑥) azimuth resolution 

provide the angle of target by using multiple 𝑅𝑥  antennas. This plot displays the radar 

cube matrix for zero doppler only but across all range bins and all antennas. This can be 

seen from the heat map angle of the target within (5-10) degrees at 4-meter. 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 X-Y scatter plot for a moving target towards EVM from 4m. 

Target moves from 4 meters shown in Figure 5.17 with around 100 (log) intensity at the 

1-meter lateral axis. Then the Doppler shift was observed at the 1.4-meter lateral axis of 

the scatter plot and kept moving towards the mmWave sensor. As the target moved 

towards the EVM, the intensity (color of dots) become higher.  

5.9.3 Target at 2m Distance 

The following result was captured by performing a test in the corridor where a target 

(human) was walking from 2.0 meters distance to the mmWave. From figure 5.18 (a), 

the range-doppler heat map contained 256 range bins and 16 doppler bins performed a 

range FFT corresponding to each chirp and after all individual chirps in frame, it 

performed Doppler FFT which shown the target movement(red circle) at around 2.0 

meters distance in the heatmap. The azimuth-static heatmap in figure 5.18(b), The result 

is shown in the heatmap for ∓ 600 angular field of view (FoV) with 64 angle bins and 
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150(4𝑅𝑥 , 2𝑇𝑥) azimuth resolution provide the angle of target by using multiple 

𝑅𝑥  antennas. This plot displays the radar cube matrix for zero doppler only but across all 

range bins and all antennas. This can be seen from the heat map angle of the target 

within (5-10) degrees at the 2-meter range. 

                            

 

 

 

 

 

 

 

 

 

 

 

                                 

                                 (a)                                                         (b) 

Figure 5.18 Range-doppler Heatmap(a), Azimuth static heatmap(b) for a target 
(human) walking towards EVM from 2 meters distance.  

 

 

 

 

 

 

 

 

 

 

           

         Figure 5.19 X-Y scatter plot for a moving target towards EVM from 2m. 

The target moved from the 2-meter distance shown in Figure 5.19. As the target moved 

towards the EVM, the intensity (color of dots) becomes higher.  
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5.10 Conclusion 

The experiments were conducted with mmWave demo visualizer and Matlab by using TI 

IWR6843ISK evaluation module. Four experiments have been conducted with mmWave 

demo visualizer while first three experiments were carried out for static target at a dis-

tance 1m, 1.5, and 2m respectively and fourth experiment was carried out for walking 

target towards the EVM from 2m distance and logged data for 5 seconds. The acquired 

data shows the target detection and movements in the X-Y scatter plot. Similarly, Three 

experiments were also carried out with Matlab for a target moving from different ranges 

(2m, 4m, 7m) to the EVM. The real-time human movements are shown in the Azimuth-

static heatmap, range-doppler heatmap. The data acquired from the experiments were 

plotted in the X-Y scatter plot which shows the target path, doppler, and intensity of the 

target. 
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6. CONCLUSION 

Road safety is an important part of the ITS. The number of accidents especially in the 

foggy, snowy, raining condition becomes much higher and higher in the vulnerable roads. 

Through the camera, radar, ultrasound, and light detection and ranging (LiDAR) on 

commodity or trial vehicles are the most used technology but these technologies is una-

ble to provide sufficient support to the drivers in bad weather conditions. The thesis sim-

ulation and experimental result shows the potential of the mmWave radar Micro Doppler 

(𝜇 − 𝐷) in road user recognition.  

In the simulation, different kinds of road scenarios are tested by using CNN, LSTM, and 

CNN-LSTM models. The results show that the two-layer convolutional models outper-

form the recurrent model (LSTM in this paper). The performance is drop for one-layer 

CNN model in case of two seconds duration. However, the number of convolutions layers 

is more important for longer periods signals, and deeper features are required in these 

cases. The LSTM recurrent model presents stability over different 𝜇 − 𝐷 durations. How-

ever, The number of hidden units have great impact on the performance. The CNN-

LSTM model combines merits from both convolutional and recurrent models, especially 

in the case of random duration 𝜇 − 𝐷 samples in practical situations. 

In the experimental study, the experiments were carried out by using TI IWR6843ISK 

evaluation module. Experiments have been conducted with the target (human) moving 

from different ranges (2m, 4m, 7m) to the EVM. The results are shown in the Azimuth-

static heatmap, range-doppler heatmap, and X-Y scatter plot. Range-doppler heatmap 

provides target movement (doppler) in the range and the X-Y scatter plot shows the 

target path, doppler, and intensity after analysis of the doppler data. These results give 

a better understanding of the target in real-time in terms of target speed, the angle which 

could be very useful in the extreme weather condition in the vulnerable roads for vehicle 

users.  

Shallow neural network is used in this thesis for 𝜇 − 𝐷 recognition. So, Deep neural net-

works can be used in the future. The experimental study has been conducted for object 

detection. Henceforth, the experiments can be conducted for 𝜇 − 𝐷 recognition. Also, 

these experiments can be extended to monitor the vital signs of a human like heart rate 

and breathing rate.  
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APPENDIX: MATLAB FUNCTION TO GENERATE 
RANGE PROFILE, RANGE-AZIMUTH HEATMAP, 
RANGE-DOPPLER HEATMAP. 

The main Matlab operation has been done for getting range profile, range-azimuth 
heatmap, range-doppler heatmap, after radar configuration as the following code: 
 
function [dataOk, frameNumber, detObj] = 

readAndParseData68XX(DATA_sphandle, ConfigParameters) 

 

    OBJ_STRUCT_SIZE_BYTES = 16; 

    BYTE_VEC_ACC_MAX_SIZE = 2^16; 

    MMWDEMO_UART_MSG_DETECTED_POINTS = 1; 

    MMWDEMO_UART_MSG_RANGE_PROFILE   = 2; 

    MMWDEMO_UART_MSG_NOISE_PROFILE   = 3; 

    MMWDEMO_UART_MSG_DETECTED_POINTS_SIDE_INFO  = 7; 

    MMWDEMO_UART_MSG_AZIMUT_STATIC_HEAT_MAP = 4; 

    MMWDEMO_RANGE_DOPLER_HEATMAP = 5; 

    maxBufferSize = BYTE_VEC_ACC_MAX_SIZE; 

    NUM_ANGLE_BINS = 64; 

     

    detObj = []; 

    frameNumber = 0; 

       

    persistent byteBuffer 

    if isempty(byteBuffer) 

        byteBuffer = zeros(maxBufferSize,1); 

    end 

  

    global bytevec_log; 

    bytevec_log = []; 

     

  

    persistent byteBufferLength 

    if isempty(byteBufferLength) 

        byteBufferLength = 0; 

    end 

     

    persistent magiNotOkCounter 

    if isempty(magiNotOkCounter) 

        magiNotOkCounter = 0; 

    end 

     

    magicOk = 0; 

    dataOk = 0; 

     

    bytesToRead = get(DATA_sphandle,'BytesAvailable'); 

    if (bytesToRead ~= 0) 

 

        % Read the Data Serial Port 

        [bytevec, byteCount] = fread(DATA_sphandle, bytesToRead, 

'uint8'); 
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         % Check if the buffer is not full, and then add the 

data to the buffer: 

        if(byteBufferLength + byteCount < maxBufferSize) 

            byteBuffer(byteBufferLength+1:byteBufferLength + 

byteCount) = bytevec(1:byteCount); 

            byteBufferLength = byteBufferLength + byteCount; 

        end 

         

    end 

  

    % Check that the buffer is not empty: 

    if byteBufferLength > 16 

        byteBufferStr = char(byteBuffer); 

         

        % Search for the magic number inside the buffer and 

check that at least one magic number has been found: 

        startIdx = strfind(byteBufferStr', char([2 1 4 3 6 5 8 

7])); 

        if ~isempty(startIdx) 

             

            % Check the position of the first magic number and 

put it at 

            the beginning of the buffer 

            if length(startIdx) >= 2 

                if startIdx(end-1) > 1 

                    byteBuffer(1:byteBufferLength-(startIdx(1)-

1)) = byteBuffer(startIdx(1):byteBufferLength); 

                    byteBufferLength = byteBufferLength - 

(startIdx(1)-1); 

                end 

            else 

                if startIdx(1) > 1 

                    byteBuffer(1:byteBufferLength-(startIdx(1)-

1)) = byteBuffer(startIdx(1):byteBufferLength); 

                    byteBufferLength = byteBufferLength - 

(startIdx(1)-1); 

                end 

            end 

            if byteBufferLength < 0 

                byteBufferLength = 0; 

            end 

             

            totalPacketLen = sum(byteBuffer(8+4+[1:4]) .* [1 256 

65536 16777216]'); 

            if ((byteBufferLength >= totalPacketLen) && 

(byteBufferLength ~= 0))  

                magicOk = 1; 

            else 

                magicOk = 0; 

            end 

        end 

    end 

 

     

    if (magicOk == 1) 
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        %%%%% HEADER 

        word = [1 256 65536 16777216]'; 

        idx = 0; 

        magicNumber = byteBuffer(idx + 1:8); 

        idx = idx + 8; 

        Header.version = dec2hex(sum(byteBuffer(idx+[1:4]) .* 

word)); 

        idx = idx + 4; 

        Header.totalPacketLen = sum(byteBuffer(idx+[1:4]) .* 

word); 

        idx = idx + 4; 

        Header.platform = dec2hex(sum(byteBuffer(idx+[1:4]) .* 

word)); 

        idx = idx + 4; 

        Header.frameNumber = sum(byteBuffer(idx+[1:4]) .* word); 

        frameNumber = Header.frameNumber; 

        idx = idx + 4; 

        Header.timeCpuCycles = sum(byteBuffer(idx+[1:4]) .* 

word); 

        idx = idx + 4; 

        Header.numDetectedObj = sum(byteBuffer(idx+[1:4]) .* 

word); 

        idx = idx + 4; 

        Header.numTLVs = sum(byteBuffer(idx+[1:4]) .* word); 

        idx = idx + 4; 

        Header.subFrameNumber = sum(byteBuffer(idx+[1:4]) .* 

word); 

        idx = idx + 4; 

         

  

        %%%%% TLV 

         

        % Analyze each of TLV (Type length value) messages: 

        for tlvIdx = 1:Header.numTLVs 

            word = [1 256 65536 16777216]'; 

            % First, analyze the TLV header (TLV type and 

length): 

            tlv.type = sum(byteBuffer(idx+(1:4)) .* word); 

            idx = idx + 4; 

            tlv.length = sum(byteBuffer(idx+(1:4)) .* word); 

            idx = idx + 4; 

             

            % Check that the TLV message is of the right type 

(Detected objects): 

            switch tlv.type 

                case MMWDEMO_UART_MSG_DETECTED_POINTS 

                    detObj =[]; 

                     

                    if tlv.length > 0                        

                        % Extract the raw data for all the de-

tected points 

                        bytes = byteBuffer(idx+(1:Header.num-

DetectedObj*OBJ_STRUCT_SIZE_BYTES)); 

                        idx = idx + Header.num-

DetectedObj*OBJ_STRUCT_SIZE_BYTES; 
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                        % Reshape the array to have the data for 

each point 

                        % (X,Y,Z,doppler) in each column 

                        bytes = reshape(bytes, 

OBJ_STRUCT_SIZE_BYTES, Header.numDetectedObj); 

                         

                         

                        % Convert the byte matrix to float data 

                        floatData = reshape(typecast(re-

shape(uint8(bytes), 1, []), 'single'),4,Header.numDetectedObj); 

                        

                        

                        detObj.numObj = Header.numDetectedObj; 

                        detObj.x = floatData(1,:); 

                        detObj.y = floatData(2,:); 

                        detObj.z = floatData(3,:); 

                        detObj.doppler = floatData(4,:); 

  

                    end 

 

                case MMWDEMO_UART_MSG_DETECTED_POINTS_SIDE_INFO 

                     

                    if tlv.length > 0    

                        bytes = byteBuffer(idx+(1:Header.num-

DetectedObj*4)); 

                        idx = idx + Header.numDetectedObj*4; 

                         

                        % Reshape the array to have the data for 

each point 

                        % (snr,noise) in each column 

                        bytes = reshape(bytes, 4, Header.num-

DetectedObj); 

                         

                        % Convert the byte matrix to float data 

                        floatData = reshape(typecast(re-

shape(uint8(bytes), 1, []), 'int16'),2,Header.numDetectedObj); 

                        detObj.snr = floatData(1,:); 

                        detObj.noise = floatData(2,:); 

                         

                        dataOk = 1; 

                     

                    end 

 

                    case MMWDEMO_UART_MSG_RANGE_PROFILE 

                    rp = byteBuffer(idx+(1:tlv.length)); 

                    idx = idx + tlv.length; 

                    rp=rp(1:2:end)+rp(2:2:end)*256; 

                    subplot(1,3,1) 

                    plot(rp);     

                    xlabel('Range (meters)');              

                    title('RANGE PROFILE') 

 

              

                case MMWDEMO_RANGE_DOPLER_HEATMAP 

                    len = ConfigParameters.numDopplerBins  * 

ConfigParameters.numRangeBins * 2; 
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                    rangeDoppler = byteBuffer(idx+(1:len)); 

                    idx = idx + len; 

                    rangeDoppler = rangeDoppler(1:2:end) + 

rangeDoppler(2:2:end)*256; 

                    rangeDoppler = reshape(rangeDoppler, Con-

figParameters.numDopplerBins, ConfigParameters.numRangeBins);                   

                    rangeDoppler = fftshift(rangeDoppler,1); 

                 

                    rangeArray= (0:ConfigParameters.num-

RangeBins-1) * ConfigParameters.rangeIdxToMeters; 

                    dopplerArrey = ConfigParameters.dopplerReso-

lutionMps * ConfigParameters.numDopplerBins / 2; 

                     

                    subplot(1,3,2) 

                    imagesc(rangeArray,dopplerArrey,rangeDop-

pler);  

                    set(gca,'YDir','normal') 

                    xlabel('Range (meters)'); 

                    ylabel('Doppler (m/s)');               

                    title('RANGE DOPLER HEATMAP'); 

 

 

                    case MMWDEMO_UART_MSG_AZIMUT_STATIC_HEAT_MAP 

                    numBytes = 2 * 4 * ConfigParameters.num-

RangeBins * 4;                

                    q = byteBuffer(idx+(1:numBytes)); 

                    idx = idx + numBytes; 

                    q = q(1:2:end)+q(2:2:end)*2^8; 

                    q(q>32767) = q(q>32767) - 65536; 

                    q = q(1:2:end)+1j*q(2:2:end); 

                    q = reshape(q, 2*4, ConfigParameters.num-

RangeBins); 

                    Q = fft(q, NUM_ANGLE_BINS);  % column based 

NUM_ANGLE_BINS-point fft, padded with zeros 

                    QQ=fftshift(abs(Q),1); 

                    QQ=QQ.'; 

                     

                    QQ=QQ(:,2:end); 

                    QQ=fliplr(QQ); 

                    theta = asind((-NUM_ANGLE_BINS/2+1 : 

NUM_ANGLE_BINS/2-1)'*(2/NUM_ANGLE_BINS)); 

                    range = (0:ConfigParameters.numRangeBins-1) 

* ConfigParameters.rangeIdxToMeters; 

                    subplot(1,3,3) 

                    imagesc(theta, range, QQ, [0,max(QQ(:))]); 

                    set(gca,'YDir','normal') 

                    xlabel('Azimuth Angle [degree]'); 

                    ylabel('Range [m]'); 

                    title('AZIMUT STATIC HEATMAP'); 

  

            end 

        end 

  

               

              

        %Remove processed data 
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        if idx > 0 

            shiftSize = Header.totalPacketLen; 

            byteBuffer(1: byteBufferLength-shiftSize) = 

byteBuffer(shiftSize+1:byteBufferLength); 

            byteBufferLength = byteBufferLength - shiftSize; 

            if byteBufferLength < 0 

                %             fprintf('Error: bytevec_cp_len < 

bytevecAccLen, %d %d \n', bytevec_cp_len, bytevecAccLen) 

                byteBufferLength = 0; 

            end 

        end 

         

    else 

        magiNotOkCounter = magiNotOkCounter + 1; 

    


