
Jaakko Laitinen

SCALABLE KVAZAAR

Implementing HEVC Scalability Extension in Kvazaar

Open-Source Encoder

Master of Science Thesis

Faculty of Information Technology and Communication Sciences

Examiners: Assoc. Prof. Jarno Vanne

Prof. Timo D. Hämäläinen

November 2020

i

ABSTRACT

Jaakko Laitinen: Scalable Kvazaar — Implementing HEVC Scalability Extension in Kvazaar Open-
Source Encoder
Master of Science Thesis
Tampere University
Master’s Programme in Information Technology
November 2020

Global internet video traffic is predicted to keep increasing year after year, making up 82% of
all internet traffic by the year 2022. This increase is accelerated by the proliferation of different
media devices and higher video resolutions. To address the explosive growth of video traffic, more
efficient video compression methods are needed. To this end, ITU-T VCEG and ISO/IEC MPEG
defined the High Efficiency Video Coding (HEVC) standard that improves compression efficiency
by roughly 50% for the same visual quality over the previous video coding standards. The HEVC
standard also includes Scalable High Efficiency Video Coding (SHVC) — the scalable extensions
of HEVC — for creating video streams that can adapt to changing network conditions and playback
devices.

SHVC extends the functionality of HEVC by creating an encoded video that can be made up of
several versions of the same input with different quality and video parameters. It uses an inter-layer
reference (ILR) mechanism to improve coding efficiency by taking advantage of the redundancy
between the different video quality versions. The types of scalability discussed in this thesis are
quality and spatial scalability; they can be used to provide the user with videos containing multiple
quality and resolution levels, respectively.

At the time of writing, no open-source solutions are available for real-time SHVC encoding. To
remedy this, the Scalable Kvazaar SHVC encoder is proposed in this work. It is based on the
open-source Kvazaar HEVC encoder, and it implements quality and spatial scalability function-
ality in a practical encoder. This thesis proposes three main optimization approaches to accel-
erate Scalable Kvazaar. The first two approaches involve integrating inter-layer processing with
wavefront parallel processing (WPP) and overlapped wavefront (OWF) parallelization. The third
approach employs single instruction, multiple data (SIMD) optimizations on the picture upscaling
functions. Through these new SHVC specific optimizations, Scalable Kvazaar aims to achieve
real-time coding speeds.

The performance of Scalable Kvazaar was measured with three test cases. In the quality
scalability case, Scalable Kvazaar is able to reduce bit rate by 16.16% on average, and it achieves
a 1.20× speedup over simulcast coding, where each quality version is encoded separately. The
respective values for 2× spatial scalability are 13.12% and 1.03×. Finally, when using a 1.5×
scaling ratio, the bit rate reduction is 23.19% and the speedup is 1.04×. As for absolute coding
speed, Scalable Kvazaar was able to encode 1080p video at over 40 frames per second in all test
cases, thereby hitting the real-time encoding target.

Keywords: HEVC, SHVC, Kvazaar, Scalable Kvazaar, Open-source

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Jaakko Laitinen: Skaalautuva Kvazaar — HEVC:n skaalautuvan lisäosan toteuttaminen avoimen
lähdekoodin Kvazaar-videonpakkausohjelmistoon
Diplomityö
Tampereen yliopisto
Tietotekniikan DI-ohjelma
Marraskuu 2020

Maailman internet-liikenne koostuu enenemässä määrin videosta, jonka ennustetaan saavut-
tavan 82% osuuden vuoteen 2022 mennessä. Kasvua vauhdittavat medialaitteiden videoreso-
luutioiden kasvu sekä video-ominaisuuksien monipuolistuminen. ITU-T VCEG ja ISO/IEC ovat
vastanneet tähän videoliikenteen kasvuun määrittelemällä High Efficiency Video Coding (HEVC)
videonpakkausstandardin, joka pienentää videon kokoa noin 50% samalla kuvanlaadulla edelli-
siin videonpakkausstandardeihin verrattuna. HEVC-standardi sisältää myös tuen Scalable High
Efficiency Video Coding (SHVC) –lisäosalle, joka mahdollistaa koodattujen videoiden mukautumi-
sen muuttuviin verkon olosuhteisiin ja jopa eri tehoisille laitteille.

SHVC-pakattu video voi sisältää eri laaduilla ja resoluutioilla pakattuja versioita samasta vi-
deosta. SHVC käyttää hyödykseen versioiden välistä samankaltaisuutta, mikä mahdollistaa pa-
remman pakkaustehokkuuden saavuttamisen. Tässä työssä keskitytään pääasiassa laadun ja ku-
vakoon skaalautuvuuteen.

SHVC-pakkaukseen tarkoitettuja ohjelmistoja ei ole tällä hetkellä monia. Erityisesti reaaliaikai-
seen pakkaukseen kykeneviä avoimen lähdekoodin ohjelmistoja ei kirjoitushetkellä ole olemassa.
Tässä työssä esitellään SHVC-pakkaukseen kykenevä Scalable Kvazaar –niminen ohjelmisto. Se
pohjautuu avoimen lähdekoodin HEVC-videokooderiin nimeltä Kvazaar ja tukee kuvanlaadun se-
kä kuvakoon muuttamista. Tässä työssä esitetään kolme nopeutuskeinoa Scalable Kvazaarille.
Kaksi ensimmäistä keinoa liittävät skaalautuvuuden kuvansisäiseen rinnakkaiseen prosessoin-
tiin (WPP) ja kuvien väliseen rinnakkaiseen pakkaukseen (OWF). Kolmas keino optimoi kuvan
skaalaukseen käytettyjä funktioita vektorikäskyjen avulla (SIMD). Näiden uusien skaalautuvuuten
liittyvien optimointien avulla, Scalable Kvazaar pyrkii saavuttamaan reaaliaikaisen pakkauksen.

Scalable Kvazaarin pakkaustehokkuutta ja suorituskykyä on mitattu kolmessa eri testikokoon-
panossa, joissa verrokkina käytettiin Kvazaarin pakkaamia videoita. Kun ainoastaan versioiden
välistä laatua muutettiin, Scalable Kvazaar pienensi tiedostokokoa keskimäärin 16.16% ja saa-
vutti 1.20× nopeutuksen Kvazaariin verrattuna. Tarkasteltaessa kokoonpanoa, jossa versioiden
resoluutioiden välinen suhde oli 2×, vastaavat tulokset olivat 13.12% ja 1.03×. Resoluutioiden
suhteen ollessa 1.5×, tiedostokoko pieneni 23.19% ja pakkaus nopeutui 1.04× kertaiseksi. Ab-
soluuttista pakkausnopeutta tarkasteltaessa Scalable Kvazaar kykeni pakkaamaan 1080p videota
yli 40 kuvaa sekunnissa kaikissa testikokoonpanoissa saavuttaen reaaliaikaisen suorituskyvyn.

Avainsanat: HEVC, SHVC, Kvazaar, Skaalautuva Kvazaar, Avoimen lähdekoodin

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

PREFACE

This thesis was written as part of research conducted in the Laboratory of Pervasive

Computing at the late Tampere University of Technology and, more recently, in the unit of

Computing Sciences at the unified Tampere University.

I would like to thank my examiner and advisor Jarno Vanne for his guidance with this

thesis and for giving me the opportunity to work on this project and be a part of Ultra

Video Group. In addition, I would also like to thank Marko Viitanen for helping with this

thesis. Finally, I would like to thank everyone at Ultra Video Group for making it such a

great place to work.

A special thank you to my parents for their support and assistance during my studies as

well as for their help getting me this far.

In Tampere, 1st November 2020

Jaakko Laitinen

iv

CONTENTS

1 Introduction . 1

2 High Efficiency Video Coding (HEVC) . 3

2.1 HEVC Standard . 3

2.1.1 Picture Format . 4

2.1.2 Block Partitioning Structure . 5

2.1.3 Intra and Inter Prediction . 7

2.1.4 Transform and Quantization . 8

2.1.5 Loop Filtering . 9

2.1.6 HEVC Bitstream . 9

2.1.7 Profiles, Tiers, and Levels . 10

2.2 Scalable High Efficiency Video Coding (SHVC) 10

2.2.1 Motivation for SHVC Coding . 11

2.2.2 Scalability . 12

2.2.3 SNR Scalability . 13

2.2.4 Spatial Scalability . 13

2.2.5 Other Scalability Features . 17

2.2.6 SHVC Bitstream . 17

2.3 HEVC and SHVC Test Models . 18

3 Research and Test Methodologies . 19

3.1 Research Methods . 19

3.2 Test Methods . 20

3.2.1 Performance Metrics . 20

3.2.2 Test Platform . 21

3.2.3 Test Parameters . 22

4 Design and Implementation of Scalable Kvazaar Encoder 25

4.1 Kvazaar HEVC Encoder . 25

4.1.1 Overall Architecture . 25

4.1.2 Coding Scheme . 27

4.1.3 Parallelization . 30

4.2 SHVC Implementation . 31

4.2.1 Overview . 31

4.2.2 Architectural Design . 33

4.2.3 Encoding Flow . 35

4.2.4 Optimizations . 37

v

4.2.5 Scaler Library . 38

5 Scalability Testing Framework . 42

5.1 TestInstances-package . 42

5.2 TestSuite-package . 45

5.2.1 TestSuite-module . 45

5.2.2 SummaryFactory-module . 46

5.2.3 TestUtils-module . 48

5.3 tests-package . 51

6 Performance Evaluation . 52

6.1 Performance Results . 52

6.1.1 Coding Performance Analysis . 52

6.1.2 Coding Complexity Analysis . 54

6.2 SHVC Parameter-Space Exploration . 56

7 Conclusion . 59

7.1 Main Contributions . 59

7.2 Future Work . 60

References . 62

Appendix A Resampling Filter Coefficients . 67

Appendix B BD-rate Curves . 72

vi

LIST OF FIGURES

2.1 HEVC encoding process. 4

2.2 Visualization of a YUV image. 5

2.3 Example CTU division. 6

3.1 Example simulcast and scalable encoding configurations. 23

4.1 Shared Kvazaar and Scalable Kvazaar architecture. 26

4.2 Simplified Kvazaar encoding flow. 28

4.3 Example Scalable Kvazaar dependency diagram. 30

4.4 High-level flow of Scalable Kvazaar encoding. 32

4.5 Simplified Scalable Kvazaar encoding flow. 40

4.6 An overview of the AVX2 optimized upsampling process. 41

5.1 The package structure of NAVETTA testing framework. 43

5.2 Summary type definition hierarchy. 47

6.1 Parameter-space exploration of scalable encoding. 57

B.1 Result curves for SNR scalability with ∆QP= −6. 73

B.2 Result curves for SNR scalability with ∆QP= −4. 74

B.3 Result curves for 2× spatial scalability with ∆QP= 0. 76

B.4 Result curves for 2× spatial scalability with ∆QP= 2. 77

B.5 Result curves for 1.5× spatial scalability with ∆QP= 0. 78

B.6 Result curves for 1.5× spatial scalability with ∆QP= 2. 79

vii

LIST OF TABLES

2.1 Main profile level limits. 11

3.1 Test sequence information. 22

3.2 QP ranges and ∆QP values used in tests. 23

3.3 Simulcast and Scalable Kvazaar parameters. 24

3.4 Parameters of the ultrafast preset. 24

6.1 Coding gain and speedup of Scalable Kvazaar (SNR). 53

6.2 Coding gain and speedup of SHM (SNR). 53

6.3 Coding gain and speedup of Scalable Kvazaar (spatial). 54

6.4 Coding gain and speedup of SHM (spatial). 55

7.1 Average results for Scalable Kvazaar and SHM. 60

7.2 Absolute encoding speed results for Scalable Kvazaar. 60

A.1 Interpolation filter coefficients for upsampling. 67

A.2 Downsampling filter coefficients. 68

viii

LIST OF ALGORITHMS

2.1 Basic algorithm for texture resampling. 15

2.2 Basic algorithm for motion field resampling. 16

ix

LIST OF SYMBOLS AND ABBREVIATIONS

4K designates a class of resolutions with roughly 4,000 horizontal pix-

els, depending on the specific standard

AMP asymmetric motion partitioning

AMVP advanced motion vector prediction

API application programming interface

AVX Advanced Vector Extensions; an x86 instruction set extension, pro-

viding CPU-level support for SIMD operations

B number of bits used to represent a pixel value

BD-rate Bjøntegaard delta bit rate; a metric for calculating video coding ef-

ficiency using piece-wise cubic interpolation to compare bit rate

curves

BL base layer

C an imperative programming language with a long history dating

back to the 1970s

CABAC context-based adaptive binary arithmetic coding

CDN content delivery network

CLI command-line interface

C++ a successor to the C programming language that adds object-

oriented and other high-level features

CPU central processing unit; a component in modern computers for per-

forming various computational operations

CTU coding tree unit

CU coding unit

DCT discrete cosine transform

DPB decoded picture buffer

∆QP delta value for QP used in SNR scalability

EL enhancement layer

FPS frames per second

GOP group of pictures

x

H height of a picture P

HD high-definition

HEVC High Efficiency Video Coding

HM HEVC Test Model

IEC International Electrotechnical Commission (Commission élec-

trotechnique internationale in French)

ILR inter-layer reference

ISO International Organization for Standardization

ITU-T International Telecommunication Union, standardization sector

(Union Internationale des Télécommunications in French)

LID layer ID

LUT lookup table

MPEG Moving Picture Experts Group

MSE mean squared error

NALU network abstraction layer unit

NAVETTA Not Another Video Encoder Tester Tool Alternative; a Python based

framework for testing (scalable) video encoding software

OWF overlapped wavefront

P matrix representing the pixel values of an input picture of size

W×H

pxy value of the element in the xth column and yth row of the P matrix

POC picture order count

P ′ matrix representing the pixel values of a reconstructed picture of

size W×H

p′xy value of the element in the xth column and yth row of the P ′ matrix

PPS picture parameter set

P ′
U matrix representing the pixel values of the U channel of a recon-

structed picture

P ′
V matrix representing the pixel values of the V channel of a recon-

structed picture

P ′
Y matrix representing the pixel values of the Y channel of a recon-

structed picture

PSNR peak signal-to-noise ratio

xi

PSNRYUV weighted average PSNR value of all three color channels of an

YCbCr picture

PU prediction unit

PU matrix representing the pixel values of the U channel of an input

picture

PV matrix representing the pixel values of the V channel of an input

picture

PY matrix representing the pixel values of the Y channel of an input

picture

QP quantization parameter

RGB a color model that divides colors into three parts (red, green, blue)

that, when added together, form the actual color

RL reference layer

SAO sample adaptive offset

SHM SHVC Test Model

SHVC Scalable High Efficiency Video Coding

SIMD single instruction, multiple data

SMP symmetric motion partitioning

SNR signal-to-noise ratio

SPS sequence parameter set

SSIM structural similarity index measure; an objective image distortion

metric designed to correlate well with subjective quality

TID temporal ID

TMVP temporal motion vector prediction

TU transform unit

TV also known as television; a device for viewing moving picture

content, often transmitted over ground cables or using radio-

frequencies

U the blue difference chroma component of a YCbCr picture (i.e., Cb)

UHD ultra-high-definition

V the red difference chroma component of a YCbCr picture (i.e., Cr)

VCEG Video Coding Experts Group

VOD video-on-demand

xii

VPS video parameter set

VVC Versitile Video Coding

W width of a picture P

WPP wavefront parallel processing

Y luma (or luminance) component of a YCbCr picture

YCbCr a color space that defines three color components: Y, U (also

called Cb), and V (also called Cr)

YUV a (file) format for representing YCbCr data

1

1 INTRODUCTION

Global video traffic on the internet is predicted to increase four-fold between the years

2017 and 2022, making up 82% of all internet traffic in 2022 [1]. In addition, the trend

seems to be towards ultra-high-definition (UHD) [2] video, with two-thirds of all connected

TVs supporting UHD content by 2023 [3]. Furthermore, various mobile devices are be-

coming more popular for viewing video content, and the number of these devices is pre-

dicted to grow around 6% annually.

To combat the increasing demand for high resolution video, the ITU-T VCEG and ISO/IEC

MPEG standardization organizations drafted a video coding standard, for (lossy) video

compression, that was first released as a twin text in 2013 [4]. This standard is called

the High Efficiency Video Coding (HEVC) standard and is the latest mainstream video

coding standard from ITU-T and ISO/IEC. It aims to improve coding efficiency by 50%

when compared with previous standards [5]. Subsequent versions of the HEVC standard

have added various extensions to the base standard [6]. This thesis focuses on the

Scalable High Efficiency Video Coding (SHVC) [7] extension that was finalized in 2014.

SHVC addresses the need to support various viewing devices and resolutions.

SHVC enables encoding video with multiple layers of different quality levels. These lay-

ers can have different video parameters, usually such that higher layers represent higher

quality video. The lowest quality layer is referred to as the base layer (BL) and is decod-

able with a standard HEVC decoder. Higher layers, referred to as enhancement layers

(ELs), provide better quality versions of the video. They can use lower quality ELs and

the BL as an inter-layer reference (ILR). This improves coding efficiency over that of

simulcast coding, where separate video sequences are encoded for each quality setting

represented by the BL and ELs, respectively. The main forms of scalability, i.e., the video

parameters that can be changed between layers in SHVC are:

Quality scalability layers are encoded with different quality settings

Spatial scalability layers have different spatial resolutions

Bit depth scalability layers use different numbers of bits to represent a pixel

Color gamut scalability layers use different color spaces

Hybrid codec scalability the BL can be a non-HEVC video sequence

2

In addition, temporal scalability, for changing frame rate, is a scalability related feature,

but it was already included in the base HEVC standard. As an improvement over previous

scalable coding standards, SHVC was designed to only require high-level changes to a

single-layer HEVC encoder, so as to minimize implementation overhead [7].

The main use cases of SHVC include video-on-demand (VOD) [8], broadcasting [9], and

teleconferencing [10] where mobile devices may not be able to decode video at the high-

est quality. Media-aware network elements can be used to reduce bandwidth by dropping

(higher) ELs and only transmitting the BL and possibly some (lower) ELs. SHVC can also

improve error resiliency by providing the BL with a reliable, but small throughput, channel

and the EL with a less reliable, high throughput, channel [9].

For HEVC, many practical encoder implementations exist; noteworthy open-source HEVC

encoders include Kvazaar [11], x265 [12], SVT-HEVC Encoder [13], and Turing codec

[14]. SHVC, on the other hand, lacks practical open-source encoders. It does, however,

have a reference encoder (SHVC Test Model (SHM) [15]), but it targets the best pos-

sible coding efficiency, leading to a prohibitively high computational complexity, making

it only usable in research and conformance testing. Parois et al. [16] have presented a

closed-source real-time SHVC encoder, based on a proprietary solution, making its wider

adaptation difficult. On the other hand, an efficient open-source SHVC decoder imple-

mentation has been presented by Hamidouche et al. [17].

This thesis seeks to solve the lack of practical SHVC encoders by presenting an open-

source implementation that conforms to the HEVC scalability extension; specifically, the

targeted scalability features are quality and spatial scalability. The proposed SHVC en-

coder has been built on top of Kvazaar — an open-source HEVC encoder — and is

referred to as Scalable Kvazaar [18] with the latest version of its source code and issue

tracker available on github [19]. The SHVC encoding functionality in Scalable Kvazaar

has been optimized with the aim of achieving real-time encoding speeds. Finally, the per-

formance of Scalable Kvazaar has been measured using common methods and metrics

from the field of video compression. Moreover, the results are validated by comparing

them to the respective SHM results. As a bonus, a more thorough examination of SHVC,

made possible by Scalable Kvazaar, is carried out. To help measure the performance of

the aforementioned encoders, a testing framework, for scalable encoding, is additionally

presented.

Chapter 2 goes over the basic principles behind HEVC and SHVC. Chapter 3 presents

the research and testing methodology used throughout the rest of this thesis. In Chapter

4, Scalable Kvazaar is introduced, including an overview of Kvazaar. In order to measure

the performance of scalable encoding, a testing framework is presented in Chapter 5.

Chapter 6 goes over the results of the various tests performed on Scalable Kvazaar and

SHM. Finally, Chapter 7 concludes the paper and discusses possible future work.

3

2 HIGH EFFICIENCY VIDEO CODING (HEVC)

HEVC is a video coding standard for (lossy) video compression released as a twin text

by ITU-T VCEG and the ISO/IEC MPEG standardization organizations [4]. The base

standard [5] has been supplemented with various extensions [6], of which, SHVC [7] is

the main focus for this thesis.

This chapter is divided into three parts. In Section 2.1, the base standard and its ba-

sic operating principles are introduced. Next, Section 2.2 goes over new coding tools

introduced in SHVC. Finally, Section 2.3 briefly covers the reference implementations of

HEVC and SHVC as well as their reported performance figures.

2.1 HEVC Standard

The HEVC standard employs a block-based hybrid video coding1 scheme similarly to its

predecessors [20]. HEVC is mainly designed for lossy video compression2, but a lossless

coding mode is still defined.

The high-level flow of HEVC encoding is depicted in Figure 2.1. The encoding process

starts by dividing the input picture — format given in Section 2.1.1 — into equal sized

blocks (see Section 2.1.2). Next, each block is passed to intra-/inter-picture prediction

(defined in Section 2.1.3). A residual signal is calculated by taking the difference between

the input picture and the result from the intra-/inter-picture prediction step. The residual

is then passed to the transform and quantization step (described in Section 2.1.4). A

reconstructed picture is generated using the inverse3 operations of the previous steps.

Some additional loop filter operations (Section 2.1.5) may be applied to the reconstructed

picture before passing it to the decoded picture buffer (DPB), that holds reconstructed

pictures for later use. Finally, information from the other steps and specified encoding

parameters are used to generate the HEVC bitstream (described in Section 2.1.6 and

2.1.7).

1 A video coding method that uses intra-/inter-picture prediction combined with 2-D transformation of the
prediction residuals on uniform blocks of the input video.

2 In lossy video coding, some information is discarded to achieve better compression, thus resulting in a
loss of detail/quality in the reconstructed video.

3 Here, inverse is used in the sense of the operation a decoder would perform on the results of the initial
encoding operation.

4

Motion Information

Motion
Estimation

(Inter-Picture
Search)

Motion
Compensation
(Inter-Picture

prediction)

Intra-Picture
Estimation

(Intra-Picture
Search)

Intra-Picture
Prediction

Input
Picture
Frames

Transform,
Scaling &

Quantization

Scaling &
Inverse

Transform
Bitstream

Generation &
CABACDeblock &

SAO Filters

|

Residual

Reconstruction

Intra Prediction
Information

Quantized Transform Coefficients

For Each CTU

Output
Bitstream

Decoded
Video

Output

Configuration &
Encoding

Parameters

Encoder specific
process

Encoder/Decoder
shared process

Inter Layer
Processing

Figure 2.1. Overview of the HEVC encoding process, including the SHVC specific inter-
layer processing step.

2.1.1 Picture Format

A picture is commonly represented by a W ×H matrix of pixel values, with W represent-

ing the width of the picture and H the height. Moreover, a picture is usually made up of

three color channels, each with their own matrices for the respective color’s pixel values.

A series of these pictures then forms a video sequence. In a picture, each pixel is repre-

sented by a fixed number of bits. This number is generally referred to as the bit depth of

5

Figure 2.2. Visualization of a YUV image.

the picture. In addition, pictures have an associated color space/gamut that determines

how pixel values are mapped to the final colors.

Instead of the more common RGB based picture format, HEVC uses YCbCr — also

referred to as YUV — as its input picture format [5]. YUV is made up of a luma (i.e.,

brightness) component (Y) and two chroma (i.e., color) components (U and V). The Y-

component can be calculated from the weighted sum of the red, green, and blue color sig-

nals, whereas the U-/V-components are computed as the difference between the red/blue

signal and the luminance signal [21].

As the human visual system is more sensitive to brightness than to color, HEVC opts for

a 4:2:0 sampling structure by default [5]. With 4:2:0 sampling, each chroma component

has one fourth of the samples compared to luma, i.e., the chroma resolution is halved in

both the vertical and horizontal direction. Figure 2.2 shows a visualization of the 4:2:0

sampled YUV image.

2.1.2 Block Partitioning Structure

The basic processing unit in HEVC is the coding tree unit (CTU). Each input picture is

divided into equal sized square blocks (i.e., CTUs) and each of the blocks are processed

separately. HEVC supports CTU sizes of 16 × 16, 32 × 32, and 64 × 64 pixels; the

CTU size is signaled in the bitstream. The CTU can recursively be divided into coding

6

Figure 2.3. CTU subdivision with transform splits (dashed lines) and examples of AMP
(bottom left quadrant) and SMP (top left quadrant) blocks.

units (CUs) to a minimum size of 8 × 8 pixels. The division into CUs follows a quadtree4

structure. This division forms the block structure for the CTU. Each leaf CU is additionally

used as the root for prediction units (PUs) (see Sections 2.1.3) and transform units (TUs)

(see Section 2.1.4). An example of CTU division is shown in Figure 2.3. [5]

Moving to a higher level of abstraction, the CTUs of a coded picture can be collected

into high-level structures called slices. Slices can contain a varying number of CTUs

taken in raster scan5 order. In other words, a coded picture can be made up of one or

several slices. Each slice can be decoded independently from each other slice, but at

the cost of coding efficiency. Nonetheless, slices can improve error resiliency, since other

parts of the frame can still be decoded even if some slices are missing. Furthermore,

network transmission usually imposes a maximum packet size that can be circumvented

by dividing the frame into smaller slices. [5]

4 A tree structure, where a parent node has four child nodes.
5 A 2-D array or structure is processed by first iterating over all elements of a horizontal row before

moving to the next row.

7

On top of slices, HEVC adds two special high-level structures — tiles and wavefront

rows (associated with wavefront parallel processing (WPP) [22]) — that provide a slightly

different kind of encapsulation, compared to slices. Tiles and WPP are directed towards

parallel processing and generally result in worse compression. Tiles allow dividing the

CTUs into larger rectangular pieces that can be encoded independently. WPP, on the

other hand, allows encoding each CTU row separately, with the restriction that the top

CTU and the top right diagonal CTU of the preceding CTU row need to be encoded

before encoding can start on the new row. [5]

2.1.3 Intra and Inter Prediction

HEVC employs picture prediction to exploit the spatial and temporal redundancy of the

input pictures. Picture prediction can be divided into intra-picture prediction6 and inter-

picture prediction7. In the CTU block structure, a leaf CU is signaled to use either intra or

inter prediction, depending on the final coding mode decisions [5].

Intra prediction uses edge samples from already processed and decoded neighboring

CUs. The standard defines a total of 35 modes for intra prediction. Out of the 35 in-

tra modes, 33 are angular modes that allow copying the edge samples, from a specific

direction (i.e., angle), to the block being predicted. The two remaining modes, on the

other hand, allow assigning the average value of the edge samples to the whole block

(DC mode) or the average of two surfaces, linearly interpolated using edge samples and

a corner value (planar mode). Additionally, some smoothing operations and filters are

applied in special cases to remove large discontinuities between blocks. [5]

Inter prediction allows copying pixel data from reconstructed pictures in the DPB. Each

picture has two designated reference lists, containing reference pictures it may use for

inter prediction; one list is generally used for pictures that come before the current one, in

viewing order, and the other for pictures that come after it. Each inter predicted block has

a motion vector, a reference picture index, and a reference list index associated with it [5].

The motion vector represents an offset from the current block’s location to the block of

pixels that should be copied from the reference picture. HEVC support fractional motion

vectors, for increased accuracy, when trying to match blocks, where fractional samples,

down to quarter sample positions, are generated using interpolation filters. The method

for deriving motion information is left open for the encoder to decide, but usually some

sort of search algorithm is used.

To minimize redundant information in motion vector signaling, HEVC introduces the merge

mode and advanced motion vector prediction (AMVP). Merge mode allows deriving a

block’s motion information from neighboring blocks; the neighboring merge block is se-

6 May also be referred to as intra-picture estimation and intra-picture prediction for the inverse process.
7 May also be referred to as motion estimation and motion compensation for the inverse process.

8

lected from a set list of merge candidate, with five possible spatial candidates and two

temporal candidates. If merge mode is not used, a motion vector predictor is chosen

from the same set as the merge candidates. With AMVP, only the difference between the

current block’s motion vector and the motion vector predictor’s motion vector is coded to

the bitstream. [5]

The temporal candidates in merge mode or AMVP are a part of temporal motion vector

prediction (TMVP) [7]. It may be used by enabling TMVP in the bitstream and setting one

of the reference frames as the colocated TMVP reference picture that is then used to de-

rive the temporal candidates. Motion vectors from the colocated TMVP reference picture

may additionally need to be scaled, to account for the temporal differences, when used

as the merge candidate or motion vector predictor. TMVP uses the motion information8

of the reference picture in the candidate derivation process.

The chosen prediction mode is specified using a PU in the CTU block structure with leaf

CUs used as roots. The size of an intra predicted PU should match the root CU size.

However, if the size of the CU is 8 × 8 pixels, the PU may be split into four 4 × 4 blocks.

For inter predicted blocks, several split modes are available; the root CU may be split into

two PUs, either symmetrically (symmetric motion partitioning (SMP)) or asymmetrically

(asymmetric motion partitioning (AMP)), as seen in the bottom left and top left quadrants

of Figure 2.3. In addition to the SMP and AMP split modes, inter predicted blocks support

the same split modes as intra predicted blocks. [5]

2.1.4 Transform and Quantization

The transform step takes in the residual, i.e., the error/difference, between the input pic-

ture and the resulting prediction step reconstruction and applies a 2-D transform on it.

The transform uses approximations of scaled discrete cosine transform (DCT) [23] basis

functions. Additionally, the transform matrix coefficients are specified as integer values

[5]. To compress the transform results, quantization9 is applied. The strength of the quan-

tization is controlled using a quantization parameter (QP), that is allowed to range from 0

to 51 [5]. A higher QP generally results in better compression, as there are less distinct

values to encode, but at the cost of quality, since detail is lost in the quantization.

The transform and quantization step can be performed on block sizes ranging from 32×
32 to 4 × 4 pixels [5]. The block structure element used to represent transform and

quantization is the TU. It uses leaf CU as the root in the CTU quadtree and may be

further split until the minimum TU size of 4 × 4 pixels is reached. Figure 2.3 shows an

8 Motion vectors, reference picture indices, and other relevant information, derived by inter prediction for
each CU; can be referred to as the motion field.

9 Quantization refers to the process of limiting the input values to an output domain, that is usually smaller
than the input domain. Each input value is mapped to the closest value in the output domain.

9

example TU subdivision represented by the dashed line in the bottom right quadrant.

2.1.5 Loop Filtering

The HEVC standard defines two loop filters that can be applied to the final reconstructed

picture before it is stored in the DPB. The usage of the filters is signalled in the bitstream

and may be skipped entirely.

The first filter is the deblocking filter [24]. It aims to reduce the artefacts caused by the

block-based coding approach, especially visible at block boundaries. Deblocking only

needs to be applied on block borders, limiting the number of operations performed.

The second filter is sample adaptive offset (SAO) [25]. SAO is always applied after de-

blocking (if used) and, unlike deblocking, is done for all pixels. SAO further helps recon-

struct the original signals using statistical data, calculated by the encoder and transmitted

in the bitstream.

2.1.6 HEVC Bitstream

In the context of HEVC, bitstream is taken to mean the stream of data — output by the

encoder — that represents the coded input video and contains all necessary information

for a decoder to construct an approximation of the original input video. For the bitstream

to be decodable, it needs to conform to the specification defined in the HEVC standard

[4].

The basic building block of the bitstream is the network abstraction layer unit (NALU). All

other bitstream syntax elements are wrapped in a NALU. The usage of NALUs enables

bitstream manipulation, such as splicing and network transmission, without the need to

decode the whole bitstream; only the NALUs need to be parsed. A NALU is made up

of a NALU header and the actual payload in raw bytes, with some emulation prevention

bytes interspersed, as necessary, to avoid miss-parsing the NALU. The header contains

all relevant information about the payload data, such as the type of the payload. [4, 5]

Some of the more relevant syntax structure elements, that can be included in the NALU

payload, are:

Video parameter set (VPS) Includes information about the whole video encod-

ing process, in general. The information is mostly metadata in nature and lays a

foundation for including information used by various extensions [5, 6].

Sequence parameter set (SPS) Includes basic information about the video se-

quence being encoded, such as the size and bit depth of the video.

Picture parameter set (PPS) Includes information and encoding tool parame-

10

ters for a single picture of a video sequence.

Slice segment layer Contains the actual encoding information (block structure,

transform coefficients, etc.) for a given slice.

Other types of payloads are mostly for utility purposes or for including optional information.

One additional way HEVC tries to achieve better compression is context-based adaptive

binary arithmetic coding (CABAC). It is used to compress various syntax elements in

the bitstream. Through arithmetic coding10 [26, 27], CABAC removes redundancies in

the bit patterns of the bitstream, yielding a reduction in the final bitstream size. The

standard defines various contexts, to be used by CABAC, for different situations to allow

it to approximate the true distribution of the bits being encoded. The new contexts and

careful selection of how syntax elements are signaled and encoded by CABAC, result in

a better coding efficiency than the previous standard, despite still using the same core

CABAC algorithm [5, 28].

2.1.7 Profiles, Tiers, and Levels

HEVC can be used in a large variety of applications and use cases. To provide various

conformance points for encoders and decoders to target, the standard introduces the

concept of profiles, tiers, and levels [6]. These concepts improve interoperability between

applications, as decoders targeting certain capabilities are able to determine, based on

the profile, tier, and level, if it can decode a given bitstream. The profile, tier, and level of

a given HEVC bitstream is signaled in the VPS.

The profile defines a set of encoding tools that should be supported by a decoder con-

forming to the specified profile. The ‘Main’ profile is the basic profile for 8 bit pixel depth

and 4:2:0 chroma sampling, but profiles for other depths, chroma samplings, and use

cases are also defined in the specification [4]. The tier is used to distinguish between

normal and demanding applications; ‘Main Tier’ for the former and ‘High Tier’ for the

latter. Finally, the level gives a fine grained selection, together with the tier, of certain

bitstream properties. Table 2.1 shows the level and tier limits for the ‘Main’ profile. The

table shows the maximum supported picture sizes for each level and the bit rate limits etc.

[6]

2.2 Scalable High Efficiency Video Coding (SHVC)

SHVC was added to the ITU-T/ISO/IEC recommendation [4] in 2015. It introduced sev-

eral features to the base standard, including signal-to-noise ratio (SNR), spatial, color

10 A technique for compressing data using the underlying propability distribution of the data, effectively
allowing fractional bits to achieve a near optimal compression, i.e., aproaching the limit set by entropy of
the data.

11

Table 2.1. Conformance limits for the HEVC ‘Main’ profile [4, 6].

Max Luma Picture Max Luma Sample Bit Rate (kbits/s) Min Comp. Ratio

Level Size (samples) Rate (samples/s) Main Tier High Tier Main Tier High Tier

1 36864 552960 128 - 2 2

2 122880 3686400 1500 - 2 2

2.1 245760 7372800 3000 - 2 2

3 552960 16588800 6000 - 2 2

3.1 983040 33177600 10000 - 2 2

4 2228224 66846720 12000 30000 4 4

4.1 2228224 133693440 20000 50000 4 4

5 8912896 267386880 25000 100000 6 4

5.1 8912896 534773760 40000 160000 8 4

5.2 8912896 1069547520 60000 240000 8 4

6 35651584 1069547520 60000 240000 8 4

6.1 35651584 2139095040 120000 480000 8 4

6.2 35651584 4278190080 240000 800000 6 4

gamut, bit depth, and hybrid codec scalability. An additional scalability feature, temporal

scalability, was already included in the base standard but is covered in more detail in Sec-

tion 2.2.5. The main idea behind SHVC is creating adaptable bitstreams that incorporate

several different quality levels. Efficient coding is achieved by exploiting inter-layer redun-

dancy. The different scalability features define the video parameters that can be changed

between layers. The lowest quality layer is usually referred to as the BL, and higher layers

are called ELs.

Section 2.2.1 first provides some motivation and use cases for SHVC. Section 2.2.2 in-

troduces new concepts and functionality, introduced in SHVC, that are shared by the

different types of scalability. Next, Section 2.2.3 goes over SNR scalability and Section

2.2.4 goes over spatial scalability — the two main focuses in this thesis. The other scal-

ability features are described in Section 2.2.5. Finally, Section 2.2.6 goes over the main

changes to the bitstream, brought on by SHVC.

2.2.1 Motivation for SHVC Coding

Cisco’s annual reports [1] indicate that video traffic will be 82% of all internet traffic by

2022, with an associated four-fold increase in the total video traffic between 2017 and

2022. Furthermore, the diversity and amount of mobile devices is predicted to grow

steadily at a rate of 6% per year [3]. Finally, the viewing resolutions of different devices

will keep increasing; in the case of connected TVs, two-thirds are estimated to support

UHD by 2023 [3]. Cisco’s reports suggest that the popularity of video services and confer-

encing will keep increasing, but they will need to support a variety of devices and viewing

resolutions. SHVC is one tool that can be used, in various applications, to efficiently

12

provide adaptability, as described below.

Ye et al. [8] have discussed the usage of SHVC in the context of video streaming and VOD

services. The popular method for providing adaptive video streams is to divide each video

into small segments with a separate copy of each segment for each desired resolution and

bit rate; the requested quality copy is then sent to the client. Using SHVC, instead, would

allow storing video streams, of different qualities, much more efficiently. Furthermore,

SHVC yields itself well to streaming services that use content delivery networks (CDNs)

or edge servers with hierarchical caching. For example, only the BL can be stored in the

first-level edge server (i.e., closest to the client), allowing for quick retrieval when starting

the stream. Higher quality ELs can be stored deeper in the cache hierarchy, and thanks

to bit rate reductions from SHVC, they require less bandwidth to transfer to the client than

the complete high-quality video would.

Nightingale et al. [10] have proposed an SHVC-based video stream adaptation scheme.

In their work, they have demonstrated that SHVC-based video streams are able to reduce

their bandwidth, when necessary, more and at a lower quality penalty than HEVC streams

in wireless network conditions. This is very promising for streaming SHVC in changing

network conditions and may even provide better error resiliency, since the lower quality

layers are still playable even if the higher bandwidth layers fail to transmit.

Ronan et al. [9] have demonstrated, how SHVC could be used in a broadcasting scenario.

The SHVC encoded bitstream is broadcast and received by different devices, that can

then decode the desired layers, depending on their capabilities. Even devices, without

SHVC support, can at least decode the BL, since it is HEVC compliant. SHVC could even

be used to include personalized content through the EL. Moreover, Lee et al. [29] have

gone into more detail on using SHVC in a broadcasting scenario and have performed

rigorous testing in various test conditions. They conclude that SHVC provides better

results in all tested scenarios when compared with HEVC in a simulcast configuration,

thus demonstrating the feasibility of SHVC in a broadcasting scenario.

Xu et al. [30] have suggested that scalable coding could be used to reduce overhead, in

video conferencing, when different versions of the video stream are needed. If transcod-

ing is not performed on the server, used to relay video to participants, the sender needs

to generate the different versions and send them to the server. In this case, the upload

bandwidth can be reduced using scalable coding, instead of separately encoding and

sending the different video streams.

2.2.2 Scalability

The scalability extension was designed to require only high-level syntax changes so mini-

mal modifications are required in the encoding flow [7]. The main addition to the process,

13

described in Section 2.1, is an inter-layer processing step as seen in Figure 2.1 (dashed

line box).

SHVC bitstreams contain multiple layers; one for each (different quality) video stream.

Each layer has an associated ID (layer ID (LID)), ordered based on increasing quality.

The BL is always associated with a LID of zero and should be decodable by non-SHVC

decoders. Subsequent higher layers, with non-zero LIDs, are ignored by HEVC decoders,

making SHVC streams at least partly decodable by non-SHVC decoders [4].

The main method SHVC achieves its coding gain is by deriving extra ILR pictures for use

in inter prediction. ELs can use lower LID layers as reference layers (RLs), but not higher

ones [7]; each layer needs to be decodable without higher LID layers to allow selectively

transmitting only some lower layers [4]. For a given EL, RLs are then used to derive

the ILR pictures, i.e., pictures with a matching picture order count (POC), but a smaller

LID. Additionally, it should be noted that ILR pictures are defined as long-term reference

pictures, affecting how they are treated in some cases [4].

Two types of inter prediction tools are specified for ILR pictures in the scalability exten-

sion: texture and motion prediction [7]. Texture prediction is equivalent to normal inter

prediction, but motion search is omitted and a zero motion vector is used, as specified in

the standard [4]. Motion prediction, on the other hand, uses motion information from the

RL for TMVP, when enabled, and an ILR picture is set as the collocated TMVP reference

picture.

2.2.3 SNR Scalability

With SNR scalability, each layer represents a different video quality, usually achieved by

using different QPs for each layer. Using rate-control could be another way for controlling

quality between layers, especially in a video streaming setting, where constant bit rates

for different bandwidth requirements are usually desired.

SNR scalability generally does not require extra inter-layer processing, since it only in-

volves changing the QP between layers. In other words, both the reconstruction and the

motion field of the RL can be directly used for inter prediction. SNR scalability can, how-

ever, be combined with other types of scalability, in which case inter-layer processing may

be necessary.

2.2.4 Spatial Scalability

Spatial scalability uses different resolutions for different layers, thus making it impossible

to directly use texture information from the RL; texture resampling needs to be performed

in the inter-layer processing step. The resampling process in SHVC is defined for arbitrary

14

resolution ratios, whereas the previous standard only supported a set number of ratios.

[7]

SHVC uses 8-tap (4-taps for chroma) interpolation filters to generate the upscaled picture

used for ILR. The colocated sample position in the RL is calculated using sub-pixel pre-

cision, allowing for a good upsampling quality even with irregular scaling ratios. On top

of the filters for upsampling, SHM provides 16-tap interpolation filters for downsampling

purposes. The full table of interpolation filters for the resampling process can be found in

Appendix A.

Algorithm 2.1 gives the outline of texture resampling. It can be divided into a horizontal

step (lines 1 through 11) and a vertical step (lines 12 through 27). The horizontal step

calculates filtered values into a temporary picture buffer for each pixel in a destination-

width-by-source-height area. Filtering is done for each source row and a collocated col-

umn is used to determine the sample positions in the source picture buffer row. The

high-precision reference position (i.e., collocated column) is calculated on line 3. It is then

used to determine the phase (line 4), that is used when choosing the correct filter coeffi-

cients, and the actual collocated full-pixel position (line 3). Next, on lines 6 through 9, the

algorithm applies a filter on the source picture samples, iterating over each coefficient and

accumulating the values into a temporary picture buffer (line 8). Line 7 shows how the

source picture sample position is calculated for each filter coefficient, using the collocated

column, from line 5, as the middle point.

The vertical step is similar to the horizontal step, but using values from the temporary

buffer, it calculates the final pixel values for a destination-width-by-destination-height area.

Moreover, instead of iterating over picture rows and calculating collocated column posi-

tions, the vertical step iterates over picture columns and calculates the collocated rows.

Additionally, a normalization step is added, shown on lines 21 through 25, to scale and

clip the filtered values to the correct 8-bit pixel range. The normalization step is defined

for two filter sizes; one for upsampling and the other for downsampling filters.

For motion information, as with texture information, additional motion field resampling

needs to be performed when spatial scalability is used. However, RL motion information

is only used if TMVP is enabled and the ILR picture is set as the colocated picture, thus

allowing motion field resampling to be skipped if TMVP is not used. To save on motion

field memory requirements, motion information is only stored for 16 × 16 blocks; the

motion field resampling is done with the same granularity [7]. Once the colocated block in

the RL motion field is determined, the motion information is copied to the EL motion field.

Furthermore, the motion vector needs to be scaled based on the spatial ratios of the RL

and EL.

Algorithm 2.2 details the procedure for motion field resampling. As mentioned above, it

is only necessary to generate the upsampled motion field for CU blocks of size 16 × 16.

15

Algorithm 2.1: Basic algorithm for texture resampling.
Data: Source texture data in src; Filter coefficients in filter ; The vertical and horizontal

scaling ratios, shifted left by 16 bits, in scale_x and scale_y ; The rounding values in
add_x and add_y ; The sampling phase offsets in delta_x and delta_y

Result: Resampled texture data in dst

// Horizontal step. Loop over each row in src, calculating collocated

positions for each dst column

1 for y ← 0 to Height(src)−1 do
2 for x← 0 to Width(dst)−1 do

// Calculate the filter phase and the collocated position

3 ref_pos_16 ← ShiftRight(x · scale_x + add_x, 12)−delta_x ;
4 phase← BitwiseAnd(ref_pos_16, 15);
5 ref_pos← ShiftRight(ref_pos_16, 4);

// Apply filter to samples from src
6 for i← 0 to Height(filter)−1 do

// Calculate the sample position in src for the respectife filter
coefficient

7 x′ ← Clip(ref_pos + i−ShiftRight(Height(filter), 1)+1, 0,
Width(src)−1);

8 tmp[x, y]← tmp[x, y]+filter [phase, i]·src[x′, y];
9 end

10 end
11 end

// Vertical step. Loop over each column in dst (tmp), calculating

collocated positions for each src (tmp) row

12 for x← 0 to Width(dst)−1 do
13 for y ← 0 to Height(dst)−1 do

// Calculate the filter phase and the collocated position

14 ref_pos_16 ← ShiftRight(y · scale_y + add_y, 12)−delta_y ;
15 phase← BitwiseAnd(ref_pos_16, 15);
16 ref_pos← ShiftRight(ref_pos_16, 4);
17 for i← 0 to Height(filter)−1 do

// Calculate the sample position in src (tmp) for the

respectife filter coefficient

18 y′ ← Clip(ref_pos + i−ShiftRight(Height(filter), 1)+1, 0,
Height(src)−1);

19 dst [x, y]← tmp[x, y]+filter [phase, i] · tmp[x, y′];
20 end

// Normalize and clip final values to 8-bit pixel range depending

on the number of filter coefficients

21 if Height(filter) ≤ 8 then If upsampling filter is used
22 dst [x, y]← Clip(ShiftRight(dst [x, y]+2048, 12), 0, 255);
23 else If downsampling filter is used
24 dst [x, y]← Clip(ShiftRight(dst [x, y]+8192, 14), 0, 255);
25 end
26 end
27 end

16

Algorithm 2.2: Basic algorithm for motion field resampling.
Data: Source and destination motion fields in src_mf and dst_mf ; The vertical and

horizontal scaling ratios, shifted left by 16 bits, in pos_scales; The vertical and
horizontal scaling ratios for MV scaling, shifted left by 8 bits, in mv_scales

Result: Resampled motion data in dst_mf

// Loop over each 16× 16 block in each dst_mf CTU

1 foreach CTU block ctu in dst_mf do
2 foreach 16× 16 block cu in ctu do

// Calculate the collocated CU in src_mf, based on the middle

point of cu
3 col_x ← ShiftLeft(ShiftRight(ScalePos(cu.pos_x +

ShiftRight(cu.width, 1), pos_scales[0])+4, 4), 4);
4 col_y ← ShiftLeft(ShiftRight(ScalePos(cu.pos_y +

ShiftRight(cu.height, 1), pos_scales[1])+4, 4), 4);
5 col_cu← GetCuAt(src_mf , col_x, col_y); // Return CU if inside

frame

6 if col_cu and col_cu.type = CU_INTER then
// Collocated CU is inside the frame and is an inter CU

// Scale MVs from collocated CU and copy motion data to

dst_mf
7 cu.MVs← ScaleMVs(col_cu.MVs, mv_scales);
8 cu.MV_ref_ind← col_cu.MV_ref_ind;
9 cu.MV_ref_list← col_cu.MV_ref_list;

10 else
// Collocated CU is outside of the frame or is an intra

CU

11 cu.type← CU_INTRA;
12 end
13 cu.part_size← 2N × 2N ;
14 end
15 end

As a result, upsampling is performed by iterating over each EL CTU separately. Each

CTU is further divided into to the aforementioned block size, and the upsampled motion

data is calculated for the block. As shown on lines 3 and 4, the collocated position in the

RL motion field is calculated from the center point of the current EL block, based on the

given scaling ratio. Once the collocated CU has been found, the algorithm checks that

it is located inside the RL picture and that its prediction type is inter (line 6); if not, the

current block is marked as an intra block. When a valid collocated CU has been found,

motion vectors are scaled, and other information is copied to the current block.

17

2.2.5 Other Scalability Features

Color gamut scalability helps fit together videos with different color spaces. A color map-

ping step is used to improve the coding efficiency and is always applied to the RL first,

before other inter-layer processing steps. The color mapping process uses a 3D lookup

table (LUT) based approach. Moreover, it is shown to improve coding efficiency by around

10.5% when compared with an encoding that is not using color mapping. [7]

Bit depth scalability allows layers to have different bit depths [7]. Depending on the en-

coders/decoders internal bit depth, no action needs to be taken, as long as the output bit

depths are set correctly. When using spatial scalability, on the other hand, the bit depth

difference is taken care of by the final normalization step of the resampling process [7].

Hybrid codec scalability enables using an externally provided non-HEVC BL to maintain

backwards compatibility with older content without needing to re-encode. The externally

provided bitstream may even be HEVC compliant if an existing encoding needs to be

supplemented. With non-HEVC bitstreams, an external decoder is needed for the BL

and coding information is limited to the reconstructed pictures provided by the external

decoder. [7]

Temporal scalability allows varying the frame rate by only decoding lower temporal layers

and dropping the higher temporal layers. The standard prohibits frames from referencing

higher temporal layers so that a temporal layer is decodable without any higher temporal

layers [7]. For the bitstream to have a valid temporal structure, the reference structure

(i.e., group of pictures (GOP)) needs to be carefully chosen.

2.2.6 SHVC Bitstream

To signal the layer a NALU belongs to, a LID field is added to the NALU header [7]. In ad-

dition to LIDs, the NALU header contains a field for a temporal ID (TID) that is for temporal

scalability. This allows easily dropping higher layer NALUs if only a lower layer is needed.

The NALU LID field was already specified for HEVC so even a non-SHVC decoder can

decode SHVC bitstreams; NALUs with LIDs other than zero are simply ignored [4].

The VPS includes an SHVC extension field that can be used to specify information about

all layers. It contains the number of layers, their dependencies, as well as the size, depth,

and chroma format of each layer. Additionally, the VPS is used to specify the type of

scalability being used. The PPS, on the other hand, can be used to specify inter-layer

prediction related information such as the color mapping tables used by color gamut scal-

ability.

The extension field in the VPS is used to define the profile, tier, and level for each EL.

The tier and level specifications remain largely unchanged for SHVC, but new profiles are

18

defined to signify SHVC capabilities. The new profile, equivalent to the BL ‘Main’ profile,

is the ‘Scalable Main’ profile.

2.3 HEVC and SHVC Test Models

At the time of writing, no practical open-source SHVC encoders existed, bar Scalable

Kvazaar [18]. Parois et al. [16] have presented a SHVC encoder based on a proprietary

HEVC encoder that is not available to the public. Both HEVC and SHVC have a reference

implementation associated with them; the HEVC Test Model (HM) [31] and SHM [15], re-

spectively. They implement all the features defined in the standards, for both the encoder

and decoder side. Moreover, they represent the best the standards can offer, in terms

of coding efficiency, and can be used as the baseline for testing new features and algo-

rithms, as well as for research and conformance testing. However, the coding efficiency

comes at the cost of encoding time, making them unusable for practical applications.

Ohm et al. [32] have presented a comparison between the previous H.260/MPEG family

video coding standards and HEVC. The reported objective bit rate savings of HM over

the previous standard (h.264/MPEG-4) were between 35.4% and 40.3% depending on

the type of video content. Vanne et al. [33] have reported similar results, with a low-delay

P configuration — used later in this thesis for performance measurements — providing a

35% improvement. Furthermore, Tan et al. [34] have shown, through human subjective

testing, that the subjective coding efficiency improvements are as high as 64%.

Boyce et al. [7] have compared SHM coding efficiency to the equivalent simulcast HM

coding. In SNR low-delay scalability coding, they reported SHM to reduce the bit rate of a

two-layer video stream by 12.5% over an equivalent simulcast coding case. The respec-

tive reduction is 19.5% when only the EL is compared with the simulcast equivalent. For

the spatial scalability case, bit rate is reduced by 10.3% and 21.5% for the spatial ratios of

2× and 1.5× respectively with a reduction of 16.8% and 39.3% when only comparing the

ELs. On the other hand, moving from a single high quality HEVC stream to a respective

two-layer SHVC stream is shown to increase bit rate by around 25.8% with SHM.

19

3 RESEARCH AND TEST METHODOLOGIES

The three main questions this thesis seeks to answer are: 1) will scalability features

provide notable bit rate improvements in a practical encoder; 2) what kind of an impact

does scalability have on encoding complexity; and 3) is it possible to perform SHVC

encoding in real-time? To this end, this chapter presents the methods used to answer

these questions. Section 3.1 goes over the conventions and principles followed during

the development of Scalable Kvazaar. Section 3.2 goes into more detail about the test

methods and arrangements used to evaluate the performance of Scalable Kvazaar.

3.1 Research Methods

Research, conducted for this thesis, follows the design science methodology. The cre-

ation of a practical SHVC encoder is guided by the aforementioned research questions

and other objectives set for the resulting encoder. The development process consists of

a series of iterative design and implementation steps, carried out in a structured man-

ner, while guided by a rational decision-making process. Finally, the created encoder is

continuously evaluated and benchmarked, as detailed below.

The development of Scalable Kvazaar seeks to first establish a functioning product that

conforms to the SHVC standard. To confirm this, Scalable Kvazaar is validated against

the SHM decoder, ensuring that the generated bitstream is correct. Moreover, continu-

ous integration test are added to track the correctness of the program itself. Next, the

encoding speed of Scalable Kvazaar is evaluated and analyzed using well-established

software tools. Based on the analysis, the encoding process is optimized until the desig-

nated speed goal is reached. Finally, the performance of Scalable Kvazaar is measured

using commonly used video coding metrics (described in Section 3.2.1) to demonstrate

that it reaches the real-time encoding goal, while maintaining an acceptable level of im-

provement to the bit rate.

Scalable Kvazaar is developed to address the lack of practical open-source SHVC en-

coders. Since SHVC allows re-using most of the functionality from HEVC coding, an

existing HEVC encoder — Kvazaar — was chosen as the base for Scalable Kvazaar.

Furthermore, the design of Scalable Kvazaar aims to make minimal modifications to the

core Kvazaar functionality and to minimize the impact of any modifications to the encoding

20

speed of the HEVC side of the encoder. Minimizing the modifications to the core Kvazaar

makes maintaining Scalable Kvazaar easier, since any future changes to Kvazaar are

less likely to conflict with Scalable Kvazaar modifications, saving time and effort when

integrating new improvements from the main Kvazaar branch.

3.2 Test Methods

This section presents common methods for evaluating objective video encoding perfor-

mance. In addition, the test platform, test parameters, and test sequences are listed.

Section 3.2.1 goes over the common performance metrics. Section 3.2.2 presents both

the hardware platform and the software framework that are used for running performance

tests on the encoders under evaluation. Finally, Section 3.2.3 introduces the test se-

quences, used as the test set for performance evaluation, in addition to giving the encod-

ing parameters for Scalable Kvazaar and SHM.

3.2.1 Performance Metrics

The main trade-offs in video coding are between bit rate1, coding quality (i.e, distortion),

and coding complexity (i.e., time). Using more bits tends to result in better quality, but

at the cost of producing larger bitstreams, whereas spending more time usually results

in better compression. Coding efficiency evaluation can usually be divided into objective

and subjective quality evaluations. Subjective quality evaluations rely on human testing

and are more tedious to perform; thus, this thesis focuses on objective quality measures.

A widely used objective metric for measuring the distortion in video coding is peak signal-

to-noise ratio (PSNR). For a given picture, PSNR is calculated using the mean squared

error (MSE) between the input picture and its reconstruction, as seen in (3.1) and (3.2).

MSE (P, P ′) =
1

H ·W

H−1∑︂
y=0

W−1∑︂
x=0

(︁
pxy − p′xy

)︁2
(3.1)

PSNR (P, P ′) = 10 · log10
(︃

2B − 1

MSE (P, P ′)

)︃
(3.2)

The input to PSNR is the matrix representation of a picture’s pixel values; P is the original

picture and P ′ is the respective reconstructed picture. The size of the pictures are given

by W for width and H for height. The individual pixel values, in position (x, y), are given

by pxy and p′xy, respectively. B is the bit depth of the picture and is used to calculate the

maximum possible pixel value.

PSNR is calculated separately for each color component (i.e, Y, U, and V). Generally, a

1 Amount of bits per unit of time or per frame etc.

21

weighted average is used to calculate the combined PSNR [32] as

PSNRYUV (P, P ′) =
6 · PSNR (PY, P

′
Y) + PSNR (PU, P

′
U) + PSNR (PV, P

′
V)

8
.

PSNRYUV gives the weighted average of the three components, where luma channels

are given by PY and P ′
Y. Similarly, chroma channels are given by PU, P ′

U, PV, and P ′
V.

Comparing the coding efficiency of two encodings, numerically, is not a trivial task, as

there are two quantities (bit rate and distorition) that vary. To address this difficulty, Bjøn-

tegaard [35] proposes a method for calculating a BD-rate for quantifying the coding ef-

ficiency difference between two encodings. The BD-rate calculation involves calculating

a number of data points2 with varying bit rate or quality. A curve is fit through the data

points and, to calculate the BD-rate, the difference (i.e., area) between the two curves is

calculated using integration. However, in some cases, the aforementioned method may

produce misleading results. This can be mitigated by using piece-wise cubic interpolation

[36]. Generally, a negative BD-rate value can be thought of as an equal reduction in bit

rate, with similar quality, when compared with the anchor.

PSNR is still the de-facto standard for distortion metrics in video encoding, but it does not

necessarily correlate well with visual quality [37, 38, 39]. Many alternative metrics have

been proposed [38, 40, 41], but the most prominent and widely spread one seems to be

SSIM [42]. It takes advantage of structural information in an image to predict perceived

quality, instead of the more direct signal error approach used by PSNR. The major down-

side to using SSIM is the added complexity of the calculation, making it harder to use as

an optimization metric, e.g, in real-time encoding. In this work, PSNR is used together

with BD-rate to evaluate coding efficiency.

When talking about coding performance, usually only the BD-rate is of interest. However,

in some applications, such as real-time encoding, the coding complexity is also relevant. It

can be measured by simply recording the time it takes to encode a given input sequence.

Moreover, if the amount of frames, that were encoded, is known, the frame rate in frames

per second (FPS) can be calculated by dividing the number of frames by the encoding

time. This can help fine-tune the encoding process to meet potential real-time constraints.

3.2.2 Test Platform

The test platform, used for running the performance tests, was an 8-core Intel® Xeon®

W-2145 CPU with 32 GB of RAM (DDR4 2666 ECC), running a 64-bit Microsoft Windows

10. The CPU has eight physical cores, supporting sixteen logical cores that can be used

by parallel processing tools. The CPU also supports the AVX2 instruction set extension,

allowing the use of the optimization detailed in Section 4.2.

2 Four data points are generally used.

22

Table 3.1. Test sequence information.

Sequence name Frame count FPS
Resolution

BL 2× BL 1.5× BL SNR EL

Traffic 150 30 1280x800 - 2560x1600 2560x1600

PeopleOnStreet 150 30 1280x800 - 2560x1600 2560x1600

Kimono 240 24 960x540 1280x720 1920x1080 1920x1080

ParkScene 240 24 960x540 1280x720 1920x1080 1920x1080

Cactus 500 50 960x540 1280x720 1920x1080 1920x1080

BasketballDrive 500 50 960x540 1280x720 1920x1080 1920x1080

BQTerrace 600 60 960x540 1280x720 1920x1080 1920x1080

All tests were run using the NAVETTA test framework described in Chapter 5. The com-

plete test script (DI_tests.py) can be found in the NAVETTA github repository [43]b

under the tests-folder. It contains code to generate both the Scalable Kvazaar and SHM

tests and summary definitions that were used to derive the final result tables.

3.2.3 Test Parameters

Tests were performed for three different scenarios, using two-layer scalable encoding,

with varying scalability types and parameters. The scenarios are SNR scalability, 2×
spatial scalability, and 1.5× spatial scalability. Additionally, each scenario uses two differ-

ent ∆QP values, as detailed below, to cover a wider range of test cases, all in line with

the common SHM test conditions [44].

Altogether, seven full-length 8-bit YUV420 video sequences were taken from the common

SHM test conditions. Table 3.1 tabulates the used sequences, the number of frames, and

their frame rate (i.e, FPS). Additionally, the resolutions used for the BL and EL are shown.

The first two resolution columns show the BL resolutions for the spatial scalability ratios of

2× and 1.5×, respectively. The next column shows the BL resolution for SNR scalability,

and the last column shows the EL resolutions used in all tests. In the spatial scalability

comparisons, the input sequences were pre-scaled to the correct resolution according to

the used scaling ratio (2× or 1.5×). Finally, it should be noted that the 1600p sequences

are omitted from the 1.5× spatial ratio tests, since the resulting BL resolutions would not

be valid input resolutions in HEVC.

The QP ranges, used to calculate the BD-rate, are shown in Table 3.2. The BL QP

column shows the base QP used in the BL. The EL column shows the tested ∆QP

values, applied to the base QPs, when calculating the respective EL QP. The QP ranges

and ∆QP values match those defined in the common SHM test conditions.

The coding efficiency and speed of Scalable Kvazaar v1.0.1 were compared with Kvazaar

23

Table 3.2. QP ranges and ∆QP values used in tests.

Scalability type BL QP EL ∆QP

SNR 26, 30, 34, 38 -6, -4

Spatial (2× and 1.5×) 22, 26, 30, 34 0, 2

OutputInput Encoder

Encoder

Bitstream

. . .

Bitstream

. . .

Bitstream

. . .

Bitstream

. . .
OutputInput

(a) Simulcast encoding configuration

Output

Input 0 BL Encoder

EL Encoder

Bitstream

. . .

Bitstream

. . .

Input 1

ILR

(b) Scalable encoding configuration

Figure 3.1. Examples of a high-level simulcast encoding configuration and a scalable
encoding configuration when using spatial scalability.

in a simulcast configuration by encoding two-layer (BL + EL) test videos under a low-delay

P coding configuration with an intra frame period of 64. The respective BL and EL encod-

ing results of Kvazaar simulcast coding were aggregated to attain a fair comparison with

the scalable encoding case. Figure 3.1 shows the difference between scalable encoding

and simulcast coding.

Table 3.3 lists the parameters that were used to run the simulcast coding (both the BL and

EL), spatial scalability, and SNR scalability tests. Moreover, Table 3.4 shows the most

relevant coding tools and parameters that are used by the ultrafast preset of (Scalable)

24

Table 3.3. Test command-line parameters used for simulcast and Scalable Kvazaar.

Encoding type Parameters

Simulcast --input=<layer sequence> --preset=ultrafast

--threads=15 --owf=2 -q <layer QP>

Scalable --input=<BL sequence> --preset=ultrafast -q <BL QP>

--layer --input=<EL sequence> --preset=ultrafast

--threads=15 --owf=2 -q <EL QP>

Table 3.4. Parameters of the ultrafast preset.

Parameter Value

Coding unit sizes 64× 64, 32× 32, 16× 16, 8× 8

Intra prediction unit sizes 16× 16, 8× 8

Intra prediction modes 35 (DC, planar, 33 angular)

Inter prediction unit sizes 16× 16, 8× 8

Motion estimation algorithm HEXBS

Transform unit sizes 32× 32, 16× 16, 8× 8

Mode decision metrics SAD, SATD, SSD, CABAC

GOP structure low-delay P

Intra frame period 64

Reference pictures 1

Temporal MV prediction Enabled

Fractional motion estimation Enabled

Loop filters Deblocking

Parallelization WPP, OWF

Kvazaar. The sizes of prediction units are limited, and advanced coding tools are disabled

to attain real-time encoding speeds.

The respective tests were also conducted with SHM12.1 and HM16.10 for the sake of

validating the Scalable Kvazaar tests. For SHM and HM, low-delay P and sequence

specific configuration files were used, as defined in the common SHM test conditions,

with QP values set manually on the command-line.

25

4 DESIGN AND IMPLEMENTATION OF SCALABLE

KVAZAAR ENCODER

Kvazaar is an open-source HEVC encoder [45] developed by Ultra Video Group [46] — a

research group at Tampere University. Scalable Kvazaar [19], as the name implies, is an

SHVC encoder, implemented on top of the Kvazaar encoder.

Section 4.1 first introduces the basic structure and operation of Kvazaar relating to the

implementation of the scalability extension. Section 4.2 details the modifications made to

the base encoder, as well as optimizations that are used to achieve real-time encoding

speeds.

4.1 Kvazaar HEVC Encoder

Kvazaar is mainly written in C1 and incorporates many parallelism tools and optimizations

to achieve practical encoding speeds [47, 48, 49, 50, 51]. Moreover, it is able to meet the

requirements of real-time encoding, even when using 4K resolutions [52]. The high-level

architecture of Kvazaar is depicted in Figure 4.1 and the simplified encoding flow in Figure

4.2.

First, Section 4.1.1 presents the basic architecture of the Kvazaar encoder. Next, Section

4.1.2 goes over the simplified encoding flow, as it relates to the modifications made by

Scalable Kvazaar that are presented later. Finally, Section 4.1.3 introduces the parallelism

tools that are used later to help accelerate Scalable Kvazaar.

4.1.1 Overall Architecture

Kvazaar and its parts are shown in Figure 4.1. They are grouped into categories roughly

based on their function. Most of the functionality is located in the Kvazaar library, that

can be included by external applications. Additionally, a command-line interface (CLI)

is provided for stand-alone encoding. Kvazaar CLI takes care of parsing command-line

options, reading the input frames, and writing the output to file.

The Kvazaar library is used through the application programming interface (API) defined

1 An imperative programming language.

26

<<Interface>>

Kvazaar API

<<Interface>>

Kvazaar API

HEVC Bitstream CodingHEVC Bitstream Coding

-encoder_coding_tree

-nal
-encoder_state-bitstream

ThreadingThreading

-threadqueue

CTU CompressionCTU Compression

-rdo

-search_inter
-search

ReconstructionReconstruction

-inter

-filter

-intra

Data StructuresData Structures

-imagelist

-image
-videoframe

SIMD OptimizationsSIMD Optimizations

-strategies-dct

-strategies-resample

-strategies-encode

ControlControl

-encoder

-encoder_state-geometry
-encoder_state-ctors_dtors

Kvazaar CLIKvazaar CLI

-yuv_io
-cli

+config_alloc

+config_destroy
+config_init

+config_parse

+picture_alloc

+picture_free

+chunk_free

+encoder_open

+encoder_encode

-cfg

+encoder_headers
+encoder_close

+picture_alloc_csp

ThreadwrapperThreadwrapper

-pthread
-semaphore-cu

-cabac
-context

-bitstream-search_intra

-sao

-transform
-scalinglist

-encoderstate
-input_frame_buffer
-kvazaar
-rate_control

-strategies-intra

-strategies-sao

-strategies-ipol

-strategies-picture
-strategies-nal

-strategies-quant

-strategyselector

Scaler LibraryScaler Library

-scaler
-scaler-avx2

-scaler-util

<<Interface>>

Scaler

<<Interface>>

Scaler

+kvz_getChromaFormat
+kvz_newScalingParameters

+kvz_newOpaqueYuvBuffer
+kvz_setOpaqueYuvBuffer
+kvz_copyOpaqueYuvBuffer
+kvz_deallocateOpaqueYuvBuffer

+kvz_opaqueYuvBlockStepScaling_
adapter

+kvz_opaqueYuvBlockStepScaling

+kvz_blockScalingSrcWidthRange
+kvz_blockScalingSrcHeightRange

Figure 4.1. Shared Kvazaar and Scalable Kvazaar architecture.

in kvazaar. The API defines data structures for configuring the encoding process, stor-

ing picture and bitstream data, and the necessary functions for controlling the encoding

process. The API can roughly be divided into functions for generating the Kvazaar con-

figuration, managing picture data, freeing bitstream data chunks, managing the encoder,

and driving the encoding process.

27

Most of the functionality that manages the encoding process is collected under ‘Control’.

The high-level encoding flow is defined in kvazaar. For storing information about the

whole encoding process, encoder defines the encoder_control-structure. On the other

hand, the encoder_state-structure contains the state of a single picture being encoded.

The other important data structures are defined under ‘Data Structures’, including image

and CU data types. Of special interest to scalable coding, as discussed later, is the

imagelist-structure used for managing the reference frames in inter prediction.

The bulk of the encoding is done in ‘CTU Compression’ and ‘Reconstruction’, with the

former being in charge of finding the optimal coding decisions and the latter used for

creating the reconstructions for coding cost evaluations. Moreover, the two loop filters

(i.e., deblocking and SAO) are implemented in ‘Reconstruction’.

The main functionality for bitstream creation is collected under ‘HEVC Bitstream Coding’.

The NALU header itself is defined in nal, whereas parameter set (i.e., VPS, SPS, and

PPS) writing is defined in encoder_state-bitstream. The final coding decision and

structure writing process is defined in encoder_coding_tree. The underlying CABAC

implementation and bitstream generation related functionality are defined separately in

cabac, context, and bitstream.

For performing parallel tasks, Kvazaar uses the threadqueue-structure. It is in charge

of scheduling tasks based on the defined dependencies and executing those tasks in

separate threads. Previously, the underlying implementation for threading was handled

by pthread — an external library. However, in order to remove the external dependency,

‘Threadwrapper’ was added and provides the same functionality as the pthread library

but uses native C++2 threading.

Kvazaar employs various single instruction, multiple data (SIMD) optimizations, collected

under ‘SIMD Optimizations’, to accelerate data-intensive operations and functions. The

availability of special SIMD instruction sets, used for the optimizations, is dependent on

the underlying hardware, thus requiring a flexible way of selecting the fastest implemen-

tations based on the available special instruction sets. In Kvazaar, strategyselector

is used for this selection process to choose the optimal functions, at run-time, from the

available optimized implementations and the generic implementation.

4.1.2 Coding Scheme

Figure 4.2 depicts the simplified encoding flow of Kvazaar. The encoding process is

roughly grouped into ‘Control’, ‘High-Level’, ‘Mid-Level’, and ‘Low-Level’. Additionally, the

Kvazaar CLI, that uses the library through the Kvazaar API, is shown.

2 An imperative programming language with object-oriented features.

28

Encoding Start

Parse Commandline
Options

Kvazaar API

Parse Configuration
Options

Get Input Frame Encode Frame
Write Out Data/
Reconstruction

Open Encoder

Initialize Encoder

Encoding End

More Input/
Output?

Yes No

Encoder Prepare Encoder Feed Frame Encode One Frame

Encoder State
Initialize New Frame

Encoder State Write
Bitstream

Has child states?

No

For Each Child State

Encoder State
Encode CTUs

For Each CTU

Search CTU Deblock Filter SAO
Manage Bitstream/

CABAC State
Encode Coding Tree

CABACSearch Inter

Search IntraSearch SMP/AMP Reconstruct CU Quantize Residual

Split CU?Yes
Calculate Cost &
Select Best Mode

No

Figure 4.2. Simplified Kvazaar encoding flow.

The operation of the CLI is fairly straightforward. First, the encoder configuration is gener-

ated from the given command-line parameters. The configuration is then used to initialize

the encoder to get it ready for encoding. Next, in the main loop of the CLI, an input picture

is read and passed to the encoder. At the same time, an already encoded picture and re-

lated bitstream data are returned and written to the designated output streams. This loop

is repeated until no more input pictures remain and all the output has been written out.

Finally, when the encoding is finished, all allocated resources are freed and the encoder

is closed.

29

Inside the Kvazaar library, ‘Control’ handles the main encoding loop. The first step is to

prepare the encoder state that, among other things, updates the reference frame infor-

mation. If a hierarchical GOP is used, the encoding order differs from the viewing order

(i.e., input order). To this end, Kvazaar uses an intermediate picture buffer to re-order the

input pictures to the encoding order. After getting the correct picture, the actual coding

can begin. If a picture has been encoded, bitstream data and the reconstructed picture

are returned.

In the ‘High-Level’ encoding layer, Kvazaar uses the picture passed from the ‘Control’

layer to initialize the encoder state structure. The encoding process of a picture is con-

trolled by the hierarchical encoder state that contains, in some cases, several layers of

child encoder states. First, the leaf child states need to be found; leaf child states usu-

ally determine if tiles or WPP are used and are mostly related to parallelism (see Section

4.1.3). Moreover, the necessary dependencies for parallel processing are set at this point,

if applicable.

After finding the leaf states, encoding proceeds by processing each CTU — a block of

64×64 luma pixels in Kvazaar — separately. When the CTU encoding is done, parameter

sets and slice headers (see Section 2.1.6) are written to the bitstream.

Moving to the next layer, ‘Mid-Level’ handles CTU related operations in the encoding

process. The first step is to perform a recursive depth-first search, on the CTU, to find the

optimal3 CU partitioning and coding modes, as described in Sections 2.1.2 and 2.1.3. The

search returns the chosen block partitions and mode decisions with related information

and the reconstructed CTU. The next step is to apply loop filters (i.e., deblocking and

SAO) to the reconstructed CTU, making it ready for use in inter coding. The final steps

are to write the CTU coding tree and mode decisions to the bitstream and to update the

CABAC state.

The first step in the CTU search, assigned to `Low-Level', is to perform inter search,

described in more detail by Lemmetti et al. [51], starting from the 64 × 64 CU block.

Inter search goes over all available reference frames and chooses the one with the lowest

coding cost. Motion estimation, used to find optimal motion vectors, is performed using

one of several motion estimation algorithms implemented in Kvazaar and specified in the

configuration. For fast motion estimation, a hexagon-based search pattern is used [53].

Additionally, inter search checks possible merge candidates for merge or skip mode and

performs bi-prediction, if enabled. After inter search has been performed for the current

CU, possible AMP and SMP partitions are also searched.

After inter search has been completed, intra mode search is performed, as detailed by

Viitanen et al. [47]. Once the cost of the intra and inter modes have been determined, the

3 In practice, finding the optimal solution may be too computationally expensive, and it is necessary to
settle for a near-optimal solution.

30

(1,0) (1,0)(0,0) (2,0) (3,0) (4,0) (5,0) (6,0) (7,0)

(2,1) (3,1) (4,1) (5,1) (6,1) (7,1)

(2,2) (3,2) (4,2) (5,2) (6,2) (7,2)

(2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

(2,4) (3,4) (4,4) (5,4) (6,4) (7,4)

(2,5) (3,5) (4,5) (5,5) (6,5) (7,5)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(1,3)

(1,4)

(1,5)

(1,1)

(1,2)

(0,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(2,0) (3,0) (4,0) (5,0) (6,0) (7,0)

(2,1) (3,1) (4,1) (5,1) (6,1) (7,1)

(2,2) (3,2) (4,2) (5,2) (6,2) (7,2)

(2,3) (3,3) (4,3) (5,3) (6,3) (7,3)

(2,4) (3,4) (4,4) (5,4) (6,4) (7,4)

(2,5) (3,5) (4,5) (5,5) (6,5) (7,5)

(0,0) (1,0) (2,0) (3,0)

(0,1)

(0,2)

Picture 1

Picture 2

EL CTUs/TasksBL CTUs/Tasks

(1,1) (2,1)

(1,2) (2,2)

(3,1)

(3,2)

(1,0)(0,0)

(0,1)

(0,2)

(0,3)

(0,4)

(0,5)

(1,3)

(1,4)

(1,5)

(1,1)

(1,2)

Completed task

Active task

Queued task

Intra picture dependency

Inter picture dependency

Inter layer dependency

Figure 4.3. Example Scalable Kvazaar WPP and OWF dependency diagram, with de-
pendencies for the currently active tasks.

one with the lowest cost is chosen. Based on the chosen prediction mode, the current CU

is reconstructed to calculate the residual for the block (see Section 2.1.4). Next, Kvazaar

attempts to split the current CU, if allowed, and recursively calculates the costs of the

sub-CUs. After the recursion has finished, the best modes and coding tree structure are

selected and propagated to the caller, along with the total cost for the CTU.

4.1.3 Parallelization

The main tools for parallel encoding in Kvazaar are tiles, WPP, and overlapped wavefront

(OWF) [54] parallelization. OWF can be used in conjunction with WPP and tiles. On the

other hand, WPP and tiles should be used separately4. [48]

As mentioned in Section 2.1.2, WPP allows encoding rows of CTUs almost independently

[22]. In Kvazaar, each CTU row is a separate (sub-)encoder_state; a task is added to

the threadqueue for each CTU in a row. Moreover, dependencies need to be added to

4 Kvazaar supports using WPP and tiles together, but this is not allowed in the HEVC standard [4].

31

each task to guarantee a correct processing order and CABAC context. Figure 4.3 shows

the necessary dependencies to the left CTU and the top-right CTU of the above CTU row.

Tiles allow rectangular parts of the picture to be encoded independently. As a result,

Kvazaar is able to encode each tile in a separate task. The amount of parallelism depends

on the tile size, but smaller tiles tend to result in worse coding efficiency.

The picture-level parallel processing tool OWF allows Kvazaar to encode multiple pictures

at the same time, resulting in even more tasks being available at any given time. Espe-

cially with WPP, only a few tasks can be executed at the start and the end of a picture, so

having several pictures helps keep the processor busy, leading to a more efficient pipeline.

However, some additional dependencies need to be added, when using OWF, to make

sure all reference frames are available for inter prediction. In Kvazaar, when using WPP

with OWF, the inter picture dependency is set to the reference frame’s collocated CTU’s

bottom-right neighbor in the lower CTU row, as seen in Figure 4.3.

4.2 SHVC Implementation

SHVC was designed from the start to only require high-level syntax changes to allow

reusing a standard single-layer HEVC encoder as much as possible [7]. As a result, Scal-

able Kvazaar only contains a few low-level changes to the coding framework of single-

layer Kvazaar. The largest differences are in the parameter set syntax (additional exten-

sion fields) and in the high-level structure of Kvazaar to accommodate multiple layers.

Scalable Kvazaar strives to maintain compatibility with existing applications by not chang-

ing the Kvazaar API. Furthermore, the overhead to the single layer encoding is kept to a

minimum.

Section 4.2.1 gives an overview of Scalable Kvazaar and its features. Section 4.2.2 goes

over the main architecture changes and additions introduced by the scalability extension.

Section 4.2.3 presents the modified encoding flow of Scalable Kvazaar. Section 4.2.5

introduces the scaler library, used for performing picture resampling and scaling, as well

as the relevant functionality required by Scalable Kvazaar. Finally, Section 4.2.4 details

the optimizations used to accelerate scalability extension related operations.

4.2.1 Overview

Figure 4.4 depicts a simplified block diagram of spatial scalability in Scalable Kvazaar.

Separate instances of the Kvazaar encoder are prepared for the BL and EL, respectively.

Each input picture is passed to both layers if only one input stream is provided. The

source pictures are downscaled for the BL if the desired BL resolution differs from the

input resolution (i.e., in spatial scalability). Alternatively, two input video streams can be

specified, with the correct resolutions, to avoid downscaling.

32

Mux

Bitstream

. . .

Bitstream

. . .

Downsampling

Inter-layer

Processing

Inter-layer

Processing

Inter-layer

Processing

Inter-layer

Processing

Source Video 0Source Video 0 Source Video 1Source Video 1

Input

Input

Enhancement Layer (EL)

Ref.

.
.
.

.
.
.

.
.
.

.
.
.

Frame N+1Frame N+1

Frame NFrame N

Enhancement Layer (EL)

Ref.

.
.
.

.
.
.

Frame N+1

Frame N

Base Layer (BL)

Ref.

.
.
.

.
.
.

Frame N+1Frame N+1

Frame NFrame N

.
.
.

.
.
.

Base Layer (BL)

Ref.

.
.
.

Frame N+1

Frame N

.
.
.

Ref.

Ref.

Figure 4.4. The high-level flow of Scalable Kvazaar when using spatial scalability.

In Scalable Kvazaar, SNR scalability (see Section 2.2.3) is achieved by assigning a

smaller QP to the EL encoder, though other coding tools may also be used to achieve

the same effect. The encoding flow of SNR scalability mostly follows that of spatial scal-

ability; however, down- and upscaling is skipped if both layers have the same resolution.

The BL and EL encoders both have their respective layer parameters that control the

33

encoding process. The BL encoder only uses BL pictures as references in inter prediction,

whereas the EL encoder utilizes BL pictures (i.e., ILR pictures) on top of EL pictures, as

mentioned in Section 2.2.2. ILRs are added when the reference picture list in the EL

encoder is updated. Additionally, when TMVP is enabled in the EL encoder, by default,

the ILR picture is set as the collocated TMVP reference picture. This means that motion

information from the BL also needs to be copied when updating the reference picture list.

When only using SNR scalability, there is a one-to-one correspondence between the spa-

tial resolutions of the BL and EL, allowing the EL encoder to directly use the reconstruction

and motion information from the BL. With spatial scalability, however, an additional inter-

layer processing step is performed. It involves upscaling the reconstruction and motion

field of the ILR picture. As detailed in Section 2.2.4, the upsampling process for texture

data is carried out using interpolation filters specified in the SHVC standard [4]. Moreover,

when TMVP is enabled, motion field upsampling also needs to be performed.

The encoding process is concluded by concatenating the BL and EL bitstreams to form

the final output. As mentioned in Section 2.2.6, NALUs from the different layer encoders

will be distinguishable by their LID; zero for the BL and one for the EL.

Temporal scaling was already included in HEVC [5], but Kvazaar lacked full support for

it. Scalable Kvazaar implements temporal scaling for hierarchical GOP structures, as this

allows for a reference structure that is compatible with temporal scaling. The temporal

layer of a given NALU is set in the header, allowing the decoder to skip NALUs with a TID

larger than the target temporal layer.

4.2.2 Architectural Design

The high-level architecture of Scalable Kvazaar remains largely unchanged, and Figure

4.1.1 still holds true. Most changes only modify or extend the existing architecture but

leave the high-level structure intact. The only addition is the ‘Scaler Library’, described in

Section 4.2.5.

The configuration and CLI part of Kvazaar was modified to accommodate the extra layers

and input/output pictures. The API does not need to be modified because the picture

data structure can be repurposed to chain multiple pictures together by using its existing

picture pointer field. However, since the picture data structure is used to store reference

picture list information, such as POCs, additional reference frame information is added,

including the LID, TID, and long term reference flag.

In the configuration structure, fields were added for tracking layers, ILR references, and a

special data structure that handles cross-layer shared parameters. Additionally, a pointer

to the next layer’s configuration is added to allow passing multiple configurations through

the API — one for each layer.

34

The encoder_control-structure has been supplemented with layer related information

— LID, input layer, and various bitstream generation related values. Furthermore, a

separate encoder_control-structure is created for each layer, connected by a pointer

pointing to the next layer’s encoder control structure. Additionally, the up- and down-

scaling parameter structures — populated during encoder initialization — are located in

the encoder_control-structure and are used for controlling the scaling process in the

inter-layer processing and downscaling steps.

Modifications to the encoder_state-structure are largely related to the parallel task

management, described in Section 4.2.4. The list of upscaling tasks is located in the

encoder_state-structure along with other parameters such as the upscaling area and

relevant buffers for each task. Moreover, EL encoder states are directly connected —

using pointers — to the RL encoder states, allowing inter-layer dependencies to be set

easily.

The imagelist-structure is used to manage references. However, reference pictures

are identified by their POCs, resulting in ambiguity when adding ILR pictures. To this

end, extra information needs to be added to identify the (temporal) layer as well as the

long term reference picture status. The function for adding reference pictures is modified

accordingly to take in the new information.

Much of the high-level picture scaling related functionality has been added under image.

This includes the Kvazaar side picture scaling functions and the definition for a picture

scaling parameter structure. When scaling a sub-block of a picture, the scaling parameter

structure includes: the position and size of the block; the input and output Kvazaar picture

buffers; and ‘Scaler’ library buffers for the input and scaled output as well as a temporary

buffer for storing the results from the initial horizontal scaling pass.

Motion field scaling functionality has been added under cu. In Kvazaar, motion infor-

mation is contained in the cu_array-structure. Similarly to picture scaling, cu contains

parameters for controlling the cu_array upsampling process. The parameters contain

the original and the upsampled cu_array-structure, along with the target CTU and the

scaling constants used for calculating the collocated CU and scaling the motion vectors.

The high-level search process, employed by Kvazaar, requires no changes for scalability

features to work. The ILR pictures are mostly handled like any other reference picture,

as was mentioned in Section 4.2.1. Only search_inter has been modified to skip the

search procedure, since ILRs are required, in the standard [4], to use a zero motion

vector, making inter search unnecessary.

SHVC brings some changes to the bitstream syntax, as described in Section 2.2.6. The

NALU writing functionality in nal has been modified to include the LID and TID. Addition-

ally, VPS extension syntax elements have been included in encoder_state-bitstream.

35

The extension is used to define the types of scalability being used and other parameters,

for scalable encoding, such as the resolutions of layers. In addition, the extension is used

to define the reference structure between layers (i.e., RLs). Lastly, profile, tier, and level

information is written, for each layer, in the VPS extension. The ‘Scalable Main’ profile is

used for the EL, as is required when using scalability features [4].

The SPS remains largely unchanged, whereas the PPS includes an extension syntax

structure similarly to the VPS. The PPS extension allows setting RL location and phase

related information as well as the color mapping flag for when layers use different color

spaces.

A new strategy has been added to ‘SIMD Optimizations’ — strategies-resample. This

lets Scalable Kvazaar switch between the un-optimized and AVX2 optimized resampling

implementations, depending on the underlying hardware’s capabilities, as described in

Section 4.1.1. The implementation, chosen by strategyselector, is passed as a func-

tion pointer to the scaling functions when they are called.

4.2.3 Encoding Flow

Kvazaar is designed for encoding one video stream at a time, requiring a fair amount of

changes in the encoding flow to enable scalable coding. The modified flow is depicted in

Figure 4.5. When comparing the flow of Scalable Kvazaar to the original, in Figure 4.2, it

can be seen that most changes are limited to ‘High-Level’ and up.

The ‘CLI’ side of Kvazaar needs to be modified to accommodate the multi-layer nature

of scalable encoding. The process of parsing the command-line options and opening the

encoder are mostly unchanged. The first changes are in the input picture reading; each

layer may have a separate input, so an input picture needs to be read from each input

stream. Input pictures are still passed and output data is read with one function call, and

as a result, the encode frame step remains the same.

The output bitstream is already concatenated inside the Kvazaar library, requiring no

changes to out data writing. However, if the reconstructed output pictures need to be

written out to files, it is necessary to loop over the output layers. When encoding is

finished, the encoder is closed and resources de-allocated, as before.

The ‘Control’ portion of the Kvazaar encoding flow has gone through various changes

to account for the intricacies of scalable encoding. Firstly, as mentioned in the previous

subsections, Scalable Kvazaar needs to generate a configuration and initialize an encoder

instance for each layer being encoded. The configurations and encoder instances are

chained together using pointers to allow passing them through the Kvazaar API without

changing the API itself. Secondly, in the actual encoding flow, care needs to be taken with

the order in which certain functions are called to guarantee correct execution in all cases.

36

Encoder preparation proceeds as before but with a scalability preparation step added

after the picture re-order step; this is repeated for each layer. Moreover, after scalability

preparation, the frame initialization step is called separately from the one frame encode

step. The scalability prepare step handles adding ILRs to the reference list, copying TMVP

related information between states, and preparing upscaling and ILR picture buffers, as

necessary. After all preparations are complete, encoding is started for each layer.

Special handling is needed in the ‘Control’ flow when TMVP is used with SNR scalability

and several frames are processed at the same time (i.e., OWF, see Section 4.1.3). Since

SNR scalability allows directly using picture buffers from the RL, data races5 may occur

when copying TMVP related information; a delay is used to resolve the issue, as seen

in Figure 4.5. When the delay is enabled, EL preparation and encoding is skipped until

preparations for the next BL picture are done. To keep the output in sync, BL results are

delayed until the matching EL picture has been encoded, i.e., until the next evocation of

frame encoding.

In Figure 4.2, ‘High-Level’ has been broken up and expanded to better show the new

Scalable Kvazaar flow. Encoder state frame initialization has been removed from the

main ‘High-Level’ path, due to the changes to ‘Control’. Moreover, the CTU encoding

step has been expanded into a loop — over all CTUs — to show the added inter-layer

processing step. This new step is in charge of necessary preparations (i.e., scaling and

dependencies) that make it possible for an EL to use ILRs.

The CTU encoding process, described in ‘Mid-Level’, is not affected by changes made

for scalable encoding. The only additions to this layer are ILR processing related tasks

consisting of starting block (i.e., CTU or tile) upscaling and CU array upscaling, when

necessary. Moreover, parallel processing dependencies, for scaling tasks, are set in inter-

layer processing, described in Section 4.2.4.

The main loop in ‘Low-Level’ remains unchanged from single-layer Kvazaar. The only

additions are the YUV and CU array scaling steps. In the YUV scaling step, parameters

passed from ‘Mid-Level’ are used to invoke block scaling. The target block is determined

in ‘Mid-Level’ and YUV scaling only calculates the correct areas for each scaling step

and calls the scaling function with the correct buffers and parameters. YUV scaling uses

‘Scaler Library’ (see Section 4.2.5) to perform the actual block scaling. The CU array

scaling step performs motion field upsampling on the CTU specified in the upsampling

parameters that are set in ‘Mid-Level’. Motion field upsampling follows the process de-

scribed in Section 2.2.4.
5 When concurrent processes access the same spot in memory, nondeterministic behavior may ensue,

caused by the chancing order of read and write accesses.

37

4.2.4 Optimizations

As discussed in Section 4.1.3, Kvazaar has several parallelism tools for accelerating the

encoding process. Furthermore, various SIMD optimizations are employed for compu-

tationally expensive operations [49]. Scalable Kvazaar is able to take advantage of the

existing SIMD optimizations because they target block-level operations, allowing ELs to

use them without any modifications. On the other hand, the parallelism tools require some

additional modifications to get them working well together with the scaling process, when

inter-layer processing is needed (i.e., with spatial scalability).

WPP allows encoding the CTUs of a picture almost independently; the upscaling pro-

cess needs to be divided in a similar fashion to allow the EL WPP pipeline to proceed

smoothly. To this end, upscaling is divided into parallel tasks that process roughly one

BL CTU at a time; a dependency needs to be added between the BL WPP tasks and

the upscaling task to guarantee that the BL texture and motion information is available

before the corresponding EL CTU upscaling and encoding tasks begin. Moreover, the EL

WPP tasks need to depend on the respective upscaling tasks to make sure the upscaled

reference picture texture and motion information is available before starting to encode a

CTU. Figure 4.3 shows the inter-layer dependencies between EL CTUs and BL CTUs.

With tiles, the upscaling process is divided into separate tasks, similarly to WPP, but with

upscaling done at the tile level. Moreover, the dependencies between tasks are the same

as with WPP but using tile tasks instead.

Loop filters add some extra considerations into the parallel processing pipeline because

CTU edge pixels can only be filtered when the neighboring CTU edge pixels are also

available. This means that the CTU and tile upscaling task dependencies need to be

adjusted accordingly. The final texture data of the dependent BL CTU or tile will only be

available after the neighboring CTUs or tiles have been encoded.

The picture-level parallelism tool OWF adds some extra dependencies to the parallel

processing pipeline, as seen in Figure 4.3. Most of these dependencies are sufficiently

handled by the existing implementation of the parallel processing tools. However, when

using TMVP, the motion information upscaling task dependency of a WPP task needs to

be adjusted to allow enough motion data to become available from the RL picture.

If spatial scaling is not used (i.e., SNR only), upscaling jobs are not used and WPP/tile

dependencies can be set directly between the tasks of the different layers. In this case,

layer resolutions match, making the dependency matching task as simple as using the

collocated task of the RL as the dependency. However, if the loop filter settings of the

layers differ, the dependency needs to be adjusted to account for edge pixel filtering.

On top of the high-level parallel processing tools used to accelerate Scalable Kvazaar,

38

the low-level resampling (i.e., filtering) operation of the upscaling process has also been

optimized. The texture resampling operation has been implemented using AVX2 intrinsic

functions to take advantage of SIMD processing for maximal throughput. An overview of

the optimized upsampling process is shown in Figure 4.6.

The opaque buffer, used internally by the scaler library (see Section 4.2.5), allows several

source-destination bit depth combinations. The optimized resampling function supports

all possible combinations. However, the optimal combination, and the one used in Scal-

able Kvazaar, is an 8-bit to 16-bit horizontal resampling step and a 16-bit to 8-bit vertical

resampling step. Resampling is done in two parts and the bit depths have been chosen

to maximize the throughput while making sure the intermediate resampling values do not

overflow6.

In the first horizontal filter pass, 8-bit input values, from the given texture block, and 8-bit

filter coefficients are loaded into 256-bit registers. Using _mm256_maddubs_epi16 and

addition intrinsic functions, sixteen pixels can be processed with 8-tap filters in one batch.

The resulting 16-bit intermediate values are stored in the destination buffer for the next

pass. The vertical pass uses the 16-bit intermediate values and 16-bit filter coefficients

along with _mm256_madd_epi16 and addition intrinsic functions to calculate the values

for eight pixels at a time. The values are then scaled back to the 8-bit value range. The

scaling can be done to 8 pixels at a time and the results from four iterations can be

accumulated for the final clipping and storing operation, making the most of the 256-bit

registers.

4.2.5 Scaler Library

Scaler library is used for resampling (i.e., scaling) pictures, as needed by inter-layer pro-

cessing. It provides functionality, for generating the scaling parameters and necessary

picture buffers, as well as an extensive interface for controlling the granularity of the re-

sampling process. Figure 4.1 shows the main functions Scalable Kvazaar uses, under

the ‘Scaler’-interface, and the parts that make up the library, under ‘Scaler Library’.

The majority of the ‘Scaler Library’ functionality is implemented in scaler. It contains the

high-level picture scaling flow, functions for manipulating the buffers and data structures

used in the scaling process, as well as the generic implementation of the resampling

algorithm. The AVX2 optimized resampling algorithm — detailed in Section 4.2.4 — is

defined in scaler-avx2. The resampling filter coefficients7 and other shared helper

functions are defined in scaler-util.

The scaler library internally uses an opaque picture buffer for manipulating picture data.

6 The 16-bit intermediate depth is only sufficient for 8-tap upsampling filters, but not for 12-tap downsam-
pling filters.

7 See Appendix A for a listing of the filter coefficients.

39

Opaque buffers allow passing external (i.e., Kvazaar) picture buffers to the scaler library

without the need for addition memory copies. Furthermore, opaque buffers allow us-

ing different pixel bit depths between scaling steps, which is useful for SIMD optimiza-

tions. Opaque picture buffers can be created using the kvz_newOpaqueYuvBuffer-

function. It creates buffers for both the luma and chroma components at the same

time. The function allows passing pointers to already existing picture data or, alterna-

tively, allocating the required amount of memory for the specified picture size and pixel bit

depth. The external buffers may also be set after creating an opaque buffer by calling the

kvz_setOpaqueYuvBuffer function on previously created opaque buffers. Memory de-

allocation is handled by calling kvz_deallocateOpaqueYuvBuffer that optionally frees

the allocated memory if no external dependencies remain for the picture data.

The scaling process is invoked by calling either kvz_opaqueYuvBlockStepScaling or

kvz_opaqueYuvBlockStepScaling_adapter. The difference between the two func-

tions is that kvz_opaqueYuvBlockStepScaling_adapter allows passing a function

pointer to the resampling function, that should be used in the scaling process, letting the

strategy selector — introduced in Section 4.1.1 — switch between the generic and AVX2

optimized version of the resampling function based on the underlying hardware capabili-

ties. The kvz_opaqueYuvBlockStepScaling-function scales the source picture into the

destination buffer based on the given scaling parameters. Additionally, a sub-block of the

source picture may be specified if only a portion of the input picture should be resampled.

With a single invocation, the kvz_opaqueYuvBlockStepScaling function only performs

either the vertical or the horizontal scaling step; the function needs to be called two times

in order to complete the scaling process.

Other useful functions, for miscellaneous tasks, include: kvz_newScalingParameters,

kvz_blockScalingSrcWidthRange, and kvz_blockScalingSrcHeightRange. Of the

three, the first one can be used to generate the scaling parameters based on the source

and target picture resolutions. The two latter functions are used for calculating the area,

from the source picture, needed to generate the specified scaled block of the target pic-

ture; this is useful for calculating dependencies when using WPP (see Section 4.2.4).

40

Encoding Start

Parse Commandline
Options

Kvazaar API

Parse Configuration
Options

Get Input Frame

Encode Frames
Write Out Data/
Reconstruction

Open Encoder

Initialize Encoder

Encoding End

More Input/
Output?

Yes

No

Encoder PrepareEncoder Feed Frame

Start Encode One
Frame

No

Encoder State
Initialize New Frame

Encoder State Write
Bitstream

YesHas child states?

No

For Each Child State

Encoder State
Encode CTU

CABACSearch Inter

Search IntraSearch SMP/AMP Reconstruct CU Quantize Residual

Split CU?Yes
Calculate Cost &
Select Best Mode

No

No

Last Input
Layer?

Yes

Last Output
Layer?

Yes

No

Last Layer?

No

Yes

Not First Layer &
Add Delay

No

Delay Yes

Scalability Prepare Initialize One Frame Last Layer?

First Layer &
Add Delay

Delay

No Yes

Yes

ILR Processing

Start Block Scaling
Start CUA CTU

Scaling

CUA Scaling

YUV Scaling

Search CTU Deblock Filter

SAO Encode Coding Tree
Manage Bitstream/

CABAC State

Last CTU?No

Figure 4.5. Simplified Scalable Kvazaar encoding flow.

41

256-bits256-bits

v15' v14' v13' v12' v3' v2' v1' v0'

256-bits256-bits

v31 v30 v29 v28 v3 v2 v1 v0...v31 v30 v29 v28 v3 v2 v1 v0...

Perform filtering
using vector
instructions

Load data into
vector registers

...

Store values

Loop until all
input data has

been processed

256-bits256-bits

t7' t6' t5' t4' t3' t2' t1' t0'

256-bits256-bits

t15 t14 t13 t12 v3 v2 v1 v0...t15 t14 t13 t12 v3 v2 v1 v0...

Load temporary
buffer data into
vector registers

Loop until all
data has been

processed

Normalize and
scale values pack

to 8-bit range

Perform filtering
using vector
instructions

In
p

ut

Output

Figure 4.6. An overview of the AVX2 optimized upsampling process.

42

5 SCALABILITY TESTING FRAMEWORK

This section introduces the testing framework NAVETTA that can be used to automate

the testing of scalable encoders. NAVETTA is written as a Python1 package with the full

package structure depicted in Figure 5.1. The source code for this framework can be

found on github [43].

NAVETTA can be imported as a package by other Python script-files or it can be executed

directly. It provides a simple user interface, where a list of test scripts can be given

as command-line parameters. Alternatively, an interactive command-line prompt can be

used, allowing the user to input the test script names that should be run. The given test

script names can either be those already in the test-package or a path to any test script.

The top level module cfg collects most of the necessary configuration parameters that

are used when running test scripts.

Section 5.1 describes the structure of a test instances. Section 5.2, on the other hand,

goes over the TestSuite-package used to execute test instances. Section 5.3 briefly

introduces the tests-package that is intended to contain user-created test scripts.

5.1 TestInstances-package

The TestInstances package, as the name implies, defines test instance classes that

contain test parameters. Once instantiated and initialized, a test instance–object is used

to run tests with the desired parameters. In Addition, it will contain the results of the

test runs that can then be accessed through the test instance’s API. The similarly named

TestInstance-module, of the TestInstance-package, is an abstract class that defines

the test instance API through which all other inherited test instance classes can be used.

This allows for a unified processing workflow for heterogeneous payloads and minimizes

modifications to other packages if a new inherited test instance class is added.

The main API functions, defined in the base class TestInstance, are __init__, run,

and getResults. The base class directly provides a run-function implementation that

checks if results already exist (i.e., are saved to file), for the current parameters, and if

not, runs the tests and saves the results to file. The two other aforementioned interface

1 Object-oriented general-purpose programming language.

43

cfg.py

__init__.py

__main__.py

TestInstance.py __init__.py

shmTestInstance.pyskvzTestInstance.py

SummaryFactory.py TestSuite.py

TestUtils.py __init__.py

__init__.py

__main__.py

.

.

.

kvzTestInstance.py

Figure 5.1. The package structure of NAVETTA testing framework.

functions are defined as abstract methods, thus requiring them to be implemented by

the inherited class. The __init__-function is used to set test parameters that will be

used when running the test instance. It defines common parameters that are likely to be

needed by all of the different inherited test instances. They are as follow:

test_name Unique name given to the test instance, which can be used to refer

to the test instance and distinguish it from other tests instances. It is also the name

shown in the generated result file.

inputs List of input files (file paths inside of a tuple), representing the sequences

that are used in the test. If separate input files are specified for each layer in scal-

able encoding, each item in the list should be a tuple, where the index, matching a

given LID, contains the input file for the specified layer.

44

input_sizes (optional) Specify the resolution of each input file given in inputs

(should match its structure). Does not need to be given if the resolution can be

inferred from the input filenames.

input_names (optional) Specify more human readable names for the input files

(i.e., no file path). Should match the inputs structure. If specified, these names are

shown in the results instead of the input file paths if specified.

layer_args (optional) Specify additional encoding parameters that are passed to

the underlying encoder. If doing scalable encoding with multiple layers, the given

layer argument object should be indexable by the respective LID and return the

layer specific parameters for the given layer.

layer_sizes (optional) Specify a resolution for each layer, when doing scalable

encoding, if the layer resolution differs from the input resolution (e.g., spatial scala-

bility). Gets overwritten by input_layer_scales.

input_layer_scales (optional) Specify a scaling ratio for each layer, when doing

scalable encoding, if the layer resolution differs from the input resolution (e.g., spa-

tial scalability). Each layer’s resolution is derived by multiplying the input resolution

by the respective input layer scale.

qps (optional) Specify the QP values used for BD-rate calculations. Takes four

QP points that are shared by each layer if layer specific values are not given. Alter-

natively, if a list of tuples are given, each layer is assigned QP values from the tuple

indexed by the LID (e.g., in SNR scalability).

out_name (optional) Name/path of the output files, where the results from the

test encodings are saved until they can be processed.

bin_name (optional) Filename of the executable that should be used for encod-

ing.

version (optional) Specify the version of the executable. Can be used to force

re-running tests with the same parameters when the executable has changed but

uses the same name.

**misc (optional) Used to catch inherited test instance specific parameters.

As for the getResults-function, it takes in, as a parameter, a function that can be used to

collect the results in a format specified by the caller. The Function should take in the name

of the sequence, the QP, the LID, the size of the encoded file, the size of the encoded file

per unit of time, the time it took to encode the file, and the PSNR. The other (private) ab-

stract functions that need to be defined, by the inherited class, are _get_gname_hash, for

generating a unique identifier for a test parameter set, and _run_tests that implements

the actual test execution procedure.

The skvzTestInstance-class implements a test instance for Scalable Kvazaar. It han-

45

dles calling Scalable Kvazaar, with the given test parameters, and collects all the perti-

nent information from the encoding. On top of the initialization parameters listed above,

skvzTestInstance adds the optional parameters validate and retries. They are used

to control the validation of an encoded sequence, by attempting to decode it with SHM,

and setting how many times the encoding process is repeated if the decoding fails.

To support unmodified Kvazaar encoding, a kvzTestInstance is inherited from the

aforementioned skvzTestInstance. Due to the similarity of the normal Kvazaar and

the scalable version, only the internal result parsing method needs to be re-defined. For

clarity, the results folder definition is also changed.

The shmTestInstance class implements a test instance for SHM encoding. Because

SHM does not provide built-in tools for parallelism, shmTestInstance runs several SHM

encodings in parallel. This is achieved by creating a worker function that is in charge

of a single encoding. An asynchronous Python pool is used to manage the worker in-

stances. This can considerably shorten testing times for the slow SHM when many par-

allel cores are available. Since SHM uses special configuration files to set the encoding

process parameters, the shmTestInstance initialization definition differs slightly from the

TestInstance initialization. A new configs parameter is added that is roughly equivalent

to the inputs parameter. Since a configuration file may define the input file that should be

used, the configs parameter can be used, instead of the inputs parameter, to define the

test sequences.

5.2 TestSuite-package

The TestsSuite-package is in charge of running test instances and processing the re-

sults (TestSuite-module). The results can then be collected and formed into different

kinds of summaries as the user desires (SummaryFactory-module). The package also

provides utility functions/classes for creating test instances and generating summary def-

initions (TestUtils-module).

5.2.1 TestSuite-module

The TestSuite-module provides the runTests-function that takes, as a parameter, a

list of test instances and a name for the output results file. Additionally, the function

may be given any number of summary definitions and a list of (layer) combinations. The

supported summary types are defined in the SummaryFactory-module. Helper functions,

for creating these definitions, are found in the TestUtils-module. As for the (layer)

combinations, they allow the user to combine results from separate tests — given as a list

of test instance name tuples — as if they were one test. Regular combinations simply add

the results together, but layer combinations treat the results as if each test was a specific

46

layer; the layer is determined by the index of the test instance in the layer combination

definition.

The runTests-function handles calling the run-method for each test instance and parses

the results using the getResults-method. Next, any (layer) combinations, given by the

user, are generated. Finally, the function proceeds to write the results into an Excel file.

All of this can be done with heterogeneous test instance classes, without test instance

type specific logic, since class inheritance was used.

5.2.2 SummaryFactory-module

The SummaryFactory-module contains definitions for different summary types. Three

types are defined: BDBRMatrix, Anchor_list, and Curve_chart. The base summary

definition, used as a container for other summary definitions, is a Python dictionary with

fields for the summary type, a name, and the summary types definition. The name is used

as the Excel sheet name and should be unique among the other summary definitions

included in the results file. Helper functions for creating the summary definitions are

included for each summary type and the base definition. In addition, there are separate

functions for writing each summary type, based on the given definition, and a function

that can be given several (base) definitions, and it will call the respective write function for

each definition. The full summary definition hierarchy is shown in Figure 5.2.

The BDBRMatrix summary type allows creating an N × N summary matrix of tests,

where N is the number of tests included in the results file. Each value in position (x, y),

in the matrix, contains the comparison of the yth vertical test with the xth horizontal test.

In addition to BD-rate comparisons, this summary type supports bit (e.g., encoded file

size), PSNR, and encoding time comparisons. The BDBRMatrix definition contains fields

for toggling the inclusion of each aforementioned comparison type and a layers field for

selecting the target layers that should be included from a given tests. The layering field

should contain a Python dictionary with test names as keys and a list of LIDs, that are to

be included, as the values. If a test is not included in the layers field, only the total-layer

(i.e., aggregation of all other layers) is included from that test.

The Anchor_list summary type allows creating lists of test comparisons with varying an-

chors. Each specified test is compared with an associated anchor that may differ between

each test. The supported comparison types are the same as with BDBRMatrix. Further-

more, each comparison type can have different test and anchor inputs from each other.

To facilitate this, a sub-definition is used. The Anchor_list definition contains fields for

each type of comparison that should have, as values, either an anchor list sub-definition

or None if the respective comparison type should not be included. The sub-definition

should be a Python dictionary with keys for each test that is to be included and the values

are tuples of anchor test names or None if absolute values (i.e., no comparison) are to

47

Type
Name:
String

Definition

BDBRMatrix Anchor_list

Layers

Write Bits:
Boolean

Write BDBR:
Boolean

Write PSNR:
Boolean

Write Time:
Boolean

Bits

BDBR

PSNR

Time

None
Test name: List of
Anchor test names |

None

Test name:
Tuple of layer

ids

Curve_chart

Tests: List of
test names

Charts: List of
chart axis data
type (’psnr’ |

’rate’ | ’time’)
pairs

Figure 5.2. Summary type definition hierarchy.

be used (not valid for BD-rate).

The Curve_chart summary type allows creating per-sequence plots based on the values

of different data-points; here the data-points are the different QP values used for the tests.

This can be used to visualize the bit rate curves that underline the BD-rate calculation.

The Curve_chart definition simply takes a list of test names, for which a curve is added

in each Excel chart, and a list of chart definitions in the form of datatype pairs. The first

value in the pair is used as the x-axis datatype and the second as the y-axis datatype. The

supported datatypes are ’psnr’ (i.e., quality), ’rate’ (i.e., bit rate), and ’time’ (i.e., encoding

time).

48

5.2.3 TestUtils-module

The TestUtils-module provides helper functions for creating test scripts. It contains

functions for generating summary definitions as well as a helper class definition for defin-

ing test parameter groups that can be used to generate test instances.

The TestParameterGroup-class can be useful for creating test instances when all com-

binations of several parameter values need to be tested. The class calculates a Cartesian

product of the specified parameter values and creates a test instance for each combina-

tion. Additionally, these test instances can be filtered, using a filter function, to remove

unwanted parameter combinations. The names of the parameters, added to a param-

eter group, should match the test instance construction parameters as they are passed

directly to the constructor when creating test instances. User defined helper parameters

can also be used because un-recognized parameters are discarded.

New parameters can be added to a TestParameterGroup-object with the class methods

add_parm_set and add_const_param. The former adds a parameter with multiple pos-

sible values and the latter adds a parameter with one value shared by all generated test in-

stances. For modifying the final parameter sets, passed to the test instance constructors,

the filter_parameter_group- and set_param_group_transformer-method are pro-

vided. The first function takes in a filter function that is applied on top of the other filters

that have been given; a parameter set needs to pass all applied filters to be included

in test instance creation. Filter functions should be such that they take in all parame-

ters, given to the parameter group instance, and return true if the given parameter value

combination is acceptable.

The set_param_group_transformer-method, on the other hand, lets the user set a

transformer function that transforms parameter sets, based on, e.g., user defined helper

parameters, to derive the final parameter sets. This can be useful if, for example, the

test instance name parameter needs to be derived from other parameter values. The

transformer function should take in all parameters, given to the parameter group instance,

and return a Python dictionary of the transformed parameter group. For getting the final

parameter groups, TestParameterGroup-class provides the dump-function that returns a

list of all parameter sets as dictionaries. Alternatively, the class also provides convenience

functions — to_skvz_test_instance and to_shm_test_instance — that return a list

of test instances, constructed with the parameter groups’ parameters .

The TestUtils-module also provides a helper function for creating transformer functions

that can be assigned to TestParameterGroup-objects. The transformerFactory-

function allows the user to pass named parameters to it with a callable object (i.e., a func-

tion or lambda) as the value. These name-function pairs are used to modify the matching

parameter in the parameter group by invoking the associated function. If the name does

49

not match a parameter in the parameter group, a new parameter is added under the new

name. Functions, given to the transformerFactory, are invoked by passing them all

parameters from a parameter group; the return value should then be the new value as-

signed to the parameter under the name given to the transformerFactory-function.

The helper function, thus, allows the user to easily assign parameter specific transformer

functions that can still depend on other parameter’s values. This is useful, for example,

when creating test names based on other parameter values.

To help with generating (layer) combination definitions, the TestUtils-module provides

the generate_combi-function. It takes in TestParameterGroup-objects, a combination

condition function, an optional name function, and an optional transformation function.

The combination condition function is used to decide if two parameter groups should be

combined. To this end, it takes in two dictionaries representing two different parameter

groups. The return value of the combination condition function should be a boolean or

an integer value for enforcing an ordering of the parameter groups. The ordering of the

parameter groups is used to decide the layer of each parameter group being combined in

the combination definition. Additionally, a helper function (combiFactory), for combina-

tion function generation, is also provided. It allows the user to specify functions that take

two parameter group dictionaries and per-parameter functions as parameters. The given

functions are combined into a single function that aggregates the results from the other

functions.

As for the name function, it can be used to specify how the names for the tests are

generated; it should takes in the parameters of a parameter group and return a string.

Finally, the transformation function allows specifying an additional stage that generates

sub-sets from the sets generated by the combination condition function. Some other

relevant functions, for combination generation, are: the get_combi_names-function that

returns a list of combined test names based on the given combination definition; and the

get_test_names-function that returns the names of the given test instances.

The TestUtils-module includes functions for creating summary type definitions. The

make_BDBRMatrix_definition-function is used for creating BDBRMatrix definitions. It

takes in a list of test names, a layering function, an optional filter function, and boolean

values, for each comparison type, in order to select the inclusion of the respective com-

parison types in the summary. The layering function should take a test name and return a

tuple of LIDs, representing the layers that are to be included. As before, the filter function

can be used to leave out some of the given tests.

For Anhor_List summary definitions, two functions are included with slightly different

functionality. The make_AnchorList_singleAnchor_definition-function allows cre-

ating anchor lists with a single anchor test used for all specified tests. For creating

more complex anchor lists, the make_AnchorList_multiAnchor_definition-function

50

is provided, allowing the creation of anchor lists with different anchors between tests.

The single-anchor version takes in: the name of the anchor test or a name-LID pair; the

tests compared with the anchor; a filter function for filtering out unwanted test-anchor

pairs; a layer function for selecting the target layers (i.e., LIDs) of the tests; and a unique

name for the summary definition. Both the anchor input parameter and test input param-

eter have a global version, that is used for all comparison types, and a comparison type

specific version for specifying different tests to different comparison types. The test filter

function is given an anchor test name and an input test name, and it should return true if

the anchor-test pair should be included in the summary. The layer function takes in input

test names and should return an iterable object, containing either name-LID pairs or just

the input name.

To help with creating more complex layer functions, the layerFuncFactory-function is

provided. It allow the user to specify several LID lists with a matching condition function.

For a given test name passed to the condition function, the list of LIDs is used as the

layers for the given test if the condition function returns true.

The multi-anchor function takes in similar parameters to the single-anchor variant but with

a few changes. Firstly, the anchor parameters are changed to take in a function instead of

a test name. Secondly, the filter and the layer function parameters are extended to have

comparison specific versions. Lastly, all input tests are given in a single parameter. The

anchor function is the only new kind of parameter. It should take in either the name of

an input test or a name-LID pair. The return value — an iterable object containing valid

anchor values — is then used as the anchor for the respective test.

For simplifying the anchor function creation, the anchorFuncFactory_match_layer-

function is provided. It takes in a function that only accepts test names and returns the

anchor information; the anchor function factory wraps the provided function, making it

a proper anchor function that allows name-LID pair inputs as well. The function, that is

created, sets an input anchor test’s layer to match the input test’s layer, if the input test’s

layer is specified. This allows creating anchor functions without having separate cases

for each name-LID pair.

The make_CurveChart_definition-function can be used to create Curve_chart defi-

nitions. It takes in a list of test names and a layering function similarly to the Anchor_list

definition generation functions. Additionally, the input test names can be filtered with a

filter function. The helper function supports two types of charts: bit rate versus quality

curves (br_curve) and bit rate versus time complexity curves (time_curve). These two

types of charts are the most relevant and likely to provide logical results because of the

way the data-points are generated by varying QP.

51

5.3 tests-package

The tests-package collects user-created test scripts. The user may run and save test

scripts anywhere, but the tests-package provides a simple user interface for selecting

and running tests using just their filename (i.e., no need to give exact file paths).

When the __main__ module of the tests-package is executed, it goes through all mod-

ules currently in the tests folder, adding them to a list. This means any test scripts

that are added to the folder get automatically included, requiring no modification of the

tests-package when adding new test scripts. The scripts, that are found, can then be

run by giving the script name as a command-line parameter when executing the tests-

package. Alternatively, an interactive prompt can be used to specify test names when no

command-line parameters are given.

52

6 PERFORMANCE EVALUATION

This chapter presents a quantitative evaluation of scalable encoding. Section 6.1 com-

pares the coding efficiency and complexity of Scalable Kvazaar and SHM [15], whereas

Section 6.2 provides a wider inspection of the effects of the scaling ratio and ∆QP on the

performance of SHVC.

6.1 Performance Results

This section presents the performance results from tests described in Section 3.2. Results

are calculated for two ∆QP values and seven sequences, as described in Section 3.2.3.

Coding efficiency results are discussed in Section 6.1.1, whereas complexity is analyzed

in Section 6.1.2.

6.1.1 Coding Performance Analysis

Table 6.1 tabulates the SNR BD-rate (see Section 3.2.1) results, for Scalable Kvazaar,

where Kvazaar simulcast coding is used as the anchor for the BD-rate calculation. Be-

tween the two ∆QP values, Scalable Kvazaar is able to achieve an average bit rate

improvement of (12.44%+19.88%)/2 = 16.16%. When only comparing the ELs, the av-

erage improvement is 23.02%. Table 6.2 shows the equivalent results for SHM compared

with HM simulcast coding. SHM provides an average bit rate improvement of 14.21% and

22.56% for EL-only, giving similar results as Scalable Kvazaar.

When examining the individual results of the two ∆QP tests more closely, it can be seen

that a smaller absolute ∆QP value results in a higher bit rate improvement. The change

in BD-rate between the different ∆QP values is due to the fact that, with a large QP gap,

it becomes harder to find low coding cost blocks from the BL because a higher QP results

in larger distortion, which degrades the quality. With a smaller QP difference, however,

the qualities of the BL and EL converge, allowing the EL to use blocks from the BL more

efficiently, thereby obtaining higher BD-rate savings.

Similarly to the SNR results, Tables 6.3 and 6.4 tabulate the spatial scalability results

for Scalable Kvazaar and SHM, respectively. Results are given for the scaling ratios

of 2× and 1.5×. With a 2× spatial scaling ratio (Table 6.3a), Scalable Kvazaar gives an

53

Table 6.1. Coding gain and speedup of Scalable Kvazaar over Kvazaar simulcast coding
when using SNR scalability.

∆QP = −6 ∆QP = −4
BD-rate

∆Speed Speed
BD-rate

∆Speed Speed
Sequence BL+EL EL BL+EL EL

Traffic -4.93% -3.83% 1.11× 29 fps -11.55% -16.51% 1.16× 31 fps

PeopleOnStreet -17.52% -24.09% 1.13× 19 fps -27.89% -45.62% 1.18× 21 fps

Kimono -14.90% -20.52% 1.19× 50 fps -23.47% -37.73% 1.26× 55 fps

ParkScene -10.90% -14.12% 1.17× 48 fps -17.33% -26.17% 1.22× 52 fps

Cactus -12.95% -15.30% 1.22× 48 fps -19.46% -28.63% 1.26× 54 fps

BasketballDrive -16.26% -20.44% 1.22× 45 fps -25.09% -38.91% 1.28× 49 fps

BQTerrace -9.62% -10.82% 1.17× 43 fps -14.39% -19.50% 1.20× 48 fps

Average -12.44% -15.59% 1.17× -19.88% -30.44% 1.22×

Table 6.2. Coding gain and speedup of SHM over HM simulcast coding when using SNR
scalability.

∆QP = −6 ∆QP = −4
BD-rate

∆Speed
BD-rate

∆Speed
Sequence BL+EL EL BL+EL EL

Traffic -8.33% -15.34% 0.96× -12.67% -25.52% 0.97×
PeopleOnStreet -15.39% -22.22% 0.99× -25.23% -41.31% 1.02×
Kimono -12.22% -18.68% 0.98× -20.96% -35.43% 1.00×
ParkScene -8.42% -14.53% 0.96× -14.06% -25.98% 0.97×
Cactus -9.73% -13.51% 0.97× -16.88% -27.26% 0.98×
BasketballDrive -12.73% -16.92% 0.98× -21.91% -33.75% 1.00×
BQTerrace -7.18% -7.97% 0.96× -13.17% -17.41% 0.97×
Average -10.57% -15.59% 0.97× -17.84% -29.52% 0.99×

average BD-rate decrease of 13.12%, whereas the 1.5× ratio (Table 6.3b) gives a 23.19%

decrease. The respective results for EL-only are 16.85% for the 2× ratio and 37.02% for

the 1.5× ratio. Again, these results are inline with those of the SHM with the full and

EL-only BD-rates being -13.58% and -21.66% for the 2× ratio (Table 6.4a). Similarly, for

the 1.5× ratio (Table 6.4b), the respective values are -24.20% and -42.97%.

Even with the loss of detail from upsampling an already downsampled image, spatial scal-

ability is able to reach a notable level of bit rate reduction when compared with simulcast,

albeit not quite as high as with just SNR scalability. Moreover, as can be expected, with

a 1.5× scaling ratio, the BD-rate improvement is higher than with a 2× ratio. This is

due to the 1.5× ratio’s upsampling having comparatively more information to work with,

resulting in a more accurate reference for the EL. Another thing that can be noted from

the results is that increasing the QP on the EL results in a larger BD-rate improvement

54

Table 6.3. Coding gain and speedup of Scalable Kvazaar over Kvazaar simulcast coding
when using spatial scalability.

(a) Scaling ratio of 2×

∆QP = 0 ∆QP = 2

BD-rate
∆Speed Speed

BD-rate
∆Speed Speed

Sequence BL+EL EL BL+EL EL

Traffic -3.75% -1.49% 0.91× 35 fps -7.16% -8.40% 0.92× 36 fps

PeopleOnStreet -15.36% -21.27% 1.00× 24 fps -23.54% -39.56% 1.06× 27 fps

Kimono -17.10% -21.88% 1.06× 63 fps -23.46% -34.56% 1.10× 68 fps

ParkScene -9.05% -10.42% 1.00× 59 fps -13.90% -18.92% 1.02× 63 fps

Cactus -10.37% -9.17% 1.02× 60 fps -15.09% -18.50% 1.05× 65 fps

BasketballDrive -13.58% -14.42% 1.07× 57 fps -19.97% -26.66% 1.12× 62 fps

BQTerrace -4.86% -4.05% 0.99× 54 fps -6.49% -6.55% 1.00× 60 fps

Average -10.58% -11.81% 1.01× -15.66% -21.88% 1.04×

(b) Scaling ratio of 1.5×

∆QP = 0 ∆QP = 2

BD-rate
∆Speed Speed

BD-rate
∆Speed Speed

Sequence BL+EL EL BL+EL EL

Kimono -26.50% -40.90% 1.08× 58 fps -34.47% -59.90% 1.15× 63 fps

ParkScene -16.79% -24.59% 1.02× 54 fps -25.56% -44.19% 1.07× 58 fps

Cactus -20.36% -28.29% 1.07× 56 fps -28.58% -49.42% 1.12× 61 fps

BasketballDrive -23.09% -32.83% 1.11× 53 fps -30.86% -52.44% 1.17× 57 fps

BQTerrace -10.14% -12.61% 1.01× 49 fps -15.51% -25.03% 1.03× 54 fps

Average -19.38% -27.84% 1.06× -27.00% -46.19% 1.11×

than with equal QPs between the layers. The higher QP, in a sense, compensates for the

distortion, introduced in the upsampling process, by lowering the quality requirements of

the EL, allowing the ILR to be used more readily.

Appendix B contains figures visualizing the individual QP results — used to calculate the

BD-rate values — for all tests described above. These figures provide a more detailed

picture of the coding efficiency but are less useful for gauging the quantitative coding

efficiency.

6.1.2 Coding Complexity Analysis

The encoding speed results give a multiplier, relative to the anchor, and an absolute FPS-

value. The relative coding speed multiplier has been calculated by taking the average

encoding time — over the QP range used for BD-rate calculations — and comparing it to

the average encoding time of the anchor; a smaller encoding time means faster speed and

results in a multiplier that is greater than one. This method may not give the most accurate

results, since the bit rate and quality are not the same between the two encodings being

55

Table 6.4. Coding gain and speedup of SHM over HM simulcast coding when using
spatial scalability.

(a) Scaling ratio of 2×

∆QP = 0 ∆QP = 2

BD-rate
∆Speed

BD-rate
∆Speed

Sequence BL+EL EL BL+EL EL

Traffic -8.02% -15.03% 0.94× -10.40% -21.94% 0.95×
PeopleOnStreet -15.14% -22.39% 0.98× -24.72% -41.06% 1.04×
Kimono -13.97% -21.05% 0.98× -24.90% -41.99% 1.03×
ParkScene -7.64% -12.87% 0.94× -11.46% -20.83% 0.96×
Cactus -9.76% -14.18% 0.95× -16.05% -25.70% 0.98×
BasketballDrive -11.27% -14.45% 0.97× -19.67% -28.99% 1.01×
BQTerrace -6.77% -7.85% 0.93× -10.34% -14.93% 0.93×
Average -10.37% -15.40% 0.96× -16.79% -27.92% 0.99×

(b) Scaling ratio of 1.5×

∆QP = 0 ∆QP = 2

BD-rate
∆Speed

BD-rate
∆Speed

Sequence BL+EL EL BL+EL EL

Kimono -25.97% -44.04% 1.03× -41.17% -80.75% 1.13×
ParkScene -14.25% -25.94% 0.97× -25.59% -51.91% 1.02×
Cactus -18.51% -29.78% 0.99× -31.02% -58.72% 1.05×
BasketballDrive -22.41% -33.57% 1.01× -34.29% -61.50% 1.07×
BQTerrace -10.48% -13.27% 0.95× -18.28% -30.20% 0.96×
Average -18.32% -29.32% 0.99× -30.07% -56.62% 1.04×

compared, but it should still give a general idea of the relative coding speed. Similarly

to the relative encoding speed, the absolute encoding speeds have been calculated as

an average over the QP test range. Additionally, Appendix B provides figures for all the

per-QP encoding times of (Scalable) Kvazaar.

The relative encoding speed results for Scalable Kvazaar, using SNR scalability, in Table

6.1 show a significant speedup when compared with simulcast coding speeds. An aver-

age speedup of (1.17× +1.22×)/2 = 1.20× is achieved over the two ∆QPs. Scalable

Kvazaar is able to efficiently pipeline the BL and EL encoders; since the layer resolutions

match, their processing times are well balanced and neither layer’s encoder dominates

the encoding workload. Moreover, encoding both layers at the same time mitigates the

inherent limitations of WPP that would normally limit the number of tasks available at the

beginning and the end of a frame. Scalable encoding more or less doubles the available

56

number of tasks at any given time. SHM, on the other hand, lacks optimization and suc-

cumbs to the overhead introduced by scalable coding, resulting in an average ∆Speed

of 0.98× (Table 6.2). As for absolute encoding speed, using the optimizations detailed in

Section 4.2.4, Scalable Kvazaar reaches real-time encoding speeds, in most sequences,

and over 40 FPS in all 1080p sequences. With SHM, however, the absolute encoding

speeds have been omitted, since they are in the order of minutes-per-frame.

When using spatial scalability, the speedup of Scalable Kvazaar is more modest than with

SNR scalability, but it is still able to maintain similar speeds as simulcast coding, despite

the added inter-layer processing. As seen in Table 6.3a, the average speedup of Scalable

Kvazaar with a 2× scaling ratio is 1.03× and, from Table 6.3b, the average speedup with

a 1.5× scaling ratio is 1.09×. With spatial scalability, the layer resolutions differ, causing

the processing times of the BL and EL encoders to be unbalanced. This hinders the

encoding pipeline, decreasing efficiency, since the BL encoder is stuck waiting for the EL

encoder. With the scaling ratio of 1.5×, the speedup ends up being slightly higher, when

compared with the 2× scaling ratio results, because it is not quite as unbalanced as the

2× case. With spatial scalability, it should be noted, based on the per-QP results shown

in Appendix B, that Kvazaar simulcast coding seems to be faster in the higher end of the

QP range, but Scalable Kvazaar is faster in the lower end. Similarly to the SNR case,

SHM suffers an overall slowdown of 0.98×, when using 2× spatial scalability, but with a

1.5× ratio, manages a slight speedup of 1.02×. With spatial scalability, Scalable Kvazaar

is mostly able to encode at above 30 FPS, and on 1080p sequences, it reaches encoding

speeds of over 50 FPS in all but one sequence.

6.2 SHVC Parameter-Space Exploration

To get a better idea of the effects of ∆QP and the scaling ratio on the coding performance

of SHVC, a more thorough investigation was performed. The measurements were carried

out using Scalable Kvazaar as its fast encoding speeds allow running extensive tests

in a reasonable time-frame. In total, twelve ∆QP values, ranging from -9 to 2, were

tested in combination with three scaling ratios (1×, 1.5×, and 2×). Here, the BL QPs,

used for all tests, were the spatial BL QP values from Table 3.2. This is to make the qp

ranges consistent between SNR and spatial scalability tests. Bar the different BL QPs,

the parameter-space exploration tests were performed as described in Section 3.2. The

averages from these tests are collected in Figure 6.1 that shows BD-rate improvements

and the relative encoding speedup.

Figure 6.1a contains the BD-rate results for Scalable Kvazaar versus Kvazaar simulcast

coding. It can be seen that the BD-rate improvements start increasing quickly as ∆QP

increases. This is especially true for SNR scalability, since the BL and EL qualities start

converging, as was mentioned in Section 6.1.1. When spatial scalability is used, the BD-

57

0%

1×

-10%

-20%B
D

-r
at

e
-30%

Ratio

-40%

21.5× 10

-50%

-1-2

QP

-3-4-5-6-7-8-92×
-5%

-10%

-15%

-20%

-25%

-30%

-35%

-40%

-45%

(a) BD-rate improvements over different ∆QP and scaling ratios

0.9×

1×

1×

1.1×

1.2×

S
pe

ed

1.3×

Ratio

21.5×

1.4×

10

1.5×

-1-2

QP

-3-4-5-6-7-8-92×

1×

1.05×

1.1×

1.15×

1.2×

1.25×

1.3×

1.35×

1.4×

(b) Delta speed over different ∆QP and scaling ratios

Figure 6.1. Parameter-space exploration of scalable encoding.

rate improvements are somewhat diminished, especially with a 2× scaling ratio, as is to

be expected due to the distortion introduced by upsampling. With the negative ∆QP

values spatial scalability BD-rate improvements are almost constant. On the other hand,

spatial scalability sees a notable benefit from positive ∆QP values, since the decreased

quality for the EL compensates for the upsampling distortion.

58

Figure 6.1b contains the relative encoding speed results for Scalable Kvazaar versus

Kvazaar simulcast coding. For SNR scalability, the speedup increases almost exponen-

tially as the ∆QP increases, similarly to the respective BD-rate results. For spatial scala-

bility, due to the added inter-layer processing, the relative speed stays fairly close to one

throughout the ∆QP range but starts picking up with the positive ∆QP values. It seems

that, at least in the case of Scalable Kvazaar using the ultrafast preset, SNR scalability

can achieve considerable speedups when BD-rate increases. However, spatial scalability

is limited by inter-layer processing even when BD-rate gains are increased, resulting in

the relative speedup staying almost constant when ∆QP is changed.

59

7 CONCLUSION

This thesis presented an overview of scalable video coding as well as Scalable Kvazaar

— an open-source SHVC encoder capable of real-time encoding. First, the basic con-

cepts of video coding, specifically HEVC, were briefly covered, and scalability features,

included in SHVC, were introduced. Some common techniques, for analyzing said video

technologies, were also described. Next, this thesis gave a technical overview of Kvazaar

followed by the implementation details of Scalable Kvazaar. Then, to measure the per-

formance of Scalable Kvazaar, a scalability testing framework was described. Finally,

the results from tests, performed on Scalable Kvazaar and SHM, were presented and

analyzed.

Section 7.1 further presents the main contributions of this work and summarizes the main

results. Section 7.2 goes over future work and possible development directions for Scal-

able Kvazaar.

7.1 Main Contributions

The main contributions of this work involved implementing quality and spatial scalability

features in a practical encoder, resulting in Scalable Kvazaar. Moreover, the encoding

process of Scalable Kvazaar was optimized using WPP, OWF, and SIMD parallelization

techniques, making it possible to reach real-time encoding speeds. At the time of writing,

Scalable Kvazaar is the only practical open-source SHVC encoder in existence.

Table 7.1 collects the average BD-rate results from all conducted tests. As can be seen,

when comparing scalable coding to simulcast coding, the average bit rate savings of

Scalable Kvazaar range from 10.58% to 27.00%. The respective results for SHM are

similar in terms of magnitude, validating the Scalable Kvazaar results.

Kvazaar is capable of real-time encoding speeds. Similarly, through the aforementioned

optimizations, Scalable Kvazaar is able to reach real-time encoding speeds despite the

added inter-layer processing required by scalable coding. Table 7.1, likewise, summarizes

the relative encoding speed results of scalable coding versus simulcast coding. Scalable

Kvazaar can be seen to provide notable speedups, ranging from 1.01× to 1.22×. The

un-optimized SHM, however, suffers from scalable encoding overhead and is, on average,

60

Table 7.1. Average BD-rate and relative speed results for Scalable Kvazaar and SHM.

Spatial Quality

∆QP = 0 ∆QP = 2
∆QP = −6 ∆QP = −4

2× 1.5× 2× 1.5×
Scalable
Kvazaar

BD-Rate -10.58% -19.38% -15.66% -27.00% -12.44% -19.88%

∆Speed 1.01× 1.06× 1.04× 1.11× 1.17× 1.22×

SHM
BD-Rate -10.37% -18.32% -16.79% -30.07% -10.57% -17.84%

∆Speed 0.96× 0.99× 0.99× 1.04× 0.97× 0.99×

Table 7.2. Absolute encoding speed results for Scalable Kvazaar.

Spatial Quality

∆QP = 0 ∆QP = 2
∆QP = −6 ∆QP = −4

Sequence 2× 1.5× 2× 1.5×
Traffic 35 fps - 36 fps - 29 fps 31 fps

PeopleOnStreet 24 fps - 27 fps - 19 fps 21 fps

Kimono 63 fps 58 fps 68 fps 63 fps 50 fps 55 fps

ParkScene 59 fps 54 fps 63 fps 58 fps 48 fps 52 fps

Cactus 60 fps 56 fps 65 fps 61 fps 48 fps 54 fps

BasketballDrive 57 fps 53 fps 62 fps 57 fps 45 fps 49 fps

BQTerrace 54 fps 49 fps 60 fps 54 fps 43 fps 48 fps

slower than simulcast coding in most cases.

As seen from Table 7.2, Scalable Kvazaar reaches real-time encoding speeds on 1080p

video sequences in all test cases. This means Scalable Kvazaar can be used in real-time

application, such as video conferencing, if scalable coding is going to be used.

7.2 Future Work

The current focus of Scalable Kvazaar is on real-time encoding and, as such, has not

been extensively tested with all coding tools in Kvazaar. More work would likely be needed

to fully utilize all of the encoding tools. Presently, Scalable Kvazaar only fully supports one

EL, so adding support for multiple ELs would be another possibility for future work. More-

over, Scalable Kvazaar does not implement all scalability types, introduced by SHVC,

such as bit depth and color gamut scalability, opening another avenue for further develop-

ment. However, more support for variable bit depths and color spaces would be required

from the Kvazaar side.

Another path for future development could be to implement and investigate speedup tech-

niques proposed in various papers [55, 56, 57, 58, 59]. Bailleul et al. [55] present simple

61

early termination methods for skipping rarely used modes etc. in the EL. On the other

hand, Wang et al. [56, 57] use more complicated content adaptive statistical modeling to

predict the CU modes and depths for the EL when using SNR scalability. Shen and Feng

[59] expand the statistical method to spatial scalabitily, as well. Additionally, Shen et al.

[58] present a neural network–based solution for predicting coding information. These

methods are able to cut SHM encoding speed in halve — some even more than halve.

Regardless, it remains unclear how well they would work with a practical encoder.

Since Scalable Kvazaar provides a practical SHVC encoder, it would be possible to in-

tegrate it into various applications that could benefit from scalability. In the field of tele-

conferencing, one such candidate would be Kvazzup [60]. It is an open-source video call

software that uses Kvazaar for video encoding tasks. Since Kvazzup already has Kvazaar

integration, moving to Scalable Kvazaar would be trivial, once scalability support is added

on the Kvazzup side.

Finally, moving beyond HEVC, the scalable encoding techniques, presented in this thesis,

could be applied to other, future, codecs. One such promising video coding standard is

Versitile Video Coding (VVC) [61] — the successor to HEVC. In VVC, the quality and

spatial scalability features of SHVC have already been carried over, meaning that the

techniques, and even implementation, of Scalable Kvazaar could be directly transferred

to a practical VVC encoder.

62

REFERENCES

[1] Cisco. Cisco Visual Networking Index: Forecast and Trends, 2017-2022. Dec. 2018.

[2] Parameter Values for UHDTV Systems for Production and International Program

Exchange. document ITU-R Rec. BT.2020-2. ITU-T, Oct. 2015.

[3] Cisco. Cisco Annual Internet Report (2018-2020). Mar. 2020.

[4] High Efficiency Video Coding. document ITU-T Rec. H.265 and ISO/IEC 23008-2

(HEVC). ITU-T and ISO/IEC, Nov. 2019.

[5] Sullivan, G. J., Ohm, J., Han, W. and Wiegand, T. Overview of the High Efficiency

Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for

Video Technology 22.12 (Nov. 2012), 1649–1668. URL: https://ieeexplore.

ieee.org/document/6316136.

[6] Sullivan, G. J., Boyce, J. M., Chen, Y., Ohm, J., Segall, C. A. and Vetro, A. Stan-

dardized Extensions of High Efficiency Video Coding (HEVC). IEEE Journal of

Selected Topics in Signal Processing 7.6 (Nov. 2013), 1001–1016. URL: https:

//ieeexplore.ieee.org/document/6630053.

[7] Boyce, J. M., Ye, Y., Chen, J. and Ramasubramonian, A. K. Overview of SHVC:

Scalable Extensions of the High Efficiency Video Coding Standard. IEEE Transac-

tions on Circuits and Systems for Video Technology 26.1 (Jan. 2016), 20–34. URL:

https://ieeexplore.ieee.org/document/7172510.

[8] Ye, Y., He, Y. and Xiu, X. Manipulating Ultra-High Definition Video Traffic. IEEE

MultiMedia 22.3 (July 2015), 73–81. URL: https://ieeexplore.ieee.org/

document/7021856.

[9] Ronan, P., Eric, T. and Mickaël, R. Hybrid Broadband/Broadcast ATSC 3.0 SHVC

Distribution Chain. 2018 IEEE International Symposium on Broadband Multimedia

Systems and Broadcasting (BMSB). Valencia, Spain, June 2018, 1–5. URL: https:

//ieeexplore.ieee.org/document/8436752.

[10] Nightingale, J., Wang, Q. and Grecos, C. Scalable HEVC (SHVC)-Based video

stream adaptation in wireless networks. 2013 IEEE 24th Annual International Sym-

posium on Personal, Indoor, and Mobile Radio Communications (PIMRC). London,

UK, July 2013, 3573–3577. URL: https://ieeexplore.ieee.org/document/

6666769.

[11] Ultra Video Group. Kvazaar open-source HEVC Encoder. URL: https://github.

com/ultravideo/kvazaar/.

[12] MulticoreWare Inc. x265 HEVC Encoder / H.265 Video Codec. URL: https://

bitbucket.org/multicoreware/x265_git/downloads/.

https://ieeexplore.ieee.org/document/6316136
https://ieeexplore.ieee.org/document/6316136
https://ieeexplore.ieee.org/document/6630053
https://ieeexplore.ieee.org/document/6630053
https://ieeexplore.ieee.org/document/7172510
https://ieeexplore.ieee.org/document/7021856
https://ieeexplore.ieee.org/document/7021856
https://ieeexplore.ieee.org/document/8436752
https://ieeexplore.ieee.org/document/8436752
https://ieeexplore.ieee.org/document/6666769
https://ieeexplore.ieee.org/document/6666769
https://github.com/ultravideo/kvazaar/
https://github.com/ultravideo/kvazaar/
https://bitbucket.org/multicoreware/x265_git/downloads/
https://bitbucket.org/multicoreware/x265_git/downloads/

63

[13] 01.org. Scalable Video Technology for HEVC Encoder (SVT-HEVC Encoder). URL:

https://github.com/OpenVisualCloud/SVT-HEVC/.

[14] Turingcodec.org. Turing codec. URL: http://turingcodec.org.

[15] JCT-VC. SHVC Reference Software, ver. SHM 12.1. URL: http://hevc.hhi.

fraunhofer.de/shvc.

[16] Parois, R., Hamidouche, W., Cabarat, P.-L., Raulet, M., Sidaty, N. and Deforges, O.

4K Real Time Software Solution of Scalable HEVC for Broadcast Video Application.

IEEE Access 7 (2019), 46748–46762. URL: https://ieeexplore.ieee.org/

document/8664002.

[17] Hamidouche, W., Raulet, M. and Deforges, O. 4K Real-Time and Parallel Soft-

ware Video Decoder for Multilayer HEVC Extensions. IEEE Transactions on Cir-

cuits and Systems for Video Technology 26.1 (Jan. 2016), 169–180. URL: https:

//ieeexplore.ieee.org/document/7273890.

[18] Laitinen, J., Lemmetti, A. and Vanne, J. Real-Time Implementation Of Scalable

Hevc Encoder. 2020 IEEE International Conference on Image Processing (ICIP).

Abu Dhabi, UAE, Oct. 2020, 1166–1170. URL: https://ieeexplore.ieee.org/

document/9191135.

[19] Ultra Video Group. Scalable Kvazaar. URL: https://github.com/ultravideo/

scalable-kvazaar/.

[20] Erol, B., Kossentini, F., Joch, A., Sullivan, G. J. and Winger, L. CHAPTER 10 -

MPEG-4 Visual and H.264/AVC: Standards for Modern Digital Video. The Essen-

tial Guide to Video Processing. Ed. by A. Bovik. Boston: Academic Press, 2009,

295–330. URL: http://www.sciencedirect.com/science/article/pii/

B9780123744562000153.

[21] Studio Encoding Parameters of Digital Television for Standard 4:3 and Wide-screen

16:9 Aspect Ratios. document ITU-R Rec. BT.601-6. ITU-R, Mar. 2011.

[22] Clare, G., Henry, F. and Pateux, S. Wavefront parallel processing for HEVC encod-

ing and decoding. document JCTVC-F274. Torino, Italy, July 2011.

[23] Rao, K. R. and Yip, P. Discrete cosine transform: algorithms, advantages, applica-

tions. Academic press, 2014.

[24] Norkin, A., Bjøntegaard, G., Fuldseth, A., Narroschke, M., Ikeda, M., Andersson,

K., Zhou, M. and Van der Auwera, G. HEVC Deblocking Filter. IEEE Transactions

on Circuits and Systems for Video Technology 22.12 (Dec. 2012), 1746–1754. URL:

https://ieeexplore.ieee.org/document/6324414.

[25] Fu, C., Chen, C., Huang, Y. and Lei, S. Sample adaptive offset for HEVC. 2011 IEEE

13th International Workshop on Multimedia Signal Processing. Hangzhou, China,

Oct. 2011, 1–5. URL: https://ieeexplore.ieee.org/document/6093807.

[26] Langdon, G. G. An Introduction to Arithmetic Coding. IBM Journal of Research and

Development 28.2 (Mar. 1984), 135–149.

https://github.com/OpenVisualCloud/SVT-HEVC/
http://turingcodec.org
http://hevc.hhi.fraunhofer.de/shvc
http://hevc.hhi.fraunhofer.de/shvc
https://ieeexplore.ieee.org/document/8664002
https://ieeexplore.ieee.org/document/8664002
https://ieeexplore.ieee.org/document/7273890
https://ieeexplore.ieee.org/document/7273890
https://ieeexplore.ieee.org/document/9191135
https://ieeexplore.ieee.org/document/9191135
https://github.com/ultravideo/scalable-kvazaar/
https://github.com/ultravideo/scalable-kvazaar/
http://www.sciencedirect.com/science/article/pii/B9780123744562000153
http://www.sciencedirect.com/science/article/pii/B9780123744562000153
https://ieeexplore.ieee.org/document/6324414
https://ieeexplore.ieee.org/document/6093807

64

[27] Rissanen, J. and Langdon, G. G. Arithmetic Coding. IBM Journal of Research and

Development 23.2 (Mar. 1979), 149–162.

[28] Marpe, D., Schwarz, H. and Wiegand, T. Context-based adaptive binary arithmetic

coding in the H.264/AVC video compression standard. IEEE Transactions on Cir-

cuits and Systems for Video Technology 13.7 (July 2003), 620–636. URL: https:

//ieeexplore.ieee.org/document/1218195.

[29] Lee, J.-y., Park, S.-I., Kwon, S., Lim, B.-M., Kim, H. M., Hur, N., Pesin, A., Chevet,

J.-C., Llach, J., Stein, A. J., Jeon, S. and Wu, Y. Efficient Transmission of Multiple

Broadcasting Services Using LDM and SHVC. IEEE Transactions on Broadcasting

64.2 (June 2018), 177–187. URL: https://ieeexplore.ieee.org/document/

8063347.

[30] Xu, Y., Yu, C., Li, J. and Liu, Y. Video Telephony for End-Consumers: Measurement

Study of Google+, IChat, and Skype. Proceedings of the 2012 Internet Measure-

ment Conference. IMC ’12. Boston, Massachusetts, USA, 2012, 371–384. URL:

https://doi.org/10.1145/2398776.2398816.

[31] JCT-VC. HEVC Reference Software, ver. HM 16.10. URL: http://hevc.hhi.

fraunhofer.de/.

[32] Ohm, J., Sullivan, G. J., Schwarz, H., Tan, T. K. and Wiegand, T. Comparison of

the Coding Efficiency of Video Coding Standards—Including High Efficiency Video

Coding (HEVC). Dec. 2012. URL: https://ieeexplore.ieee.org/document/

6317156.

[33] Vanne, J., Viitanen, M., Hämäläinen, T. D. and Hallapuro, A. Comparative Rate-

Distortion-Complexity Analysis of HEVC and AVC Video Codecs. IEEE Transac-

tions on Circuits and Systems for Video Technology 22.12 (Nov. 2012), 1885–1898.

URL: https://ieeexplore.ieee.org/document/6324420.

[34] Tan, T. K., Mrak, M., Baroncini, V. and Ramzan, N. Report on HEVC compression

performance verification testing. document JCTVC-Q1011. Valencia, Spain, May

2014.

[35] Bjøntegaard, G. Calculation of average PSNR differences between RD-curves.

document VCEG-M33. Austin, Texas, USA, Apr. 2001.

[36] J. Wang, X. Y. and He, D. On BD-rate calculation. document JCTV-F270. Torino,

Italy, July 2011.

[37] Eskicioglu, A. M. and Fisher, P. S. Image quality measures and their performance.

IEEE Transactions on Communications 43.12 (Dec. 1995), 2959–2965. URL: http:

//ieeexplore.ieee.org/document/477498.

[38] Eckert, M. P. and Bradley, A. P. Perceptual quality metrics applied to still image

compression. Signal Processing 70.3 (1998), 177–200. URL: https://doi.org/

10.1016/S0165-1684(98)00124-8.

https://ieeexplore.ieee.org/document/1218195
https://ieeexplore.ieee.org/document/1218195
https://ieeexplore.ieee.org/document/8063347
https://ieeexplore.ieee.org/document/8063347
https://doi.org/10.1145/2398776.2398816
http://hevc.hhi.fraunhofer.de/
http://hevc.hhi.fraunhofer.de/
https://ieeexplore.ieee.org/document/6317156
https://ieeexplore.ieee.org/document/6317156
https://ieeexplore.ieee.org/document/6324420
http://ieeexplore.ieee.org/document/477498
http://ieeexplore.ieee.org/document/477498
https://doi.org/10.1016/S0165-1684(98)00124-8
https://doi.org/10.1016/S0165-1684(98)00124-8

65

[39] Zhou Wang and Bovik, A. C. A universal image quality index. IEEE Signal Pro-

cessing Letters 9.3 (Mar. 2002), 81–84. URL: https://ieeexplore.ieee.org/

document/995823.

[40] Mannos, J. and Sakrison, D. The effects of a visual fidelity criterion of the encoding

of images. IEEE Transactions on Information Theory 20.4 (July 1974), 525–536.

URL: https://ieeexplore.ieee.org/document/1055250.

[41] Pappas, T. N., Safranek, R. J. and Chen, J. 8.2 - Perceptual Criteria for Image

Quality Evaluation. Handbook of Image and Video Processing (Second Edition).

Ed. by A. BOVIK. Second Edition. Communications, Networking and Multimedia.

Burlington: Academic Press, 2005, 939–959. URL: http://www.sciencedirect.

com/science/article/pii/B9780121197926501182.

[42] Zhou Wang, Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. Image quality as-

sessment: from error visibility to structural similarity. IEEE Transactions on Image

Processing 13.4 (Apr. 2004), 600–612. URL: https://ieeexplore.ieee.org/

document/1284395.

[43] Laitinen, J. NAVETTA. URL: https://github.com/MrAsura/NAVETTA.

[44] Seregin, V. and He, Y. Common SHM test conditions and software reference con-

figurations. document JCTVC-Q1009. Valencia, Spain, May 2014.

[45] Viitanen, M., Koivula, A., Lemmetti, A., Ylä-Outinen, A., Vanne, J. and Hämäläinen,

T. Kvazaar: Open-Source HEVC/H.265 Encoder. Proceedings of the 24th ACM In-

ternational Conference on Multimedia. MM ’16. Amsterdam, The Netherlands, Oct.

2016, 1179–1182. URL: http://dl.acm.org/citation.cfm?id=2973796.

[46] Ultra Video Group. URL: http://ultravideo.fi/.

[47] Viitanen, M., Koivula, A., Lemmetti, A., Vanne, J. and Hämäläinen, T. D. Kvazaar

HEVC encoder for efficient intra coding. 2015 IEEE International Symposium on

Circuits and Systems (ISCAS). Lisbon, Portugal, May 2015, 1662–1665. URL: http:

//ieeexplore.ieee.org/document/7168970.

[48] Koivula, A., Viitanen, M., Vanne, J., Hämäläinen, T. D. and Fasnacht, L. Paralleliza-

tion of Kvazaar HEVC intra encoder for multi-core processors. 2015 IEEE Work-

shop on Signal Processing Systems (SiPS). Hangzhou, China, Oct. 2015, 1–6.

URL: https://ieeexplore.ieee.org/document/7345015.

[49] Lemmetti, A., Koivula, A., Viitanen, M., Vanne, J. and Hämäläinen, T. D. AVX2-

optimized Kvazaar HEVC intra encoder. 2016 IEEE International Conference on Im-

age Processing (ICIP). Phoenix, Arizona, USA, Sept. 2016, 549–553. URL: https:

//ieeexplore.ieee.org/document/7532417.

[50] Lemmetti, A., Kallio, E., Viitanen, M., Vanne, J. and Hämäläinen, T. Rate-Distortion-

Complexity Optimized Coding Scheme for Kvazaar HEVC Intra Encoder. 2018 Data

Compression Conference. Snowbird, Utah, USA, Mar. 2018, 419. URL: https :

//ieeexplore.ieee.org/document/8416636.

https://ieeexplore.ieee.org/document/995823
https://ieeexplore.ieee.org/document/995823
https://ieeexplore.ieee.org/document/1055250
http://www.sciencedirect.com/science/article/pii/B9780121197926501182
http://www.sciencedirect.com/science/article/pii/B9780121197926501182
https://ieeexplore.ieee.org/document/1284395
https://ieeexplore.ieee.org/document/1284395
https://github.com/MrAsura/NAVETTA
http://dl.acm.org/citation.cfm?id=2973796
http://ultravideo.fi/
http://ieeexplore.ieee.org/document/7168970
http://ieeexplore.ieee.org/document/7168970
https://ieeexplore.ieee.org/document/7345015
https://ieeexplore.ieee.org/document/7532417
https://ieeexplore.ieee.org/document/7532417
https://ieeexplore.ieee.org/document/8416636
https://ieeexplore.ieee.org/document/8416636

66

[51] Lemmetti, A., Viitanen, M., Mercat, A. and Vanne, J. Kvazaar 2.0: Fast and Efficient

Open-Source HEVC Inter Encoder. Proceedings of the 11th ACM Multimedia Sys-

tems Conference. MMSys ’20. Istanbul, Turkey, May 2020, 237–242. URL: https:

//doi.org/10.1145/3339825.3394927.

[52] Ylä-Outinen, A., Lemmetti, A., Viitanen, M., Vanne, J. and Hämäläinen, T. Kvazaar:

HEVC/H.265 4K30p Intra Encoder. 2017 IEEE International Symposium on Multi-

media (ISM). Taichung, Taiwan, Dec. 2017, 362–363. URL: https://ieeexplore.

ieee.org/document/8241634.

[53] Ce Zhu, Xiao Lin and Lap-Pui Chau. Hexagon-based search pattern for fast block

motion estimation. IEEE Transactions on Circuits and Systems for Video Tech-

nology 12.5 (May 2002), 349–355. URL: https : / / ieeexplore . ieee . org /

document/1003474.

[54] Chi, C. C., Alvarez-Mesa, M., Juurlink, B., George, V. and Schierl, T. Improving

the parallelization efficiency of HEVC decoding. 2012 19th IEEE International Con-

ference on Image Processing. Orlando, Florida, USA, Sept. 2012, 213–216. URL:

https://ieeexplore.ieee.org/document/6466833.

[55] Bailleul, R., De Cock, J. and Van De Walle, R. Fast mode decision for SNR scala-

bility in SHVC digest of technical papers. 2014 IEEE International Conference on

Consumer Electronics (ICCE). Las Vegas, Nevada, USA, Jan. 2014, 193–194. URL:

https://ieeexplore.ieee.org/document/6775968.

[56] Wang, D., Sun, Y., Zhu, C., Li, W. and Dufaux, F. Fast Depth and Inter Mode Pre-

diction for Quality Scalable High Efficiency Video Coding. IEEE Transactions on

Multimedia 22.4 (Apr. 2020), 833–845. URL: https://ieeexplore.ieee.org/

document/8811621.

[57] Wang, D., Sun, Y., Zhu, C., Li, W., Dufaux, F. and Luo, J. Fast Depth and Mode De-

cision in Intra Prediction for Quality SHVC. IEEE Transactions on Image Processing

29 (Apr. 2020), 6136–6150. URL: https://ieeexplore.ieee.org/document/

9075415.

[58] Shen, L., Feng, G. and An, P. SHVC CU Processing Aided by a Feedforward Neu-

ral Network. IEEE Transactions on Industrial Informatics 15.11 (Nov. 2019), 5803–

5815. URL: https://ieeexplore.ieee.org/document/8693569.

[59] Shen, L. and Feng, G. Content-Based Adaptive SHVC Mode Decision Algorithm.

IEEE Transactions on Multimedia 21.11 (Nov. 2019), 2714–2725. URL: https://

ieeexplore.ieee.org/document/8684302.

[60] Räsänen, J., Viitanen, M., Vanne, J. and Hämäläinen, T. D. Kvazzup: Open Soft-

ware for HEVC Video Calls. 2017 IEEE International Symposium on Multimedia

(ISM). Taichung, Taiwan, Dec. 2017, 549–552. URL: https://ieeexplore.ieee.

org/document/8241673.

[61] Versitile Video Coding. document ITU-T Rec. H.266 and ISO/IEC 23090-3 (VVC).

ITU-T and ISO/IEC, Aug. 2020.

https://doi.org/10.1145/3339825.3394927
https://doi.org/10.1145/3339825.3394927
https://ieeexplore.ieee.org/document/8241634
https://ieeexplore.ieee.org/document/8241634
https://ieeexplore.ieee.org/document/1003474
https://ieeexplore.ieee.org/document/1003474
https://ieeexplore.ieee.org/document/6466833
https://ieeexplore.ieee.org/document/6775968
https://ieeexplore.ieee.org/document/8811621
https://ieeexplore.ieee.org/document/8811621
https://ieeexplore.ieee.org/document/9075415
https://ieeexplore.ieee.org/document/9075415
https://ieeexplore.ieee.org/document/8693569
https://ieeexplore.ieee.org/document/8684302
https://ieeexplore.ieee.org/document/8684302
https://ieeexplore.ieee.org/document/8241673
https://ieeexplore.ieee.org/document/8241673

67

A RESAMPLING FILTER COEFFICIENTS

Table A.1a contains the luma interpolation filter coefficients used in the texture upsam-

pling process of SHVC. Filters are defined for sixteen phases, i.e., sub-pixel positions,

and luma filtering uses eight samples/coefficients do derive one filtered value (8-tap fil-

ter). Table A.1b contains the respective filter coefficients for chroma, which uses 4-tap

filters.

Table A.2 contains interpolation filter coefficients for downsacling videos, defined in SHM.

The same 12-tap filters are used for both luma and chroma. Additionally, separate down-

sampling filters are defined for eight different scaling ratio ranges.

Table A.1. Interpolation filter coefficients for upsampling.

(a) Luma

Phase Interp. filt. coef.

0 0 0 0 64 0 0 0 0

1/16 0 1 -3 63 4 -2 1 0

2/16 -1 2 -5 62 8 -3 1 0

3/16 -1 3 -8 60 13 -4 1 0

4/16 -1 4 -10 58 17 -5 1 0

5/16 -1 4 -11 52 26 -8 3 -1

6/16 -1 3 -9 47 31 -10 4 -1

7/16 -1 4 -11 45 34 -10 4 -1

8/16 -1 4 -11 40 40 -11 4 -1

9/16 -1 4 -10 34 45 -11 4 -1

10/16 -1 4 -10 31 47 -9 3 -1

11/16 -1 3 -8 26 52 -11 4 -1

12/16 0 1 -5 17 58 -10 4 -1

13/16 0 1 -4 13 60 -8 3 -1

14/16 0 1 -3 8 62 -5 2 -1

15/16 0 1 -2 4 63 -3 1 0

(b) Chroma

Phase Interp. filt. coef.

0 0 64 0 0

1/16 -2 62 4 0

2/16 -2 58 10 -2

3/16 -4 56 14 -2

4/16 -4 54 16 -2

5/16 -6 52 20 -2

6/16 -6 46 28 -4

7/16 -4 42 30 -4

8/16 -4 36 36 -4

9/16 -4 30 42 -4

10/16 -4 28 46 -6

11/16 -2 20 52 -6

12/16 -2 16 54 -4

13/16 -2 14 56 -4

14/16 -2 10 58 -2

15/16 0 4 62 -2

68

Table A.2. Interpolation filter coefficients for downsampling.

(a) Ratio ≤ 20
19

Phase Interp. filt. coef.

0 0 0 0 0 0 128 0 0 0 0 0 0

1/16 0 0 0 2 -6 127 7 -2 0 0 0 0

2/16 0 0 0 3 -12 125 16 -5 1 0 0 0

3/16 0 0 0 4 -16 120 26 -7 1 0 0 0

4/16 0 0 0 5 -18 114 36 -10 1 0 0 0

5/16 0 0 0 5 -20 107 46 -12 2 0 0 0

6/16 0 0 0 5 -21 99 57 -15 3 0 0 0

7/16 0 0 0 5 -20 89 68 -18 4 0 0 0

8/16 0 0 0 4 -19 79 79 -19 4 0 0 0

9/16 0 0 0 4 -18 68 89 -20 5 0 0 0

10/16 0 0 0 3 -15 57 99 -21 5 0 0 0

11/16 0 0 0 2 -12 46 107 -20 5 0 0 0

12/16 0 0 0 1 -10 36 114 -18 5 0 0 0

13/16 0 0 0 1 -7 26 120 -16 4 0 0 0

14/16 0 0 0 1 -5 16 125 -12 3 0 0 0

15/16 0 0 0 0 -2 7 127 -6 2 0 0 0

(b) 20
19 < ratio ≤ 5

4

Phase Interp. filt. coef.

0 0 2 0 -14 33 86 33 -14 0 2 0 0

1/16 0 1 1 -14 29 85 38 -13 -1 2 0 0

2/16 0 1 2 -14 24 84 43 -12 -2 2 0 0

3/16 0 1 2 -13 19 83 48 -11 -3 2 0 0

4/16 0 0 3 -13 15 81 53 -10 -4 3 0 0

5/16 0 0 3 -12 11 79 57 -8 -5 3 0 0

6/16 0 0 3 -11 7 76 62 -5 -7 3 0 0

7/16 0 0 3 -10 3 73 65 -2 -7 3 0 0

8/16 0 0 3 -9 0 70 70 0 -9 3 0 0

9/16 0 0 3 -7 -2 65 73 3 -10 3 0 0

10/16 0 0 3 -7 -5 62 76 7 -11 3 0 0

11/16 0 0 3 -5 -8 57 79 11 -12 3 0 0

12/16 0 0 3 -4 -10 53 81 15 -13 3 0 0

13/16 0 0 2 -3 -11 48 83 19 -13 2 1 0

14/16 0 0 2 -2 -12 43 84 24 -14 2 1 0

15/16 0 0 2 -1 -13 38 85 29 -14 1 1 0

69

(c) 5
4 < ratio ≤ 5

3

Phase Interp. filt. coef.

0 0 5 -6 -10 37 76 37 -10 -6 5 0 0

1/16 0 5 -4 -11 33 76 40 -9 -7 5 0 0

2/16 -1 5 -3 -12 29 75 45 -7 -8 5 0 0

3/16 -1 4 -2 -13 25 75 48 -5 -9 5 1 0

4/16 -1 4 -1 -13 22 73 52 -3 -10 4 1 0

5/16 -1 4 0 -13 18 72 55 -1 -11 4 2 -1

6/16 -1 4 1 -13 14 70 59 2 -12 3 2 -1

7/16 -1 3 1 -13 11 68 62 5 -12 3 2 -1

8/16 -1 3 2 -13 8 65 65 8 -13 2 3 -1

9/16 -1 2 3 -12 5 62 68 11 -13 1 3 -1

10/16 -1 2 3 -12 2 59 70 14 -13 1 4 -1

11/16 -1 2 4 -11 -1 55 72 18 -13 0 4 -1

12/16 0 1 4 -10 -3 52 73 22 -13 -1 4 -1

13/16 0 1 5 -9 -5 48 75 25 -13 -2 4 -1

14/16 0 0 5 -8 -7 45 75 29 -12 -3 5 -1

15/16 0 0 5 -7 -9 40 76 33 -11 -4 5 0

(d) 5
3 < ratio ≤ 2

Phase Interp. filt. coef.

0 2 -3 -9 6 39 58 39 6 -9 -3 2 0

1/16 2 -3 -9 4 38 58 43 7 -9 -4 1 0

2/16 2 -2 -9 2 35 58 44 9 -8 -4 1 0

3/16 1 -2 -9 1 34 58 46 11 -8 -5 1 0

4/16 1 -1 -8 -1 31 57 47 13 -7 -5 1 0

5/16 1 -1 -8 -2 29 56 49 15 -7 -6 1 1

6/16 1 0 -8 -3 26 55 51 17 -7 -6 1 1

7/16 1 0 -7 -4 24 54 52 19 -6 -7 1 1

8/16 1 0 -7 -5 22 53 53 22 -5 -7 0 1

9/16 1 1 -7 -6 19 52 54 24 -4 -7 0 1

10/16 1 1 -6 -7 17 51 55 26 -3 -8 0 1

11/16 1 1 -6 -7 15 49 56 29 -2 -8 -1 1

12/16 0 1 -5 -7 13 47 57 31 -1 -8 -1 1

13/16 0 1 -5 -8 11 46 58 34 1 -9 -2 1

14/16 0 1 -4 -8 9 44 58 35 2 -9 -2 2

15/16 0 1 -4 -9 7 43 58 38 4 -9 -3 2

70

(e) 2 < ratio ≤ 5
2

Phase Interp. filt. coef.

0 -2 -7 0 17 35 43 35 17 0 -7 -5 2

1/16 -2 -7 -1 16 34 43 36 18 1 -7 -5 2

2/16 -1 -7 -1 14 33 43 36 19 1 -6 -5 2

3/16 -1 -7 -2 13 32 42 37 20 3 -6 -5 2

4/16 0 -7 -3 12 31 42 38 21 3 -6 -5 2

5/16 0 -7 -3 11 30 42 39 23 4 -6 -6 1

6/16 0 -7 -4 10 29 42 40 24 5 -6 -6 1

7/16 1 -7 -4 9 27 41 40 25 6 -5 -6 1

8/16 1 -6 -5 7 26 41 41 26 7 -5 -6 1

9/16 1 -6 -5 6 25 40 41 27 9 -4 -7 1

10/16 1 -6 -6 5 24 40 42 29 10 -4 -7 0

11/16 1 -6 -6 4 23 39 42 30 11 -3 -7 0

12/16 2 -5 -6 3 21 38 42 31 12 -3 -7 0

13/16 2 -5 -6 3 20 37 42 32 13 -2 -7 -1

14/16 2 -5 -6 1 19 36 43 33 14 -1 -7 -1

15/16 2 -5 -7 1 18 36 43 34 16 -1 -7 -2

(f) 5
2 < ratio ≤ 20

7

Phase Interp. filt. coef.

0 -6 -3 5 19 31 36 31 19 5 -3 -6 0

1/16 -6 -4 4 18 31 37 32 20 6 -3 -6 -1

2/16 -6 -4 4 17 30 36 33 21 7 -3 -6 -1

3/16 -5 -5 3 16 30 36 33 22 8 -2 -6 -2

4/16 -5 -5 2 15 29 36 34 23 9 -2 -6 -2

5/16 -5 -5 2 15 28 36 34 24 10 -2 -6 -3

6/16 -4 -5 1 14 27 36 35 24 10 -1 -6 -3

7/16 -4 -5 0 13 26 35 35 25 11 0 -5 -3

8/16 -4 -6 0 12 26 36 36 26 12 0 -6 -4

9/16 -3 -5 0 11 25 35 35 26 13 0 -5 -4

10/16 -3 -6 -1 10 24 35 36 27 14 1 -5 -4

11/16 -3 -6 -2 10 24 34 36 28 15 2 -5 -5

12/16 -2 -6 -2 9 23 34 36 29 15 2 -5 -5

13/16 -2 -6 -2 8 22 33 36 30 16 3 -5 -5

14/16 -1 -6 -3 7 21 33 36 30 17 4 -4 -6

15/16 -1 -6 -3 6 20 32 37 31 18 4 -4 -6

71

(g) 20
7 < ratio ≤ 15

4

Phase Interp. filt. coef.

0 -9 0 9 20 28 32 28 20 9 0 -9 0

1/16 -9 0 8 19 28 32 29 20 10 0 -4 -5

2/16 -9 -1 8 18 28 32 29 21 10 1 -4 -5

3/16 -9 -1 7 18 27 32 30 22 11 1 -4 -6

4/16 -8 -2 6 17 27 32 30 22 12 2 -4 -6

5/16 -8 -2 6 16 26 32 31 23 12 2 -4 -6

6/16 -8 -2 5 16 26 31 31 23 13 3 -3 -7

7/16 -8 -3 5 15 25 31 31 24 14 4 -3 -7

8/16 -7 -3 4 14 25 31 31 25 14 4 -3 -7

9/16 -7 -3 4 14 24 31 31 25 15 5 -3 -8

10/16 -7 -3 3 13 23 31 31 26 16 5 -2 -8

11/16 -6 -4 2 12 23 31 32 26 16 6 -2 -8

12/16 -6 -4 2 12 22 30 32 27 17 6 -2 -8

13/16 -6 -4 1 11 22 30 32 27 18 7 -1 -9

14/16 -5 -4 1 10 21 29 32 28 18 8 -1 -9

15/16 -5 -4 0 10 20 29 32 28 19 8 0 -9

(h) Ratio > 15
4

Phase Interp. filt. coef.

0 -8 7 13 18 22 24 22 18 13 7 2 -10

1/16 -8 7 13 18 22 23 22 19 13 7 2 -10

2/16 -8 6 12 18 22 23 22 19 14 8 2 -10

3/16 -9 6 12 17 22 23 23 19 14 8 3 -10

4/16 -9 6 12 17 21 23 23 19 14 9 3 -10

5/16 -9 5 11 17 21 23 23 20 15 9 3 -10

6/16 -9 5 11 16 21 23 23 20 15 9 4 -10

7/16 -9 5 10 16 21 23 23 20 15 10 4 -10

8/16 -10 5 10 16 20 23 23 20 16 10 5 -10

9/16 -10 4 10 15 20 23 23 21 16 10 5 -9

10/16 -10 4 9 15 20 23 23 21 16 11 5 -9

11/16 -10 3 9 15 20 23 23 21 17 11 5 -9

12/16 -10 3 9 14 19 23 23 21 17 12 6 -9

13/16 -10 3 8 14 19 23 23 22 17 12 6 -9

14/16 -10 2 8 14 19 22 23 22 18 12 6 -8

15/16 -10 2 7 13 19 22 23 22 18 13 7 -8

72

B BD-RATE CURVES

This appendix provides BD-rate curves for the results presented in Chapter 6. Addi-

tionally, encoding times for Scalable Kvazaar and Kvazaar simulcast are provided. SNR

results, with ∆QP= −6, are shown in Figure B.1, and ∆QP= −4 results are in Figure

B.2. Spatial scalability curves for the 2× ratio are shown in Figures B.3 and B.4 for the

two ∆QP values of 0 and 2. Finally, the 1.5× ratio curves are provided in Figures B.5

and B.6, respectively.

0 5 10 15
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Traffic

0 1 2 3
Bit Rate (Kbps) 105

32

34

36

38

40

42
P

S
N

R
 (

dB
)

6

7

8

9

10

11

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) PeopleOnStreet

0 2 4 6
Bit Rate (Kbps) 104

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

6

6.5

7

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Kimono

0 2 4 6 8 10
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

6

6.5

7

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) ParkScene

73

0 5 10 15
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

8

9

10

11

12

13

14

15

16

17

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) Cactus

0 5 10 15
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

8

9

10

11

12

13

14

15

16

17

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(f) BasketballDrive

0 1 2 3
Bit Rate (Kbps) 105

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

8

10

12

14

16

18

20

22

24

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(g) BQTerrace

Figure B.1. BD-rate and encoding time curves for SNR scalability with ∆QP= −6.

0 2 4 6 8 10 12
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

6

6.5

7

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Traffic

0 1 2 3
Bit Rate (Kbps) 105

32

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

5

6

7

8

9

10

11

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) PeopleOnStreet

74

0 1 2 3 4 5
Bit Rate (Kbps) 104

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

3

3.5

4

4.5

5

5.5

6

6.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Kimono

0 2 4 6 8
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

6

6.5

7

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) ParkScene

0 2 4 6 8 10
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

P
S

N
R

 (
dB

)

7

8

9

10

11

12

13

14

15

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) Cactus

0 2 4 6 8 10
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

7

8

9

10

11

12

13

14

15

16

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(f) BasketballDrive

0 0.5 1 1.5 2
Bit Rate (Kbps) 105

32

33

34

35

36

37

38

39

P
S

N
R

 (
dB

)

8

10

12

14

16

18

20

22

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(g) BQTerrace

Figure B.2. BD-rate and encoding time curves for SNR scalability with ∆QP= −4.

75

0 2 4 6 8 10 12
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

3

3.5

4

4.5

5

5.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Traffic

0 0.5 1 1.5 2 2.5
Bit Rate (Kbps) 105

30

32

34

36

38

40

42

P
S

N
R

 (
dB

)

5

5.5

6

6.5

7

7.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) PeopleOnStreet

0 1 2 3 4 5
Bit Rate (Kbps) 104

35

36

37

38

39

40

41

42

43

P
S

N
R

 (
dB

)

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Kimono

0 2 4 6 8
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) ParkScene

0 2 4 6 8
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

7

7.5

8

8.5

9

9.5

10

10.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) Cactus

0 2 4 6 8
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

7

7.5

8

8.5

9

9.5

10

10.5

11

11.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(f) BasketballDrive

76

0 5 10 15
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)
7

8

9

10

11

12

13

14

15

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(g) BQTerrace

Figure B.3. BD-rate and encoding time curves for 2× spatial scalability with ∆QP= 0.

0 2 4 6 8
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

2.5

3

3.5

4

4.5

5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Traffic

0 0.5 1 1.5 2
Bit Rate (Kbps) 105

30

32

34

36

38

40

42
P

S
N

R
 (

dB
)

4.5

5

5.5

6

6.5

7

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) PeopleOnStreet

0 1 2 3 4
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

3

3.5

4

4.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Kimono

0 2 4 6
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) ParkScene

77

0 2 4 6
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

6.5

7

7.5

8

8.5

9

9.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) Cactus

0 2 4 6
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(f) BasketballDrive

0 2 4 6 8
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

7

8

9

10

11

12

13

14

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(g) BQTerrace

Figure B.4. BD-rate and encoding time curves for 2× spatial scalability with ∆QP= 2.

0 1 2 3 4 5
Bit Rate (Kbps) 104

35

36

37

38

39

40

41

42

43

P
S

N
R

 (
dB

)

3

3.5

4

4.5

5

5.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Kimono

0 2 4 6 8
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

3.5

4

4.5

5

5.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) ParkScene

78

0 2 4 6 8 10
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

7.5

8

8.5

9

9.5

10

10.5

11

11.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Cactus

0 2 4 6 8 10
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

7

8

9

10

11

12

13

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) BasketballDrive

0 5 10 15
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

8

9

10

11

12

13

14

15

16

17

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) BQTerrace

Figure B.5. BD-rate and encoding time curves for 1.5× spatial scalability with ∆QP= 0.

0 1 2 3 4
Bit Rate (Kbps) 104

35

36

37

38

39

40

41

42

43

P
S

N
R

 (
dB

)

3

3.5

4

4.5

5

5.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(a) Kimono

0 2 4 6
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

41

P
S

N
R

 (
dB

)

3

3.5

4

4.5

5

5.5

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(b) ParkScene

79

0 2 4 6
Bit Rate (Kbps) 104

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(c) Cactus

0 2 4 6
Bit Rate (Kbps) 104

34

35

36

37

38

39

40

41

42

P
S

N
R

 (
dB

)

7

8

9

10

11

12

13

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(d) BasketballDrive

0 2 4 6 8 10
Bit Rate (Kbps) 104

32

33

34

35

36

37

38

39

40

P
S

N
R

 (
dB

)

8

9

10

11

12

13

14

15

E
nc

od
in

g
T

im
e

(s
)

SKVZ
KVZ Sim.
SHM
HM Sim.
Time SKVZ
Time KVZ Sim.

(e) BQTerrace

Figure B.6. BD-rate and encoding time curves for 1.5× spatial scalability with ∆QP= 2.

	Introduction
	High Efficiency Video Coding (HEVC)
	HEVC Standard
	Picture Format
	Block Partitioning Structure
	Intra and Inter Prediction
	Transform and Quantization
	Loop Filtering
	HEVC Bitstream
	Profiles, Tiers, and Levels

	Scalable High Efficiency Video Coding (SHVC)
	Motivation for SHVC Coding
	Scalability
	SNR Scalability
	Spatial Scalability
	Other Scalability Features
	SHVC Bitstream

	HEVC and SHVC Test Models

	Research and Test Methodologies
	Research Methods
	Test Methods
	Performance Metrics
	Test Platform
	Test Parameters

	Design and Implementation of Scalable Kvazaar Encoder
	Kvazaar HEVC Encoder
	Overall Architecture
	Coding Scheme
	Parallelization

	SHVC Implementation
	Overview
	Architectural Design
	Encoding Flow
	Optimizations
	Scaler Library

	Scalability Testing Framework
	TestInstances-package
	TestSuite-package
	TestSuite-module
	SummaryFactory-module
	TestUtils-module

	tests-package

	Performance Evaluation
	Performance Results
	Coding Performance Analysis
	Coding Complexity Analysis

	SHVC Parameter-Space Exploration

	Conclusion
	Main Contributions
	Future Work

	References
	Appendix Resampling Filter Coefficients
	Appendix BD-rate Curves

