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ABSTRACT

Robotic vision is a subfield of computer vision intended to provide robots with the
capability to visually perceive the surrounding environment. For example, a robotic
manipulator leverages its visual perception system to gather visual data through cam-
eras and other sensors, then uses that input to recognize different objects in order to
safely perform an autonomous operation.

However, in many robotics applications, robots have to face a cluttered and dy-
namic scene, where classic computer vision algorithms show the limitation of tack-
ling the environmental uncertainty. Such scene understanding requires a fusion of
traditional and modern approaches involving classic computer vision, machine learn-
ing and deep learning methods.

This thesis examines visual perception challenges in remote handling and the min-
ing industry. It begins with two research questions: Can the robustness of target-
object pose estimation be improved in challenging real-world, heavy-duty robotic
scenarios? Can fast detection and localization for objects be obtained without prior
known geometry in a scenario with piles of overlapping objects? Six publications1

cover the methods from algorithm design to system-level integration used to solve
real-world problems.

In the ITER fusion reactor, the operator teleoperates a robotic manipulator to
perform maintenance tasks amidst a high level of noise and erosion. The operator
cannot fully rely on the virtual reality (VR) system, which may not reflect the cur-
rent scene accurately, as physical conditions may have changed in the harsh environ-
ment. Meanwhile, every operation inside the reactor requires robust, millimeter-
level accuracy. This thesis analyzes research questions and presents a novel edge-
point iterative closest point (ICP) method as a solution for target-object detection,
tracking and pose estimation. Using the knuckle of a divertor cassette as an example,
the overall accuracy of the developed visual system meets ITER requirements, and

1Five of the publications are listed as contributors to this thesis, one publication, [1], as a citation.
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the conducted experiments with the manipulator demonstrated the efficiency of the
method.

Smartbooms2 is a project in the mining industry that requires a heavy manipu-
lator with a hydraulic hammer to autonomously break rocks in a cluttered outdoor
environment. Based on the output data of the three-dimensional (3D) sensors, sev-
eral solutions are proposed. Examining a popular time-of-flight (TOF) sensor, this
thesis explores state-of-the-art unsupervised machine learning methods and proposes
a novel clustering method. Using an industrial stereo camera, this thesis proposes a
novel 3D rock detection and localization pipeline. The results and system accuracy
are detailed in published research papers.
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1 INTRODUCTION

Robots are widely used in industrial work cells, as they can provide superior quality,
speed and accuracy in highly repetitive tasks. In these relatively fixed and struc-
tured industrial settings, robots can be pre-programmed for consistent task perfor-
mance and used in 24/7-style operations. Another important benefit in heavy-duty
applications and in hazardous environments is that the use of remotely controlled
robots can improve safety. Moreover, vision-generated guidance information can
allow robots to select and vary their motion targets, thus enabling more flexible au-
tomation systems. Vision-based robotic systems incorporate techniques from optics,
image processing, computer vision, and machine learning. Unlike pure computer vi-
sion research, vision-based robots must incorporate many aspects of robotics (such
as robot kinematics, reference-frame calibration, hand-eye calibration, and robotic
control algorithms) into an integrated control system that enables stable physical
interaction with the manipulated objects.

In this thesis, two challenging real-world scenarios that could benefit from vision-
based robotic system development are considered. The two scenarios, namely ITER
and Smartbooms2, are described in more detail in the following sections.

1.1 ITER

The International Thermonuclear Experimental Reactor (ITER) is the world’s largest
fusion experiment1. The goal of ITER, currently under construction in Cadarache,
France, is to demonstrate the scientific and technological feasibility of fusion en-
ergy. Reactor lifecycle management that allows for continuous operation is one of
the main development challenges, due to the extreme conditions inside the reactor
vacuum vessel during its operation (high temperatures, magnetic fields and radia-

1https://www.iter.org
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tion). Due to reactor material erosion and impurities resulting from nuclear fusion,
such as helium ash, the reactor is subject to scheduled maintenance (Figure 1.1), but
since the vacuum-vessel radiation levels make human access impossible, teleoperated
robots need to be employed. One such remote maintenance operation is the sched-
uled replacement of the lower part of the reactor, called the divertor, which consist of
54 modular elements called cassettes, each weighing approximately 10 tonnes. Re-
search on ITER maintenance by use of heavy-duty robots has been carried out in
divertor test platform 2 (DTP2) in Finland over the past two decades. Tampere Uni-
versity has acted as a major in this ITER remote handling (RH) research organisation,
together with the Technical Research Centre of Finland (VTT). RH primarily uti-
lizes conventional teleoperated robotic manipulators in the man-in-the loop style,
relying on skilled operators. Such work requires a high level of concentration and
precision and does not allow any room for mistakes. Hence, its cognitive burden
on the teleoperator can be very high, which affects operator alertness negatively and
can consequently increase accident-proneness due to human errors. Development of
a user-assisting 3D visual perception system (VPS) was furthered to enhance safety
and performance in RH operations. However, the ITER reactor is subject to nu-
merous challenges, such as very confined space with limited camera field of view
and illumination, possible drifting in object positions due to a high magnetic field
and extreme temperatures, a high level of radiation and resulting increase in camera
noise over time, non-Lambertian reflectance of reactor elements on polished steel
surfaces, and millimetre-level clearances in operations. These harsh conditions in
the ITER are major challenges to the development of a VPS, even if the environ-
ment is structured. Therefore, the first research objective is to find solutions to this
problem.

1.2 Smartbooms2

The second research challenge studied is autonomous secondary rock breaking, which
was one of the research objectives in a Business Finland project called Smartbooms2,
a joint collaboration between Finnish companies Rambooms, Technion and Nova-
tron and Tampere University. In the mining and construction industries, secondary
rock breaker manipulators, as shown in Figure 1.2, are used extensively. These
human-operated manipulators are equipped with impact hammers, and their task

18



Figure 1.1 The knuckle of diverter cassettes in the ITER reactor.

is to detect oversized rocks on a mineral crusher grader plate and to break them.
Such work is event-based, and thus a fast response is only needed when oversized
rocks are encountered. What is more, the work environments in underground deep
mining can be dangerous. This field robotics scenario in an outdoor environment is
fairly structured in terms of known scene dimensions and fixed camera eye-to-hand
position, however, the detected object shapes are arbitrary, and they can form over-
lapping piles of objects. The second research objective of this thesis is to provide
solutions to automatize this event-based rock breaking process.

1.3 Research Problems (RPs)

The challenges of vision-based robotic manipulator systems are often centered around
the problem of acquiring an accurate 6 DOF pose estimate (Cartesian 3 DOF posi-

19



Figure 1.2 Rock breaking at mining sites [2],[3].

tion and 3 DOF orientation) of objects of interest. This is essential in both man-
in-the-loop type teleoperation tasks and in autonomous robotic manipulation tasks.
In the former, the operator benefits if the target-object pose with respect to the con-
trolled robot tool center point (TCP) is displayed for his/her guidance. Whereas in
the latter case, the robot is automatically controlled by visual features extracted from
an image of the target object.

Moreover, for overall robotic system performance, the object pose estimate has to
be converted into a robot coordinate system, which involves eye-in-hand or eye-to-
hand calibrations depending on camera location. Also, for real-world, vision-based
robot control scenarios, the vision-based system should provide the pose estimate at
a level of 10 Hz or higher.

The two RPs addressed in this thesis are as follows:

RP.I: Can the robustness of target-object pose estimation be improved in chal-
lenging real-world, heavy-duty robotic scenarios?

RP.II: Can fast detection and localization for objects be obtained without prior
known geometry in a scenario with piles of overlapping objects?

20



1.4 Requirements and Research Scope

Apart from the scientific challenges, the requirements and research scope for robotic
virtual perception are associated with the tasks that heavy-duty manipulators per-
form.

In ITER, the replacement of divertor cassettes requires thousands of tool opera-
tions on the cassette locking system (CLS). Such maintainance tasks are performed
through RH, where the operator remotely operates a heavy-duty robotic manipu-
lator with the aid of several tools: a jack tool, a pin tool and a wrench tool. The
clearance between the tool and the CLS for each operation can be as low as 3 mm.
The acquired images from radiation-tolerant cameras are grayscale and low resolu-
tion and might contain unexpected sensing noises from the harsh environment.

For safe and accurate RH operations, robust and precise pose estimation of the
CLS parts is required. The major goal of the project is to design a generic 3D per-
ception vision system that meets ITER RH requirements.

To achieve maximum accuracy, the design of the vision system has to take the
following factors into account:

• Selection of camera for 3D perception.

• Camera calibration methods.

• Robust depth from stereo method.

• Selection of extrinsic camera configuration for higher accuracy.

• Design of a robust 6 DOF pose estimation method.

In view of these factors, a stereo pair of close-range cameras has been deemed
essential, and a plane-sweeping method has been employed for the precise 3D re-
construction of target objects in dense point cloud. For maximum accuracy and an
occlusion-free field of view, eye-in-hand camera configuration has been adopted. In
the most prominent part of the study, a novel edge-point ICP method has been pro-
posed for robust pose estimation of the knuckle P-I. The methods and process for
intrinsic and eye-in-hand (extrinsic) calibration are detailed in P-V and my paper [1].

A high-level architecture of the remote handling control system (RHCS) with a
stereoscopic vision system is presented in Figure 1.3, where the RHCS is built based
on a restructuring of the old infrastructure [4]. In the experimental setup, the Co-
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Figure 1.3 Top-level architecture of the remote handling system with stereoscopic visual perception.

mau NM-45 is attached with a pair of stereo cameras to its end-effector. The RHCS
is composed of a real-time determinstic OpenC4G controller acting as an equipment
controller for data communication with the vision system and other systems, a real-
time input device controller for a haptic device, a real-time Comau C4G controller
operating in open modality mode, and a tool exchanger. The RH manipulator is
teleoperated through a 6 DOF haptic device that drives the stereo camera closer to
the target object knuckle, and the pose estimation of the kunckle is performed in a
replicated ITER environment [P-V].

The RH environment enables further development of advanced control schemes
for semi-automatic manipulation tasks. For example, the robust estimated pose of a
target can guide the manipulator to move a tool automatically to the aligned pose,
such that the operator can finalize the tool insertion process by driving the tool along
the z-axis of the manipulator’s tool coordinate.

In Smartbooms2, the research scope is the deployment of a 3D VPS for autonomous
rock breaking. Autonomous rock breaking includes three steps: perception, deci-
sion making and robotic controls. The first step is scene understanding, and the
goal is to detect and localize each individual rock in a cluttered scene. In the second
step, decisions on the order of rock breaking can be classified according to the size
the rock, the height of the rock surface or the manipulator TCP position. Among
these criteria, the manipulator TCP position with respect to each rock is adopted for
experimental trajectory planning. The last step is to follow the calculated trajectory,
keep the impact hammer in a given pose, and maintain pressure against the rock.

A high-level architecture of the system is depicted in Figure 1.4. The research

22



focus is on the design of an accurate, real-time 3D VPS.

Real-Time 3D Visual 
Perception System

Real-Time Control 
System

Operator Server Room Mining Site

Manipulator

USB3 (Real-Time Video)

UDP (Positions and Orientations, TCP)

 CAN 1,2,3

p

Figure 1.4 Top-level architecture of the autonomous rock breaking system.

It is obvious that rocks collected from mining sites can not be characterized by
a particular feature. They possess a variety of colors, unique surface textures and
arbitrary geometries (shapes and sizes). The design of a robotic perception system
should take account of the following challenges:

• Hardware selection and component setup, e.g., vision sensor for 3D percep-
tion, graphics processing unit (GPU), setup plan, etc.

• Lenses are fragile in close-range hazardous rock breaking operations.

• Ability to tackle unpredictable ambient light under outdoor dynamic illumi-
nation conditions.

• Design of a fast, robust and accurate 3D object detection pipeline.

• Detailing a method that can accurately detect all rocks in a scene, including
ones that have been occluded by overlapping rocks or the manipulator arm.

• Determine the appropriate position of each rock to break.

• Ability to infer from the surface above the breaking position the appropriate
angle for breaking.

This research has been carried out in two phases. In the first phase, an IFM TOF
camera2 as the 3D sensor was chosen for its popularity across the industry [P-II].

2https://www.ifm.com/products/ae/ds/O3M150.htm
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And in the second phase, a ZED stereo camera3 was adopted to continue our study in
rock detection [P-III]. Based on the experience gained, a generic 3D visual perception
pipeline for autonomous rock breaking is proposed in P-IV.

To summarize, in ITER and Smartbooms2, the target objects can be either known
objects or unknown objects. "Known objects" refers to objects with known features,
i.e., shape, size, color, surface texture, etc. However, in real-world scenes, there are
more objects that are not known in advance; they may appear in an arbitrary order
and come with unknown features. For example, rocks are objects with arbitrary
characteristics. The research problems for these two categories of objects are charac-
terized in Table 1.1.

Table 1.1 Research Scope for Remote Handling and Autonomous Secondary Breaking

Remote Handling Autonomous Secondary Breaking

Control Scheme Man in the Loop Closed-Loop

Camera Setup Eye-in-Hand Eye-to-Hand

Object Information Known, Single Unknown, Arbitrary

1.5 Thesis Contributions

As the main contributions of this thesis, novel methods and their related deployment
in 3D VPSs are presented to facilitate robotic tasks of heavy-duty manipulators in
challenging scenarios. The publication contributions are summarised as follows:

P-I The paper proposes an algorithmic improvement of the edge-point ICP method
for fine alignment of the sensed point cloud with the reference point cloud in
harsh conditions. This novel method significantly enhanced the robustness
of point cloud registration in challenging ITER environments. As a conse-
quence, an accurate 6 DOF pose estimate of a target object can be achieved.
Given the divertor CLS as the target object, the repeatability test demonstrated
its consistent performance in terms of the number of outliers and precision of
pose estimation.

3https://www.stereolabs.com/zed/
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P-II A 3D VPS is the key enabler of autonomous robotic secondary breaking. This
paper aim was to discover the most appropriate clustering methods for rock
detection using the IFM TOF camera. The study began by exploiting the exist-
ing start-of-the-art clustering methods for this task and found out that Ward’s
minimum variance method (WARD) and density-based spatial clustering of
applications with noise (DBSCAN) perform better than the rest. Neverthe-
less, these two methods still have issues in rock detection. To this end, a novel
Euclidean clustering algorithm was proposed based on the spatial character-
istics of the TOF camera. The conducted experiments revealed that the pro-
posed method has better robustness and overall performance compared to DB-
SCAN. The method, in contrast with WARD, does not require manual adjust-
ments of parameters while preserving performance. The paper also highlights
the constraints of the research due to the limitations of the TOF camera.

P-III This paper continued the previous work in P-II. In order to acquire the rich
features of a scene, an industry-ready ZED stereo camera was adopted for its ca-
pability to provide high resolution images and dense point clouds. The study
focused on deep learning approaches for their advancements in scene under-
standing. An accurate and fast 3D rock detection method was proposed based
on the infrastructure of You Only Look Once version 3 (YOLOv3). The pa-
per also presents methods for accurate 3D reconstruction, 3D position and
3D surface normal estimation of detected rocks. The overall performance of
the 3D object detection mechanism was validated by offline videos. For exam-
ple, conducting the experiment with a video where 12 rocks were overlapping
to each other in a pile. The proposed 3D object detection method exhibits
versatility in the detection of unstructured objects within a structured envi-
ronment.

P-IV The paper presents a novel autonomous robotic secondary breaking system,
which is an extension of the work in P-III. The 3D VPS, as the key enabler of
autonomous operation, was further developed in the direction of commercial
settings. The 3D visual perception pipeline was refined to resolve challenges
in secondary breaking experiments. The paper addressed the following de-
tails: The accuracy and robustness of the rock detection model were improved
through training with a larger image data set, with the aid of data augmenta-
tion; The ZED camera’s intrinsic and extrinsic calibrations were performed,
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and the precision of the system was validated; The schemes for determining
positions and orientations for rock breaking were revised, which significantly
improved the success rate of breaking; A real-time 3D viewer was implemented
to visualize the detected rock in 3D and validate the correctness and effective-
ness of the positions for breaking online; Implementation of data analysis, pro-
cessing, validation, rendering and communication modules. The experiments
were conducted in a real-world setup with a commercial heavy-duty manipu-
lator, that yielded an average rate of 96.41% for rock detection, 11.76 Hz for
detection speed, and autonomous rock breaking attempts of 3.3 per minute.
These results suggest the advancement of VPS for the productive robotized
operation and its readiness to be employed in the mining industry.

P-V The paper leverages the idea of the novel edge-point ICP method in P-I for
development of the eye-in-hand stereoscopic vision system with the RHCS.
Together with [1], the paper presents the design of the software and hardware
architecture of the vision system, the implementation of different operation
modes of the vision system, the structure of the software and hardware archi-
tecture of the RHCS, the CLS tools, the calibration of system components
(manipulator, intrinsic and extrinsic camera parameters, and cassette opera-
tion tools), and the communications between each heterogeneous subsystem.
Overall, the proposed system can tackle the challenging requirements in ITER
application, such as a constraint on image acquisition with low-resolution and
grayscale radiation tolerant camera, high level of image noises due to the radi-
ation, non-Lambertian reflectance of reactor elements on shiny metallic sur-
faces, and deficient illumination of the scene due to constraints on available
light sources. Successfully conducting RH experiments in a replicated ITER
environment with only a three-millimeters clearance shows that the developed
system met the application requirements.

1.6 The Author’s Contribution

This section briefly explains the role of the author in each of the listed publications.

P-I The author conceived the idea of the eye-in-hand stereo vision system, con-
tributed to the development of the vision system, integrated the remote han-
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dling control system with the vision system, and wrote the paper. M.Sc. Sergey
Smirnov helped with depth-map creation, 3D reconstruction development
and edited the paper. Professor Jouni Mattila edited the paper. Professor
Atanas Gotchev reviewed the paper. Dr. Emilio Ruiz provided an evaluation
of the system.

P-II The author conceived the idea, developed the clustering algorithm, and wrote
the paper. Dr. Mohammad M. Aref helped edit the paper. Professor. Jouni
Mattila reviewed the paper and made corrections.

P-III The paper was written during TUT Mobility (TUT on World Tour 2018) from
Oct 2018 to Feb 2019. The author developed the 3D object detection system
and wrote the paper. Professor Ke Chen contributed to the discussion of the
results and helped edit the paper. Professor Kui Jia contributed to the dis-
cussion of the results and provided research facilities. Professor Jouni Mattila
reviewed the paper and made corrections.

P-IV The author and M.Sc. Santeri Lampinen contributed equally to the paper. The
author conceived the idea of the deep learning-based visual perception system,
implemented 3D object detection mechanism, calibrated vision system, and
designed the method for detecting suitable breaking position and orientation
to enable autonomous robotic control. M.Sc. Santeri Lampinen designed the
manipulator control system and managed the implementation. M.Sc. Lionel
Hulttinen calibrated the manipulator’s forward kinematics model and wrote
the corresponding part of the paper. Mr. Jouni Niemi provided industrial
insight and views regarding rock breaking, including system evaluation. Pro-
fessor Jouni Mattila reviewed the paper and made corrections.

P-V The author calibrated the system (robot, tools and camera extrinsic), devel-
oped RHCS, deployed the vision system, integrated the stereoscopic vision
system to the RHCS, and wrote the paper. M.Sc. Liisa Aha edited the pa-
per. Professor Jouni Mattila reviewed the paper and made suggestions. Prof.
Atanas Gotchev reviewed the paper. Dr. Emilio Ruiz evaluated the perfor-
mance of the whole system.
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1.7 Outline

This compendium thesis is comprised of five chapters. The arrangement of chapters
and publications is illustrated in Figure 1.5.

Chapter 1 introduces the research problems, scope of the research, and contribu-
tions.

Chapter 2 presents state-of-the-art methods in the robotic visual perception field:
3D reconstruction, random sample consensus (RANSAC), and extrinsic camera con-
figurations. Subsequently, the literature review of robotic visual perception is pre-
sented in two categories, known and unknown objects. The proposed methods are
assessed with state-of-the-art methods in terms of application-specific evaluation met-
rics.

Chapter 3 consists of summaries of each of the five publications. This chapter
explains the connections between the thesis research problems and the publications.

Chapter 4 categorizes discussions into four subjects. The first two subjects feature
discussions of the research problems. The other two subjects feature discussions
of common extrinsic camera configurations and various factors that influence the
precision of a vision system.

Chapter 5 presents the research conclusions based on observations and experi-
ment results and answers the research problems. The last part of the chapter ad-
dresses future research.

The publications P-I, P-II, PIII, P-IV and P-V are appended at the end of this thesis.

28



3D Visual Perception

Single Object with Prior Known Geometry Multiple Objects without Prior Known Geometry

[P-I] Robust pose estimation with a 
stereoscopic camera in harsh environments

[P-III] Efficient 3D Visual Perception for 
Robotic Rock Breaking 

[P-II] Clustering Analysis for Secondary Breaking 
Using a Low-Cost Time-of-Flight Camera

Unsupervised Learning Deep Learning

[P-IV] Autonomous Robotic Rock-Breaking 
Using Real-Time 3D Perception 

[P-V]  A stereoscopic eye-in-hand vision 
system for remote handling in ITER

Figure 1.5 Thesis structure.
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2 STATE-OF-THE-ART ROBOTIC VISUAL

PERCEPTION

Robotic vision incorporates techniques from optics, image processing, computer vi-
sion, machine learning and deep learning. Unlike pure computer vision research,
robotic vision must incorporate a variety of aspects of robotics into its techniques
and algorithms, such as reference frame calibration, kinematics, camera to robot ex-
trinsic calibration and the robot’s ability to physically affect the environment. This
chapter reviews 3D reconstruction from stereo vision, object detection and pose es-
timation approaches used in robotic perception. Objects in all-purpose robotic ap-
plications can be classified of known and consistent geometry or unknown, scalable
and varied geometry. Here, some state-of-the-art 3D object detection and pose esti-
mation methods are presented related to the ITER and Smartboom2 projects.

2.1 From 2D-Image-Coordinate-System to

3D-World-Coordinate-System: Scene Restoration

A red, green, and blue (RGB) image produced by a pinhole camera is a projection
from a 3D scene onto 2D plane; in this dimension-reduction process, depth infor-
mation is lost. The reverse process is to infer the 3D geometry and structure of the
scene from images, which is known as 3D reconstruction. Knowing the pose of the
camera with respect to the robotic manipulator base, the restored 3D scene can help
a robot to understand the profiles of objects in a scene and their positions in the
robot coordinate system.
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2.1.1 3D Reconstruction from Stereo Images

3D reconstruction from a stereo camera image pair consists of the following steps:

• Geometric camera calibration: Camera calibration can be divided into two
individual steps, intrinsic and extrinsic calibration [5]. Apart from the cor-
rection of lens distortions and finding inherent camera parameters, the goal
of intrinsic calibration in stereoscopic vision is to determine the geometric re-
lationship between a point position in a camera coordinate and its projected
position in the corresponding left and right image. Extrinsic calibration in
stereoscopic vision reflects how a stereo camera is positioned in the world co-
ordinate system. In robotic manipulator applications, the extrinsic parameters
are determined by the pose of the left eye of the camera with respect to the base
of the manipulator. Section 2.1.3 has the details of application scenarios.

• Image acquisition: The pair of images for a scene or object are simultaneously
acquired by the left and right eye of a stereo camera. The result is two disparate
camera images of the same scene, like human sight. The acquisition step has
to ensure illumination invariance between image pairs.

• Depth from stereo: Estimation of scene geometry from a stereoscopic cam-
era is called stereo matching or the depth from stereo problem. Stereoscopic
vision uses the binocular disparity between two camera images for depth esti-
mation. Conventional depth-from-stereo methods are based on stereo-image
rectification [6], which in some cases might underperform due to the intro-
duction of artificial camera transformation and excessive image interpolation
steps. Moreover, a deviation from a geometrically parallel camera configu-
ration is possible (e.g., the camera’s optical axes might be crossed), thus in-
troducing substantial image deformation. In comparison, the plane-sweeping
method [7] allows direct processing of the captured imagery via calibrated
camera parameters for the generation of a depth map, and it does not require
rigorous geometrically parallel camera configuration. For maximized robust-
ness and accuracy of the vision system, P-I adopted this approach.

• 3D restoration: The 3D geometry of a scene is reconstructed according to
the intrinsic parameters of a calibrated camera and the depth map of a stereo
camera. The accuracy of 3D reconstruction depends on the precision of stereo

32



correspondence and camera calibration methods.

2.1.2 3D Data Preprocessing: RANSAC

The lens of a pinhole camera introduces radial distortion. On the other hand, un-
expected noises from harsh environments may introduce outliers to a generated 3D
point cloud. These outliers, which could severely influence a performance of a vision
system, can be largely excluded by applying RANSAC [8], on account of its robust
adaptive solutions for different noises as compared to simple thresholding methods.
RANSAC is a learning technique to estimate parameters of a model from the given
data, which contain both inliers and outliers; points belonging to that model are
considered inliers. The algorithm starts by randomly picking minimum number of
points needed to form a sample to initialize the model. Then it gets the consensus set
with the points within error bounds, i.e. the distance threshold. It repeats this until
a good model is found, which contains the most inliers. RANSAC works for general
models, which require a minimal set, the smallest set from which the model can be
computed. The algorithm can be terminated either by reaching a big enough con-
sensus set or by repeating it N times and then returning the model with the biggest
set.

RANSAC is a frequently used algorithm with real-world sensor data, as it is ro-
bust enough for large numbers of outliers in noisy imagery. In the ITER application,
RANSAC was applied to remove outliers by distance threshold, thus inliers of CLS
component’s model were acquired [P-I]. In the Smartbooms2 project, RANSAC was
adopted to find the best fitting plane on the surface of each rock ([P-II], P-III] and
[P-IV]).

2.1.3 From 3D Camera Coordinate System to 3D Robot World

Coordinate System

A 3D scene is reconstructed in a camera coordinate system by using intrinsic camera
parameters. A point in a camera coordinate system describes its position with respect
to the optical center of the left eye of the stereo camera. For a robotic manipulator, it
is essential to know where this point is relative to the robot base coordinate system,
which coincides with the world coordinate system.
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There are two camera configuration scenarios: eye-in-hand or eye-to-hand. The
robot manipulator’s end-effector is regarded as a hand, and the camera as an eye.

2.1.3.1 Eye-in-Hand Vision

Eye-in-hand camera configuration refers to when a camera is rigidly mounted on
the moving end-effector of a robot, as depicted in Figure 2.1, which is the camera
configuration used in the ITER application.

P

A

R

Figure 2.1 A use case of the eye-in-hand vision in the ITER project.

The target object in the world coordinates can be formulated by: P = RX A ,
where P indicates the pose of an object in the robot coordinate system, A is the pose
of the object in the camera coordinate system, X is the hand-eye transformation
matrix, and R is the current pose of the robot’s end-effector in the robot coordinate
system. In order to represent the reconstructed 3D scene in robot coordinate system,
the pose of the camera with respect to the robot’s end-effector X has to be known.
And this can be obtained by eye-in-hand calibration [9]: AX = X B where A and B
are the robot’s end-effector and camera poses between two successive time stamps,
respectively.

2.1.3.2 Eye-to-Hand Vision

In eye-to-hand camera configuration, the camera is at a fixed point in the world coor-
dinate system observing both the robot’s end-effector and the workspace. Figure2.2
depicts the eye-to-end setup scenario in the Smartbooms2 project.
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Figure 2.2 A use case of the eye-to-hand vision in the SMARTBOOM2 project.

The position of the 3D reconstructed scene in robot-world coordinate system is
determined by the pose of the camera with respect to the robot base. This is also
known as the extrinsic camera matrix, represented in the form of transformation
matrix H . It consists of rotation matrix R and translation vector t . Rigid trans-
formation is a geometric transformation that preserves the same shape and size in
camera and robot world coordinate systems. Given 3D points C (xn , yn , zn) ∈ �3

in the camera coordinate system, their corresponding points W (Xn ,Yn ,Zn) ∈�3 in
the robot-world coordinate system, and transformation matrix H :

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1 y1 z1 1

x2 y2 z2 1
...

...
...

xn yn zn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X1 Y1 Z1 1

X2 Y2 Z2 1
...

...
...

Xn Yn Zn 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, H =

⎛
⎝R t

0 1

⎞
⎠ (2.1)

it follows C T =HW T . Consequently, the 3D points in robot-world coordinate sys-
tem can be computed by: W = (H−1C T )T . The approaches for computing trans-
formation matrix H can be categorized as the singular value decomposition (SVD)-
based [10, 11] and quaternion based [12, 13, 14]. For the highest level of accuracy
and stability, a SVD-based method was adopted [15], which requires more than three
pairs of two corresponding points. According to the SVD approach:

�
U , S,V
	
= SVD ((C − 1

N

N∑
n = 1

C i )(W − 1
N

N∑
n = 1

W i )T ) (2.2)

from which R can be obtained: R=V U T , where U and V are orthonormal matri-
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ces, and N is the number of pairs of correspondence points from C and W .

Subsequently, the translation vector t can be obtained:

t =
1
N

N∑
n = 1

W i −R(
1
N

N∑
n = 1

C i ) (2.3)

2.2 Perception of Known Objects: Remote Handling at ITER

2.2.1 Model-Based Object Pose Estimation: ICP

Finding an object with known geometric properties in a scene is a typical research
question. Capturing objects with the same geometrical appearance at the appropri-
ate level of specificity are commonly relied on predefined 3D computer-aided design
(CAD) model of the target.

A classic method of finding such an object utilizes geometric matching of a target
object surface with its model surface by performing the iterative closest point (ICP)
algorithm [16].

ICP takes two sets of point clouds as input: a model or reference point cloud
and the sensed point cloud. Let M = {mi} denotes the model point set, and mi =
[mi x , mi y , mi z]

T in 3D, where i =1, 2, ...NM and NM is the number of points in the
model shape. Similarly, let P = {pi} denotes the sensed scene shape point set, and
pi = [pi x , pi y , pi z]

T in 3D, where i =1, 2, ...Np and Np is the number of points in
the sensed scene shape. The output of the algorithm is registration parameters R and
t , where R is an operator which applies rotation to its argument (a point) and t is a
vector representing translation parameters, t = [tx , ty , tz]

T in 3D.

There are three steps to be done: search for the closest point, search for the best
transformation for the correspondence and align the data set. These steps are re-
peated iteratively.

Firstly, ICP pairs every point of a target set of the scene with the closest point of a
model set. For every point pi in the sensed scene shape P , the algorithm searches for
the closest point mj in the model shape M to the scene point pi using the Euclidean
distance as follows:

d (pi , M ) = min
k = 1,...NM

d (pi , mk ) = min
k = 1,...NM

‖pi −mk‖ (2.4)
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Once the closest point mj ∈ M (model point set) satisfies the equality, then j is
the index of the closest point pi

d (pi , mj ) = d (pi , M ) =⇒ j = argmin
k = 1,...NM

d (pi , mk ) (2.5)

Secondly, once these corresponding pairs of closest points between two object
surfaces are matched, then the transformations R and t for minimizing the error E
are computed as follows:

E =
Np∑

i = 1

‖mi − (s R pi + t )‖2 (2.6)

where s is the scale factor, and s R pi+ t registers the scene point P to the correspond-
ing model point M .

Lastly, the sensed-scene target object is then rotated and translated by the com-
puted transformation. The iteration process is repeated until the error E falls below
a predefined threshold or the number of iterations reaches a chosen constant.

The error decreases monotonically until converging to a local minimum, and if
the initial condition is given properly, the algorithm may converge to the global
minimum. The issue with the ICP algorithm is in its complexity (i.e., number of
points Np ), which grows exponentially with the number of points.

There are many ICP variants [17, 18, 19]. One common improvements has been
reducing the influence of outliers on the global error. ICPs can be categorized as
SVD [11] based or quaternions [13, 14] based for minimizing the error metric using
a closed-form solution.

2.2.2 Edge-Point ICP in ITER’s Harsh Environments

A high quality target point cloud is an essential requirement for conventional ICP
algorithms. A relatively moderate fraction of outlying points in the input cloud
can significantly degrade the performance of an ICP based method, thus preventing
its usage in real-world applications [19] [20] . This is particularly important for
stereoscopic cameras, as the depth maps and reconstructed 3D point clouds from
this kind of passive vision system can deteriorate in ITER’s harsh environment due
to the following reasons:
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• Shiny metallic surfaces: depth estimation becomes unstable due to violation
of the Lambertian reflectance model [21].

• High levels of noise: false matches within textureless areas.

• Low-resolution grayscale imagery: another constraint of stereo-matching al-
gorithms.

All these difficulties result in erroneous depth values in depth maps and, conse-
quentially, contaminate sensed point clouds of the scene with outliers [22].

Despite challenging conditions inside the ITER reactor, strong luminance gradi-
ents in stereo images are features that can be trusted for their error-free behaviour.
In textureless or smooth scenes, strong image gradients usually correspond to object
boundaries or significant changes in the surface (e.g., a slope). In contrast to other ro-
bust image features, such as scale invariant feature transform (SIFT) [23] or speeded
up robust features (SURF) [24], image gradients are much denser and more tolerant
to noise in images. Nevertheless, using the object boundaries as matching primitives
can also limit the selection of the underlying ICP method.

Subject to the constraints of ITER’s environmental conditions, the surface nor-
mals generally cannot be estimated at borders and object edges, only point-to-point
minimization is possible. More advanced point-to-plane [8] or generalized plane-
to-plane [9] minimization approaches cannot be utilized. The recently developed
edge-point ICP method [4] is capable of coping with this type of constraint. The
method successfully works when the estimated point cloud contains few outliers
and a good initialization point is provided.

In P-I, for the preparation of high-quality sensed-scene point clouds, the following
filtering steps have been considered:

• Left-to-right correspondence enforcement: Two depth maps are used from
both left and right cameras in order to compare their values and remove in-
consistent ones. This filtering procedure is based on the assumption that the
depth of some points in the scene should be the same while looking from both
cameras.

• Intensity-based thresholding: This is based on the color value of correspond-
ing depth pixels. As specular reflections in an image are usually overexposed,
the color value of a depth pixel that equals or exceeds 254 is considered an out-
lier. The same is true of too-dark pixels, which are considered irrelevant (too
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distant or too slanted).

• Intensity-gradient-based thresholding: The remaining depth values are mostly
valid, but can still contain 3D points in the middle of a smooth, flat surface,
which are not only useless for pose estimation with the ICP method, but also
consume memory and computation power. The useful 3D points from the
pre-filtered depth map are pixels having a large magnitude gradient value in the
corresponding color (luminance) image. In smooth, textureless scenes, a large
luminance gradient usually corresponds to a discontinuity between different
objects or surfaces, or alternatively, a sudden illumination change. Similar
change-of-surface points can be located on the 3D CAD model using gradients
in a surface normal.

An example of the point cloud preparation process is given in Figure 2.3. In

Figure 2.3 Sampling of the knuckle of the cassette locking system (CLS).

order to further improve the robustness to the outliers in the sensed point clouds,
the alignment of the sensed point cloud with the reference model point cloud is
carried out in two steps, namely, coarse alignment and fine alignment. In coarse
alignment, the presence of the approximate planarity structure of the object surface
was determined by the RANSAC plane-fitting method, for its robustness in linear
model regression and outlier removal. When the CAD model is aligned with its
major plane (i.e., model origin and X-Y coordinates belonging to it), the obtained
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plane parameters can directly be used for the initialization of the rotation matrix.
The median centroid of the object is used as an initial value of translation.

The pre-rotated CAD model is rendered on a virtual camera using conventional
computer graphics methods. The intrinsic parameters of the virtual camera and its
resolution are the same as the left camera of the stereoscopic camera configuration.
Then, the depth map of a rendered image follows same outlier removal procedure.
As a result, the reconstructed reference model point cloud is matched to the sensed
one. In the end, the fine alignment is performed with ICP.

Figure 2.4 illustrates the flowchart of the proposed ICP implementation. Stan-
dard edge-point ICP initializes its model point cloud by sampling only once, which
is not robust enough for stereoscopic vision. In P-I, a dynamic CAD model re-
sampling mechanism is presented (new blocks within the dashline): the CAD model
is rendered and sampled with an estimated initial pose, which is determined by the
sensed point cloud of the object.

CAD Model Model Re-
positioning

Reference 
Point Cloud

Stereo 
Images

Sensed 
Point Cloud

Depth 
Estimation

Robust 
Sampling

ICP Alignment Estimated 
Pose (R,T)

Robust 
Sampling

Pre-alignmentInitial Pose

Figure 2.4 Flowchart of proposed iterative closest point (ICP) implementation in [P-I].

As can be seen in Figure 2.5, the blue point cloud has a better initialization pose
than the green one, which helps to overcome the issues with local minima.

2.3 Perception of Unknown Objects: Autonomous Rock

Breaking

This section presents two approaches for detecting objects without prior geomet-
rical information. The research question comes from the Smartbooms2 project, as
shown in Figure 2.6, which requires real-time detection and localization of rocks in a
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Figure 2.5 Comparison of sampled point cloud: red is sensed, green is from standard ICP, blue is pro-

posed ICP in [P-I].

cluttered scene. Both a TOF camera and a stereo camera were utilized as 3D sensors.
The IFM TOF camera provides a sparse 3D point cloud of the scene, while the ZED
stereo camera generates a dense point cloud of the scene through 3D reconstruction.

Figure 2.6 The scene of secondary breaking with guidance of a IFM O3M150 time-of-flight (TOF)

camera.
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2.3.1 Unsupervised Learning: Clustering

The industrial IFM TOF camera is popular in outdoor applications because of fea-
tures such as IP67 waterproofing, vibration resistance and a wide range of operating
temperatures. It provides a point cloud of the scene that describes the geometrical
shape of objects and their surrounding environment, as shown in Figure 2.7. Usu-
ally each point contains 3D positions (X ,Y ,Z) and an intensity value, but it does
not provide features like color values. In order to detect objects, a clustering method
is required to estimate point clusters from the point cloud. Clustering is an unsu-
pervised learning task [25] that deals with structuring unlabeled data. Performing
segmentation using clustering allows for the freedom to discover an arbitrary num-
ber of objects of any shape in the data.

Figure 2.7 Raw sensor data from the TOF camera.

Many existing methods are based on spatial neighborhoods that use the Euclidean
distance between two points as the dissimilarity function, i.e. points that are close in
the 2D or 3D space form a cluster. By leveraging such properties of point cloud data,
the best segmentation results can be achieved. However, many benchmark methods
require specification of the number of K clusters being inputted in order to perform
clustering (which is a hassle), such as K -means [26] [27], X -means [28], the gaussian
mixture model (GMM) [29], spectral clustering [30], and WARD [31]. Other clus-
tering methods such as minimum description length (MDL) based clustering [32],
affinity propagation [33] and mean shift [34] either require other hyperparameters
or are not suited for data when the clusters have very different sizes. Table 2.1 classi-
fies state-of-the-art clustering algorithms available from the scikit-learn library [35].
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Table 2.1 Clustering with or without the optimal number of K clusters for a data set

Inferring K as output Specifying K as input

DBSCAN K-means

Affinity propagation Gaussian mixture model

Mean shift Spectral

WARD

These start-of-the-art clustering algorithms are evaluated based on the same data
set, where the number of rocks varies from 6 to 10. Given a scene of ten rocks as an
example, WARD and DBSCAN [36] demonstrate better performance than the rest
of the benchmark clustering methods.

The results with DBSCAN imply that density-based clustering can deal with 3D
Euclidean-structured data quite well [20]. Despite a few mistakes, DBSCAN is ro-
bust enough to infer the number of K clusters. The algorithm treats clusters as dense
regions. For each point, DBSCAN searches the number of points within the distance
ε as a neighborhood, and when the point has at least the pre-defined minimum points
MinPts in its neighborhood, then the point is considered as core point. That is to say,
all of these core points forms dense regions, and points that have fewer than MinPts
neighborhoods are regarded as noise.

Observing that the 3D point cloud data from the TOF camera are represented
as a 3D grid structure, a new clustering method was proposed in P-II. In compar-
ison with DBSCAN, which searches spatial neighbourhoods within a pre-defined
sphere, the proposed algorithm searches neighbourhoods within a pre-defined 3D
grid (Δx,Δy,Δz), which is in line with the inherent configuration of the TOF cam-
era.

The proposed algorithm is derived from absolute point density values presented
specifically to the TOF camera that can be used as global parameters for clustering.
The advantages of the proposed algorithm are twofold: Firstly, it predicts the num-
ber of clusters, i.e., the number of rocks in the scene. Secondly, no input parameters
are required. Similar to DBSCAN’s MinPts, the proposed method also specifies the
minimum number points per cluster imi n as initialization for a possible smallest
cluster.
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The conducted experiments in P-II followed hard clustering criteria, i.e., every
point must belong to a proper cluster. In all test scenarios, the proposed method
outperforms DBSCAN in the accuracy of the given TOF point cloud data.

2.3.2 Deep Learning: Convolutional Neural Network Based Object

Detection

The TOF camera, which is mounted about 5 meters above the grizzly, represents a
scene with 1024 (64×16) points. This is a very low-resolution point cloud, which
also does not contain color features but only the intensity, and thus it is unable to
perform well in cluttered scenes where small rocks overlap each other. Therefore, a
higher resolution ZED stereo (4416×1242) camera was utilized. Thus, more research
methods became available.

Object detection generally refers to the classification and detection of objects in
2D image or 3D point cloud. The common supervised learning approach is to use a
trained convolutional neural network (CNN) to classify and detect a single object,
and then to slide it across the image, which is not only slow, but also computation-
ally expensive. In recent years, deep learning architecture has become ubiquitous in
object detection [37, 38, 39, 40, 41, 42, 43, 44, 45], all of which is based on CNNs.

The progress in 3D object detection research has been significant, however, cur-
rent studies have been mainly focusing on objects with known geometries [46, 47,
48] on benchmark datasets, or light detection and ranging (LIDAR) based applica-
tions [49, 50, 51, 52, 53, 54, 55, 56, 57] without taking into account overlapping
objects. Compared to high resolution RGB images, 3D point clouds are irregular,
thus typical CNNs are not well suited to directly process them [58]. LIDAR point
clouds are relatively sparse and unstructured, and the plausible 3D shapes presented
by point clouds are often unable to represent all the detailed features of objects; they
are inadequate to interpret the details of complex scenes, such as when a pile of irreg-
ularly shaped small rocks are overlapping each other. Moreover, annotations of 3D
point clouds are time consuming. Overall, in comparison with the 3D object detec-
tion approaches of 3D point clouds, 2D object detection methods based on images
are more sophisticated for industrial deployments.

State-of-the-art, real-time 2D object detection methods can be categorized into
two main groups: region based or single shot based. The former includes region-

44



based convolutional neural networks (R-CNN) [59], fast R-CNN [60], and faster
R-CNN [61]. The latter includes single shot multibox detector (SSD) [62] and you
only look once (YOLO). YOLO detectors [63, 64, 65] have become a widely used
alternative to R-CNN variants by achieving superior detection efficacy.

YOLOv3 is the current YOLO model for object detection. It takes RGB images
as an input and then predicts an output value as a classification; it relies on annotated
real-image data as a ground truth, and then computes the error between the ground
truth and model estimated output as a loss function. The average of the entire train-
ing set is used to compute the cost function, minimizing it through back propagation
steps to compute gradient descent in order to achieve the global optimum in parame-
ter weights. The network is based on darknet-53 as a feature extractor, and the major
hyperparameters for tuning are learning rate and batch size.

Because Smartbooms2 requires only the detection of rocks, i.e., only one class
of objects, the output vector of YOLOv3 is quite simple, as shown in Figure 2.8,
where the output vector y contains five elements: the probability of predicted value
p between 0 and 1, and the position (bx ,by ) and size (bw ,bh ) of the bounding box in
the image.

Figure 2.8 YOLOv3 output format for rock detection.

Given a test image and the trained CNN, the YOLOv3 workflow is as follows.
Firstly, the test image is divided into cell grids. Based on the size of the test image, the
size of the grid cells in pixels varies. Secondly, each grid cell is used for predicting a set
of bounding boxes. For each bounding box, the network also predicts the confidence
that the bounding box encloses a particular object as well as the probability of the
object belonging in a particular class. Lastly, a non-maximum suppression is used to
eliminate bounding boxes with a low confidence level, as well as redundant bounding
boxes enclosing the same object. In case of overlapping, YOLOv3 provides anchor
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boxes for each grid to allow for detection of multiple objects.

YOLOv3 is one among the fastest and the most accurate object detection algo-
rithms for 2D images. In view of its performance, P-III adopted its existing archi-
tecture and then extended it to 3D object detection. As illustrated in Figure 2.9, the
detected rocks are represented as 2D regions enclosed by bounding boxes, much like
3D reconstruction from stereo images, and the detected regions on the left image
(reference image) of the stereo camera can be reconstructed as 3D regions with the
corresponding depth maps. Thus, the detected rocks in point clouds enclosed with
3D bounding boxes are generated.

Figure 2.9 The 3D object detection mechanism in [P-III].

The performance of YOLOv3 essentially relies on data; as the works in [66, 67,
68] show that with a large and varied data set, deep learning models work very well,
and the dataset continues growing, the deep learning neural networks perform bet-
ter, with higher accuracy. The Smartbooms2 rock data set initially consisted of 4733
images1 collected from the field test site (Figure. 2.6), where the amount of rocks in
the scene varied from one to 15. Nevertheless, the image datasets contain only high-
contrast images taken under normal sunny lighting conditions, thus images taken in
other outdoor conditions are missing, such as during days with rain, snow or fog.
Though real-world data is the best option for any neural network training, the col-
lection of data in different outdoor conditions can be difficult and time consuming.
Data augmentation, the process of generating realistic synthetic data, is one way to
bridge the experimental scenario reality gap [69, 70, 71, 72].

For a stereo camera, dynamic outdoor illumination conditions can be challeng-

1https://github.com/epoc88/SecondaryBreakingDataset. It has now been expanded to
23850 images.
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(a) Original model [P-III] (b) Improved model [P-IV]

Figure 2.10 Compared detection results following data augmentation, the scenario depicts a smaller

rock on top of a bigger rock under overexposed lighting conditions.

ing, as very bright lighting conditions can make object edges indistinguishable. Thus,
it is beneficial to feed more images into the training model when the deep neural net-
work fails, as deep neural networks will over time accumulate and pick up patterns.
P-IV presents an experiment for the evaluation of model performance, and the result
is depicted in Figure 2.10.

Further performance measures are conducted using the mean average precision
(mAP) metric. An average precision of 97.61% was reached at a intersection over
union (IOU) threshold of 0.5, with an average detection time of 85 ms per frame.

Rock detection is a classification problem, while the localization of rocks is a re-
gression problem. Each detected rock’s position is the center of its enclosed bound-
ing box, which is a relative position (between 0 and 1) to a specific grid cell in the
image, thus, it cannot be used as a rock breaking position. Based on two years of ex-
periments, P-IV proposed an effective breaking scheme, a new search mechanism for
the breaking positions, as well as novel methods for searching for orientation angles
for breaking.

The final autonomous secondary breaking experiments were conducted with be-
tween 6 and 12 rocks in the scene. An example result is shown in Figure 2.11, with
12 rocks in the scene.

To validate the above results in real-time, a 3D viewer, shown in Figure. 2.12, was
implemented using Point Cloud Library (PCL) in C++. The estimated positions
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Figure 2.11 An example of the secondary breaking scenario with 12 rocks.

for guiding the manipulator’s hammer are marked as red spots on the surface of each
rock. The 3D viewer provides a 3D representation of detected objected, and visualize
the breaking position in live.

Figure 2.12 A real-time view of detected rocks with breaking positions indicated in red dots.
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3 SUMMARY OF PUBLICATIONS

This chapter summarizes each thesis publication to outline the previously mentioned
research problems. The hardware and software architectures addressed in P-I and P-V
are depicted in [1].

3.1 Robust Pose Estimation with a Stereoscopic Camera in

Harsh Environments

Although 6-DOF pose estimation solutions have been well studied, pose estimation
inside a radioactive reactor chamber remains challenging. In the ITER fusion reactor,
images of the target object in a scene were acquired with a low-resolution radiation-
tolerant grayscale camera in which a high level of noise is present. Moreover, the tar-
get object appeared to have non-Lambertian reflectance in the case of shiny metallic
surfaces, as well as a deformed shape due to erosion. Such extreme conditions create
constraints not only for hardware (Figure 2, [1]), but also for generic pose estimation
methods. For a rigid object whose prior geometric information is known, the con-
ventional approach is to apply ICP for registration. However, no ICP methods can
perform adequately within ITER’s harsh environment. P-I proposes a novel edge-
point ICP method to robustly align the sensed object with the reference object. In
addition, the paper proposes an advanced plane sweeping approach to improve the
precision of the stereoscopic vision system.

Experiments were conducted in comparison with the classic edge-point ICP method,
as well as the proposed approach. Given two CLS knuckle types as the target objects,
the relative accuracy of the vision system was assessed with a repeatability test where
both methods were compared in terms of the number of outliers, position stability,
and angular stability using images taken from the replicated scene. The pose estima-
tion results verified the efficiency of the proposed edge-point ICP method.
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3.2 Clustering Analysis for Secondary Breaking Using a

Low-cost Time-of-flight Camera

This paper presents a case study of secondary rock breaking using a low-cost indus-
trial TOF camera. The aim was to find an unsupervised learning approach to make
the best use of sparse point cloud data from the scene to achieve rock detection and
localization in real time. The paper first highlights an overview of state-of-the-art
clustering methods for analyzing TOF camera point cloud data. In light of the issues
arising from these existing methods, the paper proposes a novel clustering method
based on the spatial characteristics of TOF cameras. The conducted experiments in-
dicate the reliability of the proposed method, which outperformed two of the best
state-of-the-art methods for this task, DBSCAN and WARD. The proposed cluster-
ing method can accurately detect and localize rocks in a point cloud provided that
no rocks overlap. The study also revealed the benefits of utilizing a TOF camera
for outdoor applications while highlighting its limitations due to its weak spatial
resolution.

3.3 Efficient 3D Visual Perception for Robotic Rock

Breaking

This paper presents a further study of secondary rock breaking by means of 3D ob-
ject detection using deep learning methodology. The aim of the paper was to resolve
existing issues in rock detection, such as the detection of small rocks overlapping
one another in a pile. The paper introduces a novel 3D visual perception pipeline
for rock breaking. It offers solutions for rock detection in an acquired image, recon-
structing detected rocks from an image into a 3D point cloud, estimating the position
of a detected rock, and leveraging k-dimensional tree and RANSAC algorithms for
orientation estimation. The rock detection model was implemented with the state-
of-the-art YOLOv3 infrastructure, referencing the darknet-53 convolution neural
network as the backbone. The deep learning model was built based on the train-
ing of 4733 real-world image data collected from the field. As the result, the model
achieved a 97% average precision rate with a detection speed of 10 Hz. The VPS was
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capable of detecting and localizing irregularly shaped rocks in a clutter scene.

3.4 Autonomous Robotic Rock Breaking Using a Real-time

3D Visual Perception System

In this paper, an end-to-end solution for potential commercial applications of au-
tonomous rock breaking is provided. The work undertaken involved deploying an
industry-ready 3D perception system, designing a manipulator control system, on-
site camera calibration and accuracy evaluation, manipulator calibration, communi-
cation, and auxiliary tasks required for performing autonomous robotic tasks. As
the most prominent component of the paper, the 3D virtual perception pipeline was
further developed to resolve challenges in actual outdoor experiments. First, the ac-
curacy and robustness of the object detection model were optimized for a dynamic
outdoor environment. This was achieved by feeding more images into training data
from situations where the current model failed to detect rocks. The new image data
set consists of both real-world images and synthetic images that were created via data
augmentation. Second, intrinsic and extrinsic camera calibration was conducted in-
doors and in the field, respectively. The precision of the vision system was assessed
by the marker position measurements. Third, new rock breaking mechanism was
proposed based on empirical evidence; the new breaking positions were determined
by the shape and size of a detected rock rather than its centroid, and the breaking ori-
entations were determined by the rock surface of a circular area within a diameter of
135 mm centered on the breaking position. Fourth, a 3D viewer was implemented
for real-time visualization of breaking positions in robot coordinates, which could
validate the correctness and effectiveness of breaking positions online. Fifth, the im-
plementation of data analysis, processing, validation, rendering, and communication
modules were reported. Rock detection results were analyzed such that only over-
sized rocks on the grizzly were accepted, while the rest were ignored. Positions and
orientations for rock breaking were rendered according to rock height and size. The
rendered data facilitated the decision-making process for final breaking operations.
Finally, data communication with the manipulator was implemented via UDP com-
munication, where each pair of position and orientation values sent were indexed.
Apart from these improvements, the paper also addresses the Rambooms manip-
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ulator’s DOF constraints and provides a solution for utilizing the 3D orientation
information. The efficacy of the 3D VPS is demonstrated in the final autonomous
rock breaking experiments.

3.5 A Stereoscopic Eye-in-hand Vision System for Remote

Handling in ITER

P-I proposed a novel edge-point ICP method for 6-DOF object pose estimation in
cluttered scenes. The relative accuracy of the vision system was tested with two in-
stances of knuckles in camera coordinates. In P-V, a stereoscopic eye-in-hand robotic
perception system was implemented and integrated with the RHCS. The aim of the
paper was to validate the accuracy and reliability of the stereoscopic eye-in-hand vi-
sion system for fulfilling the generic ITER vision system requirements, as well as
transferability to other RHCSs. Alongside [1], this work detailed vision system
software and hardware architecture design, implementation of different vision sys-
tem operation modes, RHCS software and hardware architecture design, calibration
of system components (manipulator, intrinsic and extrinsic camera parameters, and
the cassette operation tools), and communication between the heterogeneous sub-
systems. The vision system’s precision and robustness were verified in a demonstra-
tion utilizing a vision-guided pin tool and jack tool operation in a replicated ITER
environment, where a clearance of 3 mm was required for tool operations. The ex-
periments illustrate the general applicability of the vision system for other RHCSs
and the feasibility of the novel edge-point ICP method for object pose estimation
under harsh ITER conditions using a low-resolution radiation-tolerant camera.
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4 DISCUSSION

This chapter discusses the relevant research problems, explains research outcomes,
and addresses research limitations, divided by topic.

4.1 Visual Perception in Remote Handling

Can the robustness of target-object pose estimation be improved in challenging real-
world, heavy-duty robotic scenarios?

P-I suggests using the edge properties of objects for improving the reliability of
detection. In the process of 3D scene reconstruction, P-I proposes the plane sweep-
ing method for accurate and robust depth estimation instead of the conventional
rectification-based method. To ensure robustness in 3D registration, P-I presents two
phase alignments: coarse and fine alignment. The former leverages the RANSAC al-
gorithm to identify a strong initialization point for fine alignment, while the latter
applies a novel edge-point ICP method to accurately align the sensed object point
cloud with the reference object point cloud. In doing so, an object’s pose in a robot
world coordinate system can be obtained by transforming its pose in camera coor-
dinates using pre-calibrated eye-in-hand extrinsic camera parameters, as well as the
pose of the manipulator TCP. The study also focuses on outlier removal methods.
Our findings suggest that distortions in the sensed point cloud can be effectively re-
moved by applying a sequence of filtering methods. These methods include left-to-
right correspondence checks, intensity-based thresholding, and intensity gradient-
based thresholding. Nevertheless, potential threats to robustness may still exist due
to unpredictable ITER environments. Unexpected outliers removal is a major area
for further study, since registration can be disrupted in the presence of outliers.
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4.2 Visual Perception in Autonomous Secondary Breaking

Can fast detection and localization for objects be obtained without prior known geome-
try in a scenario with piles of overlapping objects?

The development of object detection methods for secondary breaking was car-
ried out in two stages. In the first stage, a TOF camera was employed to acquire
the scene in a 3D point cloud. As a common type of unsupervised learning, clus-
tering techniques can be used to cluster distinct types of objects, as underscored by
the solution presented in P-II. The study in P-II also addresses the limitations of the
IFM O3M150 TOF camera with a resolution of 64x16. Such a low spatial resolu-
tion restricts object detection methods. As a result, only large and detached objects
can be detected, small rocks can hardly be recognized, occluded objects cannot be
distinguished, and a pile of rocks can only be regarded as one rock. The study also
demonstrates how rock detection approaches are heavily influenced by the type of
3D sensor used, its spatial resolution, and the depth accuracy of its working range,
as all of these factors determine the available features and how they can be used. In
view of this, in the second stage a ZED stereo camera with a sensor resolution of
4416x1242 was adopted, which allows the extraction of rich features from a scene.
In return, more research approaches become available.

For a cluttered scene in which rocks overlap, P-III presents a rock detection so-
lution that incorporates YOLOv3, a prominent object detection algorithm. The
convolutional layers of the deep neural network are capable of capturing important
object features in an image, performing well with small object detection. Given RGB
images as an input, the detected objects in the outputs of the deep neural network are
enclosed by bounding boxes, which is characterized by parameters of the center, the
height and width of the bounding box. As no convolutional deep neural networks
determine the shape of the object, P-III presents a solution via 3D reconstruction of
the detected object from stereoscopic imagery. The reconstructed 3D point cloud
of the object in the camera’s frame not only represents the geometry of the objects,
but also enables further estimation of the position and orientation of the object.

Generally speaking, the performance of the deep learning model depends of qual-
ity and quantity of the data it was given. To improve performance under diverse
outdoor weather conditions (including rainfall, snowfall, and fog), new training data
were created via data augmentation in P-IV. Therefore, it is beneficial to feed more
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real and synthetic images into training for improving the model.
Like other supervised learning methods, YOLOv3 requires labeling a large amount

of image data to train the model, which is time consuming. Since occlusions can re-
sult from obstructions by the manipulator arm. In future, this can be remedied by
using two or more mounted cameras for multiple view geometry, and thus requires
the registration of multiple camera point clouds to reconstruct a scene.

4.3 Demand for Application Specific Cameras and Setup

Cameras are ideal tools for robotic perception. Depending on the application re-
quirements, a camera can either be moving (for instance, mounted to the robot arm
in the ITER scenario) or fixed in a workspace (as in the Smartbooms2 scenario).

In ITER, a close-range camera is required to provide millimeter-level accuracy.
An eye-in-hand setup is beneficial in obtaining precise measurements between the
end effector and the target, and the pose of a camera can also be adjusted to ensure
the best field of view without occlusion. Apart from this, a radiation-tolerant camera
with a higher resolution sensor would further improve the precision and robustness
of the overall system.

In Smartbooms2, secondary rock breaking takes place on a grizzly in an outdoor
environment. In the experiment, the camera was fixed five meters above the grizzly
to provide a view of the entire workspace. This eye-to-hand camera configuration
led to an occlusion scenario caused by the presence of the moving manipulator arm.
However, a multiple-camera setup can be applied to resolve this issue. For another
use case scenario depicted in Figure 1.2, eye-in-hand camera configuration is neces-
sary. However, such a setup requires a custom design for tackling vibration and lens
protection challenges. Moreover, an outdoor industry-ready stereo camera must ful-
fill various outdoor requirements, such as being waterproof, temperature tolerant,
and vibration resistant.

4.4 System Precision

Precision is an important factor in characterizing the performance of any robotic
system. For a vision-guided robotic system, precision relies on image processing
algorithms, the inherent accuracy of the camera and robotic manipulator, the cali-
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bration methods for the camera and robotic manipulator, and measurement meth-
ods. However, in practical experiments, errors between estimated and ground truth
values are unavoidable, and system-level errors are accumulated from all sub-level
components.

In ITER, remote handling leverages an open-loop control scheme. As a conse-
quence, the overall system accuracy depends on the accuracy of all components in
the chain. For example, the target pose of the robot frame is determined by the
intrinsic and extrinsic calibration of the eye-in-hand camera, the pose of the manip-
ulator’s TCP, and the target pose with respect to the camera. While system calibra-
tion errors can be minimized with pose-based visual servoing, this process requires
closed-loop control. As such, for safety reasons, this approach is not used in RH.
To improve overall system precision, it is essential to refine the selection of all com-
ponents in the system, as well as improve image processing algorithms, calibration,
and measurement methods.

To validate the robustness and accuracy of the eye-in-hand vision system, P-I pre-
sented a repeatability test for operating distances of 500–1500 mm in which both po-
sitional and orientation errors were compared with those of the classic ICP method.
The estimated pose of the target object, however, could not be compared with a
ground truth. Instead, the accuracy of the vision system had to be assessed using
tool operation experiments where robot and tool calibration errors were present. In
P-V, the conducted experiments with tool operations were carried out in a replicated
ITER environment in which only 3 mm of clearance was available. The success of
these experiments validated the overall precision of the vision system and the effec-
tiveness of the pose estimation method.

In comparison with ITER’s millimeter-level accuracy requirement, the Smart-
booms2 requirement is 150 mm. Nevertheless, after several rounds of calibration,
the actual system precision was found to be greater than this. For the vision system,
the maximum Cartesian error was 67.19 mm when operating at a five-meter distance.
Kinematic calibration yielded accuracy within 8.37 mm for the system’s kinematics,
and the control system yielded a maximum Cartesian error of 60 mm in free space
trajectory tracking.
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5 CONCLUSION

This chapter concludes the studies on visual perception in challenging real-world
scenarios. The relation between research methods is illustrated in Figure 1.5. In this
thesis, major progress was made in addressing RP.I and RP.II.

In the RP.I scenario, the target objects were ITER reactor components whose 3D
CAD models were available in advance. However, these components were subject
to small drifts in their 6-DOF poses due to extreme heat and high magnetic fields
inside the ITER reactor. Thus, a VR representation of the RH environment may
not reflect the actual scene accurately. This thesis outlines the precise and reliable
navigation of RH maintenance operations toward the development of a robust and
accurate 3D VPS.

Due to the constraints of harsh ITER conditions, research methods in such con-
texts are limited. The related study had to navigate various challenges to improve
the robustness of the target object pose estimation technique. To achieve this goal,
several efforts in designing the stereoscopic VPS were presented, such as eye-in-hand
configuration, a robust depth estimation method for the accurate 3D reconstruction
of target objects using low-resolution grayscale stereo images, a variety of approaches
for outlier removal, and a novel edge-point ICP algorithm for robust pose estimation.

Finally, the conduct of demanding RH operations demonstrates that the devel-
oped system can cope with the limitations set by a harsh ITER environment, such
as image acquisition with low-resolution and grayscale radiation tolerant camera,
high level of image noises due to the radiation, non-Lambertian reflectance of reac-
tor elements on shiny metallic surfaces, and deficient illumination of the scene due
to constraints on available light sources. As a conclusion, the developed VPS meets
generic ITER requirements and can significantly improve the RH operator experi-
ences. It not only assists the human-operator to locate remote objects quickly and
accurately, but also ensures RH tasks to be performed efficiently and safely, as well
as reducing operator stress.
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In the RP.II scenario, object detection methods that rely on predefined CAD
models are infeasible, as rocks do not possess a regular shape or specific surface geom-
etry. Moreover, developing an autonomous rock breaking system requires advanced
robotic visual perception capable of instantly detecting and localizing overlapped
rocks in a cluttered scene under dynamic outdoor conditions. The thesis presents
two relevant case studies.

In the first case, a popular low-cost TOF camera was employed to generate a
sparse point cloud of the scene. The rocks in the scene were represented as 3D
Euclidean grid-structured data that allowed for global parametrization. The study
proposes a novel unsupervised learning algorithm, which outperformed the state-
of-the-art DBSCAN and WARD methods. It also addresses the research limitations
caused by the TOF camera’s spatial resolution constraints.

In the second case, a ZED stereo camera was adopted for its high resolution and
compact size. The study leveraged recent advancements in CNN-based deep learning
models, which can aggregate the features of a full RGB image regardless of complex-
ity so that object detection can be performed on a granular and regional level of the
image.

The thesis presents significant work in deploying real-time 3D VPS for autonomous
robotic application, which involved data preparation, enhanced training for a deep
learning model, proposing and implementing a novel 3D rock detection pipeline,
and designing and implementing an innovative rock breaking mechanism.

Overall, the proposed robotic VPS meets the requirements for the mining indus-
try with its average rock detection rate (97.61%), real-time performance (11.76 Hz),
and capability of autonomous rock breaking without any human intervention. The
results offer a clear indication of the technological readiness of such system.

Visual perception starts at 3D sensors, but real processing is done by a computer.
Classical computer vision incorporates geometric methods that employ the math-
ematics necessary for understanding the geometry of a 3D scene. Meanwhile, re-
cent developments in machine learning and deep learning approaches have greatly
advanced the understanding of 3D scenes.

Overall, this thesis commits to combining computer vision, machine learning
or deep learning techniques in order to maximize the value of visual perception for
robotics and to contribute to cutting-edge technological advancements.
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Abstract
Remote teleoperation of robotic manipulators requires a ro-

bust machine vision system in order to perform accurate move-
ments in the navigated environment. Even though a 3D CAD
model is available, the dimensions and poses of its components
are subject to change due to extreme conditions. Integration of
a stereoscopic camera into the control chain enables more pre-
cise object detection, pose-estimation, and tracking. However,
the conventional stereoscopic pose-estimation methods still lack
robustness and accuracy in the presence of harsh environmental
conditions, such as high levels of radiation, deficient illumination,
shiny metallic surfaces, etc. In this paper we investigate the abil-
ity of a specifically tuned iterative closest point (ICP) algorithm to
operate in the aforementioned environments and suggest algorith-
mic improvements. We demonstrate that the proposed algorithm
outperforms current state-of-the-art methods in both robustness
and accuracy. The experiments are performed with a real robotic
manipulator prototype and a stereoscopic machine vision system.

Introduction
Computer Aided Teleoperation (CAT) usually implies sev-

eral different aspects or tools within the robotic operation chain.
The main goal of the teleoperation in our application is to per-
form maintenance and tool manipulations with several kinds of
objects inside a radioactive fusion reactor, where human presence
is prohibited.1

In order to perform operations during the reactor mainte-
nance break, a robotic manipulator must insert different tools in-
side several mounting holes for the different pre-defined reactor
components. Even though the 3D CAD models of the components
to be manipulated are known with high accuracy in advance, these
elements are subject to small drifts in their poses, which have six
degrees of freedom, and material deformation due to extreme heat
and magnetic loads during machine operation. For precise and re-
liable teleoperation, the environment dimensions and poses have
to be estimated accurately and converted into the robot’s world
coordinates [1]. Once that relation, that is, the rigid-body trans-
formation is found, operations such as tool pickup, insertion, turn-
ing, retraction, and putting down can be made semi-automatic.

The problem of pose estimation, however, remains challeng-
ing, due to the harsh environment within the chamber. Radiation
tolerant cameras are the only sensors capable of working in the
chamber, and no stationary equipment is allowed. Apart from the

1The nuclear-fusion reactor, constructed within the ITER project
(http://www.iter.org).

low resolution and grayscale output of these cameras, other limi-
tations connected to the environment are also present, including a
high level of image noise due to the radiation; deficient illumina-
tion of the scene due to constraints on available light sources; non-
Lambertian reflectance of shiny metallic surfaces and objects, etc.
All these are difficulties that make any vision-based object detec-
tion and pose-estimation system problematic.

A previous study on pose-estimation CAT systems based on
the 3D template matching algorithms showed significant limita-
tions of the monocular approach [2]. In our application [3], we
use a stereoscopic camera mounted to the last joint of a robot
manipulator as a sensing tool to perform vision tasks, object de-
tection, and pose-estimation. The same camera system can also
be used by the operator, for instance when inspecting objects or
the robot itself.

A stereoscopic camera system can reconstruct the geometry
of a 3D scene based on stereo correspondences. Subsequently, it
generates a depth map in the form of a grayscale image describing
the geometry. We utilize this property in order to recover a 3D
point cloud representation of a scene, then try various iterative
closest point (ICP) alignment approaches [4, 5] in order to detect
and finally recover the pose of a target object.

Problems and Limitations
Current ICP methods are limited by the use scenario. Depth

maps and point clouds generated by a stereoscopic camera sys-
tem are significantly degraded due to various factors of the oper-
ating environment, and thus only a small portion of points can be
trusted. For instance, the depth of shiny surfaces usually cannot
be well estimated due to violation of the Lambertian reflectance
model. High levels of noise can also result in false matches within
textureless areas, and low-resolution grayscale imagery signifi-
cantly limits the discriminative power of the stereo-matching al-
gorithms. All these difficulties result in systematically erroneous
depth values (outliers), which significantly disorient conventional
general-purpose ICP methods.

Strong luminance gradients are the only features in the stereo
images that can be trusted for their error-free behaviour. In the
textureless and smooth scenes, strong image gradients usually
correspond to object boundaries or significant changes in the sur-
face (e.g., slope). In contrast to other robust image features, such
as scale-invariant features (SIFT) [6] or speeded-up robust fea-
tures (SURF) [7], image gradients are much denser and tolerate
image noise.

Nevertheless, using the object boundaries as matching prim-
itives can also limit the selection of the underlying ICP method.
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As the surface normals generally cannot be estimated at borders
and object edges, only point-to-point minimization is possible.
More advanced point-to-plane [8] or generalized plane-to-plane
[9] minimization approaches cannot be utilized.

The recently proposed edge-point ICP method [4] is capable
of operating within this type of constraints. The method success-
fully works when the estimated point cloud contains few outliers
and when a good initialization point is provided. From the al-
gorithmic point of view, outliers are not only wrongly estimated
depth values, but also points that have no corresponding points in
the target (model) point cloud, or vice-versa.

Another substantial property of depth-from-stereo methods
is the generation of content-dependent occlusion artifacts in their
output. Occlusion hole-prediction methods exist, but they all rely
on high-quality depth of the neighboring zones and use some
guessing mechanisms, which is not allowed in precise alignment
tasks. During the preparation of reference point clouds, based on
the supplied CAD models, such artifacts are usually not taken into
account, as it is not possible to predict from which viewpoint the
object will be captured. Thus, large numbers of reference points
may become outliers, with no corresponding point in the esti-
mated cloud. Depending on the number of mismatched points,
performance of the ICP alignment can be seriously degraded.

Contributions
In this paper we propose an efficient method to increase the

robustness and the accuracy of the ICP alignment in which tar-
get point clouds are estimated using stereoscopic capture in the
harsh industrial environments. We use the approximate planarity
assumption in order to recover good initialization points for the
ICP algorithm and illustrate its suitability for successful conver-
gence. In contrast to conventional methods, we also use dynami-
cally sampled reference point clouds, especially targeted to each
particular stereo-observation. We model artifacts appearing in the
depth-from-stereo methods in order to minimize the number of
outliers in the reference clouds and thus increase final alignment
accuracy.

Prior Art
Depth-from-Stereo

Estimation of the scene geometry from a binocular camera
setup is usually called stereo-matching or the depth-from-stereo
problem. Even though this field is already well developed, and
many advanced techniques are available, in our problem we not
only required estimating the depth but also correctly manipulat-
ing the depth values, projecting them back to the 3D space with
real-world coordinates. Therefore, conventional stereo-matching
methods, based on stereo-image rectification [10], might under-
perform due to the introduction of artificial camera transforms and
excessive image interpolation steps. Moreover, a deviation from
geometrically parallel camera configuration is possible (e.g., the
camera optical axes might be crossed), thus introducing substan-
tial image deformation in rectification-based methods.

Instead, plane-sweeping depth estimation methods, using
calibrated camera parameters, allow direct processing of the cap-
tured imagery [11]. Figure 1 illustrates the depth-estimation
method, based on the plane-sweeping principle. In this method,
the entire observable scene is divided into a number of fronto-
parallel planes (hypothesizes), where stereo correspondences

might be found. Such hypothesizes can be selected for example
by selecting the possible depth range (i.e., minimum and maxi-
mum possible depth values) and number of layers, which controls
the trade-off between fidelity and computational complexity of
the method.
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Figure 1. Illustration of the plane-sweeping principle of the
depth-from-stereo estimation methods

For every hypothetical depth z j , one can project a pixel
(u1,v1) from a reference camera to a 3D space, using pre-
calibrated camera matrix C1:

X j =C−1
1 ẋ1, (1)

where ẋ1 is the homogeneous projective coordinate of a current
pixel ẋ1 = (u1 · z j,v1 · z j,z j,1)T , X j is the resulting point coordi-
nate in a 3D space; and j = 1, ..,N where N is the selected number
of layers.

Every obtained 3D point X j can be further projected onto the
sensor plate of a second camera using a similar equation:

ẋ2 =C2X j (2)

where ẋ2 is a projective pixel position in a second camera image
plane, and the actual pixel coordinates can be recovered as:

u2 =
ẋ2.x
ẋ2.z

, v2 =
ẋ2.y
ẋ2.z

(3)

Similarly to conventional rectification-based methods [10],
one can construct a 3D cost volume, in which pixel dissimilarities
are calculated between the original pixel in the reference camera
and the corresponding pixel in the second one:

C(u,v, j) = ‖I1(u1,v1)− I2(u2,v2)‖, (4)

where I1 and I2 denote the first and second images, respectively,
and because the (u2,v2) coordinates are not necessarily integers,
the corresponding sampling should be performed for instance
with bilinear interpolation.

After appropriate cost aggregation [11], the depth map can
be recovered by using the so-called winner-takes-all approach:

Z1(u,v) = z ĵ, ĵ = argmin
j

C̃(u,v, j), (5)

where C̃(·) denotes the aggregated cost volume.
The coordinates of the point cloud in the reference camera

can now be reconstructed using the same equation as in (1), re-
placing z ĵ with the estimated value.
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ICP Methods
Since the first invention of the ICP method [12], many up-

dates have been proposed [5, 4, 13]. One of the directions for
improvements has been reducing the influence of outliers on the
global error. Thus, many widely accepted techniques remove too
many point correspondences while calculating global error [5]. A
number of linearized methods were suggested using SVD [14],
quaternions [15], and dual quaternions [16] for minimizing the
error metric with a closed-form solution. High quality of the
sensed (input) point cloud is an essential requirement for conven-
tional ICP algorithms. A relatively moderate fraction of outlying
points in the input cloud can significantly degrade performance
of the method, thus preventing its usage for real-world applica-
tions. This is an important aspect for point clouds estimated via
stereoscopic camera in harsh environments. As the passive vision
systems (including depth-from-stereo methods) usually fail in the
presence of textureless or shiny (i.e., non-Lambertian) surfaces,
their depth maps become corrupted with a high number of false
estimates. Consequently, input point clouds could be contami-
nated with outliers, thus preventing use of the technique for pose
estimation tasks.

Edge-point ICP [4] uses an additional type of filtering step,
where points not connected to a strong image gradient are re-
moved from the point cloud. Even though this operation can sig-
nificantly reduce the number of available points in the cloud, their
discriminative power significantly improves, thus resulting in bet-
ter performance, especially in cases when textureless areas domi-
nate the scenes.

HandEye Calibration and World Coordinates
The object pose in terms of camera coordinates has to be

transformed into robot world coordinates, for which hand-eye
calibration [17] is needed. Figure 2 indicates the relationship
between the robot end-effector, the camera, and the object in the
world coordinates with the formula:

P = R ·X ·A (6)

where P is the required pose of an object, A is the estimated
alignment in the camera coordinate space, X is the eye-hand
transformation matrix, and R is the current position of the robot
hand/wrist.

Figure 2. Hand-eye calibration and world coordinates

Sampling of CAD Models
Sampling of CAD models is usually done once during algo-

rithm development and all estimated points in the point cloud are
matched against this reference cloud.

An example of sampling of CAD models is provided in Fig-
ure 3, which shows a sensed point cloud before alignment.

Figure 3. Sampling of CAD model: (a) given image, (b) raw
depth, (c) depth after L2R, and (d) depth after sampling

Proposed Method

Typical industrial environments, which are also considered
in our application, usually contain many planar surfaces. Such
surfaces are easier to manufacture and they are more convenient
when constructing large-scale structures. Target objects can also
be considered as having at least one major planar surface, facing
the stereoscopic sensor. Even though a strict planarity constraint
may not be fully satisfied due to obstacles and other features on
the object surface, often we can still rely on the approximate pla-
narity of the surfaces. In our method, we propose imposing such
constraints in order to estimate a good initialization point for the
alignment algorithm and to avoid point mismatches due to occlu-
sion artifacts.

The point cloud estimated from a scene can be analyzed for
the presence of plane structures. This can be done, for instance,
using the random sample consensus (RANSAC) [18] plane-fitting
method. General plane-fitting methods in 3D point clouds usually
utilize a generalized plane equation:

ax+by+ cz+b = aT x̂ = 0, (7)

where a = [a,b,c,d]T is the vector of plane parameters to esti-
mate, and x̂= [x,y,z,1]T is the homogenous point coordinate from
the cloud.

A conventional way to perform the analysis is to select three
random points from the cloud, fit the plane parameters and esti-
mate the number of other points that belong to the same plane with
some kind of tolerance. The process is repeated multiple times,
and the plane equation containing the largest number of inliers is
considered the largest plane found in the scene.

As the point cloud estimated with the stereo-camera setup
usually does not capture highly slanted or parallel-to-the-optical
axis planes, we can utilize a relaxed plane equation:

z = ax+by+ c = aT
s x̂s. (8)

Following a similar RANSAC methodology, the matrix of
three selected points X and the vector of corresponding depth val-
ues z can be utilized to recover the plane parameters using the

IS&T International Symposium on Electronic Imaging 2018
Intelligent Robotics and Industrial Applications using Computer Vision 2018 126-3



Moore-Penrose pseudo-inverse:

X =

⎛
⎜⎜⎜⎝

x1 y1 1
x2 y2 1
...

...
...

xn yn 1

⎞
⎟⎟⎟⎠ ,z =

⎛
⎜⎜⎜⎝

z1
z2
...

zn

⎞
⎟⎟⎟⎠ (9)

as = z ·XT (XXT )−1 (10)

Here, n = 3 for the initial plane estimation and can be arbitrary
during the plane refinement stage, when plane parameters are es-
timated using all the found inliers. Inliers can be selected using
pre-defined threshold value θ , as points whose distance to plane
is lower than a threshold |axi +byi + c− zi|< θ .

The parameter θ can also control the expected proximity of
an object surface to a plane model. For objects with dominating
planarity, θ can be reduced to account only for possible depth
estimation errors, while for objects containing many bumps or
cavities, larger values of θ can be beneficial.

When the CAD model is aligned with its major plane (i.e.,
model origin and X-Y coordinates belong to it), the obtained
plane parameters can directly be used to estimate good initial-
ization of the rotation matrix. Two of the Euler angles can be
estimated as:

βx = tan−1b, (11)

βy =−tan−1a, (12)

where βx and βy are Euler angles around X and Y axes, respec-
tively.

Rotation around the Z axis cannot be estimated by such a
coarse method; however, the generic assumption of vertical cam-
era orientation can still be used to provide meaningful initializa-
tion. As a guess for an initial translation, we use the median-
centroid of a point cloud. This assumption may introduce certain
limitations of the method, particularly when a significant part of
the surrounding scene is also visible to the stereo camera setup.

Advanced CAD Model Sampling
Apart from the transform matrix, we also propose a method

to reduce the number of mismatches in the point cloud estimated
by using the depth-from-stereo method. As the rotational compo-
nent in the true underlying transformation can be arbitrarily large,
projective distortions appearing in the sensed images may be sig-
nificant. We use dynamic CAD model re-sampling as a mecha-
nism to reduce possible outliers in the model point cloud, hence
improving the accuracy of the final alignment.

In conventional ICP methods, the model point cloud is usu-
ally statically defined and re-used every time a new observation
is made. In practical cases, however, excessive numbers of mis-
matched points prevents this use.

We use heuristics in order to remove possible outliers from
the reference cloud. For instance, a left-to-right correspondence
check rendering is done with the transform found in the initial
alignment step. We render images for both the reference and sec-
ondary camera (with the same configuration as in the stereoscopic
setup). This allows us to apply the same left-to-right correspon-
dence check as in the estimated depth. We use rendered images
of a CAD model to find strong edges in the scene and prepare a

point cloud according to the same process as for the source point
cloud. Applying these heuristics, the reference cloud contains the
same amount of occlusion and similar results with regard to the
edge properties as the source cloud.

For efficient processing, we propose the following scheme.
Figure 4 shows the procedure per frame.

Figure 4. Flowchart of proposed ICP implementation

Standard edge-point ICP initializes its model point cloud by
sampling only once, which is not robust in the case of a stereo-
scopic camera. Thus, in our proposed ICP (new blocks within
the dashline), we render our CAD model such that it shows ap-
proximately what the camera is seeing. The model point cloud is
estimated every time using the pre-alignment, and we sample the
CAD model relative to our initial estimated alignment.

Figure 5. Comparison of sampled point cloud; Red, sensed;
Green, standard ICP; Blue, proposed ICP

As we can see in Figure 5, the blue point cloud has a better
initialization point than the green one, which helps to overcome
the issues with local minima.

Experiments
In order to validate the proposed method, we run two sets of

experiments, based on photographs of two target objects, namely
a CLS mockup and a knuckle, illustrated in Figure 6. The CLS
mockup is made of steel, from laser-cut sheet material welded to-
gether with high precision, while knuckle was mainly 3D printed
with a fused deposition modeling (FDM) printer, sanded, and then
painted with shiny metallic paint; the manufacturing accuracy is
thus lower for the knuckle. Surrounding elements in the knuckle
were made with precise steel-cutting approaches. Overall, both
target objects well represent the expected reflectivity and texture-
less properties of the application, as well as corresponding to an
underlying CAD model with tolerances up to 0.2 mm.

In order to obtain a comprehensive set of experimental data,
we gathered a significant number of stereo-images using different
camera offsets, orientations and different illumination conditions.
Overall, 31 stereo-pairs per target object were acquired using the
calibrated stereo camera setup. Camera positions were selected
such that for the closest (to the object) camera position, the target
object barely fit in the camera view, while for the position further
away from the target objects, it occupies just a small fraction of
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the image, representing a wide range of distances. Figure 6 shows
two of the acquired images.

Figure 6. Sample images of (a) “CLS-mockup” and (b)
“knuckle” objects used in the experiments.

The main goal of our experiment was to estimate the robust-
ness, reliability, and accuracy of the proposed method as well as
to compare it with competing approaches. In order to estimate
robustness, for every acquired stereo-pair we independently ran
the alignment algorithm 30 times and measured the number of
false pose estimates, that is, when the aligned object completely
disagrees with the acquired data.

This can be done in semi-automatic mode, in which the soft-
ware asks the operator to confirm whether current alignment was
successful. Figure 7 shows two alignment results, where the CAD
model was projected to the camera space and rendered according
to the estimated object pose. Two images, the acquired and the
rendered one, are combined together in different color channels
and presented as a single RGB image, which we refer to as the
“augmented” image. Such representation can easily be evaluated
by the operator for correctness of alignment and thus be selected
as correct or not.

Figure 7. Example of ICP alignment with augmented images: (a)
successful, (b) unsuccessful

The 31 observations of every stereo-pair provided a number
of pose estimates, including the relative rotation and the transla-
tion between the camera and the CLS mockup or knuckle. We
used semi-manually estimated positions as the threshold for se-
lection of correct estimates, or inliers. All inliers from these ob-
servations are averaged together in order to obtain the centroid of
the estimated points. Now, by measuring the Euclidean distance
between the centroid and every other estimate, one can obtain the
average displacement (deviation) for this particular stereo-pair.
While taking an estimated Z (depth) value as a reference variable,
one can plot a figure in which the horizontal axis represents depth
(Z-distance between camera and the object) and the vertical axis
shows the respective deviation value. Figure 8 and Figure 9 show
these graphs for a few different experiments.

As we can see, when the target object is too close to the
camera, it can no longer observe all the distinctive edges. This in-
dicates a general lower limit of the pose-estimation system where
too-close observations are not reliable. In addition, the images
show that both the CLS mockup and the knuckle achieve good
accuracy and stability within the middle range. This can be ex-

plained as fairly consistent behavior within the expected opera-
tional range. With the increase in distance, the repeatability error
grows but also becomes unstable, which could suggest the exis-
tence of an upper limit for the system. This limit, however, was
not reached during these sets of experiments.

(a). “CLS-Mockup” (b). “Knuckle”

Figure 8. Number of outliers for CLS mockup and knuckle
datasets.

(a). “CLS-Mockup” (b). “Knuckle”
Figure 9. Position stability (repeatability) for CLS mockup and
knuckle datasets.

A similar procedure can be done for the rotational part of the
found transforms. We extract the rotation matrix from each es-
timated transform and convert them to a vector of Euler angles.
Then, the mean Euler angle value for one image is chosen as the
correct rotation, and the error in the rotations is expressed as the
difference between the mean Euler vector and the rest of the vec-
tors. In order to obtain a single variable out of all the observations,
we convert the angular error vectors to a list of combined errors,
taking the L2 norm of each vector. Then, the mean value of all
combined errors is taken to represent the integral error metric for
one particular image. The process is repeated for every image in
the dataset in order to obtain a closed curve.

(a). “CLS-Mockup” (b). “Knuckle”

Figure 10. Angular stability (repeatability) for CLS mockup and
knuckle datasets.

Figure 10 exhibits similar performance of the method as in
Figure 9. The optimal range of the system is reached in the range
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of 65 to 100 cm, and the the overall integral angular error is on
the order of 0.02 to 0.05 rad.

Conclusion
The measurement of repeatability error demonstrates fairly

consistent behavior, even though the target object was imaged
from different perspectives. Overall, our proposed method has
shown more robustness and accuracy than the standard edge-point
ICP method in terms of the number of outliers and precision of
pose estimation. The results verify the effectiveness of the pro-
posed method.
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Abstract—The integration of robust perception in a heavy-
duty manipulation control system is an enabler for autonomous
mining. This paper aims to analyze performance and robustness
of clustering methods for object recognition during the secondary
breaking stage of mining. Secondary breaking refers to breaking
over-sized rocks into smaller pieces for the purpose of grinding
and extraction of valuable ores and minerals. Therefore, recog-
nition of rock pieces is the detection of unstructured targets
within a structured environment. The clustering methods are
experimentally evaluated by several sets of scenes of point clouds
as outputs of a Time-of-Flight camera (ToF). The challenges of
rock detection from sparse 3D point cloud data are addressed.
In outdoor conditions, ToFs generally provide coarse but robust
output in short sample times. Therefore, some clustering methods
can be prone to numerical and statistical errors. This paper
highlights the weaknesses and strengths of three methods for
the secondary breaking application. We propose an algorithmic
method for exploiting the existing clustering and segmentation
methods efficiently in the detection loop to determine a suitable
contact point and approaching angle for a hydraulic jack ham-
mer. The results verify effectiveness of the proposed approach
for scattered outputs of low-cost ToFs.

Index Terms—range sensing, time-of-flight camera, automatic
extraction, 3D point clouds, clustering

I. INTRODUCTION

In the mining and construction industry, valuable minerals
are often extracted from the earth by blasting. Secondary
breaking is needed to ensure effective processing when the
blasted rock pieces are too large for the feeder or crusher.
A manipulator carrying a hydraulic rock hammer is used to
break these over-sized rocks into smaller pieces as shown in
Figure 1. These breaker manipulators are operated by human
operators, but such operational tasks are repetitive, mentally
and physically demanding. To achieve improvements in min-
ing process autonomy, production rates and performance, will
require that artificial intelligence methods be integrated in the
perception and control elements of operational tasks.

For this application, different sensor types are available
based on different measurement technologies; these include
stereo vision cameras, projective light cameras, and time-of-
flight cameras. All of these sensors are capable of generating
arrays of 3D positions occupied by objects as a point cloud.
For the sake of robustness and reliability in outdoor conditions,
we consider ToF cameras as the sources of point clouds.
The aim of this research is to analyze the point clouds to

Figure 1: Secondary breaking with guidance of the ToF camera

obtain necessary information of stone pieces for the hammer
manipulator.

There is comprehensive research on the recognition of rocks
and unstructured minerals. A considerable amount of relevant
research has been done on discontinuity studies of outcrop
rock mass in mining, such as the detection of outcrop rock
mass by block modeling [1], by fuzzy k-means clustering
[2], rock mass joints recognition using Density-Based Scan
Algorithm with Noise (DBSCAN) [3], or rockfall detection
using DBSCAN clustering [4], planar surface detection [5],
[6]. All the addressed methods are tolerant to limited failures
in detection and imprecise segmentation in preprocessing of
point clouds.

Although these methods are capable of clustering in cer-
tain conditions, they do not address autonomous secondary
breaking applications when the quantity of objects (clusters) is
unknown. In comparison with outcrop rock mass segmentation
methods, secondary breaking requires an exact prediction of
the number of rocks on the metal grid and accurate localization
of each of them. Incorrect segmentation may cause the manip-
ulator’s hammer to hit the rock and possibly damage the metal
grid underneath. Therefore, failures can significantly affect the
lifetime of the robot and production rate.

The robotic perception process starts by sensing of rocks
using the ToF camera. The generated cluttered scene in the



form of 3D point clouds has to be processed for performing
normalization as well as the filtering out of the background ob-
jects, outliers, and noise. The remaining cleaned data consists
of sets of surface point clouds of rocks in unknown shapes
and configurations measured from a single viewpoint.

The next step is to further segment the data into meaningful
subsets representing pieces of rocks by clusters of data using
clustering methods. Performing segmentation using clustering
makes it possible to discover an arbitrary number of objects of
any shape in the data. It allows segmenting objects in the point
cloud without need of templates, textures and geometries.

Although the recognition of objects includes the detection of
their quantity, it is considered as an input for many clustering
methods. This means that the number of rocks in the field of
view need to be calculated. This is the main limitation that
prevents use of many state-of-the-art methods for clustering
and motivates us for proposing the method in section III. The
proposed method overcomes this limitation and recognizes
the rocks and number of rocks, namely the K parameter. To
obtain a baseline for comparison, we use the proposed method
and extracted K, for the purpose of comparing them with the
outcomes of similar methods.

In a review of well-known clustering methods addressed in
[7], such as the K-means, Gaussian mixture models, Ward,
and Spectral, we recognize that the K parameter is a crucial
piece of information assumed to be known in the methods
discussed in Section II. Therefore, as explained in Section III,
our first step toward clustering needs to be the estimation of
the number of clusters, K.

Among the clustering methods which do not require prior
information about the number of rocks in the scene, DBSCAN
has successful applications in dealing with spatial point cloud
data [3] and [4]. However, for proper functionality, DBSCAN
also requires adjustment of two parameters depending on the
scene and is therefore not suitable for autonomous predictions.
Moreover, our experiments in Section IV demonstrated that its
accuracy for localization of rocks is not consistently accept-
able. Other clustering methods such as Affinity Propagation
and Mean Shift been unsuccessful in coping with our data.
Therefore, we demonstrate experimental results of two meth-
ods, DBSCAN and Ward, as well as our proposed method.

For the purpose of experiments, we exploit sets of point
clouds gathered by ToF. The reason why we use a ToF camera
is due to its close-to-real-time capabilities and promising spa-
tial resolution. Compared to other conventional point scanner
cameras such as stereoscopic cameras [8] and RGB-D cameras
[9], ToF cameras have a number of advantages, including
simplicity, speed, affordability, and efficiency. ToF cameras
are also able to measure the distances within a scene in a
single shot.

On the other hand, unlike an RGB-D camera, which pro-
vides us with data rich in features like colors and texture,
a time-of-flight (ToF) camera only provides depth data. The
sparse 3D point cloud data from a ToF camera contains posi-
tion and intensity in grayscale of surface points gathered from
the camera’s viewpoint. The limited number of features can

be challenging for object recognition. Moreover, sometimes
highly specular objects in the scene results in the ToF camera
failing to capture objects.

This paper is organized as follows. Section II introduces
cluster analysis and clustering methods. Section III describes
the proposed method and the algorithm for clustering. Sec-
tion IV describes the experimental framework and point cloud
data used to evaluate the performance of benchmark cluster-
ing methods in comparison with the proposed method. The
results are demonstrated in plots and tables for comparison.
Finally, in the conclusion section we summarize our findings
for clustering of point cloud data from secondary breaking
experiments.

II. CLUSTERING

Clustering is the process of finding similarities among
individual points so that they can be segmented. Many methods
exist for clustering arbitrary data. As we do not have a prior
knowledge about the number of clusters (i.e. K) in our data set
from the ToF camera, many methods are unable to be used.

One study [10] proposes that the Bayesian Information
Criterion (BIC) be maximized, while another approach [11] is
to start with a large value for k and keep removing centroids
(reducing k) until it no longer reduces the description length.
[12] starts with one cluster, then continues to split clusters
until the points assigned to each cluster have a Gaussian
distribution. Unfortunately, there is no explicit answer as to
which method to use for a spatial clustering problem.

Here are some selected clustering methods from the Scikit-
Learn library [7]. Of course, the same rule is applicable to
other clustering techniques within the same category.

TABLE I: Determining the number of clusters in a data set

Independent of K parameter Required Prior K
DBSCAN K-means

Affinity propagation Gaussian mixture model
Mean shift Spectral

The Proposed Method Ward hierarchical

In the following, we address major clustering algorithms in
detail. However, for the purpose of experimental evaluation,
we only select DBSCAN and Ward together with our proposed
method because of their better performance and convenient
requirements.

A. Centroid-based clustering, K-means

Choosing the most straightforward spatial clustering method
such as K means will in turn require that the user choose the
correct number of expected clusters (i.e. K value). Though the
Elbow method [13] could be used to determinethe K value,
a consistent prediction is not ensured. Another issue with K-
means is that it is very sensitive to the initial position and
random results appear from the same input data.



B. Distribution-based clustering, Gaussian mixture model

The Gaussian mixture model (GMM) uses the expectation-
maximization algorithm on the prior K value. The resulting
clusters can easily be defined as objects likely belonging to the
same distribution. This algorithm is not suitable for our data,
as it converges to local optimum and multiple runs produce
different results.

C. Spectral clustering

In order to segment a point cloud through spectral cluster-
ing, the point cloud has to be represented as a graph. This
is carried out by connecting each point with its neighbors
and assigning the edge a weight that describes the similarity.
The segementation problem is resolved by NP hard [14]. This
method is highly dependent on the similarity matrix and prior
K value.

D. Affinity propagation

Affinity propagation is exemplar-based clustering which
iteratively searches the set of data points until it best describes
the input data found based on the similarities between them
[15]. The method does not require the K value before running
the algorithm; instead, there are two parameters: preferences
determines the number of clusters, the higher its value the
more clusters it generates, and damping factor decides the
speed of the algorithm’s convergence, preventing oscillation.

E. Mean Shift

Mean shift clustering [16] is built on the concept of kernel
density estimation. The method works by shifting a kernel
on each point toward a higher density in the data set until
they converge. It has only one parameter bandwidth, which
determines the number of clusters K; however, K may not
be a monotonic function of bandwidth. In such a case it will
likely fail to find all clusters.

F. Linkage, Ward

Ward linkage [17] involves an agglomerative hierarchical
clustering algorithm. It is known for being a minimum vari-
ance method based on the sum of squares of errors (SSE)
of each cluster; i.e., the sum of squares of deviations from
the cluster centroid. Giving K as a parameter, it will attempt
to merge K clusters by analyzing all possible pairs of joined
clusters and identifying which joint produces the smallest in-
crease in SSE. In spatial agglomeration clustering, the distance
measure between two clusters K and L is usually defined as
a squared euclidiean distance.

∆(K,L) =
∑

jεK∪L
||~xj − ~mK∪L||2 −

∑
jεK

||~xj − ~mK ||2

−
∑
jεL

||~xj − ~mL||2 =
nKnL
nK + nL

||~mK − ~mL||2

where ~mK and ~mL are mean vectors within cluster K and
L, nK and nL are the number of points in cluster K and L
respectively. ∆ is the merging cost of combining the clusters
K and L.

G. Density-based clustering, DBSCAN

Density-based spatial clustering of applications with noise
(DBSCAN) is a typical density-based clustering algorithm
[18]. The algorithm does not require prior K as the parameter;
instead, it has two paramters: ε is the distance for searching
neighboring points in 3D space and minimum points per clus-
ter MinPts. All neighboring points in euclidean space within
ε distance will be connected to form a density-connected
cluster. Any unallocated points with a distance further then
the predefined threshold ε with its nearest neighbor, or points
within a cluster whose size is less than MinPts will be
regarded as noises. This is a useful spatial clustering method
for our data.

While the theoretical foundation of the benchmark methods
is excellent, many of them are not suitable for spatial data.
Our point cloud data consists of uneven-sized clusters, whose
geometry is non-flat. Furthermore, no prior information about
the number of clusters and wideness of their coverage. The
following cluster methods are therefore unsuitable because of
their significant dependency on prior knowledge: K-means,
Spectral , the Gaussian mixture model, Affinity propagation
and Mean shift.

III. THE PROPOSED METHOD

We tackle the clustering problem using euclidean clustering.
This is a simple data clustering approach in a euclidean sense
in which points that are closer to each other are clustered
together by making use of a 3D subdivision of the space.

A. Automatic extraction of rocks

Identification of Discontinuites

Raw 
Data 
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K
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Figure 2: Flowchart detailing the automatic extraction of rocks

Figure 2 presents three main steps of automatic extraction
of rocks; i.e., pre-processing, identification of discontinuites
and post-processing, First, the raw data must be preprocessed
with a denoising filter, which is effective when dealing with a
point cloud which has significant noise and outliers. A random
sample consensus (RANSAC) plane filtering algorithm is then



applied to remove the ground and the metal grid out of the
scene. This approach relies solely on object shapes to perform
segmentation. In this situation, orphan points among raw point
clouds are also considered as outliers [19].

Automated identification of discontinuites sets using clus-
tering techniques, especially the estimation of the number of
clusters (i.e., K value) within the scene, is a bottleneck in the
whole segmentation process. This is resolved by the proposed
clustering method, in which we compare its performance with
DBSCAN, and Ward, which requires the input parameter
K from either the proposed method or DBSCAN. The data
normalization in pre-processing is performed according to
clustering methods.

In the post-processing section and in addition to visualiza-
tion of cluster and 3D surface geometric reconstruction for all
rocks, we also calculate the centroid position of each cluster
and normal vector of them. These values will be used by a
manipulator.

B. The Proposed Unsupervised Clustering Method

As a matter of fact, the density of the point cloud is
homogeneous as collected from the ToF camera. Moreoever,
the sampling interval and beam divergence is fixed and the
angle of observation is 0 degrees, as shown in Figure 1.

Segmenting such data can be done by performing clustering
based on spatial neighborhood; meaning points that are closer
in the 3D space form a cluster. We intend to leverage such
properties of our data, as we notice that the surface point
clouds of rocks are linearly sampled at a constant interval in
camera coordinate with product specific configurations along
each axis. This means we can utilized these configurations for
clustering in order to achieve the best segmentation results.
The proposed algorithm is derived through absolute point
density values presented specific to the ToF camera. Different
cameras may require calibration before correction factors are
established.

In addition to predicting the number of clusters, another
clear advantage of this algorithm is that no input parameters
are required, only the needed configurations to define noises.
Similar to DBSCAN’s parameter MinPts, the recommendation
from [18], imin is set to 4 in the algorithm initialization. This
number suits our application as well, especially given the size
requirements of the application and the robot’s metal grid as
its tabletop.

IV. EXPERIMENTS AND RESULTS

The proposed approach is evaluated by comparison against
the benchmark clustering methods DBSCAN and Ward (from
the Scikit-Learn 0.19.2 clustering library [7]), both of which
utilize the module sklearn.cluster written in Python. DBSCAN
and Ward methods are selected because they outperform the
other methods addressed in Section II in their clustering
performance.

Algorithm 1: Proposed method
Input:

Set of 3D point cloud data, PToF copied into Pdata and
(xi, yi, zi) ∈ Pdata, i = 1, 2, . . . , imax

Output:
Set of labeled clusters of data

(xi, yi, zi, ck) ∈ {Plabeled}, k = 1, 2, . . . , kmax

Number Of detected clusters kmax

Initialization :
(Constant) clustering thresholds: ∆xmax, ∆ymax,

∆zmax

(Constant) Minimum number of points per cluster:
imin

Zero number of detected clusters : kmax ← 0
No prior clusters: Plabel ← Ø
Set of temporarily assigned data points: {Q} ← Ø
Current cluster number: l← 0

while P 6= Ø do
l← l + 1
Append (x1, y1, z1) from P 1

data to Q
Pdata = Pdata − {(x1, y1, z1)}
update← 1

while update 6= 0 do
update← 0

for j ← 1 to Length(Q) do
(xj , yj , zj)← Qj

for i← Length(Pdata) downto 1 do
(xi, yi, zi)← P i

data

if (|xi − xj | < ∆xmax) and
(|yi − yj | < ∆ymax) and
(|zi − zj | < ∆zmax) then

Append (xi, yi, zi) from P i
data to Q

Pdata = Pdata − {(xi, yi, zi)}
update← 1

end
end

end
end
if Length(Q) ≥ imin then

kmax ← kmax + 1
for j ← 1 to Length(Q) do

Plabeled ← Plabeled ∪ {l, Qj}
end

end
Empty temporarily made set: Q← Ø

end
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Figure 3: Raw sensor data in the camera coordinate, point cloud output of
the time-of-flight camera. Depth (z) values of the points are represented by
their color.



A. Experimental Setup and Data Sets

The data was collected at an experimental rock secondary
breaking site, where a single ToF camera was installed at a
fixed postion above the metal grid with rocks (see Figure 1).
The IFM O3M150 ToF camera features on 50Hz, 64x16
resolution, generating up to 1024 point clouds. The raw data
(shown in Figure 3) contains ten rocks on the metal grid in
the scene. The blue points in the figure indicate the rocks
and the metal grid frame while the green points indicate the
ground. The data will be pre-processed by RANSAC and a
denoising filter to remove outliers. The result of clean data
after normalization is shown in Figure 4, where only ten
clusters of points are left which illustrate 3D surface point
clouds of ten rocks. As the experimental conditions were
known, such as geometry between the ToF camera and the
metal grid, size of each grid (60x60 cm) and number of rocks,
a comparison can be done between benchmark methods and
our proposed method.
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Figure 4: The point cloud after filtering of outliers.

B. Comparison between benchmark methods and the proposed
method

Given a scene of ten rocks as a use case, the clustering
results for Ward is shown in Figure 5 and DBSCAN is shown
in Figure 6, respectively. For better visualization, all 3D plots
from Figure 5 to Figure 7 are viewed in 2D X-Y coordinate,
from -Z direction , which reflects the same view from the ToF
camera.

Our results are evaluated according to hard clustering
critieria, i.e., each data point must belong to a cluster com-
pletely.

Ward hierarchical clustering uses the parameter of Maxclust
and K to construct a maximum of K clusters using the distance
criterion. The result in Figure 7 shows that all clusters were
found despite misclassified adjacent points between clusters 1
and 2, as well as 4 and 5. The algorithm behaves consistently
with different data. We therefore used it to make comparisons
with the proposed method in Table II.

The DBSCAN algorithm does not require an initial K value.
Instead, adjustment of two additional parameters epsilon and
minPts is needed, and one may not know these values in
advance. As a result, the criteria for soft clustering appears
satisfactory, while for hard clustering it is a bit problematic.

As shown in Figure 6, some points that belong to clusters 1,5
and 6 are treated as outliers.
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Figure 5: Clustering by Ward hierarchical clustering
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Figure 7: Clustering by the proposed method

We validate the proposed method through experiments
with a variety of clusters of different sizes. The outcome of
these experiments demonstrates the potential of the proposed
method. As shown in Figure 7, all points are properly labelled
without error.

C. Comparison to ground truth

The ground truth is that the numbers of clusters are known
in advance and each cluster to which every point belongs to
is also known. Concerning the accuracy of measurements, as
improving sparse data derived from highly dense data requires
camera hardware changes, we therefore must rely on camera
data as the base for comparison of different methods.



TABLE II: Maximum Distance Error, DBSCAN, WARD vs Proposed

Clusters DBSCAN Ward Proposed
4 0 0 0
5 0.0802 0 0.0367
6 0.2520 0.0442 0.0718
7 0.1104 0.0593 0.0373
8 0.1399 0.0153 0.0171
9 0.0538 0.0557 0.0211
10 0.0985 0.0779 0

Table II illustrates maximum euclidean distance errors from
each method for each scenario involving a given number of
rocks. The result is calculated from the ideal centroid postion
of each rock in euclidean distance in a 2D X-Y coordinate
space. Note that the diameter of each rock in X-Y coordinate
space should be practically larger than 0.6m, i.e., the size of
the grid. Otherwise, rocks may roll down from the grid.

The accuracy of the proposed method depends on noise. In
certain cases (such as that shown in Figure 7), there is no
noise and thus the error can be zero.

The error from the Ward method in Figure 5 derives mainly
from mislabeled adjacent points. Therefore, the impact on
accuracy is moderate. This occurs because for a small fraction
of points the inaccuracy does not affect the overall distribution
of distance severely. As we can see from Table II the maximum
deviation of euclidean distance in X-Y coordinate space is
approxmate 8 cm.

For DBSCAN, larger errors are observed because points
belonging to the same cluster are scattered over a larger region.
Compared to DBSCAN, the proposed method’s labeled points
are more centrally distributed; therefore, the errors are much
smaller.

Subject to camera hardware limitation, when the distance
between rocks is less than camera resolution, i.e., 0.12m,
discontinity is unlikely to be identified, as two neighbhouring
clusters are likely to be treated as one.

D. Post-processing

After clustering, we performed 3D surface reconstruction of
rocks, and as shown in Figure 8, we calculated and visualized
the hammer’s contact point for each rock by giving its position
and angle. These data were then sent to the manipulator.

V. CONCLUSION

By comparative study on major clustering methods, this pa-
per proposes a systematic way for automatic rock recognition
and target perception for autonomous mining jackhammer ma-
nipulators for secondary breaking. To fulfill the requirements
of such an application, we represented segmentation of surface
point clouds of rock masses as well as population estimation
of rock pieces and their normal-to-surface vectors. Note that
in previous studies, a lack of prior knowledge with regard to
the quantity of rocks prevented the use of major contemporary
clustering approaches.

The proposed method, together with several state-of-the-
art methods, has been examined through experiments with
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Figure 8: 3D surface reconstruction of rocks based on clustering results

different arrangements of objects. It is shown that the proposed
method is capable of detection in a robust and accurate manner
for the mining application. The method consists of several
point-cloud processing steps, such as the proposed algorithm
for estimation of cluster numbers, calculation of centroid
position and normal vector of each cluster, pre-processing
using RANSAC and denoising filters to remove outliers.

The experimental studies represent a significant difference
in the depth, as in any vision-based system. Therefore, this
difference is required to be implemented in the clustering
algorithm, where the noise and error variations have differ-
ent behaviors along each principle axes. As the application
involves only stationary ToF data, the coordinate has fixed
axes. We recommend the use of normal distances in each
principal coordinate axis of the camera frame. This, in contrast
with point-to-point Euclidean distance, allows us to adjust
sensitivity of the algorithms based on the systematic errors
and noises of the vision system differently at each direction.
In other words, it is not considered equal if some points have
the same distances in depth compared to the other directions
because the distances in depth are more likely to be affected
by measurement noise.

According to experimental results, the proposed method has
better robustness and overall performance compared to DB-
SCAN. Our method, in contrast with WARD, does not require
manual adjustments based on the rock arrangements while
preserving and sometimes improving performance of WARD.
In conclusion, the proposed method improves performance and
flexibility of the system while accounting for robustness.
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[2] M. Vöge, M. J. Lato, and M. S. Diederichs, “Automated rockmass
discontinuity mapping from 3-dimensional surface data,” Engineering
Geology, vol. 164, pp. 155–162, 2013.

[3] A. J. Riquelme, A. Abellán, R. Tomás, and M. Jaboyedoff, “A new
approach for semi-automatic rock mass joints recognition from 3d point
clouds,” Computers & Geosciences, vol. 68, pp. 38–52, 2014.

[4] M. Tonini and A. Abellan, “Rockfall detection from terrestrial lidar point
clouds: A clustering approach using r,” Journal of Spatial Information
Science, vol. 2014, no. 8, pp. 95–110, 2014.
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Efficient 3D Visual Perception for Robotic Rock Breaking

Longchuan Niu1, Ke Chen2, Kui Jia2, and Jouni Mattila1

Abstract— In recent years, underground mining automation
(e.g., the heavy-duty robots carrying rock breaker tools for sec-
ondary breaking) has drawn substantial interest. This breaking
process is needed only when over-sized rocks threaten to jam
the mine material flow. In the worst case, a pile of overlapped
rocks can get stuck on top of a crusher’s grate plate. For a
human operator, it is relatively easy to make the decisions
about the rock locations in the pile and the order of rocks
to be crushed. In an autonomous operation, a robust and
fast visual perception system is needed for executing robot
motion commands. In this paper, we propose a pipeline for fast
detection and pose estimation of individual rocks in cluttered
scenes. We employ the state-of-art YOLOv3 as a 2D detector
to perform 3D reconstruction from point cloud for detected
rocks in 2D regions using our proposed novel method, and
finally estimating the rock centroid positions and the normal-to-
surface vectors based on the predicted point cloud. The detected
centroids in the scene are ordered according to the depth
of rock surface to the camera, which provides the breaking
sequence of the rocks. During the system evaluation in the real
rock breaking experiments, we have collected a new dataset
with 4780 images having from 1 to 12 rocks on a grate plate.
The proposed pipeline achieves 97.47% precision on overall
detection with a real-time speed around 15Hz.

I. INTRODUCTION

Underground mining continues to progress to deeper levels
for tackling the mineral supply crisis in the 21st century
[1]. Human worker safety in mines deeper than a kilometer,
along with time-consuming human shift worker logistics, is a
massive mine operational cost challenge. This has increased
demand for the level of autonomous robotics in mining. In
deep mines, the extracted material is fed to crushers equipped
with grate plates for stopping over-sized rocks (i.e., ore) from
falling into the crusher jaws. The grate plate (e.g., a mesh
size of 0.5 m x 0.5 m) prevents crusher jamming, but only
if over-sized rocks remaining on the plate are immediately
broken down into smaller pieces to ensure continuous mine
mineral flow. Such rock breaking has been conventionally
done by a human operator-driven heavy-duty hydraulic four-
link anthropomorphic arm equipped with a hydraulic hammer
tool, as shown in Fig. 1.

Recently, robotic rock breaking [2] has attracted wider
attention owing to the controllable breaking procedure. Sen-
sory rock perception plays an important role in robotic rock
breaking as it provides the automatic over-sized rock detec-
tion and the motion target coordinates for the robotic rock

1Automation Technology and Mechanical Engineering, Faculty of En-
gineering and Natural Sciences, Tampere University, FIN-33720, Tampere,
Finland {longchuan.niu, jouni.mattila}@tuni.fi

2School of Electronic and Information Engineering, South China Univer-
sity of Technology, Guangzhou 510641, P.R. China
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Fig. 1 3D perception of rocks on a grate plate

breaker arm. Some rock breaking systems with increased au-
tomation levels have been developed, such as the telerobotic
rock breaker [3], vision-based mining automation controls
[4], and 3D perception for mining robotics [5]. Some studies
on rock breaking systems using force sensors [6] and stereo
vision [7] have adopted algorithms for computing normals
of rock surfaces. Nevertheless, none of the existing methods
are capable of understanding the whole rock breaking scene
in a complex environment.

For the automatic analysis of a scene, visual 3D perception
requires fast and reliable initial detection with accurate
object recognition and localization. However, this problem
remains challenging due to piled rock scenes having arbitrary
shapes, sizes, textures, and colours, as shown in Fig. 1.
Pose estimation for objects with prior knowledge of shape
was studied using 3D template matching technique in our
earlier work [8]. For objects with unpredictable shapes, we
have adopted a clustering algorithm for direct point cloud
segmentation [9]. This method is used on secondary breaking
in an unsupervised learning manner, but it suffers by missing
texture-free visual cues for segmenting two rocks close to
each other. A lack of contextual information in pure point
analyses encourages us to conduct foreground highlighting
in the RGB images to improve 3D rock detection. Moreover,
such a setting has its significance in the practice of collision
avoidance in robot on-line motions.

In this paper, we address the 3D visual perception of
rocks via a pipeline visualized in Fig. 2, which consists of
three stages: 2D rock detection, 2D-to-3D correspondence
of regions, centroid position, and normal-to-surface vector
estimation on object point cloud-based surfaces. At the first
stage, the rocks displayed in the left image of Fig. 2 are
detected as 2D regions (bounding boxes) by the state-of-



the-art detector [10] (see Sec. IV-B). For the study, a stereo
camera system is used to reconstruct the geometry of a 3D
scene based on stereo correspondences. Subsequently, the
depth map is generated in the form of a gray-scale image
describing its geometry. We utilize this property to recover
a 3D point cloud representation of a textured point cloud
of rocks in 2D regions (produced by the 2D detector) to
its corresponding point clouds in 3D regions. These are all
performed at the 2D-to-3D correspondence stage (see Sec.
IV-C), where scene background can be removed and we
focus on analyzing rocks in the foreground. At the last stage,
based on the predicted point sets for each rock, the centroid
of the surface is discovered and its corresponding normal-
to-surface vector is estimated by searching for the best fit
plane using the nearest points provided by random sample
consensus (RANSAC) [11].
Contributions

The novel contributions of this paper are fourthfold.
Firstly, we developed an efficient 3D visual perception
pipeline for the detection of visible rocks and individual
rock 6D pose estimations in cluttered scenes. We achieved
an average precision of 97.47% at a real-time speed around
15Hz. Secondly, instead of a conventional stereo-image rec-
tification method, we proposed a plane-sweeping depth esti-
mation method for establishing the 2D to 3D correspondence.
Thirdly, on non-Euclidean structured points, we designed
a method for estimating the normal-to-surface vectors on
detected rock surfaces. Finally, we collected and annotated
4780 different images for the rock detection in a real
scale rock breaking robot set-up with the rocks weighing
several hundreds kilos each. This dataset is the according to
the authors’ best knowledge of the first dataset of blasted
overlapped rocks.

Experiment results on the new dataset verified the efficacy
of the proposed method, which works even if a part of the
object is occluded or truncated due to the presence of the
robot arm or rocks in a pile. The dataset used for the training
has been made available with this paper1.

This paper is organized as follows: Section II introduces
related research on object detection; Section III describes the
research problem; Section IV details the methodologies used
for the study; Section V explains the experiments that were
carried out; and Section VI concludes the paper.

II. RELATED WORK

Object detection is widely studied, and a number of
methods based on deep learning has been proposed [12]–
[17]. Most existing methods operate using 2D Euclidean con-
volution on images, which can be categorized into two main
groups. The first group is object proposals and image classi-
fication, such as region-based convolutional neural networks
(RCNN) [18], fast RCNN [19], and faster RCNN [15]. These
methods begin by generating thousands of region proposals
within the images, and then apply a convolutional classifier
to filter the proposals by classification score thresholds. This

1https://doi.org/10.5281/zenodo.3246919

two-stage setting increases networked training difficulties
due to independent training on each individual component in
the pipeline. The second group is single shot-based detection,
such as SSD [14] and YOLO. Recently, the YOLO detector
[10], [12], [13] has become a viable alternative to RCNN
variants by achieving superior detection efficacy. Not many
2D-driven 3D object detection studies [20], [21] have been
based on both RGB-D images and point clouds. Specifically,
utilizing a mature 2D object detector’s output to generate 3D
object proposals, this reduces the search in entire 3D dense
point cloud.

Currently, the majority of 3D object detection methods
[22]–[24] operate light detection and ranging (LiDAR) gen-
erated point clouds for outdoor applications. Compared to
RGB images, LiDAR point clouds are unordered and too
sparse to distinguish the severe inter-occlusion between the
rocks, which makes the direct application of these methods
challenging in a rock-breaking scenario. In light of this, our
method maps 2D pixels within predicted bounding boxes
into rock point cloud surfaces, which generate a visible rock
surface as 3D proposals.

Further state of the art segmentation using an instance
segmentation method, such as Mask R-CNN [25], could be
performed for each rock within the bounding box. In practice,
this method can further boost segmentation performance with
the price of higher computational costs, which can be less
suitable in real-time applications, such as rock breaking.
Our proposed method works effectively in the robotic rock
breaking scenario, which is verified in Sec. V.

III. PROBLEM STATEMENT

As mentioned, automatic rock breaking requires fast and
reliable detection and localization of every rock in a given
scene. Oversized rocks on the grate plate can range from
one rock or few rocks scattered around to many rocks in
a complex pile overlapping each other. In our real-world
robotic rock breaking set-up, we utilize a top-mounted stereo
camera to provide video and images for automatic rock
recognition and analysis. Given live video or still stereo
images as input, the goal is to achieve real-time and sophis-
ticated rock detection in a reference camera (left camera)
coordinate, since individual 6D poses have to be shown to
the operator and sent to the robot controller.

IV. METHODOLOGY

For obtaining required rock poses for the controller, the
rock centroid positions [x, y, z] and orientations (i.e. normal-
to-surface vectors at their centroids), we conduct three phases
in our visual perception system. The first phase is detection,
where we employ a 2D object detector [10] for rock detection
(see Sec. IV-B). The second phase is 2D to 3D correspon-
dence, where 3D rock surfaces in a point cloud are generated
via projection from 2D regions (see Sec. IV-C). In the final
pose estimation phase, estimation methods for the centroid
position and the normal-to-surface vectors are applied. Fig. 2
illustrates the whole pipeline of the proposed system.
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Fig. 2 Pipeline of the proposed visual perception system

A. A NEW DATASET FOR ROCK BREAKING

The procedure of data collection and annotation for the
new dataset generation in the rock breaking application
was organized as follows. The videos were recorded with
various amounts of rocks on a grate plate under different
outdoor illumination conditions by using a top-mounted
stereo camera. However, due to the complex image gathering
process in an outdoor environment, the position of camera
was not entirely fixed. Therefore, slight camera movements
during the video recordings can occur, which leads to back-
ground subtraction process failure. In view of this, object
detection is considered the best possible approach to cope
with the diverse background. In the gathered dataset, 4780
videos were recorded using a pre-calibrated stereo camera
compressed in a lossless format in 720p at 15fps. They were
further processed offline to extract a selected frame from
each video into left and right images, which were used to
generate depth maps and point clouds with color information
(in ply files).

The Yolo Mark tool2 was used for left image annotation.
To alleviate manual labelling, an automatic labelling tool was
implemented. This required manual labelling of 1,000 images
among 4,780 previously extracted images, which were then
used to train a coarse 2D detector to label the remaining
3,780 images. After automatic labelling, the labelled images
were still checked one by one. The quality of automatic
labelling is known to be highly dependent on the quality
of previously labelled data as well as the coverage of the
data set. Therefore, a random data selection mechanism was
implemented for this purpose.

B. OBJECT DETECTION

As aforementioned, YOLO [10] was adopted for rock
detection in 2D, making it an essential step for further
processing. This kind of 2D detector formulates object detec-
tion into a regression problem, which addresses localization

2https://github.com/AlexeyAB/Yolo_mark

and recognition in a unified framework via simultaneous
prediction of bounding box confidence and class probabil-
ities. To this end, the whole image is divided into regular
grids before the network predicts the object’s centroids from
the given set of candidates for various bounding boxes
and object classes. Owing to its efficient detection, we are
utilizing the latest network structure [10]. More specifically,
the detection network (a variant of darknet-53) consists of
106 convolutional layers, where the prediction is performed
at three different scales by predicting 10 times the numbers
of boxes, producing more accurate results when detecting
small objects.

C. 2D-3D CORRESPONDENCE

The estimation of scene geometry from a stereo camera
setup is usually called a depth-from-stereo problem, the goal
is to estimate the depth of each pixel in a RGB image. Con-
ventional rectification-based stereo-matching methods [26]
require excessive image interpolation steps and rigorous ge-
ometrically parallel camera configuration. Instead, we adopt
the plane-sweeping depth estimation method, which allows
direct processing of captured imagery [27] via calibrated
camera parameters. This enables the setup of multiple cam-
eras for the acquisition of point clouds from different angles
in the future. Fig. 3 illustrates the plane-sweeping principle
of the depth estimation method using a stereo camera.

The method assumes that the entire scene can be divided
into a number of front-to-parallel planes where stereo cor-
respondences could be found. The depth hypotheses can be
selected according to the possible depth range (zmin ≤ z ≤
zmax) and a finite number of layers, to achieve a balance
between fidelity and computational complexity.

Another advance of this method is its suitablity for parallel
computing, and therefore, a dense 3D reconstruction of a
complex scene can be realized in real time through GPU
acceleration.
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Fig. 3 An illustration of the plane-sweeping principle of the
depth-from-stereo estimation methods for a stereo camera

For each hypothetical parallel plane with depth zj , a pixel
(uL, vL) from a left (reference) camera can be projected to
a 3D space, using pre-calibrated camera matrix CL:



Xj = C−1
L (uL · zj , vL · zj , zj , 1)T = C−1

L ẋL, (1)

where ẋL = (uL · zj , vL · zj , zj , 1)T is the homogeneous
projective coordinate of a current pixel, Xj is the resulting
3D point coordinate, and j = 1, ..,M where M is the
selected number of layers.

Then, each projected 3D point Xj can be further projected
onto the image plane of a second camera with a similar
equation:

ẋR = CRXj = (uR · zj , vR · zj , zj , 1)T , (2)

where ẋR is a projective pixel in a second camera image
plane, and the actual pixel coordinates can be recovered as:

uR =
ẋR.x
ẋR.z

, vR =
ẋR.y
ẋR.z

. (3)

We can construct a 3D cost volume in which pixel dissimilar-
ities are calculated between the original pixel in the reference
camera and the corresponding pixel in the second one:

C(u, v, j) = ‖IL(uL, vL)− IR(uR, vR)‖, (4)

where IL and IR denote the left (reference) and right camera
images, respectively.

Through appropriate cost aggregation [27], the depth map
can be recovered as such:

ZL(u, v) = zĵ , ĵ = argmin
j
C̃(u, v, j), (5)

where C̃(·) denotes the aggregated cost volume.
The 3D coordinates of the point cloud, in accordance

with the original pixel in the reference camera, can now
be reconstructed using equation (1), replacing zĵ with the
estimated value.

D. POSE ESTIMATION

1) Position: The position of a rock is characterized in
camera coordinates, indicating it is the geometric center of
the bounding box in x−y plane, as it is projected from image
coordinates. This position estimation approach is sufficient,
as those oversized rocks are with a dimension of at least 500
mm x 500 mm in x−y plane, which allows some millimeter-
level deviation.

2) Orientation (Normal-to-surface vectors): Given the
location of the centroid of each rock, we estimate its normal
vector for the best fitting plane of a nearby point cloud
surface. For this goal, the principle of a RANSAC algorithm
[11] searches for the best plane among a 3D point cloud
surface.

A general plane equation is given as:

ax+ by + cz + d = nT x̂ = 0, (6)

where n = [a, b, c]T is the normal vector of plane parameters
to estimate and x̂ = [x, y, z, 1]T is the homogeneous point
coordinate of the cloud.

The algorithm starts by randomly selecting three points
from the cloud, fitting the plane parameters, and detecting all
points of the point cloud that belong to the same plane by a
given threshold. The process is repeated multiple times, until

the plane equation containing the largest number of inliers is
determined, the plane is considered as the best fitting plane.

As the point cloud estimated with the stereo-camera setup
usually does not capture highly slanted or parallel-to-the-
optical axis planes, inliers can be selected using a predefined
threshold value θ, where points whose distance to plane is
lower than a threshold meet the following condition:

(x, y, z) ∈ Z3 : 0 ≤ |axi + byi − zi + c| ≤ θ. (7)

The threshold θ can also control the expected proximity
of an object surface to a plane model. For object surfaces
containing many bumps or cavities, larger values of θ can
be beneficial.

V. EXPERIMENTS

A. Settings

The whole data for rock detection was split into training,
validation, and testing sets for fair comparison. Specifically,
70% of the images (in 1280 x 720 resolution) were selected
for training, 20% for validation, and the remaining 10% for
testing. During parameter tuning, we used training data to
fit network parameters by evaluating the performance on the
validation set.

(a) Left image of stereo camera taken at the secondary
breaking site

(b) An example of point cloud generated from left and depth
image

Fig. 4 Input images for visual perception

B. Implementation Details

We set our visual perception system on Ubuntu with the
following environment settings:

• OpenCV 3.4.0
• PCL 1.7.1
• CUDA 10.0
• CuDNN 7.4.2
• NVIDIA GeForce GTX 1060 6GB

We implemented all schemes in C++ with OpenCV library
and Point Cloud Library (PCL).

From each video frame, we extracted a left image (an
example is shown in Fig. 4a) together with a right image,



computing its depth map (by means of the proposed plane
sweeping method) to generate a point cloud (an example is
shown in Fig. 4b). In parallel, the left images with labelled
bounding boxes were provided to train the rock detector.

C. Evaluation of Rock Detection

We adopted the off-the-shelf YOLO detector using a
variant of darknet-53 [28] in view of its solid detection
performance as well as its efficiency during inference. We
trained the darknet using our data by setting a learning rate
of 0.001, which converges at an average loss of 0.12. We
achieved good detection results during testing. Fig. 5 depicts
the precision-recall curve, where IoU threshold is 0.75, true
positive (TP) is 7144, false positive (FP) is only 125, and
false negative (FN) is 141.
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Fig. 5 Precision-recall curve of our proposed method

Moreover, an average precision of 97.47% was reached at
~70 ms per image. We validated the stability of the model
using images at different scales and rotations to retain result
robustness. Fig. 6 illustrates the detection result from an
offline video, and the detected objects provided by YOLOv3
are highlighted with 2D bounding box.

Fig. 6 Detection and localization of rocks at approx. 15Hz

In addition, this single shot-based rock detector can ef-
ficiently localize all rocks at a video frame rate around 15
Hz. In Fig. 6, it can be seen that the rock 2 has a sharp
edge in the middle, which is hard to segment properly using
unsupervised learning methods [9], while rock 9 is occluded
and truncated by rocks 1 and 8, which is harder to recognize
using the aforementioned method.

D. Evaluation on Pose Estimation

Here we conduct experiments to evaluate the results of
estimating the position and orientation of individual rocks
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Fig. 7 Examples of the point cloud for rock 2 and rock 9
segmented by the projected 3D bounding boxes

(a) Detected centroid positions in 3D

(b) Estimated normal-to-surface vectors in 3D

Fig. 8 Estimation of centroids’ positions and normal-to-
surface vectors for each 3D region

within 3D regions. For each detected 2D region, every pixel
within has its 3D corresponding point in 3D point cloud
with X,Y,Z and RGBA color. After 2D to 3D correspondence
mapping, we obtained their 3D regions in a point cloud.
Fig. 7 indicates rocks 2 and 9 in point clouds, through which
6D pose estimation can be performed.

Fig. 8 illustrates detected 3D regions overall, along with
estimated centroids and normal-to-surface vectors for each
region. Estimated centroids for each rock are drawn as red
spots (as shown in Fig. 8a where they geometrically reside
at the center of each rock, even for all occluded rocks).

The estimation of the normal-to-surface vectors was per-
formed using a k-d tree to search for the neighbors (1000
points) around each centroid point. It took the RANSAC
method less than four iterations to find the best fitting
plane. As no ground-truth normal vectors were available,
we visualized the normal-to-surface vectors together with



the rocks for quality evaluation. Fig. 8b presents the result
of estimating the normal-to-surface vectors shown with red
arrows for each rock. As a result, those normal vectors were
perpendicular to the estimated main surface plane of each
rock. More qualitative results are shown in Fig. 9.

VI. CONCLUSIONS

We have proposed a novel fast method for 3D object
detection and target pose estimation for complex scenes
containing irregularly shaped and sized blasted rocks that
can be in an overlapping pile. Even though object detection
using bounding boxes has been widely studied, its extension
to 3D in such complicated scenes remains a challenge,
especially in a real outdoors environment. On one hand,
in real-world outdoor applications, the 3D bounding boxes
detector with LiDARs is not an efficient method for solving
complex scenes with many sharp changes in the depth
and overlying edges that are only visible on the images.
On the other hand, 3D detection methods operating solely
on dense point clouds can be computationally expensive,
rendering the required real-time operation hardly feasible.
This paper has presented an efficient online method by
taking advantage of fast 2D object detection combined with
the 2D to 3D plane-sweeping stereo matching method for
3D object detection. Given secondary rock breaking as an
application, the proposed robotic visual perception method
can meet the requirements for autonomous breaking required
for the mining industry with its reliable object detection,
real-time performance, and substantial accuracy on object
pose estimation. The experiment results veried the efficiency
of the proposed method with 97.47% detection accuracy at
15Hz in real outdoors worksite conditions. Our next research
objective is to experimentally verify the success rate of real
rock breaking with the machine vision estimated rock surface
position as “a sweet spot” for the productive robotized
operation.
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Fig. 9 More visualization results of detection (top), position (middle), and the normal-to-surface vector estimation (bottom)
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A B S T R A C T

The International Thermonuclear Experimental Reactor (ITER) maintenance is performed by means of remote
handling (RH) systems and with aid of user interfaces such as haptic and joystick devices, virtual reality (VR)
systems, and camera views. Many RH operations involving RH equipment, such as robotic manipulator arms,
require millimeter accuracy, but camera views are often occluded or of poor quality, and might be unavailable
during sensitive steps that require accurate, close-up views. Moreover, the VR system may not reflect the current
scene accurately, as physical conditions may have changed under the harsh environment. The purpose of this
research was to prototype and evaluate a novel software system, called 3D Node, that locates and detects the
position and orientation of a piece of RH equipment or reactor element with respect to a stereo camera pair. The
detection information is utilized to adjust the motion trajectories of a robotic manipulator arm. The 3D Node
features stereo-camera calibration, target depth mapping, target position and orientation detection, and online
target tracking. This paper reports on the 3D Node demonstration on the ITER Divertor RH use case and discusses
the system applicability to other ITER RH systems.

1. Introduction

Performing accurate ITER RH maintenance operations inside dark
and highly radioactive chambers, where human access is impossible, is
extremely demanding. The RH operator can utilize a number of user
interfaces for commanding and controlling the RH equipment [1], e.g. a
robotic manipulator arm. Other auxiliary interfaces involve live images
of the RH equipment and its environment, computer-aided teleopera-
tion (CAT) used in master-slave teleoperation [2], and virtual reality
(VR) representing the movements of the RH equipment and its en-
vironment [3].

VR displays visual information based on the measured pose of the
manipulators and pre-constructed virtual models. Due to the harsh
environment, the VR representation may not exactly reflect the actual
scene, as physical conditions may have changed, e.g. through material
deformation due to extreme heat, or small drifts in the poses of the
components to be manipulated. Thus, the pre-defined motion trajec-
tories of the RH equipment have to be adjusted by other interfaces, e.g.
a robot perception unit.

The purpose of the study herein is to prototype and demonstrate
new means to assist RH operators to successfully perform ITER RH
operations. A robot perception unit, namely 3D Node, was designed and
developed to introduce new operator assisting features. The new

features are based on detection of a target, i.e. a piece of RH equipment
or reactor element, and recognition of its position and orientation in a
relation to the environment using stereo camera images.

During ITER RH operations, a number of RH operations are iden-
tified in which 3D Node information could be helpful. This information
could be valuable for updating VR models and implementing aug-
mented reality and synthetic viewing functionalities. However, in this
paper we consider 3D Node's usage merely in adjustment of the motion
trajectories of RH equipment. A subset of operations related to the
Divertor Cassette Locking System (CLS) operations is considered, and
the use of 3D Node therein is demonstrated.

2. System architecture

As stated, the RH operator utilizes multiple software systems and
user interfaces during an RH operation. As seen in Fig. 1, the novel
software system, 3D Node, requires an interface to a manipulator
control system and a stereo-camera pair that is attached to, for example,
the manipulator arm. The 3D Node receives images from the stereo-
scopic cameras through GigE Vision protocol and the pose of the ma-
nipulator robot's tool center point (TCP) from the manipulator control
system. Additionally, it can receive operator input and provide visual
feedback to the operator through its graphical user interface (GUI). 3D
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Node provides the target pose, i.e. position and orientation of the
viewed target, to the manipulator control system.

The 3D Node is designed to comply with ITER remote handling
control system (RHCS) requirements and is integrated at a later stage of
its development into the RHCS as one of its components. Moreover,
interfaces to the other systems, such as providing calibration informa-
tion to VR, can be developed.

3. 3D node software

3.1. Operation modes

3D Node features five modes: calibration mode, video mode, depth
mode, detection mode, and tracking mode. The 3D Node GUI has four
main parts: the operator control panel and three views. Items displayed
in the views depend on the selected mode (two examples in Fig. 2). The
purpose and functionality of each mode is elaborated in the following.

Calibration mode is required to calibrate the stereo cameras and the
relative position of the cameras with respect to the robot manipulator
TCP, i.e. hand-eye calibration, prior to the actual RH operations. In
ITER, this would be performed in the Hot Cell facility. In calibration
mode, 3D Node captures stereo images of the scene while recording a
current manipulator TCP. Images should contain a calibration pattern
from diverse locations and angles. 3D Node performs the camera cali-
bration with the aid of stereo images. The hand-eye calibration is also
performed based on the stereo images and poses of the manipulator
TCP.

Video mode is utilized for inspecting the camera views to confirm
that the target object is not occluded by other objects, that lighting is
sufficient, and that nothing prevents target detection during the RH
operations. In video mode, 3D Node shows the images from both
cameras.

Depth mode is used for checking the geometry of the scene or va-
lidating the correctness of stereo camera calibration. In depth mode, 3D
Node visualizes a depth map of the scene that it has generated.

Detection mode is for detecting the target object and estimating its
real pose. In detection mode, 3D Node determines the pose of the target
object and aligns a rendered image of the target in the estimated po-
sition with the real camera view of the target. If the alignment is cor-
rect, the real image and rendered image should correspond to each
other as seen in View 1 of Fig. 2b. In addition, 3D Node displays the
desired pose of the manipulator TCP in the selected RH operation. The
pose values are Cartesian positions in millimeters for X, Y and Z, and in
degrees for orientation in Euler angles A, E and R. The pose is updated
on RH operator command through the 3D Node control panel (Fig. 2).
These values can be utilized for adjusting the motion trajectory of a

manipulator arm.
Tracking mode is utilized when the manipulator is moved around to

inspect the environment. It differs from video mode, as in tracking
mode 3D Node illustrates the rendered image of the target on the
camera view.

3.2. Method

3.2.1. Depth from stereo
Estimation of 3D scene geometry from parallel calibrated cameras is

known as depth from stereo. In hazardous ITER environments, robust
estimation of depth values is crucial. Instead of conventional rectifi-
cation based methods, we employ the plane-sweeping depth estimation
method, which uses calibrated camera parameters [4], allowing the
captured imagery to be processed directly.

3.2.2. Advanced sampling
As illustrated in [5], an important step for pose estimation is the fine

alignment between the sensed target point cloud and the reference
point cloud.. This is done by utilizing a state-of-the-art edge point
iterative closest point (ICP) algorithm.

Conventional edge-point ICP samples its model point cloud only
once. In order to improve the robustness and accuracy of the fine
alignment, we used a left-to-right correspondence check and dynamic
CAD model resampling as a mechanism to reduce outliers in the model
point clouds [4].

An example of a target object is given in Fig. 3a. We render the
image to find strong edges, then prepare a point cloud using the left-to-
right correspondence check. The sensed point cloud after sampling is
shown in Fig. 3b.

3.2.3. Pose estimation
The 3D Node estimates the target pose based on the stereo camera

images and camera poses in the manipulator base frame. The camera
pose is calculated by rigid body transformation between the cameras
and the manipulator TCP, which is known as hand-eye calibration. The
details are presented in [4], [5]. We adopt Tsai's method [6] for the
hand-eye calibration.

4. Proof-of-concept demonstration

4.1. Demonstration equipment and setup

As indicated in Fig. 4, in the demonstration setup we used the
Comau Smart NM45-2.0 robot as the manipulator with two cameras
attached to its wrist. The target object utilized in the demonstration was

Fig. 1. Top-level architecture.
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a test mock-up, which is a 1:1 replica of the Divertor Cassette Locking
System (CLS).

The stereo cameras are mounted on an adjustable mounting plate,
allowing reconfiguration for particular environments. The accuracy of
camera positioning is not an issue as long as the camera field of view is
clear. The camera calibration process recovers the underlying stereo

camera position every time the camera configuration changes or, for
example, when a collision occurs.

The stereo cameras are arranged vertically. This is due to the di-
mensions between the tool exchanger and the Comau robot wrist. At
ITER, the cameras could also be positioned horizontally depending on
the manipulator. This is not an issue as the developed 3D Node system

Fig. 2. Sample GUI views: calibration and detection modes.

Fig. 3. Sampling of CAD model.
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works similarly regardless of the camera arrangement.
The current setting is optimized for depth sensing at a range of

400–1500 mm. This is mostly defined by adjusting the camera lenses to
deliver optimal sharpness at these distances. For the distance between
the cameras, a stereoscopic baseline of 100 mm was chosen as a prac-
tical compromise.

A pair of industrial machine vision digital cameras (Allied Vision
GE1900C) was used for the demonstration. The native resolution of the
camera is 1920× 1080, and the sensor size is 1” with an effective pixel
size of 7.4 μm. However, such cameras are not usable inside the actual
ITER environment due to high levels of radiation; radiation tolerant
cameras typically have a lower spatial resolution. We use the “Pixel
Binning” feature of the cameras in order to decimate the original re-
solution as well to automatically convert images to a grayscale format.
The resulting effective resolution of 960×540 is close to that of the
standard radiation tolerant camera.

The Comau Smart NM45-2.0 robot payload capacity is 45 kg. In the

3D Node system demonstration, it operates the Divertor RH equipment
tool prototypes, i.e. pin tool and jack tool (Fig. 5). Tool weights are 16
kg for the pin tool and 33.5 kg for the jack tool.

The Comau control system communicates with the 3D Node through
User Datagram Protocol (UDP) at 1 Hz. The Comau control system
sends the pose values of the manipulator TCP to the 3D Node. Received
pose values from the 3D Node will be used to guide the manipulator
arm in RH operations. At this moment, the target pose is only displayed
within the 3D Node GUI and not sent directly to the Comau control
system. Later, the 3D Node communication interfaces will be im-
plemented to comply with ITER RH network communication protocols.

4.2. Demonstration cases

The pin tool and the jack tool are utilized in the CLS operations for
unlocking and locking the cassette, and cassette compression, respec-
tively. Fig. 6 indicates the location for these operations. Inserting tools

Fig. 4. Comau Smart NM45-2.0 with stereoscopic camera and CLS Mockup.

Fig. 5. Cassette locking system tools: jack tool
and pin tool.

Fig. 6. Locking mechanism, tool operation location.
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into their corresponding slots requires millimeter accuracy in order to
guarantee that the operations are performed properly. For example, the
horizontal clearance between the jack tool and the slot in the cassette
knuckle shown in Fig. 6b is approximately 7 mm. Therefore, we

selected these two use cases to validate the functionality of the 3D Node
and to give a proof-of-concept demonstration.

The purpose of the demonstration was to determine whether the 3D
Node can help the RH operator to execute the RH operations in a

Fig. 7. Tool operations in the CLS mock-up scene.
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physically unknown environment. There are two use cases, one is to
insert the pin tool into the operating slot as illustrated in Fig. 6a, and
the other is to insert the jack into the insertion slot as shown in Fig. 6b.
Just before the demonstration, the target, i.e. the CLS mock-up, was
randomly placed, which emulates unpredicted target movement during
ITER maintenance operation. The operations were performed in a dark
laboratory room with only a single adjustable light source pointed to
the target. Prior to any operation, camera and hand-eye calibration
were performed.

In both cases the operation sequence is the same when using the 3D
Node. At first, the video mode can be utilized for inspecting the scene
and the depth mode for validating the correct camera and hand-eye
calibration. The detection mode is then utilized to find the actual pose
of the target. According to the detected target pose values and calcu-
lated pose of the operated tool, the RH operator drives the Comau
manipulator and the operated tool towards the calculated pose. As the
tool tip reaches the desired pose, the operator can finalize the tool in-
sertion in a peg-in-hole manner by simply driving along the Z-axis
(depth) in the manipulator tool frame. The demonstration results are
shown in Fig. 7. The successful operation from the insertion of both
tools validates that the pose values given by the 3D Node are accurate.

5. Discussion

In order to assess the accuracy of the pose estimation algorithm, we
performed a series of experiments [4]. For the observation range be-
tween 600 and 1200 mm, the relative accuracy from the repeatability
test, i.e. deviation from re-measurement of the same position, is ap-
proximately 0.5–1 mm with respect to the position and 0.2-0.4 degrees
with respect to the angle, providing that the target object has a planar
surface.

Other sources of errors on the accuracy come from camera cali-
bration, hand-eye calibration, and robot calibration. The stereoscopic
camera calibration shows excellent stability, and the pixel reprojection
error is about 0.15 pixels. Should there be higher resolution radiation
tolerant cameras in the future, this would naturally improve the results
of the camera calibration. The major proportion of hand-eye calibration
error comes from the absolute accuracy of the robot, payload, and path
of movement, i.e. possible backlash. Therefore, the selection and

calibration of the manipulator are very important to ensure precise end-
to-end movement.

6. Conclusions

3D Node is designed to fulfil generic ITER vision system require-
ments and can be easily integrated to any RHCS. The state-of-the-art
pose estimation algorithm is developed to ensure good accuracy and
robustness that can be achieved under dark and harsh conditions and
with fairly low resolution cameras. The demanding test cases demon-
strated its applicability in RH operations. The overall accuracy of the
current system is highly dependent on the precision of the manipulator.
It can be improved by robot calibration and fine tuning of the hand-eye
calibration.
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