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ABSTRACT

Collisions between birds and wind turbines can be a significant problem in wind
farms. Practical deterrent methods are required to prevent these collisions. How-
ever, it is improbable that a single deterrent method would work for all bird species
in a given area. An automatic bird identification system is needed in order to develop
bird species level deterrent methods. This thesis describes the first and necessary
part of the entirety that is eventually able to monitor bird movements, identify bird
species, and launch deterrent measures.

The objective of this thesis is twofold: it has to detect and classify the two key
bird species, and secondarily to classify maximum number of other bird species while
the first part still stands. The system consists of a radar for detection of the birds, a
digital single-lens reflex camera with a telephoto lens for capturing images, a motor-
ized video head for steering the camera, and a convolutional neural network model
trained on the images using a deep learning algorithm for image classification.

Imbalanced data are utilized because the distribution of the captured images is
naturally imbalanced. Distribution of the training data set is applied to estimate
the actual distribution of the bird species in the test area. Several architectures were
tested on species identification and the best results were obtained by the image clas-
sifier that is a hybrid of hierarchical and cascade models. The main idea is to train
classifiers on bird species groups, in which the species resemble more each other than
any other species outside the group in terms of morphology (colouration and shape).

The results of this study show that the developed image classifier model has suf-
ficient performance to identify bird species in the test area in the offshore environ-
ment. When the hybrid hierarchical model was applied to the imbalanced data sets,
the proposed system classified all of the white-tailed eagles correctly (TPR= 1.0000),
and the lesser black-backed gull achieved a classification performance of 0.9993.
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1 INTRODUCTION

This doctoral study is closely related to the first offshore wind farm in Finland.
The authorities are concerned about the possible bird mortality caused by the con-
structed wind turbines of the height of 130 m. This has resulted in explicit statements
in the environmental license, which obligate the operator of the wind farm to mon-
itor bird movements in the area, and to mitigate, or prevent if possible, collisions
between birds and the wind turbines. The authorities have announced two key bird
species for particular monitoring in the area: the white-tailed eagle (Haliaeetus albi-
cilla) and the lesser black-backed gull (Larus fuscatus fuscatus). This demand requires
an automatic bird identification system to be developed prior to any measures can
be launched to monitor, and to deter, the birds in the area. The alternative would
be manual observation by humans which is expensive and inaccurate. The proposed
system for controlling wind turbines in its entirety consists of four components: a
separate radar system, a bird identification and control unit, a camera unit, and a
separate supervisory control and data acquisition system (SCADA). The proposed
system is depicted in Fig 1.1. This study is for developing and implementing the bird
identification and control unit, and the camera unit.

A deterrent method is any technique that prevents birds to approach wind tur-
bines, e.g. by intimidating them so that they change their current trajectory to avoid
collision with a wind turbine. Many different methods such as sounds and various
light sources have been applied in land based wind farms. However, these techniques
are always applied to all birds species in a given area without testing a different de-
terrent method to different bird species or species groups [3]. An obvious reason for
this is that no feasible method for bird species identification automatically has been
proposed.

A pilot wind turbine was erected in the wind park in 2010 for measuring wind
and weather conditions. At present, a radar system controls directly the pilot wind
turbine and shuts it down when any bird flies into a perimeter of 300 m to the wind
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Figure 1.1 The proposed system for controlling wind turbines in its entirety.

turbine, which is the minimum distance in terms to have sufficient time to shut
down the turbine. The number of fast restarts of wind turbines should stay as low
as possible due to wearing of the mechanics and therefore this operation should be
used as a last resort. Figure 1.2 shows the safety zones defined for each wind turbine.
A solution to this is a suitable deterrent method but it is difficult to find only one
applicable deterrence for all bird species in the wind farm area. According to [3],
one extra problem is that the breeding birds may quickly become accustomed to,
e.g., sounds as a deterrent method. At first stage, an automatically operating bird
species identification system is needed in order to be able to develop such deterrent
system. It makes sense, in order to implement this system cost-effectively, to build
only one control system in such a location from where it is possible to monitor birds
in the vicinity of all wind turbines of the wind farm.

The radar system used in this application is capable to detect birds and pass pa-
rameters such as WGS84 coordinates of the detected object. The radar system can
also classify detected objects into five size categories. However, it is known that its
actual identification capacity is limited, rendering impossible to classify bird species
any further merely by this radar system [10, 54]. Obviously, external information is
required and a conceivable method is to exploit visual camera images. In this work,
we have used a digital single-lens reflex (DSLR) camera and 500 mm telephoto lens
for capturing images. The camera has a sensor size of 5472× 3648 pixels. This num-
ber of pixels is enough to constitute the bird in an image, when the image is taken
from a long range.

18



Figure 1.2 Defined safety zones for wind turbines.

1.1 Objectives

The objectives of this thesis were largely raised from possible negative impacts to
the birds in the area. The general objective is to develop a system that is able to
identify bird species in flight automatically in the offshore environment. This is
especially important to Suomen Hyötytuuli Oy, which is the operator of the first
Finnish offshore wind farm. In addition, this study is of great interest to wind farm
operators in general. The thesis is also important to Robin Radar Systems B. V.,
which is the supplier of the radar system used in this study. Results of this thesis can
be used as such in marine environments, or they can be generalized and utilized in
various other kinds of environments. The specific objectives of this study are:

1. to develop real-time algorithms for the two key bird species identification

2. to develop real-time algorithms for bird species identification generally while
the first objective still holds

19



3. to develop a system for detecting birds in flight

4. to develop a system for automatically capturing images of birds in flight.

The first two items in the list can be recognized as classification problems. Meth-
ods to identify bird species are based on vocalization and morphology. Morphology
includes shape, structure, colour, pattern, and size [38, 48, 49]. Because birds will
be monitored from a long distance, morphology remains the only feasible method
applied in this study. The solution for the third problem is a radar system but it can
only detect flying birds, and thus it is not a solution for the first two problems. A
feasible method to study the morphology of bird species in the test area is collecting
visual images of them. The first problem becomes an image classification problem.
This thesis studies deep learning models and convolutional neural network (CNN)
particularly as a solution to this image classification problem. The last problem is
two-fold: how to aim the camera to the target and how to capture the image with no
human involvement. Modern DSLR cameras are capable of taking images without
human touch, thus solving the second part of the automatic image capture problem.
A solution for the first part of the problem is a motorized video head, which can be
remotely steered and controlled by computer software. The radar system provides
the position of a flying bird to the steering software.

The long term objective, beyond this thesis, is to develop a deterrent system that
operates at species or species group level, i.e., a different deterrent method for gulls
and eagles. A species group could be composed of merely gull species, for example,
and this group would be treated as a single class.

1.2 Publications and Author’s Contribution

In publications [P1 - P5], the author carried out all of the work apart from supervi-
sion and review, which were carried out by Juha T. Tanttu.

Automatic image collection [P2] [P4]

Detection of flying birds is solved by a radar system, which provides WGS84 coor-
dinates of a target bird. Automatic image collection requires a system that is able to
aim the camera to the target bird when its location in WGS84 coordinates is known.

20



The motivation of publication [P2] was to propose a system that can automatically
collect images of flying birds. The system consists of the separate radar system, a
motorized video head, and a SLR camera with a telephoto lens. This paper also com-
bines parameters, provided by the radar, with the image classification. In publication
[P4] the final version of the proposed system is addressed with details of the aiming
problem. To our knowledge, these are the first published papers on automatic bird
identification implemented by aforementioned equipment.

Image classification [P1] [P3] [P5]

In previous studies, bird identification has been based on morphology and vocaliza-
tion. Vocalization is difficult to record, and even to detect, in offshore environment.
In addition, birds can be silent for undefined period of time. Hence, morphology is
the only feasible method to identify bird species offshore. Morphology can be exam-
ined from images, and thus this makes the problem an image classification problem.
The motivation of these publications were to develop a robust image classification
algorithm for real-world images. Publications [P1] and [P3] were based on a CNN
with a SVM classifier on the top. Balanced dataset were applied to these classifiers.
Their classification performance was acceptable, but they could not make use of
the classes with the smallest number of data examples. A data augmentation algo-
rithm was also proposed in the publications [P1] and [P3]. The proposed algorithm
converts images into several different color temperatures and also rotates them ran-
domly. Several papers have been published on image classification by CNN, but to
our knowledge, these are the first published papers using real-time images of wild
birds in flight as the input data. Publication [P5] was motivated by applying imbal-
anced data sets for training classifiers. A hybrid model of hierarchical and cascaded
models was developed. This model consists of several classifiers, which are based on
the same CNN architecture. The SVM classifier that was used in previous classifiers
was omitted, because it did not increase the classification performance, but increased
the training time of the classifiers. The hybrid model uses thresholds to determine
the acceptable probability for correct classification. These thresholds are based on
the statistics of the collected image data sets of bird species in the test area. The clas-
sification performance of the hybrid model is better than the previous two models,
and it is also able to classify the classes with the smallest number of data examples.
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Papers have been published on image classification using hierarchical and cascaded
model, respectively, but to our knowledge, no papers have been published on image
classification using the hybrid model, which is also boosted by thresholds gained by
the statistics of training data.
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2 BACKGROUND AND LITERATURE

OVERVIEW

At present the impact of wind turbines on birds is assessed using visual observations,
which is often unreliable. Also the estimation of flight trajectories from the visual
observations is very difficult. A need to have more detailed information about be-
haviour and actions of different bird species in the turbine area is obvious. The real
number of bird strikes is not known in the existing wind farms in Finland. Actu-
ally, no reliable way to measure or even estimate the number of strikes offshore is
available. So far no integrated system has been developed for measuring the individ-
ual bird flight trajectories, and identifying, if possible, the species in question, have
not been developed. A research group at the Univ. of Toledo, Ohio, has developed
a prototype system integrating radar, infrared, and acoustic information [42]. This
system was able to identify a limited set of bird and bat species mainly based on their
vocalizations and also estimate the flight trajectories in 3D by fusing the infrared and
radar data.

2.1 Bird Collisions and Mortality

Bird collisions are considered to be one of the major risks of wind farms. The ag-
gregate wind turbine’s impact on birds consists of disturbance, barrier effects, and
habitat loss as well as collision risk. The consequences of bird collisions might have
direct effect on the local breeding population depending on the level of mortality
[18].

The actual number of birds killed by collisions with wind turbines in a certain
area is not available, mainly because of lacking a reliable method to measure it au-
tomatically. Nevertheless there are studies providing an estimate varied according
to area and species. The estimated numbers lie between 0-68 birds per turbine per
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year [16, 18, 30, 37]. The number of collisions varies owing to the season as the
flux (number of flight movements per hour per km in a given area) alters accord-
ingly. The higher flux results in a greater number of the collisions, which has been
formulated as follows: collision rate = collision risk × flux [30].

Most of the studies have been conducted in the onshore environment and there-
fore they cannot be applied directly to the offshore environment. In case of the
offshore turbines, bird populations consist of different species, and therefore bird
behaviour is different and, as a result, collision rates probably differ from the land
based turbines. At present, only little data are available on actual collisions with off-
shore turbines. However, some efforts have been made to develop a collision model
and perform collision related probability calculations based on a specific tern pop-
ulation [13, 14, 40]. Inevitably, collisions occur offshore as well as onshore but the
actual collision rate of the offshore wind turbines is still unknown and the onshore
estimations of mortality are only directional.

2.2 Monitoring Collisions

The characteristic feature of bird collisions is that they are infrequent alternating
with the season and time of day. Collision probability is higher in migration and
breeding seasons. Bad weather (low visibility and high winds) increases the risk of
collision [6]. A remote technique for collision monitoring is required. Publications
on monitoring collisions manually and systematically in the offshore environment
are not known, and collecting corpses is not a real possibility at the sea. As a result,
improvement of the methods of measuring collisions offshore is obvious [9, 15].

No automated technology to measure collisions exists at present, and the devel-
oped collision risk models are based on land operating wind turbines [2]. The direct
and actual recording of bird collisions is essential in order to develop a deterrence sys-
tem and collect relevant statistics. The tools developed for direct measurements have
to be able to deal with strong winds, salt water, and noises from the mill structure
that have to be filtered.

A better understanding is needed of the avoidance behaviour used in the colli-
sion risk models in dominant weather conditions. The avoidance behaviour is two-
fold: the micro-avoidance, which concerns birds close to individual turbines, and the
macro-avoidance, which concerns avoidance behaviour around the entire wind farm.
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Of course, direct measurement of the collisions, if possible, will provide information
without the uncertainty associated with collision risk models.

Systems for monitoring bird collisions at offshore wind turbines should be able
to count actual collisions and identify the species at least at the species group (genus)
level. They should be able to tell the difference between a gull and a waterfowl, for
example. Flight activities through the wind farm area occur also at night and in poor
weather conditions with low visibility especially during migration periods. There-
fore the monitoring system must be able to operate with and without daylight. Since
the collision rate varies within a wind farm and with the time of the year [7, 44], the
collision data should be collected from all turbines during the year. The conditions
at sea are often severe causing the visits to the wind farm to be difficult and expen-
sive. A solution for that is a remote control of the monitoring system. In addition, if
the number of collisions is needed to compare to the number of birds flying through
the wind farm area, the flight intensity (flow) of birds/bird groups/species through
the wind farm area has to be measured and not only the rate of collisions.

2.3 Sensors

Recording a bird collision with a wind turbine in the offshore environment is cur-
rently based on visual observations. The techniques used in the onshore environ-
ment, such as collecting bird remains, are not feasible in the offshore environment,
because no remains are usually found. Therefore, the focus should be on automated
technologies that require no manual detection of collisions. However, the need for
monitoring the total bird flow through the wind farm area causes the necessity to
record the visual observation data as well.

Sensors can be divided in two groups: contact and non-contact sensors. Con-
tact sensors consist of accelerometers and fibre optics sensors. Contact sensors, such
as accelerometers and piezoelectric sensors, are sensitive to vibrations and the hard-
ware needed to be mounted on rotor blades is generally not acceptable. Non-contact
sensors are commonly acoustic sensors or microphones, of which the most feasible
sensor type is the acoustic sensor [50].

The main technologies used to detect collision are radar, acoustic sensors, thermo
graphic (infrared) camera, visible light camera, and video camera.
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2.3.1 Radars

Radar stands for radio detection and ranging. Electromagnetic waves are emitted (via
antenna) usually in pulses. If a layer of medium with different dielectric constant
compared to its environment is encountered by the waves, a part of the pulse energy
is scattered. Only minor fraction of the scattered radiation is reflected back to the
radar and detected by the radar antenna.

There are different ways to classify commercial radars. The radar operating fre-
quency range can be subdivided into frequency bands, with the most frequently
used radars in ornithological studies operating in the X-band (3 cm; 8–12.5 GHz),
S-band (10 cm; 2–4 GHz) and L-band(23 cm; 1–2 GHz). The peak power output
differs according to the strength of the radar signal (usually between 10 kW and 200
kW), which determines the operational range for a given target size. Radars are usu-
ally divided into three groups based on their operation purpose: surveillance radar,
Doppler radar and tracking radar [13].

Surveillance radars can be used as marine radar, airport surveillance radar or
weather surveillance radar. These are characterized by a scanning antenna often
shaped as a ’T-bar’ or as a parabolic disc (conical or pencil beam). Surveillance radars
can be used to map the trajectories of moving targets and the echo trail feature makes
each echo visible for a given period of time. Low-powered surveillance radars can de-
tect individual birds (size of ducks) within a range of a few kilometres and flocks of
birds within a range of 10 km [13].

Doppler radars have the ability to detect small differences in target position be-
tween consecutive pulses of radiation, and generate information on the velocity of
the target [13].

Tracking radars are made mainly for military purposes and can only track a single
object at a time. They often have a high peak power output, heavy structure and
they operate in the X-band. Usually the air space has to be scanned manually before
locking the radar on to the target. Automated scanning for targets is also possible,
and in this mode the radar locks to the target and follows it [13].

In bird studies, surveillance radar is mostly used for studies at offshore wind farms
[13, 29, 30]. A fixed-beam radar directed vertically is used to measure the altitude of
the migrating birds, and a surveillance-type radar is used to examine the geographical
patterns of movements (the trajectory of a flying bird) [50].
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The detection range of flying birds varies with the radar power, format, and even
software. Radars are operational without day-light but the detection might be dis-
turbed by moisture that certain weather conditions might generate [13, 69].

The analysis of the data collected by radar requires expertise to filter false echoes
from the data. These false echoes are commonly called the clutter in radar technol-
ogy. Also, the potentially vast amount of data causes another analysis problem. At
present, the echoes cannot be separated at species level or not even family level and
the number of individuals within a track is not always countable. There are indica-
tions that this could be aided by the latest radar technology. The flying speed, wing-
beat frequency and object size have been proposed as methods to identify species
indirectly [51].

Radar is an excellent tool for monitoring and documenting bird activity, but it
is not suitable for automated collision detection, because it is not able to directly
monitor and detect collisions. Radar can only detect the presence of a bird in the
vicinity of the turbines [50].

2.3.2 Acoustic Sensors

Acoustic sensors (microphones) measure the pressure variations produced by sound
waves. Microphones convert the acoustic energy into electrical energy. Acoustic
sensors require amplifiers and signal conditioners prior to digitization through an
analogue-to-digital converter.

Acoustic sensors seem to be (at present) the most efficient way of detecting bird
collisions with the wind turbines. Microphones are also cost-efficient compared to
other detection sensors [50]. Field tests have shown that microphones, mounted on
the wind turbine, were able to detect the majority of collisions of a 50 g, 7 cm bird
[66, 67, 72]. This excludes only small passerine species such as Common chaffinch
(Fringilla coelebs). False detections, caused by (e.g., mechanical noise and weather)
were detected at a rate of 5-10 false triggers per day. The sensitivity of individual
systems should be configurable to the existing circumstances, and falsely triggered
collisions should be distinguished from the correctly detected collisions [72, 73].

The noise from the rotor blades and other mechanical systems needs to be filtered
and the noise will be different for different turbines and under different operating
conditions. A high noise level could result in difficulties in detecting small bird col-
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lisions [50].

2.3.3 Cameras

There are basically two types of infrared cameras both of which have two differ-
ent names: active infrared cameras or image intensification cameras and thermal
graphic cameras or thermo imaging cameras. The latter type is also called passive in-
frared cameras. Active infrared cameras detect shorter infrared wavelengths, whereas
passive cameras (like thermo graphic cameras) detect thermal longer infrared wave-
lengths (heat). Active infrared cameras require, in most cases, additional infrared
illumination. The heat emitted from an object is detected by thermal graphic cam-
eras, and thus no additional infrared illumination is needed. Active infrared cameras
are usually more cost effective with higher resolution than thermal graphic cameras.
Visible cameras have higher resolution, and they are less expensive than both of the
infrared camera types.

Large birds (over 30 cm in length) can be detected from greater distance with
infrared cameras (thermal graphic) than with visible light cameras in conditions of
poor visibility [13]. A digital image processing technique based on differencing se-
quential frames to remove stationary clutter can be used to track moving objects
[50].

Video cameras are used for surveillance and monitoring and can offer an excellent
visual record of collisions if combined with an automated sensor that detects the
collision and starts recording the video [50]. There is obvious limitation; demand
for visible light. However, performance can be aided with, (e.g., infrared led lights
in poor lighting conditions).

To our knowledge, there are no published papers on digital visible light still cam-
eras applied to collision monitoring.

2.4 WT-bird and DTBird

[72] have developed a method (WT-bird) for detection and registration of bird col-
lisions that is suitable for continuous remote operation onshore. The characteristic
sound of a collision is detected by sensors in the blades, which triggers the video
registration and sends an alert message to the operator. A prototype has been tested
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successfully on a NordexN80/2.5MW turbine at ECN’s Wind turbine Test park,
Wieringermeer (onshore location) [72]. This implementation is based on monitor-
ing noise, generated from an impact of bird collision with a wind turbine. The col-
lision is detected with microphones, and the noise monitoring is combined with a
video camera. The role of the camera is to be able to identify the bird collided with
the turbine [72]. Field experiments were carried out to detect the possible bird col-
lisions. These experiments were performed by taking into consideration the small
weight of birds compared to the mass of a wind turbine. The experiments consisted
of the simulations of bird collisions; small bags of sand with different weights were
thrown against the turbine and the tower. Several other turbine generated sounds,
different from the bird collisions, were entered to the system as well [73]. The
amount of collisions at a single onshore wind turbine was too small for conduct-
ing the system calibration during the early field test period. In addition, only one
collision was detected in later testing at an offshore location. New camera types
of significantly improved image quality were tested, but the image quality was still
insufficient to be able to recognize birds during complete darkness. The original
objective of this project (a calibrated bird collision monitoring system for offshore)
was not generally achieved mainly due to technical problems [71].

At least one commercial system exists: the DTBird developed by Liquen Consul-
tora Ambiental,S.L., Spain [36]. This system is based on video-recording bird flights
near wind turbines, and it promises to detect birds automatically and prevent pos-
sible collisions in the vicinity of the turbines. However, [41] have evaluated how
well the DTBird system is able to detect birds in a wind farm in Norway. They also
examined the suitability of DTBird to study near-turbine bird flight behaviour and
possible deterrence. They defined the following quantitative criteria: detectability,
as measured by the percentage of detected birds by the total number of birds near the
turbines, should be over 80%; the number of false positives (video sequences with-
out birds) should be less than 2 per day; the percentage of falsely triggered video
sequences should be less than 10 %; the percentage of falsely triggered warnings and
dissuasions should be less than 20 %. Their evaluation showed the following re-
sults: detectability was over 80 %, the daily number of false positives was below
two, the percentage of falsely triggered warnings/dissuasions was circa 50 %, and the
percentage of falsely triggered warnings and dissuasions was 40 %. Thus, the DTBird
system met the two out of the four evaluation criteria. In addition, the researchers
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found that the DTBird system enables monitoring of near-turbine flight behaviour,
although individual birds usually cannot be identified to the species level, and with
the DTBird system collisions may be mitigated [41].

2.5 Bird Species Identification

[55] have studied machine learning (ML) algorithms implemented in marine radars
in order to automatically detect and attempt to classify objects. Six ML algorithms
have been applied and their performance have been compared. These widely used
ML algorithms are: random forests (RF), support vector machine (SVM), artificial
neural networks, linear discriminant analysis, quadratic discriminant analysis, and
decision trees (DT). All algorithms showed good performance when the problem
was to distinguish birds from non-biological objects (area under the receiver operat-
ing characteristic (AUC) and accuracy > 0.80 with p < 0.001), but the algorithms
showed greater variance in their performance when the problem was to classify
within bird species of bird species groups (e.g., herons vs. gulls). In their study,
RF was the only one that performed with an accuracy > 0.80 for all classification
problems, albeit SVM and DT followed closely in their performance. All algorithms
correctly classified 86 % or 66 % of the target points when vertical scanning radar
(VSR) or horizontally scanning radar (HSR) was used, respectively, and only 2 % or
4 % of the points were misclassified by all algorithms in the respective radar config-
urations. The results proposed ML algorithms for distinguishing birds from other
objects by radar, but classification performance using these algorithms within bird
species or bird species groups was poor.

Birdsnap by [5] proposes a solution to the problem of large-scale fine-grained vi-
sual categorization, resulting in an on line field guide to 500 North American bird
species. Users can upload bird images in the field guide database, and the developed
system identifies the images automatically. Researchers introduce one-vs-most classi-
fiers by eliminating highly similar species during training, and they show how spatio-
temporal class priors can be used to improve performance. The spatio-temporal class
priors are gained from the embedded time and location data that modern cameras
include in each image file they produce. Birdsnap uses a set of one-vs-most linear
SVMs based on POOFs [4], and it achieved an accuracy of 0.8240 in bird species
identification [5].
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Time-lapse photography is a technique in which the frame rate of viewing a se-
quence of images is different than the frame rate of taking the sequence of images.
Time-lapse images can make very fast or very slow time-related processes better inter-
pretable to the human eye. Time-lapse images have been used to detect birds around
a wind farm by taking images in two seconds interval. [75] have been applied an
image-based detection to build a bird monitoring system. This system utilizes a fixed
camera and an open-access time-lapse image dataset around a wind farm. The sys-
tem uses the following algorithms: AdaBoost (Adaptive Boosting), Haar-like feature
extraction, and histogram of oriented gradients (HOG). A CNN architecture was
also applied to the image classification problem. AdaBoost is a learning algorithm
for binary classification, which is developed to improve classification performance
by combining multiple weak classifiers into a single strong classifier. These weak
classifiers are low performing algorithms (e.g., decision trees with a single split) with
error rate slightly under 50 %, i.e., slightly better than a random guess. The idea of
AdaBoost is to give more weight to the data points that are poorly classified by the
weak learners. The weightings are repeated in each iteration of the algorithm, and
finally, by weighted majority voting, the algorithm selects those outputs of the weak
classifiers which are combined into a weighted sum that represents the final output
of the boosted classifier. As long as the performance of each of the weak classifiers
is slightly better than random guessing, the final model can be proven to converge
to a strong classifier [19]. Haar-like features are digital image features used in object
recognition. In mathematics, the name Haar refers to square-shaped functions which
together form a wavelet family. Haar-like is an image feature that utilizes contrasts
in images. It extracts the light and the shade of objects by using black-and-white
patterns. A Haar-like feature extraction examines rectangular regions by using a de-
tection window to scan an image. It summarizes the pixel intensities in each region
and calculates the difference between these sums. The difference is used to segment
the image. The position of the rectangles is defined with respect to the detection win-
dow, which is used like a bounding box to the target object. In the detection phase
of the Haar-like algorithm, the detection window is slid across the input image, and
for each segment of the image the Haar-like feature is calculated. Finally, the differ-
ences are compared to a learned threshold that separates non-objects from objects.
Haar-like features are only weak classifiers [68]. HOG is a feature descriptor used
to detect objects in computer vision. A feature descriptor is a representation of an
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image that simplifies the image by extracting useful information and discarding ir-
relevant information. A feature descriptor introduces a 2D image as a feature vector.
The main idea of HOG is that local object appearance and shape within an image
can be described by the distribution of intensity gradients. The image is divided into
small connected regions (cells), and a histogram of gradient directions is computed
for the pixels in each cell. The descriptor is formed by concatenating the histograms.
The HOG descriptor is invariant to geometric and photometric transformations, ex-
cept for object orientation [12]. [75] found that the best method for detection was
Haar-like, and the best method for classification was CNN. The system was tested
on two bird functional groups: hawks and crows, and it achieved only moderate
performance [75].

2.6 Deterrence

According to a study by [20], everything from fireworks to herding dogs have been
tested as a suitable deterrent method for birds in airports. However, they tested red
and blue LED lights in their study, and these caused some birds to choose the oppo-
site direction to the lights. A brown-headed cowbird (Molothrus ater) was released
to fly along a flight path that had been planned in advance. This flight path was
equipped with a LED light on one side, and the other side was dark. A single-choice
test, in which the bird chooses between a light and darkness rather than between two
colors, is ideal for measuring avoidance behaviour. If the bird goes to the dark side,
the light used on the other side might be a good candidate for warning birds of dan-
ger. The test was repeated with five different wavelengths of light. Birds consistently
avoided LED lights of wavelengths 470 nm and 630 nm, which appear blue and red
to the human eye. Ultraviolet, green, and white light did not generate any obvious
pattern of avoidance or attraction.

Also in airports, introducing a noise net around airfields that emits sound levels
equivalent to those of a conversation in a busy restaurant could prevent collisions
between birds and aircraft. Researchers set up speakers and amplifiers in three areas
around an airfield. Bird abundance was observed over eight weeks, of which the
first four weeks without noise, and the second four weeks with the noise turned on.
Results showed a significant decrease in the number of birds in the ’sonic net’. This
method was particularly effective in deterring starlings (Sturnus vulgaris) [64].
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3 AUTOMATED BIRD DETECTION AND

IDENTIFICATION

In this chapter the hardware and the software, used in the proposed automated bird
detection and identification system, are described. The applied methods are also
briefly presented. The methods are described in the published papers in more detail.
The methods are divided into two categories:

• automatic image collection presented in papers [P2] and [P4].

• image classification presented in papers [P1], [P3], and [P5].

3.1 Hardware

The proposed system consists of several hardware as well as software modules. See
Fig 3.1 for an illustration. The radar system for detecting birds is connected to a local
area network (LAN). The system has three servers, which are also connected to the
LAN: radar server, steering server, and camera control server. A motorized video
head and a camera system are connected to the respective server. The work flow is
as follows: the radar system detects a target bird and passes its WGS84 coordinates
to the video head steering software. The steering software steers the video head into
the correct position. Camera control software takes series of images of the target
bird and passes the images to classification software, which outputs a prediction of a
class (species or species group) of the target bird. The classification software can be
operated on a standalone computer such as laptop, or it can be installed as a separate
module into the camera control server. For more details about the system as a whole,
see publications [P2] and [P4].

A radar system supplied by Robin Radar Systems B.V. is used in this study. In
particular, The ROBIN 3D FLEX v1.6.3 model is used, which is actually a combina-
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Figure 3.1 The system for automatic image collection.

tion of two radars and a software package for implementation of various algorithms
such as tracker algorithms. The PT-1020 Medium Duty video head of the 2B Secu-
rity Systems is used as the motorized video head. For more details, see publication
[P2].

The Canon EOS 7D II camera with 20.2-megapixel sensor and the Canon EF
500/f4 IS lens are used as an image collection system. Correct focusing of the images
relies on the autofocus system of the lens and the camera. Automatic exposure is
also applied. The operation of the proposed system is not restricted to this combi-
nation of the camera and the lens, but a combination of any standard DSLR camera
with any standard lens suitable for that camera can be utilized. For more details, see
publication [P2].
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3.1.1 Automatic Image Collection

The system for automatic image collection is also depicted in Fig 3.1. The automatic
image collection is based on an assumption that the given WGS84 coordinates (by
the radar system) are accurate enough to enable aiming to a target bird. The WGS84
coordinates are given in decimal degrees with eight decimal places. The motor of the
video head has only seven selectable speeds, rendering impossible to track a flying
bird at the speed it flies. Thus, the steering software computes a lead point, where
the camera should be turned in order to achieve images. Successful image collection
is based on constant trajectory of a target bird and the autofocus system of the cam-
era. Here, the constant trajectory means that the flight path of the bird should be
invariable enough for only a short period of time.

The radius of the semi-major axis of the Earth at the equator is 6378137.0 m, and
the circumference is 40075161.2 m. The equator is divided into 360 degrees of lon-
gitude, so that each degree at the equator represents 111319.9 m. This number rep-
resenting degrees in meters at the equator is multiplied by the cosine of the latitude.
This means that the number representing degrees in meters decreases as the latitude
increases. Finally, the number is zero when either one of the poles is reached. Longi-
tudes are positive to the east of a prime meridian (i.e., Greenwich, London, a.k.a zero
meridian) and negative to the west of it. As the WGS84 reference ellipsoid is applied,
one arc minute along a meridian or along the Equator is 1855.3 m [47]. The latitude
of the test site is approximately 60°. As the WGS84 coordinates are given with eight
decimal places, the precision for the latitude and the longitude is 0.0011112 m and
0.0005556 m, respectively, in the field.

Radar accuracy is measured as range resolution and angular resolution. The range
resolution describes how long distance is needed lengthwise between two objects in
order them to be detected as two different blips. If the distance between two objects
is too short, the two objects will be detected as only one blip. Analogously, the an-
gular resolution describes similar minimum distance between two objects, which are
perpendicular to the radar beam [53]. The radar system has actually two radars: a
horizontal radar and a vertical radar. The angular resolution of these two radars at a
given distance defines a rectangle that can be seen as a 2D resolution cell of the radar
system in the given distance. In theory, the detected object can be located anywhere
inside of this resolution cell. However, the boundaries of the range resolution and
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Figure 3.2 Focusing point coverage of the camera frame with a sensor of crop factor 1.6. The focus cell

is depicted in red, the angular resolution cell is depicted in green, and the camera frame is

depicted in black.

the angular resolution are defined by the 3 dB beam width, i.e., the beam has attenu-
ated to half of its peak value at the boundaries in terms of power [53]. This implies
that the probability of object detection is the largest in the center of the resolution
rectangle, and it decreases towards the edges.

The frame size at a given distance from the camera can be calculated when the
angle of view of the lens is known. The effective frame size also depends on a crop
factor of the sensor of a given camera. If a camera with a full frame (FF) sensor is
used, the crop factor is 1, otherwise it is expressed by a number greater than one. The
reciprocal of the crop factor is used in calculations. However, the rectangular area
considered in this doctoral thesis is smaller than the effective frame size because the
focusing points of the camera do not cover the whole frame area. The camera frame,
its focusing points, and the angular resolution cell at a given distance are illustrated
in Fig 3.2. The larger square in the center denotes that the midmost focusing point is
currently selected, but all of the focusing points can be selected simultaneously. The
rectangle area that covers all the focusing points is called focus cell in this thesis.

The size of the 2D angular resolution cell of the radar system and the size of
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focus cells at a given distance are presented in Table 3.1. The values in the table for
the angular resolution cells are computed as follows:

δA= [bh R bv R] (3.1)

where δA is the angular resolution in meters expressed as a vector, bh is the width of
the beam in radians of the horizontal radar, bv is the width of the beam in radians
of the vertical radar, and R is a given distance in meters. The values for the focus
cells are computed by the right-angled triangle formed by a given distance and the of
view of the lens. The 500 mm lens was used in calculations.

The values for all of the cells are given as 2D, i.e., [horizontal vertical]. Focus
cell is given for both the FF sensor and for a sensor of crop factor 1.6, respectively.
All units in the table are in meters. It can be seen from the table that the horizontal
resolution of the radar system is smaller than that of both focus cells, but the vertical

Table 3.1 The sizes of the 2D angular resolution cell and the focus cells at a given distance in meters.

Distance FF Focus Cell 1.6 Crop Focus Cell 2D Angular Resolution Cell

100 [5.333 1.540] [3.333 0.962] [3.141 1.658]
200 [10.666 3.079] [6.666 1.925] [6.283 3.316]
300 [15.999 4.619] [10.000 2.887] [9.425 4.974]
400 [21.332 6.158] [13.333 3.849] [12.566 6.632]
500 [26.665 7.698] [16.666 4.811] [15.708 8.290]
600 [31.999 9.238] [19.999 5.774] [18.850 9.948]
700 [37.332 10.777] [23.332 6.736] [21.991 11.606]
800 [42.665 12.317] [26.665 7.698] [25.133 13.265]
900 [47.998 13.857] [29.999 8.660] [28.274 14.923]
1000 [53.331 15.396] [33.332 9.623] [31.416 16.581]
1100 [58.664 16.936] [36.665 10.585] [34.558 18.239]
1200 [63.997 18.475] [39.998 11.547] [37.699 19.897]
1300 [69.330 20.015] [43.331 12.509] [40.841 21.555]
1400 [74.663 21.555] [46.665 13.472] [43.982 23.213]
1500 [79.996 23.094] [49.998 14.434] [47.124 24.871]
1600 [85.330 24.634] [53.331 15.396] [50.265 26.529]
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resolution of the radar system is clearly larger than that of the focus cell of the 1.6
crop sensor, and it is also slightly larger than that of the focus cell of the FF sensor.
As a result, some of detected objects may be outside of the focus cell if the camera
has 1.6 crop factor sensor. The center-weighted probability distribution of the object
detection should mitigate this possibility.

3.1.2 Aiming the Motorized Video Head

The video head used in this application has limitations. It cannot be steered by en-
tering the desired horizontal and vertical angles, but it requires the driving time of
the motors (separate motors for horizontal and vertical movement). The video head
has a fixed home position, which is halfway of the steering range in both directions.
The head is installed so that at the home position the camera is horizontally point-
ing to the west (bearing = 270°), and vertically so that the vertical turning angle at
the home position is zero. Tests show that the video head has an increasing error
in turning angle towards each steering direction. In addition, this error is signifi-
cantly larger in horizontal steering than in vertical steering, and it also depends on
which direction the head is steered from the home position. As a result, a method
for targeting the camera by the head was needed in order to compensate the errors.
Locations of the wind turbines in the test area are used as reference locations for er-
ror correction, because their positions are fixed and their exact WGS84 coordinates
are known. Distances of the wind turbines range from 600 m to 2000 m from the
camera location, resulting in relatively large error in meters with only a small error
in turning angle.

The least squares method (LSM) was applied to find the angle and offset of re-
gression lines that minimize these errors. This was done separately for horizontal
directions left and right from the home position. A constant was used to correct
the error in the vertical turning angle, because the error seems to be very small. In
addition, the actual vertical turning angle error was obstructed by the erratic flight
path (flight path deviates significantly from a straight line) of some bird species, and
it was further amplified by the time delay between the timestamp of tracks and the
current clock time of the software server. It was more convenient to implement the
error correction to the horizontal and vertical turning angles than to the respective
steering times, because computations for steering times are based on the turning an-
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gles. In horizontal steering, the idea is to find a line that gives a correction to the
computed horizontal turning angle when the bearing (a compass direction the head
should be pointing at) has been computed first.

The estimate for the true horizontal turning angle for each reference location has
been discovered by measuring error in pixels from test images. As the frame size of
the camera and the distances are known, error in meters can be computed. These
test images are taken automatically by the developed system, and aiming is perfect
when the rotor hub of a wind turbine is in the center of these test images. Figure 3.3
shows the estimate for the true horizontal turning angle, the computed horizontal
turning angle without correction, and the corrected horizontal turning angle for
each reference location, respectively.

(a) (b)

Figure 3.3 Estimated true, uncorrected and corrected horizontal turning angles for the reference wind

turbine locations.

3.1.3 Results of Image Collection

The data structure for detected objects is called a track in the radar system. A track
contains the timestamp of a blip concerned, which is the time instant when the blip
has been detected by the radar system. Tracks also have the position information of
a target; latitude [WGS84], longitude [WGS84], and altitude [m]. Moreover, tracks
have the speed [m/s] and the bearing [degrees] of a target. Bearing is a compass point
the target is heading to. Successful image collection requires that a target bird has a
constant trajectory. Constant trajectory means that the flight path of a target bird
should be invariable enough for a certain period of time. The duration of this time
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period depends on a time delay between the timestamp of a track and the current
clock time of the software server. The time delay varies between 2 and 16 seconds.
The probability distribution of the delay is shown in Fig. 3.4. From the figure it is
apparent that the time interval between 3 s and 4 s has the largest probability, i.e.,
30.84 % of the time delays fall in this time interval. More than half (56.13 %) of the
time delays fall in the intervals between 2 s and 5 s. When the delay is longer than
5 s, the flight path of a given bird becomes very unpredictable, in terms of aiming,
when the prerequisite of constant trajectory stands.

Figure 3.4 The probability distribution of the time delay between the timestamp of a track and the current

time.

3.2 Software

All the software needed in this system, excluding the software of the radar system,
is developed and implemented by the author. The developed software includes all
communication software for various servers (see Fig. 3.1) over TCP/IP and UD-
P/IP networks, software for steering the video head, software to control the cam-
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era, and software for implementing the CNN models. Figure 3.5 shows a diagram
of the developed software architecture including the radar system control software
for clarity. All commands and data are transmitted via a LAN. The architecture
operates as follows: at first, the radar system detects a target bird, and passes the
track information, including WGS84 coordinates, to the video head steering soft-
ware. The steering software controls the video head by computing the vertical and
the horizontal turning angles (taking into account the aforementioned error correc-
tions) based on the passed WGS84 coordinates and the altitude of a track. When the
head has been steered into the correct position, a release shutter command is trans-
mitted to the camera control software. Then, series of images is taken of a target,
and the images with the classify command are transmitted to classification software.
The classification software is the implementation of the CNN models, and its results
can be displayed on the console of the system and/or they can be transmitted to an
external system via the LAN.

Figure 3.5 Diagram of developed software architecture.
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(a) (b)

Figure 3.6 Data examples of the white-tailed eagle (3.6a, Haliaeetus albicilla) and the lesser black-

backed gull (3.6b, Larus fuscus fuscus, a.k.a the baltic gull).

3.3 Input Data and Data Augmentation

Data for the classification system are mainly digital images of RGB color model,
but information provided by the radar system is also applied. Images were collected
manually at the test site at the western coast of Finland. These images were used to
train a CNN model for image classification. Figure 3.6 shows examples of images
used as data.

Because a large number of examples is required to train the CNN for achieving
a sufficient performance as an image classifier, and also because of the difficulties of
collecting a sufficient number of images for each class, a data augmentation [28, 70]
method has been developed and proposed in publications [P1-P3]. In this method,
images are converted into different color temperatures between 2000 K and 15000
K using a step size s. This resembles the natural light at the test site that varies in
accordance with cloudiness and humidity [11, 60, 62, 63, 65, 74]. The number of
augmented training examples is given:

N = [(15000− 2000)/s + 1]n, (3.2)

where N is the number of augmented training examples, and n is the number of
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(a) (b) (c)

Figure 3.7 Three augmented data examples of a single image of the lesser black-backed gull (Larus
fuscus fuscus). The color temperature of the images is 3750 K (3.7a), 5750 K (3.7b), and

7750 K (3.7c).

original training examples. When conversion is done, the images are also rotated by
a random angle between -20 and 20 degrees drawn from the uniform distribution.
Motivation for this is that CNN is invariant to small translations but not rotation
of an image [27]. Figure 3.7 shows examples of the output of the data augmentation
algorithm.

The radar system provides the following parameters for each detected object:
speed, distance, and trajectory. The speed is applicable as it is, and the distance is
used to calculate an estimate of the size of an object. The trajectory is a sequence
of blips (i.e., successive echoes from an object received by the radar system) of the
same object, and all the trajectories are saved into a database. Trajectories are not
used in this thesis, because currently the only way to link the species of an object to
its trajectory is to identify the species visually by the human eye, and save the result
manually into the database.

Images are collected from relatively long distance, thus the number of pixels that
cover the object in an image is small, which means that most of the pixels in an image
cover only sky. All other pixels, except those that cover the object, are considered
as noise, and it is reasonable to crop these pixels as they do not contribute to the
classification process. Segmentation is used for cropping the images without loosing
any pixels that cover the object. Segmentation is also needed for calculating the size
estimate of the object. Fuzzy logic segmentation was applied in publications [P1-
P3], but as it showed to be computationally expensive, discrete convolution without
a neural network was introduced in publication [P4] as a segmentation method.
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3.3.1 Results of Data Augmentation

Figure 3.8 in publication [P3] is reprinted here for convenience, and it depicts the
significance of the data augmentation algorithm to classification performance. How-
ever, it became clear that beyond some threshold it is useless to augment the original
data set any further because of increasing overfitting. The exact value of this thresh-
old as a step size value, s, was not determined. In the figure, the number of the
original (without augmentation) data examples was 9312 as a balanced dataset was
used.

Figure 3.8 The red and blue curves indicate the true positive rate in classification for the training data

and the test data, respectively. The details of the classification task and the applied algorithm

are given in [P3]. The starting value for both curves is the value when the models were trained

on the original data set, i.e., the data set was not augmented.

3.4 Image Classification

Machine learning is a science of making computers learning automatically from a
given data and the respective real-world observations, and improve this learning over
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time autonomously. Machine learning applies models and inference rather than con-
ventional if-else structure. It is one of the main building blocks of artificial intelli-
gence. Machine learning is based on a training data set, which is used to train a
mathematical model of these sample data. This approach enables predictions and de-
cisions to be made without them being explicitly programmed to perform the task.
Above-mentioned is true only if the dataset is separable in general. Machine learn-
ing algorithms are especially used in the applications of computer vision, where it is
infeasible to develop an algorithm of specific instructions for performing the task [8,
23, 45]. The name machine learning was introduced in 1959 by Arthur Samuel [57].
The fundamentals were presented by Alan Turing’s proposal in his paper "Com-
puting Machinery and Intelligence", in which the question "Can machines think?"
is replaced with the question "Can machines do what we (as thinking entities) can
do?" [22]. Tom M. Mitchell provided a formal definition of the algorithms studied
in the machine learning field: "A computer program is said to learn from experience
E with respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E." [43].

Machine learning has two main types of learning algorithms: supervised learn-
ing and unsupervised learning. Supervised learning algorithms build a mathematical
model of a training data set, which consists of a set of training examples that are used
as inputs for each output. The values of the outputs are known in supervised learn-
ing. Supervised learning algorithms are used for classification and regression. Classi-
fication algorithms are used when the outputs are restricted to a limited set of values,
and regression algorithms are used when the outputs may have any numerical value
within a range [1]. Unsupervised learning algorithm builds a mathematical model
of a data set which has no known outputs for the respective inputs. Unsupervised
learning algorithms are used to find structures in the data such as groups or clusters
[56].

Deep learning is a subset of machine learning methods concerned with algorithms
inspired by the structure and function of the brain called artificial neural networks
(ANN). The concept "deep learning" refers to the structure of ANN as they typi-
cally have many (deep) layers and large number of parameters that enable learning
[32, 35]. CNN is one implementation of deep learning. CNN is a specialized kind
of neural network for processing data that have a known grid-like topology like im-
age data, which can be thought of as a 2D grid of pixels. CNN is a serial structure
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that consists of consecutive layers, which convolve the inputs in order to extract in-
formation. Convolution layers have kernels (a.k.a. filters) with parameters that are
learned during training [21].

In machine learning applications, the input of a convolution is usually a multi-
dimensional array of data, and a kernel that is usually a multidimensional array of
parameters, is slid over the input. These multidimensional arrays are referred to as
tensors. What is called convolution operation in CNNs is actually cross-correlation,
as the kernel is not flipped, however, as the values of the kernel are set during the
training procedure, this distinction has no practical meaning. The cross-correlation
(convolution henceforth) is formally defined as follows:

F(i , j ) = (K · I)(i , j ) =
M∑

m=1

N∑

n=1
I(i +m, j + n)K(m, n), (3.3)

where F is the result of the convolution called feature map, K is the kernel, I is the
input, i is the row index of the feature map, j is the column index of the feature map,
m is the row index of the kernel, and n is the column index of the kernel [21].

The convolution layer applies the convolution operator to the input tensor, and
also transforms the input depth to match the number of kernels. The number of
kernels is a design parameter, which can be found empirically by monitoring the
performance of the model, but usually the physical memory of the used computer
sets the upper limit. The depth of the output of a convolution layer is the number
of the kernels at this layer. The other parameters of the convolution layer are: the
width and height of the input tensor (e.g., an image), the width and height of the
kernel, convolved width and height of the tensor (the output of the layer), the num-
ber of pixels (neurons) that the kernel moves over at each step called stride, and the
number of zeros added to the border of the tensor called padding. The number of
convolution layers in a CNN architecture is also a design parameter, which depends
on a used dataset and a task to be performed. The function of the convolution layer
is to extract features from the tensors (e.g. images), and accordingly, to form feature
maps at the respected layer. Convolutions are computed at each convolution layer
over the output of the previous layer using a trainable kernel. The feature extraction
consists of successive convolution layers. Empirically, the convolution operation
typically implements a local edge detector, especially on the first convolution layer
of the architecture. Subsequently, the convolution operation extracts features from
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the previous feature maps, which are the results of the previous convolution oper-
ations of the respective layers. Thus, it is much more difficult to depict what the
latter convolution layers implement. Multiple convolution kernels are used at each
convolution layer to create several different feature maps. Primarily, it is the values
of these kernels that CNN learns through a training process [21].

Besides convolution layers, the layered structure has other layers as well, and two
different conventions are commonly used to depict the structure. In one of them,
each component, such as convolution or pooling, is presented as a layer. In the other,
the components that follow the convolution operation and process the data before
the next convolution layer, are grouped with the preceding convolution operation
to form a single layer, resulting in a lower number of layers. The components of a
typical convolution layer of the CNN (according to the latter convention) include
the rectified linear unit (ReLU) layer and the pooling layer. Various normalization
layers are also commonly used as well as the dropout layer for avoiding overfitting
[21].

The ReLU layer computes a piecewise linear activation function, which transfers
the input to the output if the input is positive or zero, but outputs zero if the input
is negative. The ReLU layer does not change the spatial or depth information of the
input data. Thus, the function of the ReLU layer is to apply a threshold operation
that removes all negative weights and transforms the positive weights linearly, be-
cause this is shown to make the training of a CNN model faster than, e.g., when
using the logistic activation function (sigmoid). This is due to its properties such as
faster convergence compared to the sigmoid and tanh functions. Other advantages
of the ReLU function are that it does not saturate (due to linearity) when the input
is large, and it does not have the vanishing gradient problem suffered by other activa-
tion functions like sigmoid or tanh. It is also sparsely activated, i.e., it is zero for all
negative inputs, which means that many units do not activate at all. Because a sparse
network has fewer non-zero elements, and thus fewer computing, it is faster than a
dense network [21, 25, 46].

The pooling layer is used to reduce the spatial dimensions, but not depth, of the
input data. By pooling layer, the number of parameters of a CNN decreases, compu-
tation performance increases, and some translation invariance is gained. If the exact
position of an object in an image is important, the pooling layer can be omitted,
but then the outcome suffers probably from strong overfitting. Two simple com-
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monly used pooling functions are: average pooling and max-pooling. In this study,
the max-pooling is applied. The purpose of the max-pooling layer is to build robust-
ness to small distortions. The operation of the max-pooling layer is similar to that
of the convolution layer with respect to the sliding kernel. The kernel of the max-
pooling layer slides over the input and it takes the maximum value of the weights of
each area that the kernel covers. Therefore, the max-pooling layer samples down the
width and height of the input, but not the depth of it [21, 25].

Dropout layers are for reducing overfitting. This is achieved by setting zero to
the output of the hidden neurons with the probability of 0.5. The neurons which
are dropped out do not contribute to the forward pass and do not participate in
backpropagation. In this way, the neural network samples a different architecture
for each input, but the weights are still shared [21, 25, 61].

In classification , CNN is appended with one or more fully connected layers. The
fully connected layers connect each neuron in the preceding layer to each neuron in
the output layer. The operation of the CNN architecture may be seen in a way that
the convolution layers extract features (aided by ReLu and pooling layers) and fully
connected layers classify the input data. The number of the output neurons of the
last fully connected layer is the same as the number of classes. The softmax function
can be used in multiclass cases after the last fully connected layer, because it provides
the result as a probability of each class [21].

3.4.1 Applied CNN Models

In this study, image classification is primarily based on CNN. Figure 3.9 depicts
the classification process. Parameters provided by the radar system have only slight
weight to bird species identification. The speed and the size estimate of a bird are
the parameters applied. The size estimate is based on the distance of a bird and its
size in pixels in the captured image. Images are always captured in series, which
increases a possibility that the target bird is in good position in the image in terms of
identification. As a result, the applied size estimate is actually the average of the size
estimates of images in a series. Nevertheless, it is only a coarse approximation of the
size, and its value for the final identification is diminutive. The speed of the target
bird is measured by the radar, and it is much more accurate than the size estimate.
Collected flight speed data show that, in average, the speed of waterfowl is two times
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Figure 3.9 Classification process.

larger that of gulls, terns, and the white-tailed eagle.

A CNN model was developed for extracting features from the images and to clas-
sify bird species. In this thesis, a single CNN model, which is applied to various
classifiers, has 19 layers. The layered architecture is illustrated in Fig 3.10 and Table
3.2. Normalization applied in this architecture is the cross-channel normalization
[31].

Values of all the hyperparameters were fixed in all publications, except for pub-

Figure 3.10 Architecture of the basic CNN model.

49



Table 3.2 The CNN architecture.

Layer Function Kernel Size # Feature Maps

1 Input Layer (RGB image) - -

2 Convolution 1 12 × 12 × 3 12

3 ReLU - 12

4 Normalization - 12

5 Convolution 2 3 × 3 × 12 16

6 ReLU - 16

7 Normalization - 16

8 Max-pooling 2 × 2 × 12 16

9 Convolution 3 3 × 3 × 16 64

10 ReLU - 64

11 Max-pooling 2 × 2 × 16 64

12 Fully-connected 1 - -

13 Dropout 1 - -

14 ReLU - -

15 Fully-connected 2 - -

16 Dropout 2 - -

17 ReLU - -

18 Fully-connected 3 - -

19 Softmax - -

lication [P3], in which case manual tuning for selecting the learning rate parame-
ter was tested. The tests were carried out by using the learning rate decay schedule
(LRDS). In the LRDS method the learning rate was dropped by a factor of 0.1 when
a given number of epochs was reached. This given number of epochs is the effec-
tive value of the learning rate drop period (LRDP). The motivation for using the
LRDS method comes from the fact that as the training proceeds with shorter leaps
on the loss function surface from some point on, the optimal value for the weights
can be found more accurately. If only the short leaps would be applied, the number
of epochs should be very large, thus resulting in significant increase of training time.
The challenge was to find the points from where on the learning rate should be re-
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duced. The tests showed that the performance of the CNN model can be slightly
increased by the LRDS method.

In this study, the first CNN model had also a support vector machine (SVM) clas-
sifier (a.k.a. SVM-on-top model) [17, 26]. In this approach, the CNN just extracts
the features and the SVM completes the classification. However, the model with the
SVM did not perform better than the CNN alone and, as a result of that, the SVM
was omitted. The model with the SVM classifier was used in publications [P1-P3].
The original (without augmentation) sizes of the datasets applied to the CNN mod-
els are given in Table 3.3. In this table, the size of the entire original dataset is given in
the column ’Dataset Size’, and the size of the balanced dataset used in in publications
[P1-P4] is given in the column ’Balanced Dataset Size’.

In publication [P5], imbalanced dataset [24, 33]was applied in order to use all images
in the original dataset. The number of classes was increased up to 11 in the publi-
cation [P4] resulting in a smaller number of data examples in the balanced dataset,
which can be seen form the table. The number of images in the balanced dataset was
not increased compared to the previous balanced datasets in spite of the increased
number of images in the respective original dataset. This is due to the distribution
of bird species in the test area. In data collection, the rate of increase of the number
of data samples (images) of the commonest species was clearly higher than the rate
of increase of the number of the scarcest species. This resulted in the relatively low
number of data examples in the smallest class, which was only 396, and as undersam-
pling is used as a resampling method, the number of data examples in the balanced
dataset remained low.

In the course of this doctoral study, it became clear that it is very difficult, even
impossible, to collect enough images of scarcer bird species in the test area in order

Table 3.3 Dataset sizes and the number of classes applied to CNN models in the publications [P1-P5].

Publication Dataset Size Number of Classes Balanced Dataset Size

P1 14783 6 3786

P2 17514 6 6984

P3 20373 8 9312

P4 23552 11 4356

P5 24631 14 -
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to apply a balanced dataset to train the classifier. This motivated a use of imbalanced
dataset as the training examples to CNN classifiers in the publication [P5]. In this ap-
proach, bird species identification is achieved by a hybrid model [59] of hierarchical
and cascaded [34, 39, 52, 58] classifiers. Each classifier in this model has the same ba-
sic CNN architecture as the previous models, but the statistics of the training dataset
was utilized in order to obtain a threshold for the respective classifier. The hybrid
model has eight classifiers. The number of classes of these classifiers is typically two,
except for the top-level classifier with four classes, and a classifier of the group of
other-waterfowl with five classes. These exceptions are rationalized as follows: two
classes at the top level, the white-tailed eagle and swans, are well separable in terms
of all data, thus their classification straight away at the top level is justified. The per-
formance of the classifier of the group of other-waterfowl is adequate to classify all
these five classes simultaneously. Figure 3.11 presents a revised flow chart (compared
to that in the publication [P5]) of the image classification process when the hybrid
model is applied.

Classification prediction (given as probability) for each test image fed to a given
classifier in the hierarchy can be used as a probability distribution for the classifier.
This enables determination of thresholds, which are used to improve classification
performance. A threshold is defined for each class (a single species or a group of
species) in the hierarchy. The use of a threshold requires that the input data of a
given classifier are classified into only two classes. If the number of classes is higher,
the class of interest is dealt as a positive class, and the other classes are combined to
form a negative class. For more details, see [P5].

3.4.2 Results of Image Classification

In this thesis, confusion matrix, ROC curve, and TPR are used as metrics for clas-
sification performance. TPR is used instead of accuracy because when dealing with
class-imbalanced dataset, accuracy typically does not provide enough information
for classification. For a binary classification problem, accuracy is given:

Acc u racy =
T P +T N

T P +T N + F P + F N
, (3.4)

where TP is true positive, TN is true negative, FP is false positive, and FN is false
negative. Consider, for example, a dataset of two classes: gray-backed gulls (GBG,
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Figure 3.11 Image classification by the hybrid model of hierarchical and cascaded models.

the common gull and the herring gull) and black-backed gulls (BBG, the great black-
backed gull and the lesser black-backed gull) with 100 GBGs and 10 BBGs. The BBG
class is assigned to the positive class. If a classifier model used to classify this dataset
predicts correctly 2 BBGs and 99 GBGs, and the rest of the predictions are incorrect,
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the outcome is: TP = 2, TN = 99, FP = 1, and FN = 8. This gives a good general
accuracy of 0.9182. However, the model correctly identifies 99 as GBGs out of 100
GBGs, but of the 10 BBGs, the model correctly identifies only 2 BBGs. By using
TPR (a.k.a. recall or sensitivity) as a metric for this model fed by the given data,
the value of the metric becomes 0.2, which reveals the weakness of the model as a
classifier. For a binary classification problem, TPR is given:

T P R=
T P

T P + F N
, (3.5)

and precision is given:

P r ec i s i on =
T P

T P + F P
. (3.6)

It can be seen from the equations above that precision measures the probability
of correct detection of positive values, while TPR is a probability of detection, i.e.,
it measures the proportion of actual positives that are correctly identified as such.
Thus, TPR and FPR measure the ability to distinguish between the classes. For a
binary classification problem, FPR is given:

F P R=
F P

F P +T N
, (3.7)

and they are both used simultaneously to form a probability curve called the ROC
curve, which gives a performance measurement for a classification problem at vari-
ous thresholds settings.

3.4.2.1 The Outcomes

The early results of this study are given in the respective publications [P1-P4]. The
early models have relatively high performance as image classifiers, but the number
of classes was not high enough for practical use in the test site. These early models
used balanced datasets, which limited the number of classes, even though the col-
lected number of data examples (images) increased during the development process.
Finally, the number of data examples of the balanced dataset, which was used in pub-
lication [P4], showed a downturn when the scarcest classes were included into the
data.

The best results were accomplished by using the hybrid model in publication
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[P5]. In the study of the hybrid model, three distinct CNN models were imple-
mented and tested. The first model was a single classifier trained on a balanced
dataset. The second model was the same single classifier, without thresholds, trained
on an imbalanced dataset. The third model was a hybrid of hierarchical and cas-
caded model, with thresholds, trained on the same imbalanced dataset as the second
model. The data augmentation algorithm was applied to training datasets of all mod-
els. The first and the second CNN model used the basic CNN architecture presented
in Table 3.2. In the first model, under-sampling was used as a resampling method in
order to compose the balanced training dataset, i.e., data examples were deleted from
the over-represented classes. The second and the third CNN models were tested in
parallel as they were both trained on the same imbalanced dataset. The third model
consists of eight classifiers trained on various groups of bird species. Each classifier in
this model used the same basic CNN architecture. Determination of pseudo-classes
became possible as the groups were applied and thresholds were used. This is impor-
tant because the perfect classification performance, in terms of given data and classes,
was not always possible, and CNN always gives a prediction over the classes that it is
trained on, thus rendering impossible to predict any other classes. Using thresholds
gives a possibility to define pseudo-classes when none of the predicted probabilities
are larger than the value of the applied threshold. In these cases, a test image can be
classified in a suitable pseudo-class with the label of which is determined by the logic
of the implemented software. These pseudo-class labels can be, e.g., unknown bird
species, unknown waterfowl species, unknown gull species, black-backed gull, grey
backed gull, and so forth.

The classification performances for four groups of bird species and the lesser
black-backed gull of these three aforementioned models are given in Table 3.4. The
abbreviations in this table are: WTEA= the white-tailed eagle, SWSP= swan species,
and LBBG = the lesser-black-backed gull. The group of WTEA consists of only a
single species, and swan species were not tried to classify further than onto the group

Table 3.4 TPRs for classifier models.

Classifier WTEA SWSP waterfowl gulls-and-terns LBBG

Hybrid 1 1 0.9935 1 0.9231

Imbalanced single 0.9773 0.4000 0.7629 0.7691 0.6923

Balanced single 1 0.8000 0.8621 0.7762 0.8846
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Table 3.5 Confusion matrix for all the classes.

WTEA LOSP GRCO COEI COGO SWSP VESC RBME GBBG HEGU LBBG COGU BHGU CATE

WTEA 44 0 0 0 0 0 0 0 0 0 0 0 0 0

LOSP 0 7 0 0 0 0 0 0 0 0 0 0 0 0

GRCO 1 0 98 0 1 0 0 0 0 0 0 0 0 0

COEI 0 0 0 16 0 0 0 0 1 0 0 0 0 0

COGO 0 0 0 0 19 0 1 1 0 0 0 0 0 0

SWSP 0 0 0 0 0 5 0 0 0 0 0 0 0 0

VESC 0 0 0 0 0 0 3 0 1 0 0 0 0 0

RBME 0 0 0 0 0 0 0 4 1 0 0 0 0 0

GBBG 0 0 0 0 0 0 0 0 4 1 4 0 0 0

HEGU 0 0 0 0 0 0 0 0 0 66 0 6 0 0

LBBG 0 0 0 0 0 0 0 0 0 0 26 0 0 0

COGU 0 0 0 0 0 0 0 0 0 1 0 64 0 0

BHGU 0 0 0 0 0 0 0 0 0 0 0 0 32 0

CATE 0 0 0 0 0 0 0 0 0 0 0 1 0 31

level, thus the group also includes only one class. The table clearly shows that the
hybrid model performed significantly better than the other two models. The clas-
sification performance of the hybrid model for all of the 14 classes is given in Table
3.5. The abbreviations used in this table are presented in Table 3.6.

Two receiver operating characteristic (ROC) curves are presented for the lesser
black-backed gull in Fig 3.12. Area under the curve (AUC) is 1 for the rightmost
curve (3.12b) and 0.9250 for the leftmost curve (3.12a).

Table 3.6 Class labels for all of the classes.

Species Name (Eng.) Species Name (Lat.) Class Label

Loon species Gavia sp LNSP

Swan species Cygnus sp SWSP

Great Cormorant Phalacrocorax carbo GRCO

Common Eider Somateria mollissima COEI

Common Goldeneye Bucephala clangula COGO

Velvet Scoter Melanitta fusca VESC

Red-breasted Merganser Mergus serrator RBME

White-tailed Eagle Haliaeetus albicilla WTEA

Great Black-backed Gull Larus marinus GBBG

Herring Gull Larus argentatus HEGU

Lesser Black-backed Gull Larus fuscatus LBBG

Common Gull Larus canus COGU

Black-headed Gull Chroicocephalus ridibundus BHGU

Common/Arctic Tern Sterna hirundo/paradisaea CATE
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(a) (b)

Figure 3.12 Two ROC curves for the lesser black-backed gull (Larus fuscus fuscus) that demonstrates

the advantage of using thresholds. (a) ROC curve without a threshold, and (b) ROC curve

with a threshold of 0.9993 applied to the great black-backed gull (Larus marinus) at the

forth level of the hierarchy, i.e., an image is classified as GBBG only if the prediction of the

classifier is larger than the threshold, otherwise the image is classified as LBBG.

The ROC curves for the lesser black-backed gull are from the fourth level of the hy-
brid model, which deals with the group of black-backed gulls, i.e., either the lesser
black-backed (LBBG) gull or the great black-backed gull (GBBG). The curve 3.12b
is gained by setting the GBBG as the positive class and the LBBG as the negative
class, regardless that the LBBG is in the interest. By setting a threshold with a high
value of 0.9993 to the GBBG, a test image is classified as the GBBG only if the given
probability for this class is higher than the threshold, and otherwise the test image
is classified as the LBBG. This method is justified because no LBBG should be miss-
classified according to the environmental license, and the GBBG is quite scarce bird
species in the test area.
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4 CONCLUSIONS AND DISCUSSION

The developed bird identification system is evaluated in terms of bird detection and
identification (classification) ability. Bird detection was two-fold: initially, the ap-
plied radar system detected birds in the sky, and the developed steering software for
the motorized video head drove the camera to the correct position. Successful re-
sults were shown for the latter part of the detection problem. The former part (the
radar system) was beyond the scope of this study. Practical results for automatic bird
identification were presented.

The results of [P4] showed that the delay between the timestamp of a track and
the current clock time of the software server seems to be the most significant factor
for inaccurate targeting of the camera. This is further evident in higher wind speed
circumstances. Visual observations showed that flight paths of all bird species in the
test area were increasingly erratic in high-wind weather conditions. This emphasizes
the effect of the delay in targeting of the camera. However, more research is needed
for reducing the time delay between the timestamp of a track and the current clock
time of the software server.

The results of [P4] also showed that the precise vertical angle error was difficult to
estimate because of the stochastic element of a target bird position, which is caused
by the aforementioned delay. Therefore, the constant vertical error compensation
was discovered empirically during the targeting of the camera. The probability that
target birds will be captured in the focus rectangle cell from any distance is large if
the vertical turning angle error is 0.25°or smaller. If this error is greater than 0.25°,
target birds will probably be missed.

The autofocus system of the camera and the lens showed to be problematic re-
sulting in an unreliable focus. This seemed to be linked to the far range that the
images are taken from. If the autofocus system cannot reach the correct focus, the
camera does not release the shutter, and therefore images are not taken. No solu-
tion was found from the API to release the shutter even if the correct focus is not
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reached. This became important because the image classifier showed good general-
ization ability, even when it was fed by slightly out-of-focus images. As a solution to
the autofocus problem, the focusing system was switched off, and manual focusing
was used instead. As a result of this, focusing was completed to a target at a cho-
sen range before the system was started resulting in the need of refocusing when the
photographing range was changed. The camera and the lens used are both two gener-
ations old. The most recent camera and lens generation has better autofocus system,
which may be a long term solution to this autofocus problem.

The applied CNN model showed sufficient performance as an image classifier.
Mostly, images that were totally out-of-focus or images in which the bird is in un-
favourable position to be identified even by the human eye, were misclassified.

Early tests showed that CNN is a feasible method to classify real-world data (im-
ages of birds). It became clear during the tests that the SVM-on-top model failed
to bring substantial improvement to the classification performance, thus SVM was
omitted from the CNN model. The early tests also implied that the single CNN
model trained on the balanced dataset, formed by images taken in the test site, would
not achieve adequate performance as an image classifier. The result was not better,
in terms of classification performance, when the single CNN model was trained on
the imbalanced dataset. However, the following tests showed that the hybrid model
had significantly better performance as an image classifier than the above classifiers,
especially if the thresholds are applied to the classes. The results of [P5] showed that
the only problematic class, in terms of the environmental license, is the LBBG. Pos-
sible solutions are: misclassification of the GBBG as the LBBG is accepted or the two
classes are combined to one class called the black-backed gulls. Another problematic
pair of classes (bird species) was the gray-backed-gulls: the herring gull and the com-
mon gull. The bird species that this group consists of are also very similar to each
other in terms of morphology. This leads to a conclusion (assessed by human eye)
that the overlapped area of the classification boundary is clearly wide for both these
groups. If the species level identification is important, which is not always the case as
in this study, the results imply that significant increase of classification performance
can be achieved only by collecting more images of these groups.

The results of [P5] showed that when the basic CNN model was modified with
architecture of more than three convolution layers, these models did not perform
better than the original CNN model. This implies that the original model, with
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the architecture of three convolution layers, is capable to extract all relevant features
from the training images, and additional convolution layers cannot provide any more
information.

The overall conclusion of [P5] is that the parameters provided by the radar system
(speed and distance, which enables the size estimate computing) turned to be much
less useful than was initially expected. The size estimate was constantly too coarse for
giving adequate accuracy, rendering impossible its usage to increase the performance
of the image classifier. Speed had potentially more significant contribution to the
classification performance, but in practise, the only case it had a crucial role was
classification between the white-tailed eagle and the great cormorant, because the
image classifier misclassified the great cormorant as the white-tailed eagle in four
cases.

All in all, proof of concept was shown in this study. The problem of real-world
bird identification can be approached successfully by the proposed system and the
applied methods. However, a deeper insight into the pros and cons of the system
is gained by examining it at the component level. The radar system is the top level
component of the developed system even though it was not a subject of the study.
Thus, if the radar system fails to detect target birds entirely, or it fails to pass the ac-
curate position of target birds, the developed system cannot operate. Moreover, the
radar system is by far the most expensive component of the system, and at the time
when the radar system was chosen, only two manufacturers had a suitable system for
this kind of use. The high cost of a suitable radar system might constitute an obsta-
cle for wider use of the developed system. Ability to capture images of target birds is
primarily based on the passed coordinates, which was found to be accurate enough.
This leaves the aforementioned delay to be the main reason for inaccurate targeting
of the camera. According to the manufacturer of the radar system, the only way to
significantly reduce the delay is to increase the rotation speed of the radar antenna,
which is not possible to implement in the used radar system.

The developed system has limitations concerning its utilization. Obvious limi-
tations are caused by prevailing weather such as poor visibility and high winds (ex-
plained above). In practice, operating range is limited distally (with the used lens)
roughly at 1100 m, because the smallest bird species do not cover enough pixels in
their images. Shorter distance than 100 m was not tested in this study. The clas-
sification (bird identification) is limited to only those species that were included in
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the used training set. Thus, if the system is implemented in other location, images
of possible new species to the system must be collected, the thresholds must be up-
dated, and at least some of the classifiers in the hierarchy must be retrained on the
updated training sets.

At the time when this study commenced, the main objective was to develop an
automatic bird identification system for existing (offshore) wind farms in order to
monitor various bird species movement near the turbines. At present, the original
objective still holds, but demand for a mobile system that can identify bird species
automatically is increasing. The main reason for this is that it is cost effective to study
a potential wind farm locations in terms of Environmental Impact Assessment (EIA)
before any other action is taken. EIA is not only an obligatory procedure but also
one of the most significant component in the process to gain a building licence to a
new wind farm. With a little effort, the developed system is modifiable to the desired
mobile system.

One of the main research theme in the future is to link the developed system to
a deterrent system. This deterrent system should use methods that are feasible in
the offshore environment considering also possible limitations set by the maritime
administration.

The developed system is principally comparable to the DTBird [36]. This is a
commercial system, which is probably the reason that no detailed information of
applied methods is available. However, [41] showed that the DTBird is capable
to monitor birds in flight, but bird species level identification is not usually possi-
ble. The main objective of the DTBird seems to be collision monitoring from video
footage, whereas the main objective of this thesis is bird species identification auto-
matically by the developed system. Evidently, both systems are capable to detect
birds in flight.

In some respects, systems or applications such as the WT-bird, Birdsnap, and
collecting time-lapse images around a wind farm are comparable to the developed
system in this study. The objective of the WT-bird [71, 72, 73] is also to detect
and register possible collisions between birds and wind turbines, and no automatic
bird species identification is implemented. Birdsnap [5] is based on entirely different
methods (no CNN), but it also utilizes images of birds and a probability distribution
(spatio-temporal class priors) of bird species in a certain location and time of year.
The objective of this application is to implement an on line field guide. Compared
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to the system in this thesis, the images in Birdsnap are manually collected and added
to the application. This gives a wide control to the images in terms of image pro-
cessing, whereas the similar way of control is not usually possible in automatically
operating systems. Only the accuracy of 0.8240 is given to describe the performance
of Birdsnap as an image classifier. The performance of the system developed in this
thesis is usually given as TPR, but if accuracy is used to show the performance, it
is 0.8975. Compared to the system that uses time-lapse imaging developed by [75],
the system developed in this study is capable to detect birds from the whole wind
farm area, which makes the direct comparison of the detection performances unrea-
sonable. [75] also included image classifiers in their system. The image classifiers
were based on four methods, and the best performed method was CNN. Their clas-
sification results are given in a ROC curve in their study, and when these results are
compared to the performance of the hybrid CNN model used in this thesis, it seems
that the performance of the hybrid CNN model is significantly better. This is es-
pecially obvious when the thresholds are applied to separate the most challenging
classes such as the lesser black-backed gull and the great black-backed gull, see Fig.
3.12.
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Abstract—An automatic bird identification system is required
for offshore wind farms in Finland. Indubitably, a radar is the
obvious choice to detect birds but actual identification requires
external information such as digital images. The final bird species
identification is based on a fusion of radar data and image data.
We applied deep learning method for image classification and
we developed a data expansion technique for the training data.
We present classification results for the image classifier based on
small convolutional neural network.

Keywords—Classification; Deep Learning; Convolutional Neu-
ral Networks; Machine Learning; Data Expansion; Wind Farms

I. INTRODUCTION

Several offshore wind farms are under construction on the
Finnish west coast. The official environmental specifications
define that bird species behaviour at the vicinity of wind
turbines must be monitored. This concerns especially two
species: White-tailed Eagle, Haliaeetus albicilla and Lesser
Black-backed Gull, Larus fuscus fuscus. The only way to fulfil
the demand cost efficiently is to automate monitoring, and
that requires automatic bird species identification at such a
level that the aforementioned bird species are separable from
all other species in the study area. The prototype system for
automated bird identification is developed and placed at a test
location on Finnish west coast.

A radar is feasible choice for the detection of birds since
the identification need is restricted to the flying birds only. If
merely a radar is used the identification capability is limited to
a few size classes. Radar suppliers have observed that the main
cause for the limited identification capability is that variation
between the same object in a different section in a radar beam
(and in a different position as well) is larger than variation
between two different objects.

A feasible way to bring more information into identification
algorithm is to apply digital camera images. In this approach
the radar is responsible for the detection. The radar locks on a
target bird and provides the coordinates to the camera steering
software. The camera steering system tracks the flying bird and
the camera takes series of images. The data of digital images
provides information about coloration and shape of the target.
The system includes our software for controlling the camera
and steering a motorized video head. The data provided by the
radar consists of the velocity and the distance to the target. The
final identification is the result of a fusion between information

provided by the radar and information extracted from digital
images.

II. DATA SET

A. Collecting data

The data set consists of manually taken images of wild
birds in flight. We took all the images at the test location
during one year in all seasons. The wind turbine swept area is
a suitable altitude level constraint for taking the images. No
normalization is applied to the images even though the sky
at the background can be concolorous or multicoloured. The
location of the prototype system compared to the location of
the pilot wind turbine acts as constrain to the photographing
distance. This results in the distance of 300m - 1000m. We
tried to photograph all the birds that were flying in the
suitable distance and in the correct altitude level. The number
of training examples per class set at low level in terms of
deep learning requirements, and therefore data expansion is
required. The number of training examples per class varies
roughly from 100 to 6000. To assign the same number to
each class the minimum is determinative. We have used 6 as
the number of classes (which includes both key species) due
to difficulties in obtaining large numbers of images for all
possible classes.

B. Expanding the training data

Data expansion is accomplished by applying the following
algorithm: for all the images in each training set, convert the
image to different color temperatures between 2000K◦ and
15000K◦ with step size s, where s ε {50, 75, 100, 150, 200,
250, 300, 1000} [14–16]. This makes the training set signifi-
cantly larger, e.g. if s is 200, the smallest number of training
example per class of 631 becomes 66∗631+1 = 41647. Rotate
images by random angle between -30◦and 30◦drawn from the
uniform distribution after completion of the conversion.

III. THE SYSTEM

We took series of images of a single target bird and each
image is processed according to the schematic diagram of the
system in the Fig. 1.



Figure 1: Schematic diagram of the system.

A. Segmentation

Segmentation is needed for the target size (in pixels) cal-
culation. We studied methods from simple threshold to fuzzy
logic for solving the problem at hand i.e. a dark figure against
bright background and vice versa as well. At the extremity,
the background and the target can share several colors in RGB
space. We achieved the best result, in terms of signal-to-noise
ratio, by applying fuzzy logic segmentation [1]. We applied
Mamdani’s fuzzy inference method in the proposed system
[2].

B. Size estimate

The size estimate is calculated for the target bird in each
image in a series as follows. The frame size ([x y], in pixels)
of the camera and the angle of view (α) of the lens are known.
The distance (d) to the target bird is provided by radar. The
numbers of maximum pixels, horizontally (σz) and vertically
(σv), of the target bird are calculated from the segmented
image, respectively. The angle of view, b, at the distance,
d, is calculated over a right-angled triangle (see Fig. 2). The
horizontal number of pixels per meter is:

ρh =
x

bh
, (1)

and the vertical number of pixels per meter is:

ρv =
x

bv
. (2)

The size estimate for the bird in a single image in square
meters as an area of rectangle is:

e =
σh

ρh
∗ σv

ρv
. (3)

The size estimate is presented as a vector in which the vector
elements are placed according to class order i.e. class 1, class

Figure 2: Diagram referred to the size estimate calculation.

2 . . . class n. The composition of the vector is following:
calculate the average of the size estimates of the image series,
check from the size-look-up table for which classes the average
size fits, turn those elements to one and set the others to zero,
yielding

E = [e1, e2, . . . en], (4)

with elements:

ej =

{
1, if e fits class j,

0, otherwise.
(5)

IV. METHODS

A. Convolutional neural network

We apply convolutional neural network (CNN) for feature
extraction. The network architecture is presented in the Fig.
3. The input image is normalized and zero-centered before
entering it to the network. CNN with Mini-batch training (i.e.
a hybrid between batch and on-line training) and supervised
mode as well as stochastic gradient descent with momentum is
applied [8], [10–12]. The L2 Regularization (i.e. weight decay)
method for reducing over-fitting is also applied [3], [11], [12].
Due to limited capability to collect training data the network
size in terms of free parameters is kept small, thus resulting in
total of 92 feature maps which are extracted by convolution
layers of sizes 12x12x3x12, 3x3x12x16 and 3x3x16x64, re-
spectively. Total number of weights is as rounded to 9.47*106,
which is over 14 times smaller than e.g. VGGNet [13] in which
the rounded number is 138*106. In VGGNet the number of
classes is 1000 but if we set it to 1000 in our net it would
only raise the number of weights to 9.53*106.

Each convolution layer is followed by a Rectified Linear
Units (ReLU) nonlinearity layer [9], which simply applies a
threshold operation to all the components of its input:

f(x) =

{
0, x < 0,

x, x ≥ 0.
(6)

This non-saturating non-linearity in deep CNN makes the
training several times faster with the hyperbolic tangent sig-
moid transfer function (i.e. the transfer function we applied)
[5], [9]. Cross Channel Normalization layers follow the first
and the second ReLU layers. These layers aid the generaliza-
tion as their function may be seen as brightness normalization
[5].

The purpose of max-pooling layer is to build robustness
to small distortions. This is achievable by filtering over local
neighbourhoods as follows: divide the input into rectangular
pooling regions, and compute the maximum of each region,
thus performing down sampling and reducing the over-fitting
as well [6].

There are three fully-connected layers at the end of the
network for making final non-linear combinations of features,
and prediction by the last fully-connected layer followed by
softmax activation which produces a distribution over the class
labels with cross entropy loss function [12].



Figure 3: The architecture of the convolutional neural network results in (200-
12+2*1)/2+1=96 neurons in each feature map of the first convolution layer
thus making the number of neurons for the layer to be 96*96*12=110592.
The number of neurons for the next layers is 147456, 36864, 147456, 36864,
256, 64 and 6 (i.e. the number of classes), respectively. Note that there is no
max-pooling layer between the first and the second convolution layers.

B. Hyper-parameter optimization

We used manual tuning (also known as expert tuning) as
hyper-parameter optimization method for number of epochs
and learning rate decay schedule (LRDS). We kept all the
other hyper-parameters at fixed values. We draw initial weights
for all layers from the Gaussian distribution with mean 0 and
standard deviation 0.01. Initial biases are set to zero. Initial
learning rate is set to 0.01 and we dropped it by a factor
0.1 after different number of epochs (i.e. learning rate decay
schedule). L2 value is set to 0.0005 and mini-batch size is set
to 128.

C. Dropout

We applied the dropout technique for improving the perfor-
mance of our CNN i.e. we trained multiple models with and
without the dropout to study the contribution of this method

to the classification performance by reducing over-fitting [4],
[5].

D. Classification

A two-step learning method is applied i.e. a CNN is trained
with the first N-1 layers viewed as feature vectors and these
feature vectors are used to train a Support Vector Machine
(SVM) classifier [7]. The SVM makes use of one-versus-all
binary learners, in which for each binary learner, one class
is positive and the rest are negative. The total number of
the binary learners is the same as the number of classes. A
linear classification model is applied with stochastic gradient
descent (mini-batch size = 10) and the Hinge loss function
with regularization term 1/n, where n is a number of training
examples [17], [18]. Because of the joint performance of
the CNN and the SVM classifier is mainly dependent of the
features extracted by the CNN we set all hyper-parameters to
their conventional values in the SVM classifier.

Final classification is obtained by a fusion between param-
eters provided by the radar and predictions from the image
classifier. Prediction per image, Pi, is combined into a vector:

Pi = [c1, c2, . . . cn], i = 1, . . . n, (7)

where cj is a probability for class j and n is the number
of images in each series. Velocity of the target bird is also
a parameter provided by the radar and it is presented as a
vector. It is composed in similar way than the vector E in (4)
i.e. check from the velocity-look-up table for which classes
the provided velocity, vp, fits and turn those elements to one
and the others to zero.

V = [v1, v2, . . . vn], (8)

with elements:

vj =

{
1, if vp fits class j,

0, otherwise.
(9)

The fusion vector is:

Φ =

n∑
i=1

Pi. ∗ V. ∗ E, i = 1, . . . n (10)

where ".*" denotes element wise multiplication and n is
the number of images in each series. The score, Sf , for final
prediction is:

[Sf, j] = argmaxj(Φ), (11)

where j is the index of the predicted class.



V. RESULTS

We trained several models from original image set by
empirically changing hyper-parameter values. The average
classification performance for the models based on the original
set, in terms of true positive rate (TPR), is 0.58 tested during
training. We trained also several expanded models based on
different step sizes of the color conversion resulting in training
set sizes between 0.53*105 - 9.88*105. Classification perfor-
mance measured as TPR of these models set between 0.86-
0.99, which shows clear improvement as expanded training
set size increases and especially compared to the models of
the original set. We also tested generalization by feeding the
models with images they have never seen. According to this
test the system achieves its state-of-the-art performance of 0.91
(as TPR) with the expanded training set of size 4.96*105 (i.e.
the color conversion step size 100), number of epochs 12,
LRDS 7 and the dropout applied. This performance level was
also achieved but not exceeded by larger expanded training
set. The effect of data expansion on classification performance
during training and by generalization test is presented in Fig.
4. The receiver operating characteristic (ROC) for 7 models
based on the original set and for 7 models based on the best
expanded set is presented in Fig. 5 in which the White-tailed
Eagle is plotted against all the other species (i.e. the 5 other
classes) in both sets of models.

VI. CONCLUSIONS

We assembled the non-deep (i.e. in terms of weight lay-
ers) convolutional neural network for image classification,
and demonstrated that the model is suitable for real world
application, especially, when the number of training data is
limited. We presented and demonstrated the data expansion
technique that improves significantly the performance of a
classifier based on small convolutional neural network. We
also showed that the data expansion is crucial for the classifica-
tion performance. We demonstrated that a small convolutional
neural network applied with our data expansion for the training
data achieved the desirable state-of-the-art performance as an
image classifier. We also showed that our model generalize
well to images never seen before and it is applicable for real
world problem.

Figure 4: Effect of data expansion starting from the original training set. The
red curve is for testing during training and the blue curve is according to the
generalization test.

Figure 5: ROC curve for the 7 original models and the best 7 expanded models
according to the generalization test. Area under the curve (AUC) is 0.84 and
0.99, respectively.

Obviously, the parameters supplied by the radar provide
additional and relevant a-priori knowledge to the system and
can turn a misclassified (by images) class into the correct one.
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Automatic Bird Identification for Offshore Wind
Farms

Juha Niemi � and Juha T. Tanttu �

Tampere University of Technology, Signal Processing Laboratory,
Pori, Finland

Abstract. There is a need for automatic bird identification system at
offshore wind farms in Finland. The developed system should be able
to operate from onshore, which is cost-effective in terms of installations
and maintenance. Indubitably, a radar is the obvious choice to detect
flying birds but external information is required for actual identification.
A conceivable method is to exploit visual camera images. In the pro-
posed system the radar detects birds and provides the coordinates to
camera steering system. The camera steering system tracks the flying
birds, thus enabling capturing a series of images. Classification is based
on the images and it is implemented by a small convolutional neural
network trained with a deep learning algorithm. We also propose a data
augmentation method in which images are rotated and converted in ac-
cordance with the desired color temperatures. The final identification is
based on a fusion of data provided by the radar and image data. We
present the results of the number of correctly identified species based on
manually taken images.

Keywords: Image classification, Deep learning, Convolutional neural
networks, Machine learning, Data augmentation

1 Introduction

The first offshore wind farm is under construction on the Finnish west coast.
The minimal demand of the environmental license defines that bird species in
the turbine areas are monitored and possible collisions prevented concerning
especially two species: the White-tailed Eagle, Haliaeetus albicilla and the Lesser
Black-backed Gull, Larus fuscus fuscus. At present, the radar system controls
directly the pilot wind turbine and shut it down when any bird flies into a
perimeter of 300 m to the wind turbine, which is the minimum distance in terms
to have sufficient time to shut down the turbine. The number of fast restarting
of the turbines should stay as low as possible due to wearing of the mechanics
and therefore this operation should be used as a last resort. A solution to this
is a suitable deterrent method but it is difficult to find only one applicable
deterrence for all bird species in the wind farm area, and one extra problem
is that the breeding birds may quicly become accustomed to e.g. sounds as a
deterrent method [1]. At first stage, an automatically operating bird species
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identification system is needed in order to be able to develop such deterrent
system. The final objective is to develop a deterrent system that operates on
species-group level (i.e. a different deterrent method for e.g. gulls and eagles).
At this point our main research question is how to identify bird species in flight
automatically in real-time?

It makes sense, in order to implement this system cost-effectively, to build
only one control system in such a location from where it is possible to monitor
birds in the vicinity of all wind turbines of the wind farm. To achieve this goal it
has been decided to place the control system onshore as it is more cost-effective
compared to a system installed offshore. The distance from the chosen location
to the monitored birds (i.e. the vicinities of the future wind turbines) ranges
between 500 m and 1500 m. We initially considered a radar for both detecting
the bird and identifying its species. However, it is known that the identifica-
tion capacity is limited, rendering impossible to classify bird species any further
merely by this radar system. Obviously, external information is required and a
conceivable method is to exploit visual camera images. A digital single-lens re-
flex (DSLR) camera with telephoto lens is applied due to the long photographing
distance.

2 The System

The proposed system consists of several hardware as well as software modules.
See the Fig. 1 for an illustration. First of all there is the radar which is con-
nected to a local area network (LAN) and thus it is able to communicate with
the servers in which the various programs are running. The most important role
of the radar is to detect flying birds but it also provides some parameters for
bird identification (i.e. classification). The parameters are: the distance in 3D
of a target (m), velocity of a target (m/s) and trajectory of a target (WGS84
coordinates). The distance of a target is used to estimate the size in meters.
Velocity of a target is used for the final classification, which we call the fusion.
The system also includes the aforementioned camera with the lens and a mo-
torized video head. The video head is operated by Pelco-D control protocol [2]
and the control software for it is developed by us. The camera is controlled by
the application programmable interface (API) of the camera manufacturer and
the software for controlling the camera is also developed by us. The system has
three servers: the radar server, the video head steering server and the camera
control server. Software for the radar server is supplied by the manufacturer of
the radar but the software for the other two servers is result of our development
work.
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Fig. 1. The hardware of the system and the principle of catching flying bird into the
frame area of the camera.

2.1 Hardware Level

The figure 1 illustrates the hardware components of the system. The operation on
hardware level commences when the radar detects a bird and sends information
of the blip including the parameters to the video head steering server. The video
head steering server reads the coordinates from the data sent by the radar. The
system reacts only if the data has the altitude information of the object.

We have used the PT-1020 Medium Duty video head of the 2B Security
Systems. This head has five different speeds of panning: 12, 18, 24, 32 and 48 as
well as two of tilting: 12 and 18, in degrees/s. The maximum speed is 1499 m/s
(i.e. 48 degree/s) at the distance of 1350 m, where the pilot turbine is located,
and the minimum speed is 287 in m/s (i.e. 12 in degree/s) . The maximum
ground speed of a flying bird in the test area is estimated to be 110 km/h =
30.5 m/s [3] added with the maximum average wind of 30 m/s [4] resulting in
60.5 m/s. The minimum ground speed of a flying bird in the test area is roughly
6 m/s, which is based on the radar. Soaring gulls and terns are not included in
the minimum speed measure. The calculations show that the maximum speed
of the head is sufficient but the minimum speed is too fast for direct tracking.
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The too-fast-minimum-speed problem (i.e. the minimum speed of steering the
video head is not slow enough in order to track a flying bird at desired distance)
is solved as follows: the video head steering system calculates the most probable
trajectory of the target bird and adds a lead to the calculated position so that
when the head will be driven to that final position it would be ahead of the target
bird. The calculations are based on the flight speed (measured by the radar)
of a target and the right-angled triangle and they ignore any possible sudden
deviations off the flight path. The curvature of the horizon is also ignored due
to the relatively short distances in question. When the final position is reached
the head stops. This solves the minimum speed problem and also maximizes the
probability that the target bird is within the frame of the camera at distance in
question, see the Fig. 1. After the head is driven to the final position the camera
takes series of images and sends them to the classification software that runs on
the same server.

Radar. We use a radar system supplied by Robin Radar Systems B.V. because
they provide an avian radar system that is able to detect birds. They also have
tracker algorithms for tracking a detected object over time i.e. between the
blips. The model we use is the ROBIN 3D FLEX v1.6.3 and it is actually a
combination of two radars and a software package for implementation of various
algorithms such as the tracker algorithms. The two radars are: a horizontal
scanning S-band radar, and a 3D tracking frequency-modulated continuous wave
(FMCW) vertical X-band radar. The 3D tracking FMCW radar supports 2-
axis scanning mode for 3D coverage and tracking mode with either manual or
automatic track selection. The ROBIN 3D FLEX v1.6.3 radar system is capable
to provide parameters, such as velocity and bearing of the detected object, for
our system. The S-band radar enables a long range detection up to 10 km of
flying birds and it provides the longitude and the latitude of a target bird. The
X-band radar enables higher resolution i.e. it can detect smaller objects such as
small birds up to distance of 5 km. The X-band radar also provides the altitude
of the target [5,6,7].

The S-band radar can operate the whole 360 degrees but it is adjusted to
operate 180 degrees in the test site since the objects are always in the sector of
south via west to north. The X-band radar operates roughly in 20 degree sector
that can be configured to lie in a constant position or it can be configured to
multiplex between two separate positions. The two possible operation modes of
the X-band radar are presented in the Fig. 2. and the Fig. 3., respectively. The
ability to multiplex is important because it enables to adjust the minimum dis-
tance to the wind turbine of the approaching bird and therefore it gives sufficient
time to shut down the wind turbine. The cross section of the two radar beams
is the key feature since the intersection of this is the area from where all the
three coordinates (i.e. latitude, longitude and altitude) are available [5,6,7]. The
proposed system can not work without information about the altitude of the
object.
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Fig. 2. The vertical X-band radar operation at a constant position.

Camera System. The resolution of the camera sensor measured by the total
number of pixels and the focal length of the lens are important qualities because
of the long distance to birds of which images are to be taken. We use a term

Fig. 3. The vertical X-band radar operation when configured to multiplex between two
separate positions.
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called the effective number of pixels (ENP) defined by the number of pixels
representing a bird. The remaining number of pixels are considered noise. Image
classification is achieved only with ENP as birds will be very small (i.e. they
consist of only a small number of pixels) in the images. ENP depends on the
focal length of the lens and can be increased by choosing a long (i.e. in terms
of focal length) telephoto lens. Because of these facts we have chosen to use
the Canon EOS 7D II camera with 20.2-megapixels sensor and the Canon EF
500/f4 IS lens. Correct focusing of the images relies on the autofocus system of
the lens and the camera. Automatic exposure is also applied. The operation of
the proposed system is not restricted to this combination of the camera and the
lens but a combination of any standard DSLR camera with any standard lens
suitable for that camera can be utilized.

2.2 Software Level

The ability of the system to identify bird species depends on the image classifi-
cation and the size and velocity estimates of the target bird. Figure 4 illustrates
the work flow for processing and classifying images. The classification process
begins with a series of images taken of a single bird (i.e. a bird individual or a
tight flock of birds flying past). The purpose of taking several images is simply to
increase the probability of a correct identification. The images in a single series
are fed to the classifier separately.

Segmentation is computed in parallel to image classification in order to obtain
an estimate of the target bird size in pixels. We tested several methods from
simple threshold to fuzzy logic for solving the problem at hand, i.e., a dark

Fig. 4. The work flow for processing and classifying images.
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figure against bright background and vice versa. The background and the target
can share several colors in the RGB color space. We achieved the best results,
in terms of signal-to-noise ratio, by applying fuzzy logic segmentation [8]. In
particular, we applied Mamdani’s fuzzy inference method [9].

Once the target bird size in pixels is obtained the target bird size in meters
can be estimated. The image classifier results are given in P-vectors, which
elements are probabilities of belonging to each class. There is one P-vector for
each image. The P-vectors for a single series of images are combined to the
final P-vector by adding element-wisely. A size estimate and velocity of a target
bird are also represented as vectors. Finally, the fusion is simply an element-wise
multiplication of the size vector, the velocity vector and the combined P-vector.

2.3 Data

Input data for the identification system consist of digital images and parameters
from the radar. The parameters from the radar are real numbers such as velocity
of a flying bird in m/s and bearing (i.e. a heading: the horizontal angle between
the direction of an object and that of true north) in degrees.

Deep learning is a subfield of machine learning concerned with algorithms in-
spired by the structure and function of the brain called artificial neural networks.
Deep learning networks are typically large, i.e. they have many layers and large
number of parameters. A convolutional neural network (CNN) is one implemen-
tation of deep learning [10]. A CNN is a specialized kind of neural network for
processing data that has a known grid-like topology like image data, which can
be thought of as a 2D grid of pixels. Convolutional networks are simply neural
networks that use convolution in place of general matrix multiplication in at
least one of their layers. Typically CNNs need large datasets for the training
phase to achieve sufficient classification performance [11].

All images for training the CNN have been taken manually at the test lo-
cation and in various weather conditions. The location is the same where the
camera will be installed for taking images automatically. There are also con-
straints concerning the area where the images have to be taken. Here the area
refers to the air space in the vicinity of the pilot wind turbine. We have used
the swept area (i.e. 130 m) as a suitable altitude level constraint for taking the
images. At this stage, the images are only need to be taken in the vicinity of 1350
m in lengthwise direction, which is the distance to the pilot wind turbine. No
normalization is applied to the images even though the sky at the background
can be concolorous or multicoloured.

The number of training examples for each image class (i.e. bird species) varies
from 1164 to 5614. This is not enough (i.e. the demand is typically from tens of
thousands to hundreds of thousands) for training of the deep learning algorithm
[10], and therefore data augmentation (a.k.a. data expansion) is required. Data
augmentation refers to any method that makes the original data set larger.
These methods may include noise addition or various transformations such as
rotation of images [12]. The number of images of each class should be the same
as a CNN is applied and therefore the lowest number of images of the classes is
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used. We have restricted the number of classes (which includes both key species)
to 6 due to difficulties in achieving large numbers of images for all possible
classes in a relatively short period of time. The 6 initial classes for training the
CNN are the Common Goldeneye (Bucephala clangula), the White-tailed Eagle
(Haliaeetus albicilla), the Herring Gull (Larus argentatus), the Lesser Black-
backed Gull (Larus fuscus fuscus), the Great Cormorant (Phalacrocorax carbo)
and Common/Arctic Tern (Sterna hirundo/paradisaea). These species are chosen
simply because we were able to collect the largest numbers of images of them.
We are able to increase the number of classes (i.e. species) as the number of
images is increasing in those classes (i.e. other than the aforementioned 6) that
have only minor number of images at present. The final classes will also include
the Common Scoter (Melanitta nigra), the Velvet Scoter (Melanitta fusca), the
Common Eider (Somateria mollissima), the Common Gull(Larus canus) and
the Black-headed Gull (Larus ridibundus).

Data Augmentation. Our system is operating in marine environment and
therefore prevailing weather has significant influence to the tonality of the images
taken at the test site. It is intuitively obvious that the lighting will vary with
time, and thus the toning of the images will be changing according to lighting.

Color (in K, Kelvin degrees) temperature is a property of a light source.
It is the temperature of the ideal black-body radiator that radiates light of
the same color as the corresponding light source. In this context black-body
radiation is the thermal electromagnetic radiation emitted by a black body. A
black-body is an opaque and non-reflective body. It has a specific spectrum and
intensity that depends only on the temperature of the black-body, and it is
assumed to be uniform and constant. In our case the light source is the sun
that closely approximates a black-body radiator. Even though the color of the
sun may appear different depending on its position, the changing of color is
mainly due to the scattering of light and it is not because of the changes in the
black-body radiation [13,14,15,16]. Color matching functions (CMFs) provide
the absolute energy values of three primary colors which appear the same as
each spectrum color. We applied the International Commission on Illumination
(Commission internationale de l’clairage, CIE) 10-deg color matching functions
in our data augmentation algorithm [17].

The augmentation is done according to the curves in the Fig. 5. [18] by
converting an image into different color temperatures between 2000 K and 15000
K with step size s, where s ε {25, 50, 75, 100, 150, 200, 250, 300, 1000}. This
makes the training set significantly larger, e.g., if s is 200, the class with the
smallest number of training examples of 1164 becomes 67 ·1164 = 77988, where
67 = (15000 - 2000)/200 + 2 (i.e the difference between 15000 and 2000 divided
by the step size plus the two extremes). When conversion is done, the images are
also rotated by a random angle between -30 degree and 30 degree drawn from
the uniform distribution. Motivation for this is that a CNN is invariant to small
translations but not rotation of an image [19].
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Fig. 5. Color temperature and corresponding RGB values presented according to CIE
1964 10-degree color matching function.

3 Classification

3.1 Target Size Estimate and Velocity

In this subsection we describe how the size of the target bird is estimated. The
frame size ([width x height y ], in pixels) of the camera and the angle of view
(α) of the lens are known. The distance (d) to the target bird is provided by the
radar. The maximum number of horizontal (σh) and vertical (σv) pixels of the
target bird are calculated from the segmented image, respectively. The angle of
view, b, at the distance, d, is calculated over a right-angled triangle, see the Fig.
6. The horizontal number of pixels/meter is given by

ρh =
x

bh
, (1)

and the vertical number of pixels/meter by

ρv =
y

bv
, (2)

where, bh and bv denote the horizontal and the vertical angles of view, respec-
tively. The estimate for the size of the bird in a single image in square meters as
an area of rectangle is:

e =
σh

ρh
∗ σv

ρv
. (3)
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Fig. 6. Diagram of the size estimate calculation.

The size estimate is presented as a vector with elements placed according
to the class order (ordered by the probabilities), i.e., class 1, class 2, class
nc, where nc denotes the number of classes. The composition of the vector is
following: calculate the average of the size estimates of the image series, check
from the size-look-up table for which classes the average size, e, fits, turn those
elements to one and set the others to zero, yielding

E = [e1, e2, ..., enc], (4)

with elements:

ej =

{
1, if e fits class j ,
0, otherwise.

(5)

The velocity of the target bird is a parameter provided by the radar also
presented as a vector. It is composed in similar way than the E -vector in (4) i.e.
check from the velocity-look-up table for which classes the provided velocity, v,
fits and turn those elements to one and the others to zero.

V = [v1, v2, ..., vnc], (6)

with elements:

vj =

{
1, if v fits class j ,
0, otherwise.

(7)

3.2 Image Classification

Figure 7 illustrates image classification. We applied a CNN for feature extraction
and built an architecture of three convolution layers of which each are followed by
rectifier layers. The first two layers are followed by cross channel normalization
layers and the second and third layer is followed by max-pooling layer. Finally,
three consecutive fully-connected layers are at the end of the CNN network.
The dropout technique is applied to the first and second fully-connected layers.
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Fig. 7. The classification process.

This architecture may be seen as a small CNN because it is actually non-deep
compared with conventional deep learning models. [20]

We applied a two-step learning method i.e. the CNN is trained with the
first N-1 layers (i.e. N is the number of the layers) viewed as feature vectors
and a combined result is based on these feature vectors that is used to train a
Support Vector Machine (SVM) classifier [21]. The SVM classifier is thus the
actual classifier [20].

The result of the image classifier is presented as a vector, thus predictions
for each image in a single series of images are combined into the vector, P i:

P i = [c1, c2, ..., cnc], i = 1, ..., n, (8)

where cj is a probability of belonging to class j, nc is the number of classes and
n is the number of images in each series.

3.3 Fusion

The final classification is achieved by a fusion between the parameters provided
by the radar and the predictions from the image classifier. The combined P-
vector for a series of images is:

P =

n∑
i=1

P i, (9)
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where n is the number of images in each series and the fusion vector, Φ, is:

Φ = P . ∗V . ∗E (10)

where ”.*” denotes element wise multiplication. The score, S, for final prediction
is:

S = maxj(Φ), (11)

j = arg maxj(Φ), (12)

where j is the index of the predicted class.

4 Results

The data augmentation algorithm proved to be slow with our computer resources
when the step size, s, is less than 100. For this reason we initially trained several
classifier models on the original image set (i.e. no data augmentation) and also
several models on various augmented data sets with s as selected from {25, 50,
75, 100, 150, 200, 250, 300, 1000}, respectively. The original data set size was 6
·631 = 3786 at this phase. The effect of the data augmentation on classification
performance has been examined according to this data set and it is presented in
the Fig. 8.

Fig. 8. The upper curve is for testing in training and the lower curve is according to
the generalization test. Several models were trained for each step size, s, in the data
augmentation. The average TPR values of the models with the same step size are
applied in the figure. The starting value for both curves is the average value of the
models trained on the first original data set.
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Based on observations of the first training process it was obvious that to
create augmented data sets with all previously applied values of the step size, s, is
time consuming and not reasonable. It was also intuitively clear that the number
of epochs should decrease when the number of training examples increases and
the learning rate drop period should increase as the number of training examples
increases in order to avoid overfitting. Hence we trained the following classifier
models with the step side, s = 50, when the data augmentation was applied.
The classification performance for the latest (i.e. trained on the original data
set size at 6984 = 6 ·1164) models in terms of true positive rate (TPR) is as an
average 0.7684 for the original data set and varies between 0.9317 and 0.9999 for
the augmented data sets, which shows clear improvement as augmented training
set size increases and especially compared to the models of the original data set.

Generalization was also tested based on the latest models by feeding them
images they have never seen. According to this test the system achieves its state-
of-the-art performance of 0.9583 (as TPR) with the augmented data set of the
size 1.83*106 (i.e. the color conversion step size 50), number of epochs 8, learning
rate drop period (LRDP) 3 with 0.1 as the factor and 0.01 as the initial learning
rate, and the dropout applied. See [20] for earlier results.

The results for the original data set (i.e. the data set size 6984 = 6 ·1164)
are presented as a confusion matrix in the Table 1. The results for the best aug-
mented set are presented as a confusion matrix in the Table 2. Cross-validation
is applied and the split into a training set and a validation set was 70% and
30%, respectively, in the two previous data sets. The results for the general-
ization (the best performed model based on the augmented sets is applied) are
presented as a confusion matrix in the Table 3. There were 100 randomly picked
images from each 6 classes, which the tested model has never seen before. Thus
the test set size in the generalization test was 6 ·100 = 600. The abbreviated class
names, which are names of the bird species, in the figures are: CG = Common
Goldeneye, WTE = White-tailed Eagle, HG = Herring Gull, LBBG = Lesser
Black-backed Gull, GC = Great Cormorant, C/AT = Common/Arctic Tern. The
most right-handed column, TP/class, is for correctly predicted images for the
class (i.e. species).

Table 1. Classification performance of the original data set size at 6984 = 6 ·1164
presented as a confusion matrix.

CG WTE HG LBBG GC C/AT TP/class

CG 245 4 40 28 17 15 70.2%
WTE 0 305 6 6 20 12 87.4%
HG 13 6 249 39 6 36 71.3%

LBBG 14 1 37 252 3 32 72.2%
GC 21 24 5 12 277 10 79.4%

C/AT 6 6 35 16 5 281 80.5%
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Table 2. Classification performance of the best augmented data set presented as a
confusion matrix.

CG WTE HG LBBG GC C/AT TP/class

CG 91489 0 0 0 1 0 99.999%
WTE 0 91485 1 0 3 1 99.995%
HG 0 0 91450 4 1 35 99.956%

LBBG 0 0 1 91474 6 9 99.983%
GC 3 12 9 1 91457 8 99.964%

C/AT 0 0 6 3 2 91479 99.988%

Table 3. Classification performance tested on 100 unseen images from each class as a
confusion matrix.

CG WTE HG LBBG GC C/AT TP/class

CG 97 0 0 0 2 1 97%
WTE 0 99 0 1 0 0 99%
HG 0 1 98 0 0 1 98%

LBBG 0 1 5 87 1 6 87%
GC 0 2 0 1 97 0 97%

C/AT 0 0 2 0 1 97 97%

5 Discussion and Conclusions

A lot of research is done to monitor birds in wind farms, and to find suitable
methods for collision detection, e.g. the WT-Bird of the Energy Research Centre
of the Netherlands [22,23]. The principle of the WT-Bird system is that a bird
collision is detected by the sound of the impact (triggering) and that the species
can be recognised from video images [24,25]. However, it has known problems
with false alarms in high wind circumstances concerning larger bird species and
it has no automated species identification algorithm [26]. We are also aware
of two commercial systems: the DTBird of Liquen Consultora Ambiental,S.L.,
Spain and the MUSE of DHI, USA [27,28]. They both promise to detect birds
automatically and prevent possible collisions in the vicinity of wind turbines
but no detailed technical data are available. It seems according to their websites
that their systems work from an individual wind turbine and they have short
distance camera systems for providing images of birds. Only the MUSE seems
to have automated identification of species but the methods are unknown to us.
All of the three systems use video footage for detecting possible collisions and it
seems that they have a video camera and recording system for each wind turbine.
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The primary objective of the system here presented is to use only one camera
location for monitoring and species identification but a video camera (and an
infrared camera) is a noteworthy possibility for collision detection. However,
we are seeking solution that operates from a single location, which is onshore.
We are currently working on the collision detection problem but no collisions
have been observed until now while the pilot wind turbine has been manually
monitored for 18 months. It seems that collisions are quite rare in the research
area and this makes the field testing of the possible collision detection methods
challenging.

We proposed a novel system for automatic bird identification as a real world
application. However, the system has restrictions such as the background of the
images is the sky (we have not tested images taken otherwise) and images can
not be taken in pitch-dark or in poor visibility conditions. Infrared cameras may
contribute to the collision detection but their contribution to classification is
poor because all color information is lost. The proposed system is still under
construction and installation phase, so we have not yet been able to test the
complete system.

We built and tested several image classifiers based on the small CNN trained
with the deep learning algorithm. The best performed classifier proved to be
discoverable by changing the step size in the data augmentation and the hyper-
parameter values (number of epochs and the learning rate drop period) and with
or without the dropout technique applied. Our model may be seen as a non-deep
or small neural network since it has only three convolution layers.

We demonstrated that the small CNN applied with our data augmentation
algorithm for the training data achieved the acceptable state-of-the-art perfor-
mance of 0.9583 as an image classifier. We showed that our data augmentation
method is suitable for image classification problem and it significantly increases
the performance of the classifier.

The measured performance of the image classifier has been obtained without
the support of the parameters supplied by the radar. The parameters provide
additional and relevant a-priori knowledge to the system and they can turn a
misclassified (by images) class into the correct one. We also collect more data
continuously at the test site and thus the number of training examples increases
resulting in a better performance of the current classes, and we are able to
increase the number of classes as well.
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Abstract: An automatic bird identification system is required for offshore wind farms in Finland.
Indubitably, a radar is the obvious choice to detect flying birds, but external information is required
for actual identification. We applied visual camera images as external data. The proposed system
for automatic bird identification consists of a radar, a motorized video head and a single-lens reflex
camera with a telephoto lens. A convolutional neural network trained with a deep learning algorithm
is applied to the image classification. We also propose a data augmentation method in which
images are rotated and converted in accordance with the desired color temperatures. The final
identification is based on a fusion of parameters provided by the radar and the predictions of the
image classifier. The sensitivity of this proposed system, on a dataset containing 9312 manually taken
original images resulting in 2.44 × 106 augmented data set, is 0.9463 as an image classifier. The area
under receiver operating characteristic curve for two key bird species is 0.9993 (the White-tailed Eagle)
and 0.9496 (The Lesser Black-backed Gull), respectively. We proposed a novel system for automatic
bird identification as a real world application. We demonstrated that our data augmentation method is
suitable for image classification problem and it significantly increases the performance of the classifier.

Keywords: machine learning; deep learning; convolutional neural networks; classification;
data augmentation; intelligent surveillance systems

1. Introduction

Several offshore wind farms are under construction on the Finnish west coast. The official
environmental specifications define that bird species behaviour at the vicinity of wind turbines must
be monitored. This concerns especially two species: the White-tailed Eagle (Haliaeetus albicilla) and
the Lesser Black-backed Gull (Larus fuscus fuscus), which are explicitly mentioned in the environment
license. The only way to fulfil this demand cost efficiently is to automate monitoring, and that
requires automatic bird species identification at such a level that the aforementioned bird species are
separable from all other species in the study area. The problem is how to identify bird species in flight
automatically in real-time? The prototype system for automated bird identification is developed and
placed at a test location on Finnish west coast. This system is still under construction.

The ultimate objective of bird monitoring in wind farms is to find suitable methods for collision
detection [1,2], and especially to find possible deterrent methods [3]. The WT-Bird of the Energy
Research Centre of the Netherlands is the first (i.e., known to us) published research of this subject.
The principle of the WT-Bird system is that a bird collision could be detected by the sound of the
impact and that the bird species can be recognised by non-real time method from video footage [4,5].

Appl. Sci. 2018, 8, 2089; doi:10.3390/app8112089 www.mdpi.com/journal/applsci
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However, it has known problems with false alarms in high wind circumstances concerning larger bird
species and it has no automated species identification algorithm [6].

Radar is a feasible choice for the detection of birds since the identification need is restricted to the
flying birds only. If merely a radar is used, the identification capability is limited to a few size classes
according to radar suppliers. Obviously, external information is required and a conceivable method is
to exploit visual camera images, thus a digital single-lens reflex (DSLR) camera with a telephoto lens is
applied. This paper shows that convolutional neural network (CNN) with deep learning algorithm
trained on real-world images is capable to achieve sufficient state-of-the-art performance as an image
classifier. At present, all the images are manually taken at the test location. The images will be acquired
automatically by the final system.

2. Hardware

2.1. Radar System

We have used a radar system supplied by Robin Radar Systems B.V. (The Haag, Netherlands)
because they provide an avian radar system that is able to detect birds. They also have tracker
algorithms for tracking a detected object over time i.e., between the blips. The model we use is the
ROBIN 3D FLEX v1.6.3 and it is actually a combination of two radars and a software package for
implementation of various algorithms such as the tracking algorithms [7].

2.2. Video Head Control

We have used the PT-1020 motorized video head supplied by 2B Security Systems (Copenhagen,
Denmark) [8]. The video head is operated by Pelco-D control protocol [9] and the control software for it
is developed by us with C in Linux Ubuntu 16.04 platform. The video head steering is based on height,
latitude and longitude coordinates (WGS84) provided by the radar. No coordinate conversion from
one system to another is needed because all calculations are performed in WGS84 system. However,
the geographical coordinates are converted to the rectangular coordinates in accordance with the
Finnish Geodetic Institute [10].

2.3. Camera Control

We have manually collected the images at the test site with a Canon 7D mark II camera
(Tokyo, Japan) and a Canon 500/f4 IS telephoto lens (Tokyo, Japan). The software for controlling the
camera is developed with C# in Microsoft Visual Studio 14.0 because this is the only environment
supported by the Canon API at present. The Canon API library of EDSDKLib-1.1.2 is applied. The
code is developed in accordance with the instructions and functions of the API. The Canon API library
is available for application on the Internet [11].

3. Data Processing

3.1. Input Data

Input data for the identification system consist of digital images and parameters from the radar.
The parameters from the radar are real numbers such as velocity of a flying bird in m/s and bearing
(i.e., a heading: the horizontal angle between the direction of an object and that of true north) in
degrees. All images for training the CNN are of wild birds in flight and they have been taken manually
at the test location. There are also constraints concerning the area where the images have to be taken.
Here, the area refers to the air space in the vicinity of the pilot wind turbine. We have used the wind
turbine swept area (the diameter of the swept area is 130 m) as a suitable altitude level constraint for
taking the images, because birds flying below or above the swept area are not in danger. At this stage,
the images are only taken in the vicinity of 1350 m in lengthwise direction, which is the distance to
the pilot wind turbine. There are 1164 images for each class and the number of classes is 8, thus the
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original training set size is 8×1164 = 9312. We applied data augmentation as it is well-known method
to increase performance of an image classifier. In addition, the original (i.e., not augmented) data set
includes plenty of data examples of images with various portion of cloudiness as the background and
also with clear sky as the background.

The number of images of each class should be the same as a CNN is applied [12] and therefore
the lowest number of images of the classes is used. The number of classes (which includes both
key species) is 8 at this phase. The eight classes for training the CNN are the Common Goldeneye
(Bucephala clangula), the White-tailed Eagle (Haliaeetus albicilla), the Herring Gull (Larus argentatus),
the Common Gull (Larus canus, the Lesser Black-backed Gull (Larus fuscus fuscus), the Black-headed
Gull (Larus ridibundus, the Great Cormorant (Phalacrocorax carbo) and Common/Arctic Tern (Sterna
hirundo/paradisaea).

3.2. Data Augmentation

Our system is operating in natural environment and therefore prevailing weather has significant
influence on the tonality of the images taken at the test site. Obviously, the lighting will be different
in a different time of a day and a different time of a year, and thus the toning of the images will be
changing according to lighting. Color temperature is a property of a light source. It is the temperature
of the ideal black-body radiator that radiates light of the same color as the corresponding light source.
In this context black-body radiation is the thermal electromagnetic radiation emitted by a black body.
A black-body is an opaque and non-reflective body. It has a specific spectrum and intensity that
depends only on the temperature of the black-body, and it is assumed to be uniform and constant.
In our case, the light source is the sun that closely approximates a black-body radiator. Even though
the color of the sun may appear different depending on its position, the changing of color is mainly
due to the scattering of light and it is not because of the changes in the black-body radiation [13–16].
Color matching functions (CMFs) provide the absolute energy values of three primary colors which
appear the same as each spectrum color. We applied the International Commission on Illumination
(Commission internationale de l’éclairage, CIE) 10-deg color matching functions in our data augmentation
algorithm [17].

The data augmentation is done according to the curves in Figure 1. Ref. [18] by converting an
image into different color temperatures between 2000 K◦ and 15,000 K◦ with step size s, where s ε {50,
75, 100, 150, 200, 250, 300, 1000}. This makes the training set significantly larger, e.g., if s is 50, a class
containing 1164 training examples becomes a class of 261 × 1164 = 303,804 examples + the original
image. The augmented data set size as a result of various value of s is given in Table 1 for the original
data set of size 8 × 1164 = 9312. After color conversion, the images are rotated by a random angle
between −20◦ and 20◦ drawn from the uniform distribution. This value has been altered from 30
to 20 since our first publication because it was empirically noticed that the target birds had never a
position angled this steep. Motivation for image rotation is CNN’s property of being invariant to small
translations but not rotation of an image [19].

Table 1. Number of images for augmented data set with various step, s, values.

Step, s Number of Images for One Class Number of Images for 8 Classes

1100 15,132 121,056
700 23,280 186,240
350 45,396 363,168
200 77,988 623,904
100 153,648 1,229,184
50 304,968 2,439,744
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Figure 1. Color temperature and corresponding red, blue and green (RGB) values presented according
to Commission Internationale de l’Eclairage (CIE) 1964 10-degree color matching function.

Examples of one original image and two images as an output of the augmentation algorithm with
this original image as an input and s = 200 are presented in Figure 2. The color temperature of the
original image is 7600 K◦ and the two augmented images 5600 K◦ and 9600 K◦, respectively.

Figure 2. Data example of the White-tailed Eagle. The image on the left is an augmented image with
the color temperature 5600 K◦. The original image is in the middle with color temperature 7600 K◦.
The image on the right is an augmented image with the color temperature 9600 K◦.

4. The Proposed System

The most important role of the radar is to detect flying birds, but it also provides parameters
for bird identification (i.e., classification) [20,21]. The parameters provided by the radar system
are: the distance in 3D of a target (m), the velocity of a target (m/s) and the trajectory of a target.
The distance of a detected bird is used to estimate the size of the bird in meters. Velocity of a target
bird is used for the final classification. The system also includes the aforementioned camera with the
telephoto lens and a motorized video head. The camera is controlled by the application programmable
interface (API) of the camera manufacturer. The system has three servers: the radar server, the video
head steering server and the camera control server. Software for the radar server is supplied by the
manufacturer of the radar but the software for the other two servers is result of our development work.

We took series of images of a single target bird and each image is processed according to the
schematic diagram of the system in Figure 3.



Appl. Sci. 2018, 8, 2089 5 of 15

Figure 3. Schematic diagram of the system.

Segmentation is computed in parallel to image classification in order to obtain an estimate
of the target bird size in pixels, i.e., despite that segmentation is computed simultaneously when
the classification process is started, it is not part of the actual classification, but the result of the
segmentation is used for assigning a value to the size estimate parameter. When the estimate in pixels
is known, the target bird size estimate in meters can be calculated. We studied methods from simple
threshold to fuzzy logic for solving the problem at hand i.e., a dark figure against bright background
and vice versa as well. At the extremity, the background and the target can share several colors in
the RGB color space. We achieved the best results by applying fuzzy logic segmentation compared
to the threshold segmentation and the edge detection segmentation [22,23]. In particular, we applied
Mamdani’s fuzzy inference method [24]. Figure 4a,b show an example of segmentation.

(a) (b)
Figure 4. Example of binary image acquired by the segmentation process. (a) an original image of the
Herring Gull; (b) respective binary image as a result of segmentation of the original image.

5. Classification

The classification process is presented in Figure 5. Series of images of a single target (i.e., as a
sequence of temporally consecutive frames of the same bird) are fed to the CNN that is applied to
feature extraction. The two-step learning method is applied, i.e., the CNN is trained with the first
N-1 layers viewed as feature maps and these maps are used to train a Support Vector Machine (SVM)
classifier [25]. The SVM classifier makes use of one-versus-all binary learners, in which, for each binary
learner, one class is positive and the rest are negative. The total number of the binary learners is the
same as the number of classes. A linear classification model is applied. Stochastic gradient descent
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with 10 as the mini-batch size, and the Hinge loss function with regularization term 1/n, where n is a
number of training examples [26,27] are also applied. The output of the SVM is presented as P-vectors
as follows:

Pi = [c1, c2, ..., cnc], i = 1, ..., n, (1)

where cj is a probability of belonging to class j, nc is the number of classes and n is the number of
images in each series, thus there will be one P-vector for each image in any given image series.

Figure 5. The classification process.

There are also two parameters based on information provided by the radar system. The size of
the target bird is estimated as follows. The frame size ([width x height y], in pixels) of the camera
and the angle of view (α) of the lens are known. The distance (d) to the target bird is provided by the
radar. The maximum number of horizontal (σh) and vertical (σv) pixels of the target bird are calculated
from the segmented image, respectively. The angle of view, b, at the distance, d, is calculated over a
right-angled triangle (see Figure 6). The horizontal number of pixels/meter is given by

ρh =
x
bh

, (2)

and the vertical number of pixels/meter by

ρv =
y
bv

, (3)

where, bh and bv denote the horizontal and the vertical angles of view, respectively. The estimate for
the size of the bird in a single image in square meters as an area of rectangle is:

e =
σh
ρh

∗ σv

ρv
. (4)
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Figure 6. Diagram of the size estimate calculation.

The size estimate is presented as a vector with elements placed according to the class order
(the classes are ordered alphabetically by their names), i.e., class 1, class 2, . . . class nc, where nc denotes
the number of classes. The composition of the vector is following: calculate the average of the size
estimates of the image series, check from the size-look-up table all the classes that contain the average
size, e, turn those elements to one and set the others to zero, yielding

Size Estimate, E = [e1, e2, ..., enc], (5)

with elements:

ej =

{
1, if e fits class j,
0, otherwise.

(6)

The velocity of the target bird is composed in similar way as the E-vector in Size Estimate (5),
i.e., check from the velocity-look-up table all the classes that contain the provided velocity, v, turn
those elements to one and the others to zero.

Velocity, V = [v1, v2, ..., vnc], (7)

with elements:

vj =

{
1, if v fits class j,
0, otherwise.

(8)

The final classification is achieved by a fusion between the parameters provided by the radar and
the predictions from the image classifier. The combined P-vector for a series of images is:

Combined P -vector, P =
n

∑
i=1

Pi, (9)

where n is the number of images in each series and the fusion vector, Φ, is:

Fusion vector, Φ = P. ∗ V . ∗ E, (10)

where “.∗” denotes element wise multiplication. The score, S, for final prediction is:

Prediction, S = maxj(Φ), (11)

j = arg maxj(Φ), (12)

where j is the index of the predicted class.

5.1. Convolutional Neural Network

The CNN network architecture is presented in Figure 7. The architecture of the CNN results in
(200 − 12 + 2 × 1)/2 + 1 = 96 for one side of the feature map and as of the result of square feature maps
there are 96 × 96 = 9216 neurons in each feature map of the first convolution layer. Note that there is
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no max-pooling layer between the first and the second convolution layers. Motivation for this is that
we wanted all of the finest edges to be included in resulting feature maps.

The input image is normalized and zero-centered before feeding it to the network. CNN with
Mini-batch training and supervised mode as well as stochastic gradient descent with momentum is
applied [28–31]. The L2 Regularization (i.e., weight decay) method for reducing over-fitting is also
applied [30–32]. Due to limited capacity of computer resources the network size in terms of free
parameters is kept small, thus resulting in total of 92 feature maps which are extracted by convolution
layers with kernel sizes [12 × 12 × 3] × 12, [3 × 3 × 12] × 16 and [3 × 3 × 16] × 64, respectively.
Total number of weights is about 9.47 × 106.

Figure 7. The architecture of the convolutional neural network. The letters, s, and, p, in the max-pooling
layers denote stride and padding, respectively. In convolution layers, the first two numbers in the
square brackets indicate the width and hight of the respective convolution kernel and the third
number is the depth. The number before the brackets is the number of feature maps in respective
convolution layer.

Each convolution layer is followed by a Rectified Linear Units (ReLU) nonlinearity layer [33],
which simply applies a threshold operation,

f (x) =

{
0 x < 0,

x x ≥ 0,
(13)

to all the components of its input. This non-saturating nonlinearity in deep CNN makes the
training several times faster when applied together with the hyperbolic tangent sigmoid transfer
function [33,34]. Cross Channel Normalization layers follow the first and the second ReLU layers.
These layers aid the generalization as their function may be seen as brightness normalization [34].

The purpose of max-pooling layer is to build robustness to small distortions. This is achievable by
filtering over local neighbourhoods as follows: divide the input into rectangular pooling regions,
and compute the maximum of each region, thus performing downsampling and reducing the
overfitting as well [35].

There are three fully-connected layers at the end of the network for making final nonlinear
combinations of features, and prediction by the last fully-connected layer followed by softmax
activation which produces a distribution over the class labels with cross entropy loss function [31].
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5.2. Hyperparameter Selection

The split into a training set and a validation set was 70% and 30%, respectively. The initial
weights for all layers were drawn from the Gaussian distribution with mean 0 and standard deviation
0.01. Initial biases were set to zero. The L2 value was set to 0.0005 and mini-batch size was set to
128. The values of all the previously mentioned hyperparameters were fixed and we used manual
tuning only for choosing the combination of the number of epochs and the learning rate drop period
(LRDP). Two models with different values of the two parameters were trained on the original data set
(i.e., no data augmentation applied). One model was trained on the augmented data set with s = 1100
and s = 350, respectively. Several models with various values of the two parameters were trained on
the augmented data set with s = 200 and s = 50, respectively. The results of training these models are
presented in Table 2, in which performance is presented as true positive rate (TPR, i.e., sensitivity).
The initial values of the two parameters applied to training on each data set are selected empirically.
As a result of running these tests, the best model in terms of performance is the model trained on the
augmented data set with s = 50 (i.e., 2,439,744 training examples), the number of epochs = 8, and the
LRDP = 3.

Table 2. Convolutional Neural Network (CNN) performance (with the Support Vector Machine (SVM)
as an actual classifier) as a result of various number of epochs and Learning Rate Drop Period (LRDP).

Number of Training Examples Number of Epochs LRDP TPR Training TPR Generalization

9312 30 30 0.7175 0.6995
9312 60 60 0.7362 0.7052

121,056 25 10 0.8687 0.8662
363,168 18 7 0.9137 0.9187
623,904 12 12 0.9788 0.9253
623,904 16 16 0.9839 0.9254
623,904 24 24 0.9835 0.9170
623,904 16 5 0.9830 0.9270
623,904 16 6 0.9831 0.9337
623,904 16 9 0.9834 0.9249
623,904 16 13 0.9837 0.9154

2,439,744 3 3 0.9960 0.9246
2,439,744 5 5 0.9971 0.9313
2,439,744 8 8 0.9984 0.9363
2,439,744 12 12 0.9984 0.9296
2,439,744 5 3 0.9965 0.9250
2,439,744 8 3 0.9983 0.9463
2,439,744 10 3 0.9984 0.9448
2,439,744 12 3 0.9983 0.9425

Initial learning rate was set to 0.01 and when the same value was applied to the number of epochs
and the LRDP the learning rate was kept constantly at its initial value. The learning rate decay schedule
(LRDS) was applied when the values of the number of epochs and the LRDP were different of each
other. In the LRDS method, the learning rate is dropped by a factor of 0.1 (i.e., the updated learning
rate will be the current learning rate × 0.1) when a given number of epochs is reached. This given
number of epochs is the effective value of the LRDP. Motivation for using the LRDS method is as
training proceeds with shorter leaps on the loss function surface from some point on, the optimal value
for the weights (i.e., in terms of performance as a classifier) can be found more accurately. If only the
short leaps would be applied, the number of epochs should be very large, thus resulting in significant
increase of training time. The challenge is to find the points from where on the learning rate should
be reduced. We approached this problem in two ways. We fixed the LRDP value and altered the
number of epochs. Initially, the problem was to find a suitable starting value for the LRDP. It was
intuitively clear that the LRDP value should increase as the number of epochs increases. A small
value of the LRDP combined with a high value of the number of epochs would lead to substantial
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underfitting. We also fixed the number of epochs and altered the LRDP value instead. The same initial
value problem concerns this approach as well. However, the size of the respective data set should give
some guidance for choosing the initial values. Moreover, as the number of training examples increases,
the number of epochs should decrease in order to avoid overfitting.

We applied the dropout technique for improving the performance of our CNN [34,36]. We trained
models with fixed hyperparameter values with and without the dropout technique. If overfitting
occurs, the results in terms of classification performance should be better as the dropout technique is
applied compared to those models for which it is not applied. These tests indicate that some overfitting
occurs when the models were trained on the augmented data sets but not necessarily on the original
data sets. The dropout was implemented after the first and the second fully-connected layers by
randomly setting the output neurons to zero with a probability of 0.5.

6. Results

The following results are based on manually taken images at the test site. The images have been
taken at the same position where the camera will be installed. We trained two models on the original
data set and several models on four different augmented data sets, in which s was 50, 200, 350 and
1100, respectively (see Table 2). The models with s ε {350,1100} were trained only for testing the data
augmentation algorithm. The effect of the data augmentation algorithm on classification performance
is presented in Figure 8.

Figure 8. The red curve is for validation during training and the blue curve is according to the
generalization test. The actual True Positive Rate (TPR) values are used with s ε {350,1100}, and the
average TPR value is used of the models with s ε {50,200}, respectively. The starting value for both
curves is the average value of the two models trained on the original data set.

The best performance (in TPR) of the two models trained on the original data set is 0.7362.
Performance for the models trained on the augmented data sets varies between 0.8687 and 0.9984,
which shows clear improvement as the augmented training set size increases and especially compared
to the models trained on the original set. Training with and without the dropout technique implied that
overfitting will occur to some extent as the data augmentation is applied and the dropout technique
decreases this overfitting. The results were different for the original data sets, in which case overfitting
was insignificant. These results are logical due to the fact that the enhancement in performance
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obtained by the data augmentation is extracted from the original images, and thus it inevitably
increases redundancy. The results for the original data sets imply that the number of training examples
was simply not large enough.

We tested generalization of the models on 100 unseen images for each class, i.e., the data set for
testing the models was 8·100,100 = 600 images that the models have never seen before. According to
these tests the system achieves its state-of-the-art performance of 0.9463 with the augmented data set
of the size 2.44 × 106 (i.e., the color conversion step size, s = 50), number of epochs 8, LRDP 3, and the
dropout applied.

The receiver operating characteristic (ROC) curves and the area under the curve (AUC) for the
8 classes (i.e., bird species) are presented in Figures 9–12. The TPR values of the generalization tests
are applied in these figures. The red curve is for the augmented data set and the blue curve is for the
original data set.

(a) (b)
Figure 9. ROC curves for the White-tailed Eagle and the Lesser Black-backed Gull. (a) AUC for the
original data set and for the augmented data set is 0.9137 and 0.9993, respectively; (b) AUC for the
original data set and for the augmented data set is 0.7460 and 0.9496, respectively.

(a) (b)
Figure 10. ROC curves for the Herring Gull and the Common Gull. (a) AUC for the original data set
and for the augmented data set is 0.6926 and 0.9128, respectively; (b) AUC for the original data set and
for the augmented data set is 0.6967 and 0.9644, respectively.
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(a) (b)
Figure 11. ROC curves for the Black-headed Gull and the Common/Artic Tern. (a) AUC for the original
data set and for the augmented data set is 0.7583 and 0.9972, respectively; (b) AUC for the original data
set and for the augmented data set is 0.8111 and 0.9508, respectively.

(a) (b)
Figure 12. ROC curves for the Great Cormorant and the Common Goldeneye. (a) AUC for the original
data set and for the augmented data set is 0.8853 and 0.9870, respectively. (b) AUC for the original data
set and for the augmented data set is 0.0.8807 and 0.9829, respectively.

7. Discussion

We assembled the non-deep (i.e., in terms of the number of the convolution layers, 3) CNN
for image classification, and demonstrated that the model is suitable for real-world application,
especially, when the number of training data is limited. We presented and demonstrated that our
data augmentation method improves significantly the performance of the classifier, and the desirable
state-of-the-art performance as an image classifier can be achieved by applying it. Thus, we showed
that the data augmentation is crucial for the classification performance. We also showed that our
model generalizes well to images never seen before and hence it is applicable for real-world problem.
The number of images in the original data set have been increased since our first publication resulting in
the better state-of-the-art performance of 0.9463 compared to the first result of 0.9100. It is noteworthy
that this better result is achieved despite of the increased number of the classes, i.e., 8 compared
to 6 [37].

The measured performance of the image classifier has been obtained without using the parameters
supplied by the radar. It is obvious that those parameters (i.e., the E- and V-vectors) provide additional
and relevant a-priori knowledge to the system and they can turn a misclassified (by images) class into
the correct one. Data collection will be continued at the test site resulting in a larger original data set,
and thus hopefully better performance of the classifier. The number of classes will increase as more
images of scarcer species are collected.
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We are currently working on the collision detection problem, but no collisions have been observed
until now while the pilot wind turbine has been manually monitored for 30 months. It seems that
collisions are quite rare in the research area and this makes the field testing of the possible collision
detection methods challenging. More research is required of possible deterrent methods, especially on
species or species group level.

We proposed a novel system for automatic bird identification as a real world application.
However, the system has restrictions such as images can not be taken in pitch-dark or in poor visibility
conditions. Infrared cameras may contribute to the collision detection, but their contribution to
classification is poor because all color information is lost. The proposed system is still in the installation
phase, so we have not yet been able to test the complete system.
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The following abbreviations are used in this manuscript:

API Application programmable interface
AUC Area under the curve
CIE Commission internationale de l’éclairage
CMFs Color matching functions
CNN Convolutional neural network
DSLR digital single-lens reflex camera
LDPR Learning rate drop period
LRDS Learning rate decay schedule
ReLU Rectified linear units
ROC Receiver operating characteristic
SVM Support vector machine
TPR True positive range
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Summary

Practical deterrent methods are needed to prevent collisions between birds and wind turbine

blades for offshore wind farms. It is improbable that a single deterrent method would work

for all bird species in a given area. An automatic bird identification system is required in

order to develop bird species-level deterrent methods. This system is the first and necessary

part of the entirety that is eventually able to automatically monitor bird movements,

identify bird species, and launch deterrent measures. A prototype system has been built

on Finnish west coast.

In the proposed system, a separate radar system detects birds and provides WGS84 coor-

dinates to a steering system of a camera. The steering system consists of a motorized video

head and our software to control it. The steering system tracks flying birds in order to cap-

ture series of images by a digital single-lens reflex camera. Classification is based on these

images, and it is implemented by convolutional neural network trained with a deep learn-

ing algorithm. We applied to the images our data augmentation method, in which images

are rotated and converted into different color temperatures. The results indicate that the

proposed system has good performance to identify bird species in the test area. Aiming

accuracy for the video head was 88.91 %. Image classification performance as true positive

rate was 0.8688.

KEYWORDS:
machine learning, deep learning, convolutional neural networks, image classification,
intelligent surveillance systems, wind farms

1 INTRODUCTION

The first Finnish offshorewind farm has been constructed on thewest coast. The authorities are concerned about the possible birdmortality caused
by the constructed wind turbines of the height of 155 m. This has resulted in explicit statements in the environmental license, which obligate the
operator of the wind farm to monitor bird movements in the area, and to mitigate, or prevent if possible, collisions between birds and the wind
turbines. The authorities have announced two key bird species for particular monitoring in the area: the white-tailed eagle (Haliaeetus albicilla)
and the lesser black-backed gull (Larus fuscatus fuscatus). This demand requires an automatic bird identification system to be developed prior to
any measures can be launched to monitor, and to deter, the birds in the area. The alternative would be manual observation by humans which is
expensive and inaccurate. Currently, birds are monitored by a radar system, which shuts down wind turbines when any bird flies into a perimeter
of 300 m to a wind turbine. This is the minimum distance in terms to have sufficient time to shut down the turbine. However, the number of
fast restarts of the turbines should stay as low as possible due to wearing of the mechanics, and therefore this operation should be used as a last
resort. A solution to this is a suitable deterrent method, but it is plausible that several different methods are required, because of variety of bird
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species in the area. An extra problem is that the breeding birds may quickly become accustomed to, e.g., sounds as a deterrent method1. The long
term objective is to develop a deterrent system that operates either on species-level or species-group level. This means that a different deterrent
method is applied to e.g., eagles and waterfowl.

Identification of bird species is mainly based on morphology and vocalization, of which vocalization is not a feasible method in the offshore
environment because of long ranges and background noise. Images taken of birds in the test area (the wind farm) are used as a feasible method to
study morphology. This turns the identification problem to an image classification problem. Thus, the problem of automatic bird identification in
real-time is two-fold: how to successfully aim the camera to a target bird in order to collect images and how to classify (identify) the images?

We propose a system that consists of a separate radar system, a digital single-lens reflex camera with a telephoto lens, and a motorized video
head. The radar system is a solution to detect birds in the sky. The applied radar system passes WGS84 coordinates of the detected object to
steering software of the video head. Successful aiming requires that the horizontal and the vertical angular resolution (thought as a rectangle) of
the radar system is equal or smaller than a rectangle formed by the focusing points of the camera. Focusing is based merely on the autofocus
system of the camera.

A convolutional neural network (CNN) trained with a deep learning algorithm is widely used solution to the image classification problem2,3.
CNNs typically need lot of training data. In real-world applications, it is usually difficult and time-consuming to collect large number of images for
each class. Data augmentation is a solution to this problem. We have developed our own data augmentation method, in which the images are first
converted into various color temperatures and then rotated by a randomly chosen angle.

The best results have been achieved by a CNN model with three convolution layers, and applying our data augmentation to the training data.
Image classification performance of the model was 0.8688 as true positive rate (TPR). TPR is given as the number of true positives divided by the
number of all positives in the test data. Aiming accuracy for the video head was 88.91 %. These results imply that the system is capable to take
images of almost 90 % of the detected (by the radar system) birds and identify 97.72 % of birds in these images. However, high winds decreases
the aiming accuracy and poor visibility disturbs the image collection, resulting in a lower classification performance in these circumstances.

2 RELATED WORK

A research group at the Univ. of Toledo, Ohio, has developed a prototype system integrating radar, infrared, and acoustic information 4. This system
was able to identify a limited set of bird and bat species mainly based on their vocalizations and also estimate the flight trajectories in 3D by fusing
the infrared and radar data.

Wiggelinkhuizen et al. have developed a method (WT-bird) for detection and registration of bird collisions that is suitable for continuous remote
operation onshore. The characteristic sound of a collision is detected by sensors in the blades, which triggers the video registration and sends an
alert message to the operator. This implementation is based on monitoring noise, generated from an impact of bird collision with a wind turbine.
The collision is detected with microphones, and the noise monitoring is combined with a video camera. The original objective of this project was
to develope a calibrated bird collision monitoring system for offshore, which was not generally achieved mainly due to technical problems5,6,7.

Rosa et al. have studied machine learning (ML) algorithms implemented in marine radars in order to automatically detect and attempt to classify
objects. Six ML algorithms have been applied and their performance have been compared. These widely used ML algorithms are: random forests
(RF), support vector machine (SVM), artificial neural networks, linear discriminant analysis, quadratic discriminant analysis, and decision trees (DT).
All algorithms showed good performance when the problem was to distinguish birds from non-biological objects, but the algorithms showed poor
performance when the problem was to classify within bird species of bird species groups (e.g., herons vs. gulls) 8.

We are also aware of one commercial system: the DTBird developed by Liquen Consultora Ambiental,S.L., Spain 9. This system is based on
video-recording bird flights near wind turbines, and it promises to detect birds automatically and prevent possible collisions in the vicinity of the
turbines. However, Roel May et al. have evaluated howwell the DTBird system is able to detect birds in a wind farm in Norway. They also examined
the suitability of DTBird to study near-turbine bird flight behaviour and possible deterrence 10. Their evaluation showed the following results:
detectability was over 80 %, the daily number of false positives was below two, the percentage of falsely triggered warnings/dissuasions was circa
50 %, and the percentage of falsely triggered warnings and dissuasions was 40 %. Thus, the DTBird systemmet two of their four evaluation criteria.
In addition, the researchers found that the DTBird system enables monitoring of near-turbine flight behaviour, although individual birds usually
cannot be identified to the species level 10.

Birdsnap by Thomas Berg et al. proposes a solution to the problem of large-scale fine-grained visual categorization, resulting in an on line field
guide to 500 North American bird species 11. Users can upload bird images into the field guide database, and the developed system identifies the
images automatically. Researchers introduce one-vs-most classifiers by eliminating highly similar species during training, and they show how spatio-
temporal class priors can be used to improve performance. The spatio-temporal class priors are gained from the embedded time and location data
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that modern cameras include in each image file they produce. Birdsnap uses a set of one-vs-most linear SVMs based on POOFs 12, and it achieved
an accuracy of 0.8240 in bird species identification11.

Yoshihashi et al. have applied time-lapse images to detect birds around a wind farm13. Time-lapse photography is a technique in which the
frame rate of viewing a sequence of images is different than the frame rate of taking the sequence of images. Time-lapse images can make very
fast or very slow time-related processes better interpretable to the human eye. The system developed by Yoshihashi et al. utilizes a fixed camera
and the following algorithms: AdaBoost (Adaptive Boosting), Haar-like feature extraction, and histogram of oriented gradients (HOG). A CNN
architecture was also applied to the image classification problem. AdaBoost is a learning algorithm for binary classification, which is developed
to improve classification performance by combining multiple weak classifiers into a single strong classifier. The idea of AdaBoost is to give more
weight to the data points that are poorly classified by the weak learners 14. Haar-like features are digital image features used in object recognition.
In mathematics, the name Haar refers to square-shaped functions which together form a wavelet family. Haar-like is an image feature that utilizes
contrasts in images15. HOG is a feature descriptor used to detect objects in computer vision. A feature descriptor is a representation of an image
that simplifies the image by extracting useful information and discarding irrelevant information. A feature descriptor introduces a 2D image as a
feature vector. The main idea of HOG is that local object appearance and shape within an image can be described by the distribution of intensity
gradients16. Yoshihashi et al. found that the best method for detection was Haar-like, and the best method for classification was CNN. The system
was tested on two bird species groups: hawks and crows, and it achieved only moderate performance13.

3 THE SYSTEM

The proposed system consists of several hardware as well as software modules. See Fig. 1 for an illustration. We used a radar system supplied by
Robin Radar Systems B.V. because they provide an avian radar system that is able to detect birds. They also have tracker algorithms for tracking
a detected object over time (between the blips). The model we used is the ROBIN 3D FLEX v1.6.3, and it is actually a combination of two radars

FIGURE 1 The hardware of the system and the principle of catching flying bird into the frame area of the camera.
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and a software package for implementation of various algorithms such as the tracker algorithms17. The radar system was connected to a local
area network (LAN), and thus it was able to communicate with the servers. The most important role of the radar system is to detect flying birds,
but it also provides parameters. Among these parameters, we found the flight velocity (m/s) of a target bird to be the most usable for bird species
identification. The developed system uses a PT-1020MediumDutymotorized video head supplied by the 2B Security Systems. This video head has
separate motors for horizontal and vertical steering, and it is operated by Pelco-D control protocol 18. We used the Canon EOS 7D II camera with
20.2-megapixel sensor and the Canon EF 500/f4 IS lens. The camera is controlled by the application programmable interface (API) of the camera
manufacturer. Initially, correct focusing was based on the autofocus system of the lens and the camera. We also used the automatic exposure
system of the camera.

The system has three servers: the radar server, the video head steering server, and the camera control server. Software for the radar server is
supplied by the manufacturer of the system, but software for the other two servers, for controlling the camera, and for steering the video head
are developed by us. For more detailed description of the system, see19.

4 DATA

Input data of this application consist of digital images. All images for training the CNN have been taken manually at the test location in various
weather conditions. The location is the same where the camera has been installed for taking images automatically. The collected image set was
divided into two datasets: an original dataset for training the classifier, and a test dataset for measuring generalization ability of the classifier, and
thus the classifier has not seen these test images during training. Both datasets are divided into 11 classes. The original dataset contains 23552
images, and test dataset consists of 425 images. The test dataset was created by randomly choosing images from all classes. The number of images
in the test dataset follows the distribution of bird species in the images of the original dataset. Class labels and number of images of the original
dataset and the test dataset for each class are presented in Table 1. In this Table, two classes are not defined at species level: LNSP and CATE.
The first case is because there is no need to distinguish between loon species any further in this context, regardless the fact that two common,
and two rare species of loons occur in the test area. The same applies to the second case as well, namely the common/arctic tern. In addition, it
is generally very difficult to tell the difference between these two tern species 20, and thus the number of required data examples (images) would
increase very large.

TABLE 1 The original data set and the test data set divided into 11 classes.

# Images # Test Images Class Name (Eng.) Class Name (Lat.) Class Label

396 7 Loon species Gavia sp LNSP
5458 100 Great Cormorant Phalacrocorax carbo GRCO
979 17 Common Eider Somateria mollissima COEI

1164 21 Common Goldeneye Bucephala clangula COGO
2436 44 White-tailed Eagle Haliaeetus albicilla WTEA
512 9 Great Black-backed Gull Larus marinus GBBG

3968 72 Herring Gull Larus argentatus HEGU
1481 26 Lesser Black-backed Gull Larus fuscatus LBBG
3581 65 Common Gull Larus canus COGU
1803 32 Black-headed Gull Chroicocephalus ridibundus BHGU
1774 32 Common/Arctic Tern Sterna hirundo/paradisaea CATE

4.1 Data Augmentation

Data augmentation is applied to the original dataset. We have developed our own method, in which the images are converted into various color
temperatures according to step size, s. The lower and upper limit to the color temperature is 2000 K and 15000 K, respectively. For example, if s =
50 (in K), the number of data examples of the augmented dataset is (15000 - 2000)/50 + 1 * 23552 = 6147072. In addition to the color conversion,
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the images are also rotated by a random angle between -20 degree and 20 degree drawn from the uniform distribution. Motivation for this is that
CNN is invariant to small translations, but not image rotation21 . For more details, see19,22 . Number of images for each species (classes) in the
augmented dataset when s = 50 and s = 200, respectively, are presented in Table 2 .

TABLE 2 Number of images for each class in the augmented data set.

Class Label Original s = 50 s = 200

LOSP 396 103752 26532
GRCO 5458 1424538 360228
COEI 979 256498 65593
COGO 1164 304968 77988
WTEA 2436 635796 160776
GBBG 512 134144 34304
HEGU 3968 1035648 261888
LBBG 1481 388022 99227
COGU 3581 934641 236346
BHGU 1803 472386 120801
CATE 1774 464788 118858

5 IMAGE SEGMENTATION

We applied a fuzzy logic method to segmentation in our earlier models, but this method showed to be computationally expensive. For more details,
see22 . In this paper, we have used merely convolution without a neural network for segmentation23 . A kernel of a size 8 × 8 is used to convolve
images. We have applied constant to kernel parameters, instead of learning these parameters by CNN. The best results for segmentation was
achieved by the kernel that has contour (border) parameters set to 1, and all the other parameters were set to -1, see Fig. 2 for illustration of this
kernel. Padding was set to 1 and stride was set to 2. The result of the convolution is a feature map. The size of the feature map is given by:

F = (I − K + 2P )/S + 1, (1)

FIGURE 2 Kernel of a size 8 × 8 with constant parameters for convolution.

where F is the size of the feature map, I is the size of an input image, K is the size of the kernel, P is padding, and S is stride. The sizes of F, I, and K
are expressed as a vector [m n], where m is the number of rows and n is the number of columns. The input image is resized to 1600 × 2400 pixels
before convolution, and thus the feature map size is 798 × 1198 pixels. The feature map is regarded as a grayscale image, which is converted to
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a binary image by applying a simple threshold. Finally, the binary image is used as a mask when the original image is cropped. The mask is used
so that the uttermost white pixels of it define the four corners of the cropped image. In addition, an offset is added to all of the four corners in
order to make sure that the cropped image has enough pixels for classification, and also to confirm that the cropped image has an aspect ratio of
1:1 (square). When the cropped image has the correct aspect ratio, it is resized to 200 × 200 pixels, which is the image size used in the classifier.
Figure 3 shows an original image of the herring gull ( 3a ), the feature map of the herring gull image ( 3b ), this feature map converted to a binary
image ( 3c ) and finally, an image that is cropped from the original herring gull image by using the binary image as a mask ( 3d ).

(a) (b) (c) (d)

FIGURE 3 An original, uncropped image of the herring gull, the feature map of it, this feature map converted to a binary image, and the resulting
cropped image.

6 AUTOMATIC IMAGE COLLECTION

The ability of aiming the lens of the camera at a target bird by the video head, and thus capturing images automatically, is based on the angular
resolutions of the two radars. Radar accuracy is measured as a range resolution and an angular resolution. The range resolution describes how
long distance is needed in lengthwise between two objects, in order them to be detected as two different blips. If this distance is too short, the
two objects will be detected as only one blip. Analogously, the angular resolution describes the perpendicular distance to the radar beam24. The
angular resolutions of the two radars at a given distance define a rectangle that can be seen as a 2D resolution cell of the radar system in the given
distance. In theory, the detected object can be located anywhere inside this resolution cell. However, the boundaries for the range and angular
resolution are defined by the 3 dB beam width, i.e., the beam has attenuated to a half of its peak value at the boundaries 24. This implies that a
probability of the object detection is the largest in the center of the resolution cell, and it decreases towards the edges. The frame size at a given
distance for the camera can be calculated when the angle of view of the lens is known. The effective frame size also depends on a crop factor
of the sensor of a given camera. If a camera with a full frame (FF) sensor is used, the crop factor is 1, and other wise it is usually expressed with
a number greater than one. Thus, the reciprocal of the crop factor is used in calculations. However, the rectangular area of interest in this paper
is smaller than the effective frame size because the focusing points of the camera do not cover the whole frame area. The camera frame and its
focusing points are illustrated in Fig. 4 . The larger square in the center denotes that the midmost focusing point is currently selected, but all of the
focusing points can be selected simultaneously.

The size of the 2D angular resolution cell of the radar system and the size of rectangle covered by the focusing points at given distances are
presented in Table 3 . The values for all of the rectangles are given as 2D, i.e., [horizontal vertical]. Focusing rectangle is given for FF sensor and
for 1.6 crop sensor, respectively. All units in the table are in meters. It can be seen from the table that the horizontal resolution of the radar system
is smaller than both focusing rectangles, but the vertical resolution of the radar system is clearly larger than the focusing rectangle of the 1.6 crop
sensor, and it is also slightly larger than the focusing rectangle of the FF sensor, but the latter difference is insignificant. As a result, some of the
detected objects may be outside of the focusing rectangle, if the used camera has the 1.6 crop sensor. The center-weighted probability distribution
of the object detection should mitigate this possibility.

The automatic image collection is implemented by the motorized video head andWGS84 coordinates provided by the radar system. The system
for automatic image collection is also depicted in Fig. 1 . The motors of the video head have only seven selectable speeds, rendering impossible
to track a flying bird at the speed it flies. Thus, the steering software computes a lead point, where the camera should be turned in order to take
images. Successful image collection requires that a target bird has a constant trajectory. Constant trajectory means that the flight path of a target



Juha Niemi et al 7

FIGURE 4 The focusing points of the applied camera may be seen, by and large, to form a rectangle over the area they cover.

TABLE 3 The sizes of the 2D angular resolution cell and the rectangle covered by the focusing points at a given distance.

Distance FF 1.6 crop 2D Angular Resolution

100 [5.333 1.540] [3.333 0.962] [3.141 1.658]
200 [10.666 3.079] [6.666 1.925] [6.283 3.316]
300 [15.999 4.619] [10.000 2.887] [9.425 4.974]
400 [21.332 6.158] [13.333 3.849] [12.566 6.632]
500 [26.665 7.698] [16.666 4.811] [15.708 8.290]
600 [31.999 9.238] [19.999 5.774] [18.850 9.948]
700 [37.332 10.777] [23.332 6.736] [21.991 11.606]
800 [42.665 12.317] [26.665 7.698] [25.133 13.265]
900 [47.998 13.857] [29.999 8.660] [28.274 14.923]
1000 [53.331 15.396] [33.332 9.623] [31.416 16.581]
1100 [58.664 16.936] [36.665 10.585] [34.558 18.239]
1200 [63.997 18.475] [39.998 11.547] [37.699 19.897]
1300 [69.330 20.015] [43.331 12.509] [40.841 21.555]
1400 [74.663 21.555] [46.665 13.472] [43.982 23.213]
1500 [79.996 23.094] [49.998 14.434] [47.124 24.871]
1600 [85.330 24.634] [53.331 15.396] [50.265 26.529]

bird should be invariable enough for a certain period of time. The duration of this time period depends on a time delay between the timestamp of
a track and the current time. Data from the radar system with respect to a single target is called a track. This data consist of WGS84 coordinates,
altitude, and velocity of a target. We discovered with the used radar system that the time delay varies between 2 and 16 seconds. The probability
distribution of the delay is shown in Fig. 5 . From the figure it is apparent that the time interval between 3 s and 4 s has the largest probability, i.e.,
30.84 percent of the time delays fall in this time interval. More than half (56.13 percent) of the time delays fall in the intervals between 2 s and 5
s. In terms of aiming the camera, longer than 5 s delay is very unpredictable because the prerequisite of constant trajectory may no longer stand.
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FIGURE 5 The probability distribution of the time delay between the timestamp of a track and the current time.

The coordinates are given in decimal degrees instead of degrees, minutes, and seconds (DMS). DMS values are converted into decimal degrees
as follows:

Dd = D + M · 60 + S · 3600 (2)

where Dd is the value in decimal degrees, D is the value of degrees,M is the value of minutes, and S is the value of seconds.
The radius of the semi-major axis of the Earth at the equator is 6378137.0 m, and the circumference is 40075161.2 m. The equator is divided

into 360 degrees of longitude, so that each degree at the equator represents 111319.9 m. This number, representing degrees in meters at the
equator, is multiplied by the cosine of the latitude when a given latitude is moved from the equator towards the poles. This means that the number
representing degrees in meters decreases as the latitude increases. Finally, the number is zero when either one of the poles is reached. Longitudes
are positive to the east of a prime meridian (Greenwich, London, a.k.a zero meridian) and negative to the west of it. As theWGS84 reference geoid
is applied, one arc minute along a meridian or along the Equator is 1855.3 m25. Accordingly, precisions for latitude in meters are presented in Table
4 . The latitude of the test site is approximately 60 degree. Precisions for the longitude at this latitude are also given in the table. The radar system
gives coordinates with eight decimal places, and it can be seen from the table that this means 1.1 × 10-3 in meters of accuracy for latitude and 5.6
× 10-4 in meters of accuracy for longitude. Thus, the accuracy of the given coordinates is adequate for correct aiming.
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TABLE 4 Precision of latitudes and longitudes in meters.

Decimal Degrees DMS Precision Lat Precision Lon

1.0 1°00’00" 111 120 55 560
0.1 0°06’00" 11 112 5 556.0
0.01 0°00’36" 1 111.2 555.60
0.001 0°00’03.60" 111.12 55.560
0.000 1 0°00’00.36" 11.112 5.556
0.000 01 0°00’00.036" 1.1112 0.555 6
0.000 001 0°00’00.0036" 0.11112 0.055 56
0.000 000 1 0°00’00.00036" 0.011112 0.005 556
0.000 000 01 0°00’00.000036" 0.0011112 0.000 555 6

6.1 Targeting the Camera

The video head used in this application was not designed for this type of use, which caused some problems. The video head cannot be steered
by entering the desired horizontal and vertical angles, but it requires the driving time of the motors (separate motors for horizontal and vertical
movement) in seconds. The video head has a fixed home position, which is at halfway in the steering range for both directions. The head is installed
so that at the home position the camera is horizontally pointing to the west (bearing = 270°), and vertically so that the vertical turning angle at the
home position is zero. We found in our tests that the video head has an increasing error towards each steering direction. In addition, this error is
larger in horizontal steering than in vertical steering, and it also depends on which direction the head is steered from the home position. As a result,
a method for targeting the camera by the head was needed in order to compensate the errors. We used the locations of the wind turbines in the
test area as reference locations for error correction, because they are fixed and their exact WGS84 coordinates are known. Distances of the wind
turbines range from 600 m to 2000 m from the camera location, resulting in relatively large error in meter with only a small error in turning angle.

We assumed that the errors are linear and used the least squares method (LSM) for finding the parameters, k and b, of lines that minimize these
errors. This was done separately for the horizontal steering angle left and right from the home position. A constant was used as an error correction
to the vertical turning angle, because it seems to have very small error. In addition, the actual vertical turning angle error was obstructed by the
erratic trajectory of some bird species, and it was further amplified by the time delay between the timestamp of tracks and real time. In practice, we
discovered that the error correction is more conveniently implemented to the horizontal and vertical turning angles rather than to the respective
steering times, because computations for steering times are based on the turning angles. In horizontal steering, the idea is to find a line that gives a
correction to the computed horizontal turning angle when the bearing (a compass direction that the head should be pointing) has been computed
first. This is given by:

ch = kB + b, (3)

where ch is correction in radians, k is slope, B is bearing in radians, and b is bias. The corrected value of the horizontal turning angle is,

tch = ah + ch, (4)

where tch is the corrected horizontal turning angle in radians, ah is computed turning angle based on the WGS84 coordinates of a target, and ch is
as in equation 3 . In equation 4 , ah is given:

ah =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

< 0, if B <
3
2

π rad,

> 0, if B >
3
2

π rad,

= 0, if B =
3
2

π rad,

(5)

where B is as in equation 3 . We have computed horizontal estimates of true turning angle for each reference location by measuring errors in
pixels from test images. As the frame size of the camera and the distance are known, error in meters can be computed. These test images are
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taken automatically by the developed system, and aiming is perfect when the rotor hub of a wind turbine is in the center of these test images. See
algorithm 1 for finding optimal values for the parameters, k and b. Figure 6 presents the estimate for the horizontal true turning angle, the computed
horizontal turning angle without correction, and the corrected horizontal turning angle for each reference location, respectively. Figures 6a and 6b
show that the error compensation was successful, i.e., the green lines (corrected turning angle) are on the blue lines (estimated true turning angle).

Algorithm 1 Pseudocode for finding optimal values of parameters k and b.

initialize(sumOfsquaredErrors, threshold)
initialize(EstimatedTrueTurningAngle, computedTurningAngle)
for sumOfsquaredErrors > threshold do

errorsOfReferences = computedTurningAngle - EstimatedTrueTurningAngle
[k, b]= LSM(errorsOfReferences, bearing)
computedTurningAngle = adjustTurningAngle(computedTurningAngle, k, b)
run system with computedTurningAngle //started manually
take image of each reference wind turbine //automatically by the started system
errorsInPixels = measure horizontal and vertical errors from the images in pixels //manually
errorsInMeters = compute(errorsInPixels)
sumOfsquaredErrors = LSE(errorsInMeters)
update(EstimatedTrueTurningAngle, errorsInMeters)

end for

(a) (b)

FIGURE 6 Estimated true, uncorrected and corrected horizontal turning angles for the reference wind turbine locations.

7 CLASSIFICATION

Deep learning is a subfield of machine learning concerned with algorithms called artificial neural networks inspired by the structure and function of
the brain. Deep learning networks are typically large, and they have many layers and large number of parameters. A CNN is one implementation of
deep learning23. A CNN is a specialized kind of neural network for processing data that has a known grid-like topology like image data, which can be
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thought of as a 2D grid of pixels. Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication
in at least one of their layers 23.

FIGURE 7 The CNN architecture.

7.1 CNN Architecture

We applied a CNN for image classification and built an architecture of three convolution layers, each of which is followed by a rectified linear unit
(ReLU) layer and the first two are also followed by a cross-channel normalization layer. Figure 7 shows the CNN architecture. The use of cross-
channel normalization layer is motivated by its ability to aid the generalization as its function may be seen as brightness normalization2. There are
two max-pooling layers, the first is before the third convolution layer and the second is before the first fully connected layer. There is no max-
pooling layer before the second convolution layer. The reason for this is that by omitting a max-pooling layer, all of the finest edges detected by
the first convolution layer are also transferred to the second convolution layer. The architecture is completed by three fully connected layers, and
the first two of them are followed by dropout layers, and each dropout layer is followed by ReLUs. The dropout was implemented by randomly
setting the output neurons of the layer to zero with a probability of 0.5. The architecture is finally terminated by softmax activation, which produces
a distribution over the class labels with cross entropy loss function26. The input image is normalized and zero-centered before feeding it to the
network. CNN with Mini-batch training and supervised mode as well as stochastic gradient descent with momentum is applied 27,28,29,26. The L2
Regularization (weight decay) method for reducing over-fitting is also applied29,26,30. Due to limited capacity of computer resources the network
size in terms of free parameters is kept small. Thus, resulting in total of 92 feature maps which are extracted by convolution layers with kernel sizes
[12 × 12 × 3] × 12, [3 × 3 × 12] × 16, and [3 × 3 × 16] × 64, respectively. Total number of weights is about 9.47×106.

Images of a size 200 × 200 pixels are fed to the classifier. In the first convolution layer, this image size produces (200−12 + 2 × 1)/2 + 1 = 96
square feature maps (see equation 1 ), i.e., there are 96 × 96 = 9216 neurons in each feature map. Filter (kernel) size, number of feature maps,
feature map size in neurons, stride, and padding for each convolution layers and max-pool layers are given in Table 5. For each filter, Fig. 7 displays
the number of feature maps as the triplet [a, b, c].
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TABLE 5 Parameters for the convolution layers and the max-pooling layers of the CNN model.

Layer Filter # Feature Maps Feature Map Size Stride Padding

Convolution 1 12 × 12 12 96 × 96 [2 2] [1 1]
Convolution 2 3 × 3 16 96 × 96 [1 1] [1 1]
Max-pooling 1 2 × 2 16 48 × 48 [2 2] [0 0]
Convolution 3 3 × 3 64 48 × 48 [1 1] [1 1]
Max-pooling 2 2 × 2 64 24 × 24 [2 2] [0 0]

7.1.1 Tested CNN Structures and Hyperparameter Selection
In addition to the CNN model introduced above, we have tested the svm-on-top model, which has otherwise the same structure as this CNN
model but a svm classifier was connected to the second fully-connected layer 22. However, the tests for this study showed that the classification
performance is the same or even slightly better when using only the CNN. More over, the svm-on-top model had significantly longer training time
than the CNN model alone. We have also tested the applied CNN model with four and five convolution layers, respectively. Results of these tests
showed that the classification performance did not increase according to the number of the convolution layers. This implies that the three-layered
structure, trained on the used training dataset, is capable to extract all the relevant features from the training data.

We split the dataset into a training set and a validation set as 70% and 30%, respectively. We have selected hyperparameters as follows: the
initial weights for all layers were drawn from the Gaussian distribution with mean 0 and standard deviation 0.01, initial biases were set to zero, the
L2 value was set to 0.0005, and mini-batch size was set to 128. The values of these hyperparameters were fixed and we used manual tuning only
for choosing the combination of the number of epochs and the learning rate drop period (LRDP) in our tests. The learning rate decay schedule
(LRDS) method was also included in the tests. Motivation for using the LRDS method is as training proceeds with shorter leaps on the loss function
surface from some point on, the optimal value for the weights can be found more accurately. If only the short leaps would be applied, the number
of epochs should be very large, thus resulting in significant increase of training time. For more details, see22. Although the tests in our previous
study were performed on the svm-on-top model, the results should be applicable with the CNN alone model as well, because these parameters
affects only the CNN part of the structure. The outcome of the tests was that the number of epochs can be selected only empirically, albeit
the number of training examples should give some insight into the decision. Thus, as the number of training examples increases, the number of
epochs should decrease in order to avoid overfitting. Whether to keep learning rate fixed or not (i.e., use LRDP) is also to be chosen empirically.
The tests showed that the number of epochs, the number of training examples, and the number of classes have the most significant contribution
to the classification performance. For the aforementioned reasons, we kept the learning rate fixed (0.01), and we selected the number of epochs
empirically in accordance with the number of training examples and the number of classes (11).

7.2 Final Classification

The system takes series of images of each target bird in order to increase a probability that the target is in good position for identification. The
result of the image classifier is presented as a vector, thus prediction for each image in a single series of images are combined into the vector, Pi:

Pi = [c1, c2, ..., cnc], i = 1, ..., n, (6)

where cj is a probability of belonging to class j, nc is the number of classes and n is the number of images in each series. The combined P-vector
for a series of images is:

P =
n∑

i=1

Pi, (7)

The velocity of the target bird is presented as a vector with elements placed according to the class order, i.e., class 1, class 2, ..., class nc, where
nc denotes the number of classes. The composition of the vector is follows: calculate the average of the velocities of the image series, check
probabilities for this average velocity from the velocity-look-up table for all of the classes, set the elements (probabilities), p, of the velocity vector
accordingly, yielding

V = [p1, p2, ..., pnc], (8)

where nc is the number of classes. The final classification is achieved by adding the velocity vector of a target to the respective prediction from
the image classifier. The fusion vector, Φ, is:
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Φ = P+ V (9)

The score, S, for final prediction is:
S = maxj(Φ), (10)

j = arg maxj(Φ), (11)

where j is the index of the predicted class.

8 RESULTS

We tested the accuracy for targeting the video head by visual observations, i.e., each time when the system was started, we monitor the bird
movement in the test area with binoculars and telescopes to confirm which bird the system tracks. When the camera took series of images of the
target bird, the system was halted and we checked whether the target bird is in any of the images or not. The accuracy was computed by dividing
the number of successful targeting by the number of all targeting (accurate + inaccurate). The accuracy for targeting the video head was 88.91 %.

We tested the classification performance of the original dataset and two augmented datasets. The number of training examples was 23552
of the original (not augmented) dataset, and it was trained with 60 epochs. The augmented datasets were generated with s = 50 and s = 200,
resulting in the number of training examples to be 6147072 and 1554432, respectively. Thus, the empirically chosen number of epochs was 4
and 13, respectively. TPR is used to evaluate classification performance. Classification performance of the original, the augmented with s = 50,
and the augmented with s = 200 datasets was 0.7643, 0.8514, and 0.8688, respectively. The results show that the data augmentation improved
classification performance by 13.7 %. However, because the best classification performance was achieved with s = 200, the results also imply that
from some value on of the step, s, overfitting increases as s decreases. The Confusion matrix for classes is presented in Table 6 . Receiver operating
characteristic curve (ROC) is given for the two key species, the white-tailed eagle (Haliaeetus albicilla) and the lesser black-backed gull (Larus fuscus
fuscus , a.k.a. the baltic gull), in Fig 8 . Area under the curve (AUC) is 0.9854 for the white-tailed eagle, and 0.8562 for the baltic gull, respectively.

Initially, we assumed that classification performance can be increased by using the parameters provided by the radar system. Among these
parameters, the flight velocity of a target bird seemed to be the most usable for bird species identification. Classification of some misclassified
images can be corrected when the speed of a target bird is fused with the prediction of the image classifier. However, the fusion had only slight
positive weight to the final classification. This was only distinguishable in the cases where the image classifier had misclassified the white-tailed
eagle as the great cormorant, and vice versa.

TABLE 6 Confusion matrix for all of the classes.

WTEA LOSP GRCO COEI COGO GBBG HEGU LBBG COGU BHGU CATE

WTEA 43 0 1 0 0 0 0 0 0 0 0
LOSP 0 6 0 0 0 0 0 0 1 0 0
GRCO 2 0 95 1 1 0 0 0 1 0 0
COEI 0 0 0 17 0 0 0 0 0 0 0
COGO 0 1 1 2 17 0 0 0 0 0 0
GBBG 0 0 0 0 0 7 1 1 0 0 0
HEGU 0 0 0 0 0 1 44 1 25 0 1
LBBG 0 0 0 0 0 3 1 21 1 0 0
COGU 0 0 0 0 0 0 1 0 64 0 0
BHGU 0 0 0 0 0 0 0 0 0 31 1
CATE 0 0 0 0 5 0 0 0 0 1 26
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(a) (b)

FIGURE 8 ROC curves for the white-tailed eagle (Haliaeetus albicilla) and for the lesser black-backed gull (Larus fuscus fuscus). (a) AUC for the
white-tailed eagle is 0.9954; (b) AUC for the lesser black-backed gull is 0.8562.

Examples of images that the system correctly identified are presented in Fig. 9 . The last image (c) in this figure shows more than one bird in a
(tight) flock, which is typical for images of waterfowl. Moreover, more than one bird species may occur in these flocks. A solution to the images of
a flock is twofold. As result of the segmentation process, an image has only one bird left when there is a sparse flock of birds in the image. In the
sparse flock case, the bird closest to the center of the image is retained, thus when a sparse flock has more than one bird species, the retained bird
species is chosen randomly. In the tight flock case, the classification is based on the whole flock and thus it is biased toward the most numerous
bird species in the flock. The training dataset includes examples of these tight flocks.

(a) (b) (c)

FIGURE 9 Examples of correctly identified images of the white-tailed eagle (a), the baltic gull (b), and the common eider (c), respectively.

9 DISCUSSION

The delay between the timestamp of a track and the current time seems to be the most significant factor for inaccurate targeting of the camera.
This is further evident in higher wind speed circumstances. We discovered by visual observations that flight paths of all bird species in the test
area are increasingly erratic in severe weather conditions. This augments the effect of the delay in respect of targeting of the camera. Table 7
demonstrates the range that a flying bird with a given flight speed travels during the delay. Flight speeds are measured by the radar system.
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TABLE 7 Ranges for a flying bird with a given flight speed during delay.

Flight Speed = 8 m/s Flight Speed = 15 m/s Flight Speed = 25 m/s

Delay [s] Range [m] Range [m] Range [m]

2 16 30 50
3 24 45 75
4 32 60 100
5 40 75 125
6 48 90 150
7 56 105 175
10 80 150 250
13 104 195 325
16 128 240 400

The precise vertical angle error was difficult to estimate because of the stochastic element of a target bird position, which is caused by the delay.
Therefore, the constant vertical error compensation was discovered empirically during the targeting of the camera. An error of 0.25° means 1.31
m vertical range at the distance of 300 m. It can be seen from Table 3 that the focusing rectangle for a camera with the 1.6 crop factor is vertically
2.89 m at this distance. The position of a target can be 1.445 m (2.89/2 m) above or below from the horizontal center line, and regardless of the
0.25° error in the vertical turning angle, it will be inside the focusing rectangle. The probability that target birds will be captured in the focusing
rectangle (given that all other errors are compensated) from any distance is large if the vertical turning angle error is 0.25° or smaller. If this error
is greater than 0.25°, target birds will probably be missed.

We had problems with the autofocus system of the camera and the lens. This seemed to be linked to the far range that the images are taken
from. If the autofocus system cannot reach the correct focus, the camera does not release the shutter, and therefore images are not taken. We did
not find any solution from the API to release the shutter even if the correct focus is not reached. This is important because the classifier showed to
have good generalization ability, when it was fed by slightly out-of-focus images. The far photographing range means deep depth of field, which is
the zone of sharpness within an image that will appear in focus. When focal length of the lens and aperture (f-stop) are kept fixed, photographing
range where images are taken from is the only factor that affects to depth of field. The further away a subject is from the camera, the deeper depth
of field becomes. Based on above, we switched the autofocus system off and used manual focusing as a solution to the autofocus problem. We
focused to a target at chosen range before the system was started and kept the autofocus system off. As a result, refocusing was needed when the
photographing range was changed. The camera and the lens that we have used are both two generations old. The most recent camera and lens
generation has better autofocus system, which may be a long term solution to this autofocus problem.

The applied CNN model showed sufficient performance as an image classifier. Mostly, it misclassified images that were totally out-of-focus or
images in which the bird is in unfavourable position in the sense of identification even by the human eye. As we expected, the greatest challenges
for the classifier were the two pairs of the following bird species: the herring and the common gull, the lesser black-backed and the great black-
backed gull, which are not generally easy to identify 31 . Figure 10 shows three herring gull images; the leftmost ( 10a ) imagewas correctly classified,
and the other two were misclassified as the common gulls.

10 CONCLUSIONS

The developed bird identification system is evaluated in terms of bird detection and identification (classification) ability. Bird detectionwas two-fold:
initially, the applied radar system detected birds in the sky, and the developed steering software for the motorized video head drove the camera
to the correct position. We showed successful results for the latter part of the detection problem. The radar system was beyond the scope of this
study. We presented practical results for automatic bird identification by using real-world dataset and representative methods in machine learning
(CNN). However, more research is needed for reducing the time delay between the timestamp of a track and the current time. The image classifier
is not perfect but its performance is sufficient to classify one of the key species, the white-tailed eagle correctly. More complicated classifier is
needed in order to classify the different gull species with higher performance. Hierarchical and/or cascade architecture of classifiers may be one
solution to this problem. This system is the first part of the planned entirety for automatic bird monitoring and deterrence for offshore wind farms,
and it can mitigate the social opposition of wind energy.



16 Juha Niemi et al

(a) (b) (c)

FIGURE 10 Three images of the herring gull. The first (a) image was correctly classified. The other two images (b, c) are examples of images in
which the bird is in unfavourable position in the sense of identification resulting in misclassification.
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Abstract. Collisions between birds and wind turbines can be significant prob-
lem in wind farms. Practical deterrent methods are required to prevent these
collisions. However, it is improbable that a single deterrent method would work
for all bird species in a given area. An automatic bird identification system is
needed in order to develop bird species level deterrent methods. This system is
the first and necessary part of the entirety that is eventually able to, monitor bird
movements, identify bird species, and launch deterrent measures. The system
consists of a radar system for detection of the birds, a digital single-lens reflex
camera with telephoto lens for capturing images, a motorized video head for
steering the camera, and convolutional neural networks trained on the images
with a deep learning algorithm for image classification. We utilized imbalanced
data because the distribution of the captured images is naturally imbalanced.
We applied distribution of the training data set to estimate the actual distribu-
tion of the bird species in the test area. Species identification is based on the
image classifier that is a hybrid of hierarchical and cascade models. The main
idea is to train classifiers on bird species groups, in which the species resembles
more each other than any other species outside the group in terms of morpholo-
gy (coloration and shape). The results of this study show that the developed im-
age classifier model has sufficient performance to identify bird species in a test
area. The proposed system produced very good results, when the hybrid hierar-
chical model was applied to the imbalanced data sets.

Keywords: Machine learning, Deep learning, Convolutional neural networks,
Classification, Data augmentation, Intelligent surveillance systems

1 Introduction

Demand for automatic bird identification systems for wind farms has increased re-
cently. This kind of system is especially required for offshore wind farms. The objec-
tive of this application is twofold: it has first to detect two key bird species, which are
particularly required for monitoring in the environmental license, and secondly to
classify maximum number of other bird species while the first part still stands. The
two key species are the white-tailed eagle (Haliaeetus albicilla) and the lesser black-
backed gull (Larus fuscatus fuscatus). An automatic identification system is in devel-
opment that consists of a separate commercial radar system to detect the birds, a digi-



tal single-lens reflex camera with telephoto lens for capturing images, a motorized
video head for steering the camera, and a convolutional neural network (CNN) trained
on the images with a deep learning algorithm for image classification. The conven-
tional approach to this image classification problem is to presume that equally distrib-
uted data are fed into the classifier. However, this is a real-world application, in which
it is difficult and time-consuming to collect large number of images for each class.
Due to the nature of this application, it is conceivable that imbalanced data are uti-
lized because the distribution of the captured images is naturally imbalanced, i.e.,
there are common and scarce bird species in the test area. It is also possible to include
scarcer classes into the classification process with this approach. Researchers have
proposed a class-imbalance aware loss function for the problem of class imbalance.
This loss function adds an extra class-imbalance aware regularization term to the
normal softmax loss [1]. However, we have applied the distribution of the training
data set to estimate the actual distribution of the bird species in the test area. Training
data set and test data set both share this distribution. Species identification is based on
the image classifier that is a hybrid of hierarchical and cascaded models. The main
idea is to train classifiers on bird species groups, in which the species resembles more
each other than any other species outside the group in terms of morphology. The first
classifier is hierarchical determining the group of the test image and the subsequent
classifiers within the groups are in cascades. We have also applied our data augmenta-
tion method, which rotate and convert the images in accordance with the desired color
temperatures. The hybrid hierarchical and cascade model is compared to two single
classifiers. One of the classifiers is trained on balanced data set and the other is
trained on imbalanced data set without grouping.

CNN has been successfully applied to image classification problems [2]. The num-
ber of training examples in image classification is typically large. This may cause
problems when dealing with real-world applications, as collection of large number of
images is not always possible. As a result, some data augmentation is usually needed
[3,4]. Cascade CNN has been successfully applied to face detection and road-sign
classification system [5,6].

The remainder of this chapter is organized as follows. In Section 2. we present the
system and its components for collecting images automatically. In Section 3. related
work is discussed. We describe our data, its grouping, and data augmentation algo-
rithm in Section 4. Classification algorithms, applied CNN models, and feature ex-
traction are described in Section 5. Results for hybrid of hierarchical and cascade
CNN model, trained on imbalanced data set and compared to conventional CNN
model, are presented in Section 6. We then offer conclusions in Section 7.

2 The system

The proposed system consists of several hardware as well as software modules.
See Fig. 1 for an illustration. At first, there is the radar system, which is connected to



Fig. 1. The hardware of the system and the principle of catching flying bird into the frame
area of the camera.

a local area network (LAN), and thus it is able to communicate with the servers, in
which the various programs are running.

     We use a radar system supplied by Robin Radar Systems B.V. because they pro-
vide an avian radar system that is able to detect birds. They also have algorithms for
tracking a detected object over time (between the blips). The model we use is the
ROBIN 3D FLEX v1.6.3 and it is actually a combination of two radars and a software
package for implementation of various algorithms such as the tracker algorithms [7].
The role of the radar is to detect flying birds and pass the WGS84 coordinates of the
target bird to the video head control software. The system includes the PT-1020 Me-
dium Duty motorized video head of the 2B Security Systems. The video head is oper-
ated by Pelco-D control protocol [8], and the control software for it is developed by
us. The System uses Canon EOS 7D II camera with 20.2-megapixel sensor and the
Canon EF 500/f4 IS lens. Correct focusing of the images relies on the autofocus sys-
tem of the lens and the camera. Automatic exposure is also applied. The camera is



controlled by the application programmable interface (API) of the camera manufac-
turer, and the software for controlling the camera has been developed by us. In addi-
tion, the radar system provides parameters, which can be applied to increase the per-
formance of classifiers. These parameters are the distance in 3D of a target (m), ve-
locity of a target (m/s), and trajectory of a target (WGS84 coordinates). For the details
of the system hardware, see [9].

3 Related work

Researchers proposed a multi-sensor data fusion approach via acoustics, infrared
camera, and marine radar for avian monitoring. The objective is to preserve the popu-
lation of birds and bats especially those listed in endangered list, by observing their
activity and behavior over the migration period. Species-level identification was not
aimed mainly. They address to this problem by a fuzzy Bayesian based multi-sensory
data fusion approach to provide the activity information regarding the targets in avian
(birds and bats) monitoring [10].

Researchers have implemented machine learning (ML) algorithms on radar data for
bird species classification. They used data collected from two locations in Portugal
with two marine radar antennas (volume search radar, VSR and high sensitivity recep-
tion, HSR). The performance of six widely used ML algorithms: random forests (RF),
support vector machine (SVM), arti cial neural networks, linear discriminant analy-
sis, quadratic discriminant analysis, and decision trees (DT), was tested. They found
that all algorithms performed well (area under the receiver operating characteristic
and accuracy > 0.80, P < 0.001) when discriminating birds from non-biological tar-
gets such as vehicles, rain or wind turbines, but the algorithms showed greater vari-
ance in their performance when they classified different bird functional groups or bird
species (e.g. herons vs. gulls). In this study, only RF was able to hold an accuracy >
0.80 for all classi cation tasks, although SVM and DT also performed well. All algo-
rithms correctly classi ed 86% and 66% (VSR and HSR, respectively) of the target
points, and only 2% and 4% of these points were misclassi ed by all algorithms. The
results suggest that ML algorithms are suitable for classifying radar targets as birds,
and thereby separating them from other non-biological targets. The ability of these
algorithms for correct identification between bird species functional groups was much
weaker [11].

Time-lapse photography is a method in which the frame rate of taking a sequence
of images is higher than the frame rate used to view the sequence. Time-lapse images
can make subtle time-related processes distinct, and the process that is analyzed, can
be too fast or too slow to the human eye. Time-lapse images have been used to detect
birds around a wind farm. An Image-based detection using cameras have been applied
to build a bird monitoring system. This system utilized an open-access time-lapse
image data set that is collected around the wind farm. The system applied algorithms:
AdaBoost, Haar-like, histogram of oriented gradients (HOG), and CNN. AdaBoost is
a two-class classifier, which is based feature selection and weighted majority voting.



A strong classifier is made as a weighted sum of many weak classifiers, and the re-
sulting classifier is shallow but robust [12]. Haar-like is an image feature that utilizes
contrasts in images. It extracts the light and the shade of objects by using black-and-
white patterns [13]. HOG is a feature used for grasping the approximated shape of
objects. At first, it computes the spatial gradient of the image and makes a histogram
of the quantized direction of the gradient in each local region, called a cell in the im-
age. Subsequently, it concatenates the histograms of the cells in the neighboring
groups of the cells (the blocks) and normalizes them by dividing by their Euclidean
norms in each block [14]. The best method for detection was Haar-like, and the best
method for classification was CNN. The system was tested on only two bird function-
al groups, hawks and crows, and it achieved only moderate performance [15].

4 Data

Input data of this application consist of digital images. All images for training the
CNN have been taken manually at the test location in various weather conditions. The
location is the same where the camera will be installed for taking images automatical-
ly. The collected image set was divided into two data sets: an original data set for
training classifiers, and a test set for measuring generalization of the classifiers, and
thus the classifiers will not see these test images during training. Both data sets are
divided into 14 classes. It became clear during image collection that there would be
low number of images of the scarcest bird species, resulting in classes with very low
number of data examples. Therefore, in order to be able to classify the scarcest bird
species, all the collected images are included with an acceptance that the resulting
data set will be imbalanced. The distribution of the number of images for each class is
used as an estimate for the actual distribution of bird species in the test area. This is
justified by the fact that images are collected in all four seasons and in all hours dur-
ing day light. The estimate is not necessary reliable in terms of bird species census,
because only the species that usually fly at approximately same height with the wind
turbines are taken into account, but it is sufficient in the context of this application.
The total number of images of the original data set is 24631, and number of images of
the test data set is 439. The test data set was created by randomly choosing images
from all classes. The number of images in the test data set follows the distribution of
the original data set, thus reflecting the actual distribution in the test site. Class labels
and number of images of the original data set for each class are presented in Table 1.
In this Table, three classes are not defined in species level: LNSP, SWSP, and CATE.
The first two cases are because there is no need to distinguish between loon species or
swan species any further in this context, regardless the fact that two common, and two
rare species of loons occur in the test area, and analogously there occur two common
and one rare species of swans. The same applies to the third case too, the com-
mon/arctic tern. In addition, it is generally very difficult to tell the difference between
these two tern species [16], and thus the number of required data examples (images)
might be too large, considering the time needed to collect them. The number of imag-
es for each class in the test data set are also given in Table 1.



Table 1. The original data set divided into 14 classes.

# Images # Test Images Class Name (Eng.) Class Name (Lat.) Class Label
396 7 Loon Species Gavia sp LNSP

260 5 Swan Species Cygnus sp SWSP
5612 100 Great Cormorant Phalacrocorax carbo GRCO
979 17 Common Eider Somateria mollissima COEI

1164 21 Common Goldeneye Bucephala clangula COGO
236 4 Velvet Scoter Melanitta fusca VESC
263 5 Red-breasted Merganser Mergus serrator RBME

2450 44 White-tailed Eagle Haliaeetus albicilla WTEA
512 9 Great Black-backed Gull Larus marinus GBBG

4053 72 Herring Gull Larus argentatus HEGU
1481 26 Lesser Black-backed Gull Larus fuscus fuscus LBBG

3648 65 Common Gull Larus canus COGU
1803 32 Black-headed Gull Larus ridibundus BHGU
1774 32 Common/Arctic Tern Sterna hirundo/paradisaea CATE

No preprocessing, other than cropping, is applied to the images before feeding them
into the classifiers. The cropping is based on a segmentation, and it is motivated by
being able to dispose the most of the pixels representing only sky. The resolution of
the camera sensor measured by the total number of pixels and the focal length of the
lens are important qualities because of the long range, of which images are to be tak-
en. The effective number of pixels (ENP) is defined by the number of pixels repre-
senting a bird. The remaining number of pixels are considered noise, thus ENP has a
significant effect on the performance of image classification model as birds will be
very small (they consist of only a small number of pixels) in the images. ENP de-
pends on the sensor resolution of the camera and the focal length of the lens, and if
the sensor resolution is fixed, ENP can be increased by choosing a long (in terms of
focal length) telephoto lens. An additional advantage is that there is no need to feed
classifiers with large (in terms of the number of pixels) images. For more details
about the segmentation, see [9]. Examples of the original data set images are present-
ed in Fig. 2. The first image in this figure illustrates that there can be more than one
bird in the image. There are species in the test area that have a custom to fly in tight
flocks, and in these cases, the result (in terms of data examples) is an image of several
birds. Moreover, there might be more than just one bird species in these flocks. The
custom of flying in tight flocks is an important feature in terms of identification for
certain bird species [17]. As result of the segmentation, an image has only one bird
left when there is a sparse flock of birds in the image. In the sparse flock case, the



bird closest to the center of the image is retained, thus when a sparse flock has more
than one bird species, the retained bird species is chosen randomly. In the tight flock
case, the identification is based on the whole flock, and thus it is biased toward the
most numerous bird species in the flock.

4.1 Data Augmentation

Data augmentation is applied to the original data set. We have used our own meth-
od, in which the images are converted into various color temperatures according to
step size, s. The lower and upper limit to the color temperature is 2000 K and 15000
K, respectively. For example, if s = 50 (in K), the number of data examples of the
augmented data set is (15000 - 2000)/50 + 1 * 24631 = 6453322. For more details, see
[9]. In addition to the color conversion, the images are also rotated by a random angle
between -20 degree and 20 degree drawn from the uniform distribution. Motivation
for this is that CNN is invariant to small translations, but not image rotation [18].
Number of images for each species (classes) in the augmented data set when s = 50
and s = 200, respectively, are presented in Table 2. Figure 3 presents data examples of
the output of the augmentation algorithm. The original image, fed into the data aug-
mentation algorithm, has a color temperature of 5800 K, and the two augmented im-
ages have a color temperature of 3800 K and 7800 K, respectively.

Fig. 2. Data example of the common goldeneye, the black-headed gull and the lesser black-
backed gull, respectively.

Fig. 3. Data example of the common eider. The image on the left is an augmented image
with color temperature of 3800 K. The original image is in the middle with color tempera-
ture of 5800 K. The image on the right is an augmented image with color temperature of
7800 K.



Table 2. Number of images for each class in the augmented data set.

Class Label # Original # s = 50 # s = 200
WTEA 2450 641900 164150

SWSP 260 68120 17420
LOSP 396 103752 26532
GRCO 5612 1470344 376004

COEI 979 256498 65593
COGO 1164 304968 77988
VESC 236 61832 15812

RBME 263 68906 17621
GBBG 512 134144 34304
HEGU 4053 1061886 271551
LBBG 1481 388022 99227

COGU 3648 955776 244416
BHGU 1803 472386 120801
CATE 1774 464788 118858

4.2 Grouping data

We trained our first classifier models on the entire data set, which was divided into
the same number of classes as the data had species. However, there are more and less
easily separable classes (assessed by human eye), and that led to an idea of grouping
those species together that seem similar to human eye, thus our proposal in this re-
spect is hierarchical [19]. In this approach, the number of classes decreases on the top
level of the classifier hierarchy, and thus resulting better separability of the data set.
Classification inside the groups is dealt with the subsequent levels in cascades [20].
Figure 4 illustrates examples of clearly and weakly separable classes. The white-tailed
eagle and the mute swan are examples of clearly separable classes, and the herring
gull and the common gull are examples of weakly separable classes.

Fig.4. From left to right: the white-tailed eagle and the mute swan are examples of clearly
separable classes. The herring gull and the common gull are examples of weakly separable
classes.



There are four groups on the top-level of the classification hierarchy. Two of these
groups are actually single clearly separable species; swans (treated as single species
here) and white-tailed eagle, respectively. Gulls-and-terns and waterfowl (including
loons and common cormorant) form the other two groups, respectively. More groups
are defined below the top level in order to get species level classification. Division of
the classes into the groups are given in Table 3. The number of images for each group
formed from the original data set and from two augmented data sets with s = 50 and s
= 200, respectively,  are given in Table 4.

Table 3. Division of the classes into groups.

Class Label Top Level Second Level Third Level Fourth Level
WTEA white-tailed eagle - - -

SWSP swans - - -
LOSP waterfowl-1 waterfowl-2 waterfowl-2 -
GRCO waterfowl-1 great cormorant - -

COEI waterfowl-1 waterfowl-2 waterfowl-2 -
COGO waterfowl-1 waterfowl-2 waterfowl-2 -
VESC waterfowl-1 waterfowl-2 waterfowl-2 -

RBME waterfowl-1 waterfowl-2 waterfowl-2 -
GBBG gulls-and-terns-1 gulls-and-terns-2 black-backed-gulls GBBG
HEGU gulls-and-terns-1 gray-backed-gulls HEGU -
LBBG gulls-and-terns-1 gulls-and-terns-2 black-backed-gulls LBBG

COGU gulls-and-terns-1 gray-backed-gulls COGU -
BHGU gulls-and-terns-1 gulls-and-terns-2 blackheaded-tern BHGU
CATE gulls-and-terns-1 gulls-and-terns-2 blackheaded-tern CATE

Table 4. Number of images for each group.

Group # Original # s = 50 # s = 200
white-tailed eagle 2450 641900 164150

swans 260 68120 17420

waterfowl-1 8387 2266300 579550
waterfowl-2 2775 795956 203546

gulls-and-terns-1 13271 3477002 889157
gulls-and-terns-2 5570 1459340 373190

gray-backed gulls 7701 2017662 515967
blackheaded-tern 3577 937174 239659

black-backed gulls 1993 522166 118858



Fig. 5. The CNN model for each classifier.

5 Classification

All classifiers in this application share the same CNN model, which is shown in
Fig. 5. Only the number of the neurons in the output changes according to the number
of classes. This model has three convolution layers, each of which is followed by a
rectified linear unit (ReLU) layer and the first two are followed by a cross-channel
normalization layer (Local Response Normalization, LRN). The use of LRN is moti-
vated by its ability to aid the generalization as its function may be seen as brightness
normalization [2]. There are two max-pooling layers, the first is before the third con-
volution layer and the second is before the first fully connected layer. There is no
max-pooling layer before the second convolution layer. The reason for this is the
small ENP, and thus by omitting a max-pooling layer, all of the finest edges detected
by the first convolution layer are transferred to the second convolution layer. The
architecture is completed by three fully connected layers. The first two of them are
followed by dropout layers, and each dropout layer is followed by ReLUs. The drop-
out was implemented by randomly setting the output neurons of the layer to zero with
a probability of 0.5. The architecture is finally terminated by softmax activation,
which produces a distribution over the class labels with cross entropy loss function
[21]. The input image is normalized and zero-centered before feeding it to the net-
work. CNN with Mini-batch training and supervised mode as well as stochastic gradi-
ent descent with momentum is applied [21,22,23,24]. The L2 Regularization (weight
decay) method for reducing over-fitting is also applied [21,24,25]. We kept the net-
work size, in terms of free parameters, small due to limited capacity of computer re-
sources. Thus, resulting in total of 92 feature maps which are extracted by convolu-



tion layers with kernel sizes [12 x 12 x 3] x 12, [3 x 3 x 12] x 16 and [3 x 3 x 16] x
64, respectively. Total number of weights is about 9.47 x 106.

Images of a size of 200 x 200 pixels are fed to each classifier. In the first convolu-
tion layer, this image size produces (200 - 12 + 2 * 1)/2 + 1 = 96 square feature maps,
i.e., there are 96 x 96 = 9216 neurons in each feature map. Filter size, number of fea-
ture maps, feature map size in neurons, stride, and padding for each convolution lay-
ers and max-pool layers are given in Table 5. For each filter, Fig. 5 displays the num-
ber of feature maps as the triplet [a, b, c].

Table 5. Parameters for the convolution layers and the max-pooling layers of the CNN
model.

Layer Filter # Feature Maps Feature Map Size Stride Padding

Convolution 1 12 x 12 12 96 x 96 [2 2] [1 1]
Convolution 2 3 x 3 16 96 x 96 [1 1] [1 1]
Max-pooling 1 2 x 2 16 48 x 48 [2 2] [0 0]
Convolution 3 3 x 3 64 48 x 48 [1 1] [1 1]

Max-pooling 2 2 x 2 64 24 x 24 [2 2] [0 0]

5.1 Hyperparameter selection

We split the data set into a training set and a validation set as 70 % and 30 %, re-
spectively. We used manual tuning for choosing the number of epochs.  Initial
weights for all layers are drawn from the Gaussian distribution with mean 0 and
standard deviation 0.01. Initial biases are set to zero. The L2 value is set to 0.0005
and mini-batch size is set to 128.

5.2 Feature extraction

The three convolution layers are designed to detect spatially distributed features
from the training images. Usual disjunctive features are shape and general coloration
of the bird. The ReLU (to introduce non-linearity) layer and the max-pooling (to in-
crease spatial invariance) layer after the second and third convolution layers, respec-
tively, may be seen as a refinement for the detected features due to the rectifying and
down sampling properties of these layers. Figures 6 and 7 illustrate the features, ex-
tracted by the CNN, for the classes LBBG and GBBG, respectively. These feature
maps are from the second convolution layer. There is one frame for each 16 feature
maps in the figure. These images are normalized, so that the minimum weight is 0 and
the maximum is 1, i.e., the most negative weight has turned into zero (black). The



mid-gray color (0.5) shows those areas in the image that have the minimum contribu-
tion to the features, and the most blackish or the most whitish areas denote maximum
contribution to the features. The plain gray, or almost so, feature maps indicate that no
significant features have been found in these maps. These feature maps show that the
CNN is capable to give large weights on those areas of the bird plumage that are rele-
vant for species identification. These areas are mainly: wing tips, feet, and a bill with
these two pairs of gull species. As flying gulls usually have their feet concealed by
feathers, and their underside is not always visible in the images, the usage of this fea-
ture is minor. This leaves us the bill and the wing tip, and because the differences in
the bill color and structure are only subtle, the most significant identification point is
the wing tip. The great black-backed gull and the lesser black-backed gull also have a
slight difference in the hue of their upper wing color, but this does not always seem to
result in larger weights produced by the CNN for those areas, at least not large
enough, because images of the great black-backed gull are even misclassified as the
herring gull. Yet, the upper wing color is the key feature to distinguish between the
gray-backed gulls and black-backed gulls [26].

Fig. 6. Visualization of the feature extraction by the CNN model for the class LBBG. There
are 16 feature maps in the figure extracted by the second convolution layer.



Fig. 7. Visualization of the feature extraction by the CNN model for the class GBBG. There
are 16 feature maps in the figure extracted by the second convolution layer.

5.3 Tests for deeper CNN model

It became clear during the development of this algorithm that the challenge, in
terms of classification, lies in the group of gulls-and-terns-1, especially in the groups
of gray-backed gull and black-backed gull. Considering the CNN model, the first
option for a better performance should be a deeper model, i.e., more convolution lay-
ers. We modified the original model by adding the fourth convolution layer, followed
by ReLU and max-pooling layers. This model had 128 filters with filter size of [5 x 5]
in its fourth convolution layer. The first modified model was tested on the group of
black-backed gull, but it failed to increase the performance of the original CNN mod-
el. Then we tested even deeper model by adding the fifth convolution layer, again
followed by ReLU and max-pooling layers. In this case, the max-pooling layer before



the third convolution layer in the original model was removed in order to have suffi-
cient number of neurons left at the output of the architecture. We also modified the
filter sizes of the second modified model. The modified filter sizes are given in Table
6. The two new max-pooling layers at the end of the second modified model have
filter size of [2 2], respectively. When this model was tested on the group of black-
backed gull, the result was the same as the first modified model, i.e., it did not achieve
a better performance than the original CNN model in terms of true positive rate
(TRP). Both test classifiers were trained on the augmented set, with s = 50, of only the
images from the group of black-backed gull.

Table 6. Filter sizes for the second modified model of the original CNN model.

Layer Filter # Feature Maps Feature Map Size Stride Padding
Convolution 1 12 x 12 12 96 x 96 [2 2] [1 1]

Convolution 2 7 x 7 16 90 x 90 [1 1] [0 0]
Convolution 3 5 x 5 32 86 x 86 [1 1] [0 0]
Convolution 4 4 x 4 64 40 x 40 [1 1] [0 0]
Convolution 5 3 x 3 128 18 x 18 [1 1] [0 0]

5.4 Dealing with imbalanced data

If we want to identify (classify) all the species that occur in the test area, we must
accept that the training data set will be imbalanced, because there will be low num-
bers of training examples of the scarcest species. However, there are methods that can
be used for imbalanced data set. Naturally, the first option would be to collect more
data into the training data set, but this is not a very realistic option in our case.
Resampling is a method that is easy to implement, and fast to run. This means that
copies of data examples are added into the under-represented class, i.e., over-
sampling, or data examples are deleted from the over-represented class, i.e., under-
sampling [11]. However, we have augmented the original data set (resampling is not
used) with s = 50, and trained a reference classifier on the augmented data set. The
results, in terms of performance, of the hybrid model (hierarchical and cascade model
combined) trained on the grouped data set are compared with this reference classifier.
The grouped data set is also augmented with s = 50, and both data sets are imbal-
anced. Class imbalance ratios (i.e., ratio of the number of images in a class to the
class with the largest number of images) of the original data set for 13 classes, round-
ed to the nearest integer, are given in Table 7. The class with the largest number of
images is GRCO, and it is omitted from the table. It can be seen from the table that
there is severe imbalance between several classes and the class GRCO.



Table 7. Imbalanced ratios of 13 classes to the class with the largest number of images
(GRCO).

Class Label Ratio

WTEA 1:2
SWSP 1:22
LOSP 1:14
COEI 1:6

COGO 1:5
VESC 1:24
RBME 1:21

GBBG 1:11
HEGU 1:1
LBBG 1:4

COGU 1:2
BHGU 1:3
CATE 1:3

Another reference classifier is trained on a balanced data set. This data set is created
by under-sampling method, so that the original data set is augmented with s = 50, and
then 236 x 262 = 61832 images are randomly chosen from each class, except for the
class VESC, from which all of the images are chosen, because this class has the low-
est number of data examples.

It is important to choose a suitable performance metric for classifiers trained on
imbalanced data set. We have used confusion matrix as a tool to compare the classifi-
ers. Precision (a measure for classifier exactness) and recall (a measure for classifier
completeness, a.k.a. TPR) are metrics that have been calculated from confusion ma-
trices. Receiver operating characteristic (ROC) curves and histograms of predictions
are the tools that have been applied to determine thresholds for various classifiers
trained on the grouped data set. Histograms present the predictions of a classifier fed
by a test data set, which the classifier has never seen before. Thus, histogram shows
the distribution of prediction of a classifier over a class by presenting the number of
the predicted probabilities that falls into each bin. There are always only two classes
in the histograms: the positive class (in red), and the negative class (in blue). If it is
necessary to use histograms for more than two classes, then one of the classes is treat-
ed as the positive class, and the other classes are combined to form the negative class.
For all histograms, the x-axis is probability, and y-axis is the number of hits for each
bin. Y-axis ranges from zero to the largest probability that hits a single bin in the his-
togram. The number of bins is always set to 10, and thus the bin width is 0.1.



5.5 Hybrid of hierarchical and cascade model

In order to improve the performance of the classification algorithm compared to
the single CNN classifier, we can use more than just one classifier, and we can divide
the data set into suitable groups, which is done in Section 4.2. Eight classifiers have
been trained on the grouped data sets. These classifiers form a hierarchy that is ap-
plied to classify the original data set. This architecture may also be seen as a hybrid
between hierarchical and cascade models. The architecture is depicted in Fig. 8. The
level of a classifier in the hierarchy, the data set (the groups) that it has been trained
on, and the number of classes for each classifier are given in Table 8.

Table 8. Classifiers trained for the hybrid model.

Classifier Level Data Set (the group) # Classes
1 1 WTEA, SWSP, waterfowl-1, gulls-and-terns-1 4
2 2 cormorant, waterfowl-2 2
3 2 gray-backed-gulls, gulls-and-terns-2 2

4 3 waterfowl-2 5
5 3 blackheaded-tern, black-backed-gulls 2
6 3 HEGU, COGU 2

7 4 BHGU, CATE 2
8 4 LBBG, GBBG 2

The first idea was merely to use cascade model of classifiers, so that the commonest
species, determined by the distribution of the data set, would be filtered out (classi-
fied) at the first classifier. The second commonest species would be filtered out at the
second classifier, and so forth. However, the early tests showed that there is no signif-
icant difference in performance, if those classes with better separability would be
classified in a single classifier. Moreover, the cascaded approach would have led to a
relatively large number of classifiers to be trained on, and thus increasing the training
time. Nevertheless, the cascaded model was applied to some groups, and especially to
the groups of the weakest separability, which are the gulls-and-terns groups. The pre-
diction of a classifier for a test image is the vector-output of the softmax-layer, and it
is given,

where pi is a probability for a classi as a result of the classification, and n is the num-
ber of classes. Classes are alphabetically ordered by their class labels. Thresholds are
applied as follows:
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where pi is as in the P-vector (1), and thresholdi is the threshold for classi. As result
of Equations (2) and (3) there will be exactly one element, ci, turned to one in C-
vector, and the rest of the elements are turned to zeros. The class label is found ac-
cording to the index of the element that is turned to one:

where j is the index of the predicted class.

5.6 Top-level classification

The top-level classifier is the most important in terms of TPR, because a possible
misclassification will recur in subsequent hierarchy. This classifier deals with the
groups: swans, waterfowl-1, white-tailed eagle, and gulls-and-terns-1. Class imbal-
ance ratios of the top-level groups, rounded to the nearest integer, are given in Table
9. Considering the environmental license requirements, it is crucial to keep the num-
ber of false negative (FN, a data example from the positive class that is misclassified
as the negative class) of the group of white-tailed eagle and the group of gulls-and-
terns-1 as low as possible, preferably at zero. Figure 9 and Fig. 10 illustrate the choice
of possible threshold for the group of white-tailed eagle, and for the group of gulls-
and-terns-1, respectively. These histograms are formed from the predictions of the
top-level classifier (a.k.a. primary classifier), so that a histogram for the positive class
and the negative class are plotted in the same graph, respectively. Equivalent ROC
curves are computed based on the histograms, from which the TPRs and false positive
rates (FPR) are calculated. ROC curves for the group white-tailed eagle and for the
group gulls-and-terns-1 are shown in Fig. 11 and Fig. 12, respectively. Both figures,
the histogram and the ROC curve, for the group of white-tailed eagle show that this
group is clearly separable, and thus it is easy to choose a suitable threshold for perfect
classification of the group. Generally, two values of probability can be read from the
histogram, and use as a threshold: the lowest probability value of the positive class
(LPPC), and the highest probability value of the negative class (HPNC).

Table 9. Imbalanced ratios of the top-level groups to the group with the largest number of
images (gulls-and-terns-1).

Class Label Ratio
white-tailed eagle 1:5

swans 1:51
Waterfowl-1 1:2



Fig. 9. Histogram for the group white-tailed eagle.

Fig. 10. Histogram for the group gulls-and-terns-1.



Fig. 11. ROC curve for the group white-tailed eagle.

Fig. 12. ROC curve for the group gulls-and-terns-1.



In the case of the group of white-tailed eagle, these two probability values are not
overlapped, and thus this class is clearly separable. The threshold can be set anywhere
between 0.8 and 0.9 in order to classify this class perfectly. All true positives (TP, a
data example from the positive class that is correctly classified) will be classified
correctly and there will be no false positives (FP, a data example from the negative
class that is misclassified as the positive class), nor FNs. As the group of white-tailed
eagle actually consists of only that single bird species, this also means that this classi-
fier is capable to classify the white-tailed eagle in accordance with the environmental
license.

In the case of the group of gulls-and-terns-1, the LPPC and the HPNC are over-
lapped. There are two data examples from the negative class that have the probability
between 0.9 and 1, and all of the probabilities from the positive class fall into the
same bin. Probabilities inside the bins cannot be read from the histograms, but the
plotting software (MatLab) also prints the exact values for the probabilities. The
LPPC and the HPNC for the group of gulls-and-terns-1 is 0.9000 and 0.9643, respec-
tively. If we choose 0.9 for the threshold, there will be two FPs, but if we choose
0.9643 for the threshold, there will be no FPs, nor FNs. In this case the number of
FNs is the most important, because the lesser black-backed gull belongs to the group
of gulls-and-terns-1, and it is particularly taken into account in the environmental
license, so we cannot take the risk of misclassifying a gull at the top level of the hier-
archy. Therefore, we must choose 0.9643 for the threshold. Table 10 shows the ap-
plied threshold for the top-level group. The threshold for the group of white-tailed
eagle is set to 0.7415, because this is the exact value printed by the plotting software.
One image of the great cormorant in the test data set is misclassified as the white-
tailed eagle, and this causes the number of FPs to be one for the white-tailed eagle and
the number of FNs to be one for the group waterfowl-1. This is acceptable error rate,
because no white-tailed eagles are missed. Algorithm 1 describes the top-level classi-
fication process. This algorithm also defines a new pseudo-class, which means that
this class does not exist in the data set, but it is used when the primary classifier fails
to classify a test image correctly. Thus, it enables a definition of an unidentified bird
(UNBI) class without explicitly including it in the real-world classes.

Table 10. Thresholds for the top-level group.

Group Threshold # FNs # FPs
white-tailed eagle 0.7415 0 1

swans 0.7000 0 0
waterfowl-1 0.0083 1 0

gulls-and-terns-1 0.9643 0 0



5.7 Classification of waterfowl

Waterfowl are classified in the second level of the hierarchy, so that two classifiers
are cascaded. The first one filters out the commonest class, GRCO, and all the
other waterfowl are classified in the second classifier. Thresholds for the first clas-
sifier are given in Table 11. There is one FN, and accordingly, one FP as these
thresholds are applied. The misclassified class is GRCO, which is the only class in
the group of cormorants. Thresholds for the group of waterfowl-2 is given in Table
12. All other classes have one FN, respectively, except for the class LOSP, which
is clearly separable. Algorithm 2 shows the classification process for both water-
fowl groups. Two new pseudo-classes are defined in the algorithm: unidentified
waterfowl (UNWF), and unidentified small waterfowl (UNSW).

Table 11. Thresholds for the group waterfowl-1.

Class Label Threshold # FNs # FPs

cormorant 0.2627 1 0
waterfowl-2 0.7000 0 1

Table 12. Thresholds for the group waterfowl-2.

Class Label Threshold # FNs # FPs

LOSP 0.0402 0 0
COEI 0.9909 1 0
COGO 0.0120 1 0
VESC 0.8810 1 0

RBME 0.9831 1 0



5.8 Classification of gulls and terns

Gulls and terns are classified in the second and third level of the hierarchy in cas-
cade classifiers. We have used a larger test data set with more images for the groups
of gulls-and-terns, which is enabled by the fact that the scarcest classes in the original
data set are not included in these groups. In this way, we gain more robust threshold,
though the original distribution is retained, and the test data set still has only images
that the classifiers have never seen before. The number of images in these data set sets
are given in Table 13. In this Table, the pair of groups or classes is in the first column
from the left, so that the positive class is mentioned first. The following two columns
are the number of images of the positive class and the negative class, respectively. We
can calculate from the table that the class imbalance ratio for the most of the pairs of
the fourth level of the hierarchy (the species level) is almost balanced. The pair
{LBBG, GBBG} is the only significant exception having the class imbalanced ratio
of 1:3, and because this pair also has the weakest separability, poor result for classifi-
cation is expected in terms of TPR.

At the second level the commonest group, gray-backed-gulls is filtered out first
from the group of gulls-and-terns-2, and then subsequently the group blackheaded-
tern. Finally, the group black-backed-gulls is the only one left. Figure 13 shows the
histogram for the group of gray-backed-gulls. It becomes clear from the histogram
that the distributions of the positive class (gray-backed-gulls) and the negative class



Table 13. Number of images in the larger test data sets for gulls and terns.

Pair of Groups # Positive Class # Negative Class
{gray-backed-gulls, gulls-and-terns-2} 174 126

{blackheaded-tern, black-backed-gulls} 192 108

{HEGU, COGO} 92 82

{BHGU, CATE} 97 95

{LBBG, GBBG} 80 28

Fig. 13. Histogram for the group gray-backed-gulls.

(gulls-and-tern-2) are overlapped, and that given we must make a choice for a suita-
ble threshold while keeping in mind the terms of the environmental license. There are
two choices for the threshold: 0.6000 with one FP, and 0.7590 with two FNs. We
must choose 0.7590 even though it means weaker general performance for the hierar-
chical classifier. This is because we do not want any member of the class LBBG mis-
classified on the second level. As result of applying this threshold, there will be two
images of the group gray-backed-gulls misclassified as gulls-and-terns-2.

    Species level classification is reached on the fourth (third for gray-backed gulls)
level of the hierarchical classifiers. This includes pairs of classes with the weakest
separability: {HEGU, COGU}, and {LBBG, GBBG}. The overlap of the distributions
of the positive and the negative classes are illustrated in Fig. 14 and Fig. 15. The class



HEGU is the positive class in Fig. 14, and the class COGU is the negative class. The
class LBBG is the positive class in Fig. 15, and the class GBBG is the negative class.
The best value for a threshold for separating the HEGU from COGU, in terms of clas-
sifier performance, is 0.2134. This means zero FP, but eleven FNs, i.e., eleven images
of herring gulls will be misclassified as common gulls. Classification of the pair
{BHGU, CATE} is straightforward owing to the fact that with the chosen threshold it
has the number of FNs and FPs equal to zero. See Table 14 for thresholds for the
groups of gulls and terns. The best option for a threshold of the class LBBG is 0.9993
when the number of FNs is 12. Algorithm 3 shows the classification process for the
group of gulls-and-terns-1. Five new pseudo-classes are defined in this algorithm:
gray-backed gull (GBGU, either the herring gull or the common gull), black-headed
(BHTE, either the black-headed gull or tern species), black-backed gull (BBGU, ei-
ther the lesser black-backed of the great black-backed gull), non-gray-backed-gull
(NGGU, either BHTE or BBGU), and unidentified gull or tern (UNGU).

Fig. 14. Histogram for the class HEGU (herring gull).

Table 14. Thresholds applied to the pair of groups of gull and tern species.

Class Label Threshold # FNs # FPs
{gray-backed-gulls, gulls-and-terns-2} 0.7590 2 0
{blackheaded-tern, black-backed-gulls} 0.2524 0 0

{HEGU, COGO} 0.2134 11 0
{BHGU, CATE} 0.8124 0 0
{LBBG, GBBG} 0.9993 12 0



Fig. 15. Histogram for the class LBBG (lesser black-backed gull).

6 Results

Results for comparing the classifiers are viewed through generalization. The hybrid
of hierarchical and cascaded model achieved average performance of 0.9460 (TPR).
The reference classifiers have average TPRs as follows: for the imbalanced reference
classifier (IMBRC), 0.8195 and for the balanced reference classifier (BRC), 0.8307,
respectively. The total number of misclassification for the hybrid model was 16. This
number for the reference classifiers was 45 for the IMBRC, and 71 for the BRC. Av-
erage precision for the hybrid model was 0.9619. Average precision for the IMBRC
was 0.8809, and for the BRC 0.7919. TPRs for the top-level groups and the class
LBBG are given in Table 15. The reference classifiers were trained on ungrouped
classes, therefore the numbers for TPRs of the groups have been averaged of the
numbers of those classes that the groups consist of.

Confusion matrix for the top-level groups is given in Table 16. This confusion ma-
trix also includes the pseudo-class UNBI. Naturally, the number of TPs are zero for
pseudo-classes, because these classes are only defined for failure of the classifiers.
Confusion matrix for the classes are given in two parts, because it is too big to fit in
the page. Table 17 presents the first part of the confusion matrix including the group
of waterfowl-1, i.e., the classes: LOSP, GRCO, COEI, COGO, VESC, and RBME.
This confusion matrix also includes the pseudo-classes: UNSW, and UNWF. One test
image of GRCO is presented in the top-level confusion matrix, therefore the number
of test images for the class GRCO is 99



in the waterfowl confusion matrix. Table 18 presents the second part of the confusion
matrix including the group gulls-and-terns-1 (the classes: GBBG, HEGU, LBBG,
COGU, BHGU, and CATE). The five pseudo-classes defined in Algorithm 3 for gulls
and terns are omitted in order to save space, and because no image of any of the sub-
groups of the gulls-and-terns-1 was misclassified as any of these pseudo-classes.



Table 15. TPRs for the hybrid model and the reference classifiers.

Classifier WTEA SWSP waterfowl-1 gulls-and-terns-1 LBBG

Hybrid 1 1 0.9935 1 0.9231

Imbalanced reference 0.9773 0.4000 0.7629 0.7691 0.6923

Balanced reference 1 0.8000 0.8621 0.7762 0.8846

Table 16. Confusion matrix for the top-level groups of the hierarchy.

WTEA SWSP waterfowl-1 gulls-and-tern-1 UNBI

WTEA 44 0 0 0 0

SWSP 0 5 0 0 0

waterfowl-1 1 0 153 0 0

gulls-and-terns-1 0 0 0 236 0

UNBI 0 0 0 0 0

Table 17. Confusion matrix for the classes of the group waterfowl-1.

LOSP GRCO COEI COGO VESC RBME UNSW UNWF

LOSP 7 0 0 0 0 0 0 0

GRCO 0 98 0 1 0 0 0 0

COEI 0 0 16 0 0 0 1 0

COGO 0 0 0 19 0 1 1 0

VESC 0 0 0 0 3 0 1 0

RBME 0 0 0 0 0 4 1 0

UNSW 0 0 0 0 0 0 0 0

UNWF 0 0 0 0 0 0 0 0

Table 18. Confusion matrix for the classes of the group gulls-and-terns-1.

GBBG HEGU LBBG COGU BHGU CATE

GBBG 4 1 4 0 0 0

HEGU 0 66 0 6 0 0

LBBG 0 0 26 0 0 0

COGU 0 1 0 64 0 0

BHGU 0 0 0 0 32 0

CATE 0 0 0 1 0 31



    As the number of images in the test data set is 439, we must split this number be-
tween the three confusion matrices. The first confusion matrix is for all 439 images,
but because the classes WTEG and SWSP are only presented in this confusion matrix,
the sum of the number of test images in the other two confusion matrices is 439 - 50 =
389. The second confusion matrix presents results for 153 test images and the third
for 236 test images, so that the sum is 153 + 236 = 389 test images.

    Confusion matrix for the IMBRC is given in two tables: Table 19, and Table 20,
respectively. The class WTEA is included in both tables, because there are FPs and/or
FNs for it in the two tables. However, the number of TPs for the class WTEA is only
given in the first table. The same test data set, as with the hybrid model, has been used
when the reference classifiers were tested. The total number of images, 439, is again
divided into two tables. The first table covers 197 test images and the second table
covers 242 test images.

    Confusion matrix for the BRC is also given in two tables: Table 21, and Table 22,
respectively. There are no FPs or FNs for the class of WTEA in the second confusion
matrix, so the class can be omitted from this table.

Table 19. Confusion matrix for the imbalanced reference classifier, part one.

WTEA LOSP GRCO COEI COGO VESC RBME
WTEA 43 0 0 0 0 0 0

LOSP 0 6 0 0 1 0 0

GRCO 2 0 97 0 1 0 0

COEI 0 0 0 17 0 0 0

COGO 1 0 0 1 19 0 0

VESC 0 0 0 1 0 3 0

RBME 0 0 0 0 0 0 5

    The results for the modified CNN models compared to the original CNN model are
given in Table 23. All three models were trained on the same augmented data set,
which only consisted of the images from the group of black-backed gull. These mod-
els were tested as single classifiers. There are TPRs for both training and generaliza-
tion (tested on images that the classifier has never seen before) in the Table. The first
modified model had four convolution layers, and the second had five convolution
layers. The models were tested only on the group of black-backed gull in these tests.



Table 20. Confusion matrix for the imbalanced reference classifier, part two.

WTEA SWSP GBBG HEGU LBBG COGU BHGU CATE

WTEA - 0 0 0 0 1 0 0

SWSP 0 2 0 2 0 1 0 0

GBBG 1 0 3 2 2 1 0 0

HEGU 1 0 0 67 0 4 0 0

LBBG 0 0 4 2 18 1 1 0

COGU 0 1 0 8 0 56 0 0

BHGU 0 0 0 0 1 0 30 1

CATE 0 0 0 1 0 1 3 27

Table 21. Confusion matrix for the balanced reference classifier, part one.

WTEA LOSP GRCO COEI COGO VESC RBME
WTEA 44 0 0 0 0 0 0

LOSP 0 6 0 0 1 0 0

GRCO 4 1 91 1 1 2 0

COEI 0 0 0 16 0 1 0

COGO 0 0 2 1 15 2 1

VESC 0 0 0 1 0 3 0

RBME 0 0 0 0 0 0 5

Table 22. Confusion matrix for the balanced reference classifier, part two.

SWSP GBBG HEGU LBBG COGU BHGU CATE

SWSP 4 0 0 0 1 0 0

GBBG 0 5 0 4 0 0 0

HEGU 1 0 48 4 18 0 1

LBBG 0 2 0 23 0 1 0

COGU 0 1 10 1 52 1 0

BHGU 0 0 0 1 2 28 1

CATE 0 0 1 0 3 0 28



Table 23. TPRs for the modified CNN models compared to the original CNN model.

Model Training Generalization
Modified 1 0.9977 0.8384

Modified 2 0.9827 0.7464
Original 0.9989 0.8597

7 Discussion

The tests showed that the hybrid model is significantly better, in terms of perfor-
mance, than the reference classifiers. The only problematic class, in terms of the envi-
ronmental license, is the LBBG. Even though it had the number of FNs zero in the
test for the hybrid model, the number of FNs was 12 in the test for the gulls and terns
only. The number of test images in the latter test was larger, and this gives insight into
real-world implementation. The number of possible FPs is not significant in this con-
text, because it would just mean that other gull species, more likely great black-
backed gulls, are misclassified as LBBG. Therefore, it is advisable to combine the
classes LBBG and GBBG into a single class, i.e., not classify the group black-backed-
gulls any further.

The BRC performed better than the IMBRC, in terms of TPR. However, the num-
ber of misclassification is 71 for the BRC and 45 for the IMBRC. The difference is
explained by the better average precision of the IMBRC. Precision increases as the
number of FPs decreases, and TPR increases as the number of FNs decreases. This
means that TPR is more significant metric than precision in our context, and thus the
BRC would be the second choice after the hybrid model. The IMBRC showed poor
performance even though it was trained on larger data set (6.45 * 106 versus 8.66 *
105) than the BRC. This implies that straightforward use of a single classifier on an
imbalanced data set gives poor performance in terms of TPR. This result is based on
relatively low number of data examples, which is often the case in real-world applica-
tion, but this method could perform better when trained on significantly larger train-
ing data set. However, if precision is an important criterion, then this method may be
considered for real-world usage.

The top-level group has the number of FPs equal to one in its confusion matrix
(Table 16). This FP is a misclassified GRCO as WTEA. This is, of course, a FN for
the class GRCO. However, this is acceptable as no WTEA is misclassified, and thus
the number of FNs for the class WTEA is zero. The group waterfowl-1 also shows
good results, and there are only five misclassification. It seems that grouping the orig-
inal classes is useful approach to this kind of real-world classification problem. By
grouping, you can confine the most difficult classification problem to the one group
or even just to one subgroup. This approach indicates where the challenge lies. In this



context the challenge are the groups of gray-backed-gulls and black-backed-gulls,
respectively. The bird species that these groups consist of are very similar in terms of
morphology. This leads to a conclusion (assessed by human eye) that the overlapped
area of the classification boundary is clearly wide for both groups. This suggests that
significant increase of classification performance can be achieved only by collecting
more images of these groups.

Surprisingly, the modified CNN models with architecture of more than three con-
volution layers, did not perform better than the original CNN model. This implies that
the original model, with the architecture of three convolution layers, is capable to
extract all relevant features from the training images, and additional convolution lay-
ers cannot adduce any more information.

The measured performance of the image classification has been obtained without
using the parameters supplied by the radar. Those parameters, especially the speed of
an object, provide additional and relevant a-priori knowledge to the system. It is
measured by the radar system that there are significant differences in flight speed
between the groups of waterfowl-1 and gulls-and-terns-1, and this can be utilized to
turn a misclassification into the correct one.
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