
Kalle Aaltonen

TOPIC EVOLUTION IN SCIENTIFIC
PUBLICATIONS OVER TIME

A data pipeline

Faculty of Information Technology and Communication Sciences
Master’s thesis

October 2020

i

ABSTRACT

Kalle Aaltonen: Topic evolution in scientific publications over time
Master’s thesis
Tampere University
Computer Science
October 2020

This study aims to identify an optimal data pipeline for modelling topic evolution over time in
scientific publications of the Tampere universities.

To define a pipeline we divided it into stages of data acquisition, preprocessing, persisting and
topic modelling. We then compared alternative methods of executing the stages. The final pipeline
was composed of the best performing methods. As the data set we used the English-language
abstracts from the Master’s theses. The data source was the Trepo repository for scientific papers
of the Tampere universities.

Our results show the Dynamic Non-negative Matrix Factorization (DNMF) algorithm being sig-
nificantly faster to train and more versatile an implementation than the Dynamic Topic Models
(DTM) algorithm. The algorithms produce very similar latent topics, where technical fields of
study are dominantly present. This seems to reflect the distribution of fields of study in our cor-
pus. The evolution of individual terms inside topics follow the real world trends and technological
advancements to some extent.

The results for the persisting layer comparison reveal PostgreSQL to be better performing than
MongoDB on aggregate queries. Surprisingly this was also true for the queries targeted at the
data that is stored as JSON data type inside Postgres. The fact that MongoDB is a dedicated
document store and PostgreSQL is primarily a relational database management system makes
this finding particularly interesting. Data acquisition results show that the most efficient way to
ingest data from Trepo is through the provided OAI-PMH service. Our research does identify any
reason to utilize web scraping over it.

The thesis proposes a pipeline mainly from the efficiency perspective. The time-inefficiency of
training the topic models needs to be taken into account when implementing a system based on
the proposed data pipeline. Additionally the study highlights the possibility of using PostgreSQL
as a dedicated document store.

Keywords: topic model, topic evolution, NLP, machine learning, data, data pipeline, natural lan-
guage processing, database, NMF, DTM, LDA

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Kalle Aaltonen: Tieteellisten julkaisujen aiheiden kehitys ajan kuluessa
Pro gradu
Tampereen yliopisto
Tietojenkäsittelyoppi
Lokakuu 2020

Tutkielma määrittelee tietoputken Tampereen yliopistojen julkaisuista löytyvien piilevien aihei-
den kehityksen mallintamiseksi.

Tietoputken määrittelyä varten se jaettiin osiin, joita ovat tiedonhankinta, tiedon esikäsittely,
tiedon varastointi ja aihemallinnus. Tämän jälkeen osille valittiin vaihtoehtoisia tapoja suorittaa
toiminto ja verrattiin niitä keskenään. Lopullinen tietoputki muodostui yhdistämällä parhaiten toi-
mivat suoritustavat. Tietokokoelmana käytettiin Pro gradu -tutkimusten ja diplomitöiden englan-
ninkielisiä tiivistelmiä. Tietolähteenä toimi Tampereen yliopiston avoin julkaisuarkisto, Trepo.

Tutkielman tulokset kertovat, että ajan yli tapahtuvassa mallinnuksessa epänegatiivisen matrii-
sin faktorointiin perustuvan DNMF-algoritmin (engl. Dynamic Non-negative Matrix Factorization)
opettaminen on huomattavasti nopeampaa kuin LDA-menetelmään perustuvan DTM-algoritmin
(engl. Dynamic Topic Models). Tämän lisäksi ensin mainitun toteutus on monipuolisempi sisältäen
esimerkiksi aihemääräsuosittelun. Algoritmit tuottavat hyvin samankaltaisia piileviä aiheita, joissa
tekniset tutkimusalueet korostuvat. Tämä vaikuttaa myötäilevän jakaumaa eri tutkimusalueista pe-
räisin olevien töiden suhteen tietokokoelmassa. Yksittäisten termien kehityksessä aiheen sisällä
on havaittavissa jonkin verran korrelaatiota ulkomaailman tapahtumien ja teknologisen kehittymi-
sen kanssa.

Tietokantahallintajärjestelmien vertailun tulokset paljastavat, että PostgreSQL suoriutuu yh-
distämiskyselyistä paremmin kuin MongoDB. Yllättävästi näin on myös silloin, kun kyselyn koh-
teena oleva data on Postgresissa JSON-tietotyyppinä. MongoDB:n ollessa nimenomaan JSON-
esitysmuodolle tarkoitettu dokumenttitietokanta ja PostgreSQL:n ollessa relaatiotietokannan hal-
lintajärjestelmä, tämä löydös on erityisen kiinnostava. Tulostemme mukaan tiedon hankinta Tre-
posta tapahtuu tehokkaimmin OAI-PMH -palvelun kautta. Tutkimuksessa ei paljastu syitä käyttää
verkkosivun haravointia kyseisen palvelun sijaan.

Tutkielma esittää tietoputkea pääasiassa tehokkuuden näkökulmasta. Esitettyyn tietoputkeen
pohjautuvaa järjestelmää rakennettaessa aihemallien opettamisen hitaus on otettava huomioon.
Lisäksi tutkielma korostaa mahdollisuutta käyttää PostgreSQL-tietokantaa dokumenttitietokanta-
na.

Avainsanat: aihemalli, aihekehitys, NLP, koneoppiminen, data, dataputki, tietoputki, luonnollisen
kielen käsittely, tietokanta, NMF, DTM, LDA

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.

iii

CONTENTS

1 Introduction . 1

2 Theoretical background . 3

2.1 Collecting and storing data . 3
2.1.1 Data structure . 4
2.1.2 Database systems . 5

2.2 Knowledge discovery . 8
2.2.1 Natural Language Processing . 8
2.2.2 Topic modelling . 15

3 Research methodology and material . 21

3.1 Trepo repository - the data source . 21

3.2 Research environment . 24

3.3 Database comparison . 26
3.3.1 Setup . 27
3.3.2 Task definition . 28

3.4 Data acquisition and preprocessing . 30
3.4.1 Collecting metadata . 30
3.4.2 Acquiring full text content . 31
3.4.3 Applying NLP . 32

3.5 Topic modelling in practice . 35
3.5.1 Initial LDA and NMF modelling . 36
3.5.2 Modelling over time with LDA . 38
3.5.3 Modelling over time with NMF . 41

4 Results and analysis . 47

4.1 Comparison between PostgreSQL and MongoDB 47

4.2 Topic modelling over time . 49
4.2.1 Topic modelling with LDA and NMF from sklearn 49
4.2.2 Dynamic Topic Models . 52
4.2.3 Dynamic NMF . 56
4.2.4 Algorithm comparison . 64

4.3 Proposition for a pipeline . 69

5 Conclusions . 73

References . 77

Appendix A Database systems . 85

Appendix B Database comparison . 86

Appendix C Topic modelling . 91

iv

LIST OF FIGURES

2.1 A hierarchical view of the same data as on Table 2.1 [7]. 7
2.2 The derivation of NLP . 9
2.3 A parsed arithmetic statement. 10
2.4 A parsed natural language sentence presented as an arborescence [50]. . 11
2.5 A diagram of machine learning subsets [59]. 12
2.6 An illustration of an artificial neural network (below), and a detailed look

into one of the neurons (above). 13
2.7 A Euclidean plane representing a Dirichlet distribution of k = 3 with the

points θi defining the plane and satisfying Definition 2.8 [75]. 16

3.1 A bar chart showing the count of publications in Trepo by the year issued.
The year is on x-axis and the count on y-axis. 23

3.2 A chart showing the total number of publications, the number we managed
to download as PDF and the number we were able to extract text content
from. 32

3.3 Tables used for storing the metadata (documents) and the refined data
from abstracts (linguistic_features). 34

3.4 A bar chart visualizing the distribution of those Master’s thesis level publi-
cations that have an English abstract present in the Trepo metadata [100] . 39

3.5 Jupyter notebook demonstrating the preprocessing for the gensim DTM
wrapper. 41

3.6 Jupyter notebook showing the use of the gensim DTM wrapper. 42
3.7 Jupyter notebook showing some post-processing of gensim the DTM wrap-

per outputs. 43
3.8 Jupyter notebook showing the preprocessing for the DNMF algorithm. . . . 45
3.9 Jupyter notebook showing the post-processing step for the DNMF output. . 46

4.1 Results of the comparison between database systems. 48
4.2 DTM Topic 0 evolution. 54
4.3 DTM Topic 6 evolution. 55
4.4 DTM Topic 7 evolution. 55
4.5 DTM Topic 9 evolution. 56
4.6 DTM Topic 13 evolution. 56
4.7 DTM Topic 15 evolution. 57
4.8 DTM Topic 15 variance. 59
4.9 DNMF Topic 1 evolution. The words are plotted only for the years in which

they appear in the topic. 60

v

4.10 DNMF Topic 2 evolution. The words are plotted only for the years in which
they appear in the topic. 60

4.11 DNMF Topic 3 evolution. The words are plotted only for the years in which
they appear in the topic. 61

4.12 DNMF Topic 8 evolution. The words are plotted only for the years in which
they appear in the topic. 62

4.13 DNMF Topic 14 evolution. The words are plotted only for the years in which
they appear in the topic. 63

4.14 Comparison 1 between evolution of similar words. Above DTM Topic 17
and below DNMF Topic 10. For DNMF the words are plotted only for the
years in which they appear in the topic. 67

4.15 Comparison 2 between evolution of similar words. Above DTM Topic 7 and
below DNMF Topic 2. For DNMF the words are plotted only for the years
in which they appear in the topic. 68

4.16 The proposed data pipeline. 72

B.1 The model of application containerization adapted from Docker [26, 32]. . . 87
B.2 The schema used for mongoDB in testing with Suomi24 data. 88
B.3 The only table in the schema used for PostgreSQL in testing with Suomi24

data. 88

C.1 A jupyter notebook on topic modelling with sklearn LDA. 91
C.2 A jupyter notebook on topic modelling with sklearn NMF. 92

vi

LIST OF TABLES

2.1 A relational view of data related to each other with redundant data. [7]. . . . 6
2.2 Categorized NLP applications [46] . 9
2.3 A parsed natural language sentence. 11
2.4 A collection of text documents, vocabulary and a corresponding term fre-

quency matrix. 14

3.1 The counts of publications by type, and the counts by the written language
inside those types. 22

3.2 An example of the metadata available for a publication in the Trepo repository 25
3.3 The specs of the computing environment. 26
3.4 Some 3rd party Python libraries used in the research. 26
3.5 Some of the parameters for LDA and NMF models in scikit-learn. 38
3.6 A table demonstrating the bag-of-words representation of a corpus the

gensim wrapper for DTM ingests. The representation is a list of lists having
one row for each document. 40

4.1 20 topics inferred by the sklearn Latent Dirichlet Allocation model 49
4.2 20 topics inferred by the sklearn Non-negative Matrix Factorization model . 51
4.3 Terms describing the DTM model of 20 topics. Terms are chosen by using

the cumulative probability from all time slices by topic. 52
4.4 Terms describing the DNMF model of 20 topics. Terms are chosen from

the overall rank provided by the algorithm. 57
4.5 Combination of window topics that form a dynamic topic in a time window

representing the year 2015. 62
4.6 Top 3 suggestions for topic number by year given by the automatic recom-

mending feature. The recommendation for the number of dynamic topics
is at the end of the table. 64

4.7 Time consumption of training the DTM and DNMF models. Times for three
separate runs and their average. 65

vii

LIST OF SYMBOLS AND ABBREVIATIONS

ACID Atomicity, Consistency, Isolation and Durability

API Application Programming Interface

arborescence A directed rooted tree. A special case of a directed
acyclic graph, where there is exactly one node from
which all other nodes are reachable, each via exactly one
directed path

Bag-of-Words Bag of Words model has the text document presented as
a multiset of words (containing the multiplicity informa-
tion). The words can e.g. be in a lemmatized form

big data Big data usually includes data sets with sizes beyond
the ability of commonly used software tools to capture,
curate, manage, and process data within a tolerable
elapsed time

BLOBS Binary Large Objects

corpus This is a collection of text documents

CRF Conditional Random Fields

data Data (singular datum) are individual units of information.
A datum describes a single quality or quantity of some
object or phenomenon. In analytical processes, data are
represented by variables

DBMS A piece of software known as a database management
system that translates between the user’s request for
data and the physical data storage. [47]

deep learning Is a branch of Artificial Intelligence attempting to mimic
neurons in the (human) neocortex. The word deep
comes from having many layers of nonlinear feature
transformation [13]

DNMF Dynamic Non-negative Matrix Factorization

DTM Dynamic Topic Models

fork A fork is an independent project from a copied source
code. This is usual in open source development

viii

Frobenius norm A matrix norm of an m×n matrix A defined as the square
root of the sum of the absolute squares of its elements

∥A∥F =

⎛⎝ m∑︂
i=1

n∑︂
j=1

|aij |2
⎞⎠1/2

[109]

GSL The GNU Scientific Library

HDFS Hadoop Distributed File System

HMM Hidden Markov Model

horizontal scaling Scaling horizontally (out/in) means adding more nodes
to (or removing nodes from) a system, such as adding a
new computer to a distributed software application

intellectual property A category of property that includes intangible creations
of the human intellect

JSON JavaScript Object Notation is an open-standard file
format or data interchange format that uses human-
readable text to transmit data objects consisting of at-
tribute–value pairs and array data types (or any other se-
rializable value)

knowledge discovery Knowledge discovery from data (KDD) is a process of
extracting meaningful knowledge from data [45]

Kullback–Leibler divergence This is a measure of how one probability distribution is
different from a second, reference probability distribution

LDA Latent Dirichlet Allocation

lemma The base form of a word

machine learning This is the scientific study of algorithms and statistical
models that computer systems use to perform a specific
task without using explicit instructions, relying on pat-
terns and inference instead

metadata This means data about data. Data that describes other
data.

METS Metadata Encoding and Transmission Standard

natural language Language that has developed in the usual way as a
method of communicating between people, rather than
language that has been created, for example for comput-
ers [22]

NER Named Entity Recognition

ix

NLP Natural Language Processing

NLTK Natural Language Toolkit

NMF Non-negative Matrix Factorization

NoSQL A NoSQL (originally referring to ”non SQL” or ”non rela-
tional”) database provides a mechanism for storage and
retrieval of data that is modeled in means other than the
tabular relations used in relational databases

NTFS New Technology File System

OAI-DC Open Access Initiative Dublin Core

OAI-PMH The Open Archives Initiative Protocol for Metadata Har-
vesting

OCR Optical Character Recognition

open source Products that are released under an open source licence.
Everyone has permission to use the product and alter its
source code

PDF Portable Document Format

pdf2image A python module wrapping pdftoppm and pdftocairo to
convert PDF to a PIL Image object.

PIL Python Imaging Library

POS Part of Speech

Python-tesseract Python-tesseract is a Python wrapper for Google’s OCR
engine.

raster image Aka bitmap image, a dot matrix data structure represent-
ing a grid of pixels (points of color).

RDBMS Relational Database Management System

regularization This is the process of adding information in order to solve
an ill-posed problem or to prevent overfitting

relational database the place where data are stored, which contains not only
the data but also information about the relationships be-
tween those data [47]

REST Representational State Transfer

semi-structured data Semi-structured data has a structure but does not con-
form to the formal definition of structured data, that
is, tables with rows and columns. Examples of semi-
structured include tab and delimited text files, XML,
other markup languages such as HTML and XSL and
JavaScript Object Notation (JSON) [30]

x

SMiLE Statistical Machine Learning and Exploratory Data Anal-
ysis

SOAP Simple Object Access Protocol

storage device In a computing environment, devices designed for storing
data are termed storage devices or simply storage [93]

structured data This is data that has a predefined data model and fits
well into the tables of relational databases with rows and
columns

TC-W2V Topic Coherence via Word2Vec

TF Term Frequency

TF-IDF Term Frequency-Inverse Document Frequency

time slice Part of the whole time line with a beginning and an end.
A synonym to time window.

topic modelling ”Text mining by topic modelling aims to discover topics
that occur in a collection of documents in order to explore
hidden semantic structures in the body of the texts” [102]

treebank A treebank is a parsed text document collection, annotat-
ing sentence structure.

Trepo This is the open institutional repository of Tampere Uni-
versity at trepo.tuni.fi. It includes open access publica-
tions of Tampere University.

TUNI Tampere Universities

TUT Tampere University of Technology

unstructured data The term refers to data that does not have a predefined
data model and/or does not fit well into traditional rela-
tional database tables. Typically has no identifiable struc-
ture and may include bitmap images, text, audio, video,
and other data types [52]

URL Uniform Resource Locator

UTA University of Tampere

vector graphic This means computer graphics images defined in terms
of points, connected by curves and lines and forming
polygons and other shapes.

vocabulary The set of words of a corpus

web crawler A program that traverses web pages

xi

web scraping The practice of gathering data from web pages through
any means other than a program interacting with an API
[73]

word2vec Word2vec models are shallow neural networks used to
produce word embeddings. The words that share com-
mon context in the document collection are situated close
to each other in the word vector space

WWW World Wide Web

XML Extensible Markup Language (XML) is a markup lan-
guage that defines a set of rules for encoding documents
in a format that is both human-readable and machine-
readable

1

1 INTRODUCTION

There are hundreds of universities in Europe, some of which are very old such as the
universities of Cambridge and Paris, dating back to the 13th century [48]. Each university
produces multiple kinds of scientific papers, and as the years go by the research interests
evolve and publications pile up. Would it not be intriguing to know how the themes in
research have evolved?

Topic modelling is a way to capture meaning from a collection of documents. A topic
model captures the concepts a text corpus consists of. The documents can then be
organized into topics or categories using these concepts [40]. Latent Dirichlet Allocation
(LDA) is a popular topic modelling algorithm we will utilize in our research. Along with
it we use another approach based on Non-negative Matrix Factorization (NMF). Both of
these techniques produce static topics, but we also apply dynamic versions of them both,
to achieve topics that evolve over time.

By looking at a title of a book, article, report or thesis you get an understanding of the
theme it is about. By reading the abstract you get deeper understanding. But somewhere
inside the scientific texts there are themes harder to get a grasp of, themes that may come
as a surprise to you. By capturing those themes, and grouping documents according
to them, you may find connections between publications you had never believed being
connected. Those latent topics can give insight into the political or social environment of
the society at some particular time period. Or they can let you have a peek at the hot
technical advances during some geopolitical conflict that shaped history.

In 1962 Thomas Kuhn talks about paradigms [60], which he explained to be scientific
achievements recognized universally having two things in common. The two character-
istics defining a paradigm are, for one, it being unprecedented enough to attract people
away from competing scientific modes permanently. The second characteristic defining a
paradigm is it being open-ended enough to leave problems for its practitioners to resolve.
Kuhn introduced a model of scientific change, where science shifts from a paradigm to
another. When scientific imagination is transformed enough you eventually have to de-
scribe it as ”a transformation of the world within which scientific work was done”, as Kuhn
stated. These scientific revolutions come with new framing and new vocabularies. Topic
modelling over time is also about capturing the change with the help of the vocabulary
utilized and the terms emphasized. Maybe the scope in which it captures the change of
topics is smaller than Kuhn’s revolutions.

2

Some work in the field of text classifying and clustering include supervised algorithms
for classification in the 1990’s [53, 67], probabilistic latent semantic indexing by Thomas
Hofmann in 1999 [49] and a text classifier algorithm using both labeled and unlabeled
documents for learning by a Nigam et al. in 2000 [80]. In 2003 Blei et al. introduced
their famous generative model, the Latent Dirichlet Allocation (LDA) [18], which uses
unsupervised method to find the topics. In 2006 Blei et al. introduce an LDA model
that tracks topics over time [16], calling it dynamic topic models, and show it performs
better than two static models at predicting the topics of an unseen year in a time series
of articles. In 2012 an algorithm generalizing to topic models with correlations among
topics, based upon Non-negative Matrix Factorization (NMF), was introduced [5]. In 2017
Greene et al. introduced a dynamic topic model based on NMF.

The data source in our research is the Trepo repository. It consists of thousands of scien-
tific publications from Tampere Universities (TUNI) ever since the 1970’s. Our research
focus is on discovering an optimal pipeline leading from the original data in Trepo to mod-
elling the latent topics of the publications over time. The research goal is to find answers
to the following questions: What is the optimal way to extract data from Trepo? What
is the best approach for storing the raw and the preprocessed data for the purpose of
further consuming it in topic modelling? What is the most suitable algorithmic approach
to topic modelling our data set over time?

The data pipeline we seek to define could then be fully automated and scheduled to work
as a backbone for a Business Intelligence solution or for a micro service offering a REST
API for a web app.

A data pipeline involves dealing with many dimensions of computer science and thus re-
quire at least basic understanding of several concepts. The majority of those concepts are
covered in Section 2, Theoretical background. The setup for research and the qualities
and features of the data, the steps the pipeline consists of and key research questions are
discussed in Section 3, Research methodology and material. Then in Section 4, Results
and analysis, we talk about the outcomes of the practical experiments, and our findings
are introduced in detail. In Section 5, Conclusions, we sum up the research.

3

2 THEORETICAL BACKGROUND

Creating a pipeline for an apparatus of topic modeling over time involves many stages.
In this chapter we discuss some relevant concepts and background for making informed
choices in those stages. First we talk about collecting data in Section 2.1 Collecting and
storing data and about different data structures, which relate to enriching and refining
data, in Subsection 2.1.1 Data structure. Next we introduce some data storage devices in
Subsection 2.1.2 Database systems. Lastly we discuss the knowledge discovery pipeline
in Section 2.2 Knowledge discovery. This all is done from the perspective of introducing
a data pipeline for topic modelling purposes later on.

2.1 Collecting and storing data

Any data related work, study or research has some tasks in common. One most likely
obligatory task is the data collection, which is often done by using an electrical data
source such as a web service. Having the possibility to collect data through something
like Representational State Transfer (REST) Application Programming Interface (API) or
Simple Object Access Protocol (SOAP) API provided by the service consumed is nowa-
days very common. Both of the mentioned web communication protocols provide a stan-
dardized means to request and retrieve data from a service, making them reliable and
relatively stable and thus enable building applications that consume the services an easy
task. An example of such a service is the Twitter developer API which provides many
endpoints for retrieval of tweets and related metadata [101]. The data formats that these
APIs use to respond to the requests include JSON and XML. Twitter API for instance
responses with JSON formatted data. One method for collecting data is by utilizing the
Open Archives Initiative Protocol for Metadata Harvesting (OAI-PMH) framework. OAI-
PMH is a model consisting of data providers and service providers for offering repository
metadata in XML format over HTTP [62].

Sometimes, for some reason, the service consumed does not provide any above men-
tioned API. Reasons for a service not to provide an API can be e.g. lack of infrastructure
or technical ability to create an API and the data being considered valuable and not in-
tended to spread widely [73]. If the service does not provide an API, the data can be
acquired by scraping. In this scenario one must be especially careful to respect the intel-
lectual properties and copyright laws. One clear definition of web scraping is ”the practice
of gathering data through any means other than a program interacting with an API (or,

4

obviously, through a human using a web browser)” [73]. As the definition suggests web
scraping is a big field for study on its own.

2.1.1 Data structure

The best options for effectively storing data depend, among other things, on the struc-
ture the data holds. To create business value from unstructured data most likely requires
transforming it to semi-structured format first. Let’s now discuss the concepts of struc-
tured, semi-structured and unstructured data.

Structured data

Structured data is considered well refined and not easy to come by in most of the real
life data sources one stumbles upon. Structured data goes well with relational databases
such as MariaDB or Microsoft Azure SQL Database because of the predefined model
it follows. These SQL type data sources consisting of tables of columns and rows, and
holding structured data, are for example the easiest ones for business intelligence tools
(Tableau, Power BI) to further consume [30].

Semi-structured data

Semi-structured data on the other hand complicates or opens up the choice of the data
storage device. Earlier we talked about REST APIs and concluded that they can respond
with data in JSON or XML formats. Both of these can be considered semi-structured [30].
For this type of data having the schema contained within the data and being possible to
produce a representation of the data as some kind of graph-like or tree-like structure
[21] NoSQL usually work quite well as a data store. Many times one can dump the
semi-structured data to a NoSQL database as it is, especially in the case the data fol-
lows the JSON specification. To use a relational database with semi-structured data one
might need to apply at least some preprocessing before inserting it. This is because a
Relational Database Management System (RDBMS) strictly follows the predefined data
format but the semi-structured data does not necessarily do so.

Unstructured data

Unstructured data data can be defined as something with no metadata available at all [85]
or as having no identifiable structure and possibly including bitmap images, text, audio,
video, and other data types [52]. This type of data are best and cheapest stored as Binary
Large Objects (BLOBS) or as a file in a file system like New Technology File System
(NTFS) [37] and are the most difficult types of data for business intelligence tools to
consume [30]. The World Wide Web (WWW) is considered one example of unstructured
data [21]. A popular term big data, with diverse and contradicting definitions [106], can
for one be considered describing the huge amounts of unstructured data produced by

5

any sources, e.g. the WWW. Combining the need for cheap file storage and the need
for horizontal scaling to store the piling ”big data” makes businesses eye beyond the
conventional databases. Here comes to play the distributed file storage e.g. Hadoop
Distributed File System (HDFS) and cloud storage such as Azure storage offerings. Also
SQL and NoSQL databases can be distributed across a cluster of servers.

Two things are worth highlighting here:

1. The distinction between unstructured and semi-structured data is a line drawn in
water. By adding one piece of metadata to a set of unstructured data one can argue
it now is semi-structured. The distinction between semi-structured (or unstructured)
and structural data on the other hand can be defined unambiguously

2. Data can indeed be transformed from unstructured to semi-structured and even
from semi-structured to structural. This can be thought as refining the data. It
is possible to refine complitely unstructured data without having any metadata at-
tached by e.g. applying machine learning to it.

2.1.2 Database systems

”Data created by individuals or businesses must be stored so that it is easily accessible
for further processing” [93].

There exists a vast amount of different data storage devices: from USB flash drives and
hard drives in PCs with terabytes of storage space, to cloud environments on virtualized
data centers, these are nowadays available to businesses as well as to individual people.
In this subsection we introduce briefly a couple of selected means to effectively store data
on a server or a cluster of servers.

In general, a database of some kind has a good probability of topping the list for the
best option to store your business data, and to consume it from. Which database to use
depends at least on the structure, size and use case of your data set. One definition of a
database states that ”to be considered a database, the place where data are stored must
contain not only the data but also information about the relationships between those data”
[47]. Any data store or a software package which is not able to ”represent relationships
between data, much less use such relationships to retrieve data” should be called a data
store [47]. Next let’s go through a few database systems we are going to need later on.
We will also have a small example of transaction data to give insight into how the different
database systems handle equivalent data. The equivalent data means here data carrying
exactly the same information, but having slightly different representation.

Relational database

A relational database must be the most conventional type of a database. First mention
of the relational model was in the paper ”A Relational Model of Data for Large Shared
Data Banks” from 1970 by Dr. E.F.Codd at IBM [28]. In a relational database data are

6

presented as sets of tables consisting of columns and rows. Redundant data is used to
link records between the tables [7]. In Table 2.1, fairly simple tables are linked to each
other by columns of the same name. Each row on each table can be uniquely identified
by the primary key of the table. In this example the primary key of each table is the first
column on that table.

Customer Account

cust_id fname lname account_id product_cd cust_id balance

1 George Blake 103 CHK 1 $75.00

2 Sue Smith 104 SAV 1 $250.00

105 CHK 2 $783.64

106 MM 2 $500.00

107 LOC 2 $0

Product Transaction

product_cd name txn_id txn_type_cd account_id amount date

CHK Checking 978 DBT 103 $100.00 2004-01-22

SAV Savings 979 CDT 103 $25.00 2004-02-05

MM Money market 980 DBT 104 $250.00 2004-03-09

LOC Line of credit 981 DBT 105 $1000.00 2004-03-25

982 CDT 105 $138.50 2004-04-02

983 CDT 105 $77.86 2004-04-04

984 DBT 106 $500 2004-03-27

Table 2.1. A relational view of data related to each other with redundant data. [7].

Data are queried from the tables with a non-procedural programming language called
SQL. Usually for clean structured data a relational database is a very good option for a
data store / source to use. When the data grows to a big data size the limits of horizontal
scaling capabilities of relational databases complicate things. Today there are solutions
for this problem. For instance PostgreSQL can be distributed by using an extension called
Citus, which provides scaling capabilities over a cluster of servers [27, 55]. Postgres is
open source and there exists forks from it to enable its use in cloud environment. Even
inserting dirty semi-structured data to a relational database is not a big problem with
newer versions of the popular RDBMS such as MariaDB or Postgres, since they have
column types for JSON and also database functions to make queries to data inside these
columns [71, 86].

NoSQL database

NoSQL database is an umbrella term used in this study for a database other than a re-
lational one. A NoSQL database is a DBMS for data stored otherwise than strictly as
described previously when discussing the RDBMS (relational databases). The NoSQL
includes a variety of approaches to modeling data. These approaches include key-value
APIs, document model, column-family, columnar model, graph and polygot databases

7

and also cloud based databases that are difficult to classify [84, 110]. Often the NoSQL
databases are more flexible than relational ones, with unrestricting, dynamic schemas
and good horizontal scaling capabilities. Relational databases provide Atomicity, Consis-
tency, Isolation and Durability (ACID) properties but most of the NoSQL databases fall
short doing this [110]. The account data mentioned earlier and shown in Table 2.1 can
be presented in a 3 level hierarchy of Customers, Accounts and Transactions as show in
Figure 2.1.

Checking

George	Black

Savings Checking

Sue	Smith

MoneyMkt Line	of	credit

Debit	of	100.00$
on	2004-01-22

Customers

Accounts

Transactions

Debit	of	250.00$
on	2004-03-09

Credit	of	25.00$
on	2004-02-05

Credit	of	77.86$
on	2004-04-04

Debit	of	1000.00$
on	2004-03-25

Debit	of	500.00$
on	2004-03-27

Credit	of	138.50$
on	2004-04-02

Figure 2.1. A hierarchical view of the same data as on Table 2.1 [7].

This can be interpreted as follows:

• 1st level is a list of customers

• 2nd level is a list of accounts nested in each individual customer

• 3rd level is a list of transactions found withing each account

In a database using the document model this structure can be presented in practice in
JSON format or in XML format. This sort document format in JSON notation is used
in MongoDB [74]. An example with the same transaction data we have already seen in
Table 2.1 and in Figure 2.1 presented now in JSON format is visible in Listing 4. The
listing is found in Appendix A.

On database popularity

When looking at the popularity of all Database Management Systems in use, the top 3 of
February 2020 is clearly distinguishable from others. According to [29] Oracle, MySQL
and Microsoft SQL Server are the most popular based on a method of calculating scores
that includes number of results in search engine queries, Google trends, number of job
offerings etc. Following the top 3 are PostgreSQL and also MongoDB as the leader of the
NoSQL databases. Looking at another review, the same 3 software products are topping
the list of the DBMSs in use in medium to large businesses, tailed by IBM DB2, Post-
greSQL and MongoDB [47]. In the category of document databases MongoDB seems to
have established a solid position. As an example of this is the fact that Microsoft’s Azure

8

based multi model Cosmos DB implements a MongoDB API among a few others [6].

2.2 Knowledge discovery

After the data is obtained and stored we apply the knowledge discovery process to it to
extract meaningful knowledge and value. In general the process consists of the following
tasks [45] of preprocessing (steps 1-4), data mining (steps 5-6) and post-processing (step
7).

1. Data cleaning to remove noise and inconsistent data

2. Data integration where multiple data sources may be combined

3. Data selection where data relevant to the analysis task are retrieved from the
database

4. Data transformation where data are transformed and consolidated into forms ap-
propriate for mining by performing summary or aggregation operations

5. Data mining an essential process where intelligent methods are applied to extract
data patterns

6. Pattern evaluation to identify the truly interesting patterns representing knowledge
based on interestingness measures

7. Knowledge presentation where visualization and knowledge representation tech-
niques are used to present mined knowledge to users

Next we introduce some pre-processing, data mining and post-processing tasks relevant
to this thesis. Subsection 2.2.1 Natural Language Processing covers what we talk about
steps 1 through 4 and Subsection 2.2.2 Topic modelling covers the steps 5-6.

2.2.1 Natural Language Processing

”The meaning of a word is its use in the language.” [108]

Natural language processing (NLP) is a wide and multidisciplinary field of study on its
own. It is a discipline consisting of linguistics, computer science (software engineering),
and machine learning [97] as seen in Figure 2.2.

The process of NLP ”generally involves translating natural language into data (numbers)
that a computer can use to learn about the world” [46]. While NLP could as well be a data
mining task, in the context of this paper we consider it as preprocessing and preparation
to our data mining. Practical applications of NLP can be found anywhere from news to
law and finance as seen in Table 2.2. These applications include summarization and
knowledge extraction in text mining, which is what this study leans towards. Without
trying to cover the whole field of study let us focus on a couple of concepts important to
us.

9

Search Web Documents Autocomplete

Editing Spelling Grammar Style

Dialog Chatbot Assistant Scheduling

Writing Index Concordance Table of contents

Email Spam filter Classification Prioritization

Text mining Summarization Knowledge extraction Medical diagnoses

Law Legal inference Precedent search Subpoena classification

News Event detection Fact checking Headline composition

Attribution Plagiarism detection Literary forensics Style coaching

Sentiment analysis Community morale monitoring Product review triage Customer care

Behavior prediction Finance Election forecasting Marketing

Creative writing Movie scripts Poetry Song lyrics

Table 2.2. Categorized NLP applications [46]

Lemmatization and Stemming

For the words ”goes”, ”going”, ”went”, and ”gone” there exists one common base form
”go”, which also represents all the former in a dictionary. This form representing a set
of words is called word’s lemma [22] in morphology. Lemmatization (or lemmatisation) is
the process of finding or identifying the lemmas from inflected words.

computer	
science

artificial	
intelligence

linguistics

NLP

Figure 2.2. The derivation of
NLP

Lemmatization should not be confused with stemming.
Stemming is removing suffixes, or basically chopping off
the ends, of the words to combine them under a com-
mon stem [46]. This is done without knowing of the
words context. Whereas ”lemmatization usually refers
to doing things properly with the use of a vocabulary and
morphological analysis of words ... If confronted with
the token saw, stemming might return just s, whereas
lemmatization would attempt to return either see or saw
depending on whether the use of the token was as a
verb or a noun” [70].

Using lemmatization or stemming for a NLP will reduce
the vocabulary size but increase ambiguity [46]. At least
for an information retrieval task in english language it might be better not to use either
normalization method [70]. On the other hand in the Finnish language there are results
showing lemmatization is a better method than stemming, when clustering documents for
information retrieval [58].

POS tagging, NER tagging and Dependency parsing

Part of Speech (POS) tagging in NLP signifies resolving to which part of speech each
word in a text document belongs to. This can be useful when wanting to reduce dimen-
sions of a large corpus by dropping some parts of speech, or wanting to get only nouns

10

from an essay to get an idea of its topic.

There are also more complex needs. Let’s say we want to translate the sentence ”I want
to teach a fly to fly” to Finnish. In Finnish ”to fly” is ”lentää” and ”a fly” is ”kärpänen”,
two complitely different words there. The translated sentence would be ”Haluan opettaa
kärpäsen lentämään”. So for a machine to succesfully do this it is beneficial to find out
the parts of speech for each word first. Some earlier probabilistic models to predict the
POS tags used Hidden Markov Model (HMM) [61]. Other popular methods in use from
the 1990’s were rule-based algorithms [20]. State-of-the-art results have been reached
using neural networks [95].

Other similar kind of a process is Named Entity Recognition (NER). Named entities are
the names of particular things or classes and numeric expressions [92] such as Finland,
Teemu Pukki and Tampere University. But many a such proper noun or noun phrase can
refer to the same named entity. For example John Fitzgerald Kennedy, Jack Kennedy,
President Kennedy, and JFK can all be referring to the same entity. In an NLP pipeline
POS tagging usually precedes NER tagging and the results of the former can be used to
predict the latter [95].

As was the case with POS tagging, statistical modeling is a good approach for NER as
well. Some popular approaches are Conditional Random Fields (CRF) and again neural
networks [95]. Also rule based attempts exist but statistical methods tend to give better
results [95].

8 3 6 2

+ -

*

Figure 2.3. A parsed arith-
metic statement.

Dependency parsing means breaking up a sentence
or any other statement with a formal grammar to un-
derstand its structure [95]. The statement can be an
arithmetic one such as ((8 + 3) ∗ (6− 2)).

This could be parsed as a binary tree according to the
arithmetic rules - having the numbers as leaves and op-
erations as inner nodes. This is also visible in Figure
2.3.

Another example would be a natural language sentence
such as ”Autonomous cars shift insurance liability to-
ward manufacturers”. The dependencies in this sentence are parsed by the spaCy library
[50] and the dependencies shown in detail in Table 2.3. The parsed graph is a directed
rooted tree having the verb shift as the root. All other words are dependent of it in some
manner: cars is a nominal subject, liability is a nominal object etc. Looking at the ta-
ble, the values of the DEP column are opened up using Cambridge English Grammar
[23], and shown in the DEP EXPLANATION column. These same dependencies are also
visualized in Figure 2.4 making it easier to understand the structure.

11

TEXT DEP DEP EXPLANATION HEAD TEXT HEAD POS CHILDREN

Autonomous amod adjectively modifying cars NOUN

cars nsubj nominal subject shift VERB Autonomous

shift ROOT root verb of the sentence shift VERB cars, liability, toward

insurance compound a noun acting as a modifier liability NOUN

liability dobj direct nominal object shift VERB insurance

toward prep preposition shift NOUN manufacturers

manufacturers pobj object of the preposition toward ADP

Table 2.3. A parsed natural language sentence.

Autonomous
ADJ

cars
NOUN

shift
VERB

insurance
NOUN

liability
NOUN

toward
ADP

manufacturers
NOUN

amod nsubj

prep

dobj

compound pobj

Figure 2.4. A parsed natural language sentence presented as an arborescence [50].

Deep learning for NLP

”One cannot guess how a word functions. One has to look at its use, and learn from that.”
[108]

The aforementioned tasks of lemmatization, POS and NER tagging and dependency
parsing can be performed using deep learning. For example the popular spaCy library
uses deep learning for performing these tasks [50]. We will be get to know spaCy later
on but for now let’s focus a bit on the concepts behind it. Deep learning is one subset
of machine learning. It can be seen as a subset of representation learning as shown
in Figure 2.5. This is not the only way to subset machine learning, it can also be done
by learning method (e.g. unsupervised vs. supervised) or by use (e.g. classification vs.
regression), which the attached diagram fails to capture.

Representation learning is about learning such representations of the data that can make
it easier to extract meaningful information when building classifiers and other predictive
models. In the context of probabilistic models, which neural network also is, a good
representation captures the underlying distribution of the latent explanatory factors for
the observed input. A good representation can be then fed as an input to a predictor [8].
It can even be an unsupervised model such as a topic model of a news article collection.
In that case a good representation could be a useful reduction of dimensionality from the
original text documents, comprising of the noun phrases only.

One definition for deep learning is it being layering of simple algorithms, artificial neurons,
into networks several layers deep [59] as shown in Figure 2.6 of a simple sparse (not fully

12

C

D
E

BC

BD

Machine	learning

''Traditional''
machine	learning

linear	/	logistic
regression	

decision	trees	/
random	forests

support	vector
machines

Representation	learning

Artificial	Neural
Networks	/	Deep	learning

Figure 2.5. A diagram of machine learning subsets [59].

connected) neural network. In the figure there is an input layer of 3 neurons, two hidden
layers of 4 neurons and an output layer having two neurons.

A neuron is basically a logistic regression model and the neural network is a stack of
them [51]. The input of a single neuron is a numerical vector x and a weight vector
w. In the case of deep learning for NLP the input vector x in the input layer is a vector
representation of a text document. The two vectors are then summed up. The summation
can be written as

z =
n∑︂

i=1

xiwi + b (2.1)

where x = (x1, x2, ..., xn) is a vector of real values, w = (w1, w2, ..., wn) is a weight vector
and b is a constant named bias. Another way to write this operation is the dot product of
the input vectors added to the bias

z = wTx+ b (2.2)

The neuron also consists of an activation function fa, which can be for example hyperbolic
tangent (tanh), logarithmic sigmoid (logsig) or a rectified linear unit (ReLu) function. For
example a ReLu function can be written as

f(x) =

⎧⎨⎩0, x ≤ 0

x, otherwise
(2.3)

The summation z is fed to the activation function to produce a scalar y.

fa(z) = y (2.4)

13

�2

input
layer

output
layer

hidden	layers

Σ

�1

�2

�3 �3

�

�
�

�

�1

�2

�3

�

�

�1

inputs output

weights bias

sum

activation
function

Figure 2.6. An illustration of an artificial neural network (below), and a detailed look into
one of the neurons (above).

The y will then be sent to the next layer of neurons (as xi ∈ x) as a part of their input
vector. If the said scalar y has a value of 0, it will not have any contribution in the next
layer, meaning the neuron did not activate. The inner functions of a single neuron are
also visible in Figure 2.6.

In the training phase of a neural network the purpose is to minimize the loss function
(cost function), the error between the actual known value and the prediction of the model.
The only thing that is changed between the training iterations are the weights. A loss
function is used to calculate the error between model predictions and actual values af-
ter the forward pass. Then during the backward pass the partial derivatives of the loss
function are calculated with respect to all weights in the net. Then the gradients are used
to adjust the weights for the next forward pass. An epoch is one training ”cycle” during
which all training samples are shown to the net. One epoch may consist of many forward
and backward passes. Training a neural network typically takes thousands of epochs [19,
46, 51, 107].

Deep learning methods ”have dramatically improved the state-of-the-art in speech recog-
nition, visual object recognition, object detection and many other domains such as drug
discovery and genomics” [63]. What is the connection of our research to deep learn-

14

TERMS
DOCUMENTS and document first is one second the third this

This is the first document. 0 1 1 1 0 0 1 0 1

This document is the second document. 0 2 0 1 0 1 1 0 1

And this is the third one. 1 0 0 1 1 0 1 1 1

Is this the first document? 0 1 1 1 0 0 1 0 1

Table 2.4. A collection of text documents, vocabulary and a corresponding term fre-
quency matrix.

ing then? Well, also NLP has benefited from it as it’s efficiently used by many notable
projects such as spaCy [50], Stanford NLP [90] and Turku NLP [57]. These NLP libraries
implement fully neural pipelines for lemmatization, POS tagging, dependency parsing,
NER tagging, language detection and so forth.

Vectorizing with TF and TF-IDF

Vectorizing in NLP signifies transforming text to a numerical vector representation [83].
In our study we focus on Term Frequency (TF) and Term Frequency-Inverse Document
Frequency (TF-IDF) presentations.

From a document collection we can form a vocabulary, a set of all the words in the cor-
pus. Using this vocabulary we can then build our matrices. If we have already done
lemmatization and dependency parsing, we can choose to use for example only lemma-
tized nouns to reduce dimensionality. Or we can choose to use the raw text as we do in
the simple examples shown here.

A document-term matrix, also TF matrix, is the simplest word matrix. The rows of a
document-term matrix represent the documents in the collection and the columns rep-
resent the terms (words) in the dictionary. Each cell value in the matrix represents the
frequency of that word in that document. If some word doesn’t exist in a document, the
value for that word is a 0. A document-term matrix can be formed from a corpus of four
documents [This is the first document.; This document is the second document.; And this
is the third one.; Is this the first document?] so that first we produce a vocabulary: [’and’,
’document’, ’first’, ’is’, ’one’, ’second’, ’the’, ’third’, ’this’]. By applying one-hot encoding
to our vocabulary we then get a vector representations for each document, and stacking
the vectors gives us a term frequency matrix as shown on Table 2.4.

Term frequency tf ij for a given term i in the document j having a frequency fij in a corpus
of N documents, is calculated by dividing fij by the maximum number of occurrences of
any word in the said document [66]

tf ij =
fij

maxkfkj
(2.5)

15

Now a term-by-document matrix, also Term Frequency-Inverse Document Frequency
(TF-IDF) matrix, can be calculated from the document-term matrix. TF-IDF means term
frequency times inverse document frequency and measures how concentrated the occur-
rences of a given word are [66]. Inverse document frequency measures the importance
of a term [82] and can be computed for the term i as

idf i = log
N

ni
(2.6)

where N was the number of documents in the corpus and ni the number of documents
in which the given term i occurs in. Then from here it is defined that

tfidf ij = tf ij × idf i (2.7)

is the TF-IDF for term i in document j [66].

2.2.2 Topic modelling

”Text mining by topic modelling aims to discover topics that occur in a collection of docu-
ments in order to explore hidden semantic structures in the body of the texts” [102].

We have now reached the data mining part of the knowledge discovery pipeline. In this
subsection we talk about some approaches to topic modelling which can be defined as
stated in the quote above. By applying topic modelling to a collection of documents, we
can find out the topics, or themes, the documents are about. As an example a collection,
or a corpus, of articles from a newspaper may consist of topics of politics, sports, tech
etc. We don’t know beforehand what these topics are and they are unnamed and implicit
[40]. To make a conclusion a discovered topic is, let’s say, about sports, we will have
to make a subjective judgement. Topic modelling is an unsupervised method and an
good tool for exploratory data analysis and information retrieval. You can also utilize it
for clustering, dimensionality reduction, historical analysis and tracking changes in topics
(e.g. in a newspaper) over a period of time [40].

LDA

Arguably the most popular method in this field is a hierarchical Bayesian model called
Latent Dirichlet Allocation (LDA). The intuition behind LDA is that documents display mul-
tiple topics [15]. LDA can be used on any collection with discrete data [18], meaning a
collection that consists of things made up of parts [40]. Examples of these are athletes
and their skills and text documents and their words. LDA uses statistical analysis based
on the multivariate Dirichlet distribution to infer topics. In the context of natural language it
assumes the topics to be probability distributions over a fixed vocabulary [15]. Documents
in their part are then distributions over topics. Dirichlet distribution is a generalization of

16

the beta distribution. It has support Sk over the k − 1 probability simplex defined as

Sk = {θ : 0 ≤ θi ≤ 1,
k∑︂

i=1

θi = 1} (2.8)

where θ is a k-dimensional Dirichlet random variable [18, 75]. This is illustrated in Figure
2.7 with a 3-dimensional distribution represented as a triangular (2-simplex) surface. If
the simplex is a topic simplex, then each vertex θi represents a topic and the distance of
a vertex from the origin is the probability of the topic it represents.

�1

�3

�2

Figure 2.7. A Euclidean plane representing a Dirichlet distribution of k = 3 with the points
θi defining the plane and satisfying Definition 2.8 [75].

LDA was first described by Blei et al. in 2003 [18]. In the paper they state that TF-
IDF has shortcomings and that LDA is based on the ”bag-of-words” (TF) assumption
where the order of words in a document does not matter. Also they state their methods
can be applied to larger structural units than just separate words, such as n-grams and
paragraphs. On the other hand in a later paper Blei uses TF-IDF for some tasks with LDA
[17]. These tasks include visualization of topics and pruning the vocabulary.

NMF

Another approach to topic modelling is to use linear algebra and Non-negative Matrix
Factorization (NMF) [64] to reduce dimensionality of non-negative matrices [43]. There
are numerous fields of application for NMF including astronomy [10, 14], text mining [4,
11, 79], population genetics [38], bioinformatics [31] and more [103].

Given a non-negative matrix A ∈ Rn×m the objective of NMF is to find an approximate of
A by decomposing it to two non-negative matrices W ∈ Rn×k and H ∈ Rk×m and k being

17

a (predefined) positive integer k < min(m,n)). This is done by optimizing the distance
d between A and the matrix product WH. The most widely used distance function is
the squared Frobenius norm. In the case of the distance function being the squared
Frobenius norm, the non-negative matrix factorization problem of finding W and H that
minimize dFro can be calculated from

dFro(A,WH) =
1

2
||A−WH||2Fro =

1

2

∑︂
i,j

(Aij − (WH)ij)
2 (2.9)

[12, 64, 83]. Also other distance functions such as Kullback–Leibler divergence can be
used and regularization added to the loss function [83].

In the context of topic modelling, the document-term and term-by-document matrices
both consist of non-negative values only, and hence NMF can be applied to them. After
finding the minimum for d in 2.9, the matrices W and H hold information for the k topics.
Matrix H ∈ Rk×m comprises of k rows representing the topics and n columns where each
column represents a word (term) in the vocabulary. Each cell value then represents the
importance of that word in that topic: the higher the cell value is the higher is the word’s
importance to the said topic. Matrix W ∈ Rn×k has information on n rows representing
documents and k columns representing topics. Each cell value represents the importance
of a document to a topic [43].

Topic modelling over time

There are different ways of modelling topics over time. Topic models are designed to be
used with categorical data [16]. This is the case with decomposition using LDA or NMF.
These next two ways described to model topics over time use different perspective, but
both consider data to be completely discrete. In Algorithm 1 the result is one topic model
M . The topic distributions of M are then studied separately in each time slice t of length
l (e.g. one year).

Algorithm 1: model first, divide last -approach to topic modelling over time
Result: a topic model M and subsets of documents

1. take a collection of documents and train a topic model over it;
2. order the documents in time;
3. choose a time span l;
4. divide the ordered set of documents into t discrete subsets of length l

each;

This approach was taken for example by Griffiths et al. [44]. In this approach the topic
space stays the same over time.

In Algorithm 2 the result is a set of topic models {M1, ...,Mt} ordered in time and each
modelled over the documents coming from a separate t time slices of equal length l.

This sort of approach was taken for example by Wang et al. [105]. Here the topics are
evolving, completely different topics may emerge and old topics vanish. This approach

18

Algorithm 2: divide first, model last -approach to topic modelling over time
Result: a set of topic models {M1, ...,Mt}

1. take a collection of documents and order the documents in time;
2. choose a time span l;
3. divide the ordered set of documents into discrete subsets by the chosen

time span;
4. train a separate topic model over each t time slices;

has a difficulty to align the topics from different subsets [104].

Both of these approaches use static topic models. In such a (probabilistic) model each
document can be considered to be drawn from the following process [16]

1. Choose θ from a distribution over the K − 1 -simplex.

2. For each word

• Choose a Z ∼ Mult(θ)

• Choose a W ∼ (βz)

where θ is K dimensional topic proportions, z is latent topic, w is an observed word and
βz is a distribution of words generated from topic z. Especially for the process described
above with Algorithm 1 this is problematic because all documents are drawn from the
same set of topics. In reality, in many corpora, the order of the documents reflect evolv-
ing topics [16]. The process described with Algorithm 2 avoids the said problem better,
because it generates separate topics for every time slice.

Dynamic Topic Models derived by LDA

Blei et al. propose [16] an approach to topic modelling over time called Dynamic Topic
Model, where they have data divided in time slices just as in the two approaches pre-
sented above eventually have. They also model the subset of documents of each slice
with a K -component topic model, similarly as happened with the process described with
Algorithm 2. But their approach also has a feature where the topics associated with slice
t evolve from the topics associated with slice t − 1 . Blei et al. use LDA as the basis for
their dynamic model.

This feature is achieved by Blei et al. [16] by chaining natural parameters of topics in a
state space model. The model they present for this is

βt,k|βt−1,k ∼ N (βt−1,k, σ
2I) (2.10)

where βt,k stands for the word distribution of topic k ∈ {1, ...,K} in time slice t.

In their work Blei et al. [16] also capture the sequential structure between consecutive
time slices with the model

αt|αt−1 ∼ N (αt−1, δ
2I) (2.11)

19

where αt is the per-document topic distribution at time slice t.

Then the distributions over document topic proportions, and topic word proportions are
replaced with a dynamic model [16]

1. Draw topics βt,k|βt−1,k ∼ N (βt−1,k, σ
2I)

2. Draw αt|αt−1 ∼ N (αt−1, δ
2I)

3. For each document

• Draw η ∼ N (αt, a
2I)

• For each word

(a) Draw Zt,d,n ∼ Mult(π(η))

(b) Draw Wt,d,n ∼ Mult(π(βt,z))

Here the π is a softmax function, η is the the topic distribution, wt,d,n is the observed word,
zt,d,n is the topic for the word n in the document d in time slice t.

Dynamic topic modelling with NMF

A solution to the problem of modelling over time is proposed by Greene and Cross. It
uses a two-layer dynamic topic modelling method based on NMF [43]. We will call this
approach Dynamic NMF (DNMF).

In the layer one Greene and Cross divide the data to time slices of a fixed and equal
length. Before applying NMF they use Topic Coherence via Word2Vec (TC-W2V) by
O’callaghan et al. [81] to select the number of topics to include in the model. TC-W2V
is a method to evaluate how related a set of top terms describing a topic is. It uses
word2vec by Mikolov et al. [72] to achieve this. The TC-W2V coherence score for a topic
is determined by the mean pairwise cosine similarity of two word vectors

tcv2w(zk) =
1(︁
N
2

)︁ N∑︂
j=2

j−1∑︂
i=1

similarity(wvj , wvi) (2.12)

where zk is one of the K topics (k ∈ {1, ...,K}), N is the number of the top terms and
similarity is the cosine similarity [81]. Then the coherence of the whole model is aggre-
gated as the mean of the coherence scores of the individual topics

tcv2w(Z) =
1

K

K∑︂
k=1

similarity(zk) (2.13)

where Z denotes the entire model of K topics [81] [43]. The NMF process is then applied
individually to all time slices and it produces a set of time-slice-topic-models

{︁
M1, ...,Mt

}︁
where t is the number of time slices. In the second layer Greene and Cross [43] create
a new representation of the document collection. They view the rows of each time-slice-
matrix H and call them topic documents. They assume that topics coming from different

20

time slices will have similar topic documents, if they share a common theme. They then
construct a topic-term matrix A′ as described in Algorithm 3.

Algorithm 3: Constructing a topic-term matrix for a DNMF model
Result: topic-term matrix A′

start with an empty topic-term matrix A′;
for time-slice-topic-model Mi do

for time-slice-topic zk within Mi do
1. select the N top-ranked terms from the

corresponding row of the NMF factor Hi;
2. set all weights for all other terms in that vector to 0;
3. add the vector as a new row in A′;

end
end
remove any columns with only zero values from A′;

After constructing A′ Greene and Cross [43] decompose it to two new matrices W ′ and
H ′ by applying NMF for a second time. TC-W2V is also used again to find out the suitable
number K ′ of dynamic topics. The factors of the approximate decomposition A′ ≈ W ′H ′

can be interpreted as:

1. the highest scoring terms in each row of H ′ describe the dynamic topics

2. the column values of W ′ show how well each time-slice-topic relates to each dy-
namic topic.

Then Greene and Cross [43] track the evolution of the topics as follows:

• Each time-slice-topic is assigned to the dynamic topic for which it has the most
weight according to the row values of the factor W ′

• Temporal frequency of a dynamic topic is defined as the count of distinct time slices
in which the dynamic topic appears

• The set of all documents related to a given dynamic topic across the whole collec-
tion of documents is corresponding to the union of the documents assigned to the
individual time-slice-topics.

• Time-slice-topics are for their part assigned to a dynamic topic.

The output of the two-layer NMF model of Greene and Cross [43] is:

1. A set of time-slice-topic-models, each containing K time-slice-topics. These are
described using their N highest scoring terms (words) and the set of all associated
documents

2. A set of K ′ dynamic topics. Each having a set of time-slice-topics associated to it.
These dynamic topics are described using their N highest scoring terms (words)
and the set of all associated documents.

21

3 RESEARCH METHODOLOGY AND MATERIAL

A data pipeline for an apparatus of topic modelling over time involves quite a few stages.
It begins from data acquisition and ends in presenting the results in an suitable manner.
In this chapter we walk through most of those stages and talk about the means to per-
form each task at hand in an adequate way. However we are not designing a complete
automated tool or software, so a requirements analysis for that is not conducted. The
research is quantitative by nature as we measure speed of execution. On the other hand
the research is qualitative as we ponder upon the goodness of the results of different
topic modelling algorithms in the context of our use case. The main research question is:

What is the optimal pipeline leading from the original data in the Trepo repository to
modelling topics over time?

Our pipeline can be divided to natural steps of extracting data from Trepo, processing
data, storing data and eventually topic modelling and visualizing results. We will compare
selected methods for performing each step as we build the pipeline in practice. Thus our
main question can be divided into the following questions

1. What is the best data storing solution for the data set from the perspective of further
consumption?

2. What is the optimal way to extract data from Trepo?

3. What is the most suitable algorithmic approach to topic modelling our data set over
time?

We will follow the knowledge discovery process described earlier in Section 2.2. In the
following subsections we define the process in practice for our pipeline and take a closer
look at the research questions.

3.1 Trepo repository - the data source

As a data source for this study we use the open institutional repository of Tampere Uni-
versities (TUNI) called Trepo [100]. This repository includes open access material: self-
archived articles and publications of the TUNI staff, Master’s and Bachelor’s theses of the
University and even books of Tampere University Press are published to Trepo’s open ac-
cess books collection. The total amount of publications in Trepo is 43401 at the moment
of writing this. Most of them are written in Finnish (21513 pieces) or English (12610).
Other languages having at least 10 publications written in the language are Swedish

22

(254), German (233), Russian (143) and French (76). These amounts are acquired by
using the search service provided by Trepo itself.

The number of publications by the type of the publication is shown in Table 3.1. The col-
umn named Type tells the publication type, Count gives the total number of publications
of the given type and % of Total is the percentage from total amount of 43401 publications
in Trepo. Then the columns Language and Lang Count show the counts by writing lan-
guage amongst the given type. The publications with limited access are discarded from
the table. Also languages having less than 10 publications written in them in a publication
type are discarded.

Type Count % of Total Language Lang Count

Master’s theses 30974 71.4 Finnish 17027

English 4829

Swedish 219

German 213

Russian 136

French 65

Articles 5378 12.4 English 2976

Finnish 908

Doctoral dissertations 3930 9.1 English 2976

Finnish 908

Monographs and series 1057 2.4 Finnish 644

English 404

Bachelor’s theses 843 1.9 Finnish 768

English 81

Open Access books 235 0.5 Finnish 196

English 34

Table 3.1. The counts of publications by type, and the counts by the written language
inside those types.

Navigating the Trepo web site is easy for a human user. It includes a search service
providing a keyword search functionality. Additionally you can browse the site by author’s
name, publication title, faculty name, programme name, subject, date issued and collec-
tion type. The user can refine her search filtering with a faculty name from a list of faculty
names or with a programme name from another list shown to her. Also the user can filter
with point-and-click style from a list of writing languages or from a list of publication years.
Since we are planning on topic modelling over time we are interested in the publication
years. There are 25817 (59.5% of total) publications in Trepo issued between the years
2010-2020 and 12793 (29.5%) pieces between the years 2000-2009. From the 1990’s
there are 4742 (10.9%) publications, from the 1980’s 47 (0.1%) and from the 1970’s the

23

number is only 12 (0.0%) publications. The count of publications issued by year between
years 1990-2020 is visible in Figure 3.1. As you can see the count of publications per
year has been increasing almost constantly with only a couple of clearer exceptions most
notably in 2005 and 2008.

Figure 3.1. A bar chart showing the count of publications in Trepo by the year issued.
The year is on x-axis and the count on y-axis.

Looking at the metadata present in Trepo repository, there are approximately 15-25 fields
describing each scientific paper. The metadata fields present for a publication are not
constant throughout the repository. Some interesting metadata include: date issued, title,
written language, abstract text, abstract text language, keywords, information on copy-
rights, organization name, faculty name, programme name, publication type, information
on the availability of the full paper in Trepo. Also if the full content is available as a PDF
file there is a download link present. There are also some recently added metadata fields
that are present only for the publications issued in 2019 or 2020. Most notable of them is
the permission information regarding mining. This is an important factor with the newer
publications.

It is possible for a metadata field to be present multiple times for the same publication.
For example an abstract field to be present two times with the exact same name: one
holding the English abstract and the other the Finnish abstract. Both of the fields are
called ”dc.description.abstract”. In these cases there often is additional information on
the language available nearby. If the abstract field is present only once, it often lacks the
language information completely. Then at times the abstract field is not present at all.
This kind of instability has to be considered when processing the data.

24

There exists a data provider utilizing the The Open Archives Initiative Protocol for Meta-
data Harvesting (OAI-PMH) metadata harvesting framework for Trepo repository - an API
to collect metadata on the publications [98]. The metadata formats provided include 12
schemas of which two comply with OpenAIRE rules: Metadata Encoding and Transmis-
sion Standard (METS) and Open Access Initiative Dublin Core (OAI-DC). The latter one
follows the Dublin Core (DC) Schema. Dublin Core metadata is grouped in XML inside a
<dc> element. All of the metadata in DC format is repeatable, optional and can appear
in any order [35]. Unfortunately it seems by exploring the documentation and examples
provided [98] that some schemas available for Trepo do not provide the metadata infor-
mation needed to download the full PDF file of a publication even if it is available with
a web browser. The METS schema provide that information as well as do many of the
other schemas available. It seems that at least for some of the publications where METS
provides the link for the full PDF the OAI-DC does not. In many cases METS also pro-
vides a link to a plain text version of the full publications in addition to the PDF file link.
This is useful for the task at hand if we want to reduce the number of preprocessing steps
needed.

The metadata can also be scraped directly from the Trepo web site by navigating the site
programmatically and parsing the HTML content. The metadata fields are quite easily
interpretable from the web page elements as they are presented as a table with the first
column having the name (key) of the metadata field and the second column having the
value. This is demonstrated with Table 3.2.

If there is additional information present, for instance specifying the language the abstract
is written in, it is situated in a third column. The table does not include a key for down-
loading the full content PDF file when available. This is found as separate hyperlink tag.
The main problem with using this approach to harvest the metadata or the full content
files are the possible future changes to the web page structure: what works today may
not work tomorrow. Using a dedicated API is more stable an option.

3.2 Research environment

All the computational tasks in the research are carried out on the same computer plat-
form, which is a Hewlett-Packard HP Z420 desktop PC consisting of the parts shown in
Table 3.3.

The data pipeline is built entirely using the Python 3 programming language. Python of-
fers a rich ecosystem for data intensive programming and machine learning. Also Python
offers good frameworks for building web applications and REST API services to offer the
machine learning models for end user consumption. The Python code written in Jupyter
Notebook running on IPython kernel is utilizing Docker containerization. Other Python
scripts are executed from PyCharm IDE using an isolated virtual environment. The spe-
cific Python versions are subversions of Python 3.7 in all of the cases. Some important
3rd party Python libraries and modules used in the research are shown in Table 3.4.

25

Metadata key Metadata value

dc.contributor.author Lastname, Firstname

dc.date.accessioned 2019-01-31T08:11:12Z

dc.date.available 2019-01-31T08:11:12Z

dc.date.issued 2019

dc.identifier.uri https://trepo.tuni.fi/handle/xxxxx/yyyyyy

dc.description.abstract This is the abstract text of the publication.

dc.format.extent 78

dc.language.iso fi

dc.rights This publication is copyrighted. You may download,

display and print it for Your own personal use.

Commercial use is prohibited.

dc.subject keyword 1

dc.subject keyword 2

dc.subject keyword 3

dc.title My title

dc.type.ontasot fi=Syventävä työ | en=Master’s thesis |

dc.identifier.urn URN:NBN:fi:tuni-zzzzzzzzzzz

dc.subject.degreeprogramme Degree Programme in Journalism and Communication

dc.date.thesis 2019-01-29

dc.contributor.faculty Faculty of Information Technology and

Communication Sciences

dc.format.content fulltext

dc.contributor.organization Tampere University

dc.rights.accesslevel openAccess

dc.type.publication masterThesis

Table 3.2. An example of the metadata available for a publication in the Trepo repository

Comparison between PostgreSQL and MongoDB on chapter 3.3 is done using container-
ized versions of the databases. The platform visible in Table 3.3 is also hosting the
database containers. We are not going dive deep into containers, but a short definition is
given by Kane et al. [56] as ”A container is a self-contained execution environment that
shares the kernel of the host system and which is (optionally) isolated from other con-
tainers in the system”. For understanding Docker better, good resources are for example
the official Docker documentation [32] and a book by Nickoloff [78]. If you are running a
Docker container on a Linux machine, there is no need to run a virtual machine anywhere
on the system. Docker for Mac and Windows needs a Linux virtual machine to run on,
which is handled seamlessly by the Docker Desktop application. A picture demonstrating
the containerization model for Docker is adapted from Docker documentation and Chung
[26, 32] and can be found as Figure B.1 in the appendices.

26

Hewlett-Packard HP Z420 Workstation (LJ449AV)
CPU Intel® Xeon® Processor E5-1620 v2 @ 3.70 GHz

4 Cores, 8 Threads

Memory 32 Gb of 1866 MHz DDR3

Hard disk 1000 Gb, ata st1000lm024 hn-m scsi

GPU NVIDIA GeForce® GTX 1070, 8 Gb

OS Linux Ubuntu 18.04 LTS

Table 3.3. The specs of the computing environment.

Library / module Purpose

beautifulsoup4 HTML and XML parsing

jsonpickle Serialization and deserialization of

Python objects

pandas Manipulating numerical tables and

time series

NLTK Statistical natural language processing

gensim Statistical semantics and topic modeling

pdf2image Convert PDF file to a PIL image

psycopg2 PostgreSQL database adapter

PyMongo Tools for working with MongoDB

Python-tesseract Optical character recognition (OCR) tool

Requests HTTP requests simply and human-friendly

scikit-learn Machine learning

spaCy library for NLP using neural networks

tika-python A Python port of the Apache Tika library

Table 3.4. Some 3rd party Python libraries used in the research.

3.3 Database comparison

A data pipeline can be built between two systems by using a stream processing software.
If you have a data source outputting data with high velocity and volume, you can build a
pipeline utilizing Apache Kafka for example. One use case could be first getting the data
from Twitter to Kafka and then from Kafka to Elasticsearch [76]. We have a similar use
case: to get the data from Trepo repository and to store it to a database of some kind.
In our case the velocity we acquire new data is not high, there are significantly less new
scientific publications coming out than there are tweets coming out.

As we have discussed in Subsection 3.1, there are a little over 40000 publications in
Trepo. The amount of papers published each year has been constantly increasing, as
can be seen in Figure 3.1. The year 2019 was the top year with approximately 4000 new
publications added to Trepo. The amount has doubled in six years, but even if it continues

27

doubling every six years, the amount will stay moderate for a long time. Also there will
likely be limits to the constant growth, that will be hit at some point. Trepo is relatively new
system and three Tampere universities have merged to one Tampere Universities (TUNI)
recently. It is possible that we are experiencing a surge in the growth at the moment and
it will be flattened in the next years. Because of these possible restrictions to growth and
the nature of scientific publications being quite slow to produce, we will not be building a
stream processing solution here. We will still need to be prepared for a larger number of
publications than presently available, and thus we perform the testing with a larger data
set acquired from Suomi24.fi discussion forums.

3.3.1 Setup

As the data ingestion speed from Trepo to our database is not high our research is not
focused on that. Instead we focus on the output speed from the database as our pipeline
needs to be able to fetch the data from the database for topic modelling efficiently. For
this we are testing aggregation speed from two databases: PostgreSQL and MongoDB.
The database systems are quite different as PostgreSQL is a relational RDBMS and
MongoDB is a document database. We have chosen these two, because they are both
suitable for our use case and are equally popular database systems as discussed in
Subsection 2.1.2. Also both are free to use. If need be they can be scaled horizontally
[27, 74]. Both of the DBMSs are running on containers spun up with a simple docker-
compose.yml, visible in Appendix B as Listing 5. The reason for running both inside a
container is making the environment as stable as possible. The versions of the databases
we use for this research are MongoDB 4.0.4 and Postgres 11.1. We do not create any
indices for the databases.

Python 3.7 is used to run the tests and measure the results. For communicating with
MongoDB we use PyMongo library [88]. For working with PostgreSQL we use Psycopg2,
which is a Python-PostgreSQL database adapter [87].

The Suomi24.fi data set is acquired earlier by the Statistical Machine Learning and Ex-
ploratory Data Analysis (SMiLE) research group from Tampere Universities (TUNI). The
data set has already been preprocessed by applying lemmatization, part-of-speech tag-
ging and dependency parsing. The data resides in a MongoDB in TUNI servers. We
take a dump of the data set consisting only of posts from the subforum of Matkailu, which
translates to Travelling. This subset consists of 1048629 hierarchically arranged (5 levels
of hierarchy) posts written in Finnish language.

The schema used to store the data set in MongoDB is shown as Appendix B.2. MongoDB
uses JSON schema, all the values shown in the left column of the figure are keys in
the JSON document. The figure shows the hierarchy of the JSON document flattened,
in reality some keys are nested. The dot (.) indicates a hierarchical relationship. An
example of a Suomi24 document in JSON format can be seen in Appendix B as Listing
6, also demonstrating the hierarchy.

28

To perform comparison, we need to insert the data to a PostgreSQL instance. Postgres
gives us options for an efficient schema, but we opt to use only one table. We also insert
the data to columns maintaining the same data type as found in the MongoDB schema
as closely as possible. The nested fields we insert in columns of the type json so that we
simultaneously mimic the MongoDB and are able to test how well Postgres performs with
JSON formatted data. Postgres comes with built-in JSON functions and operations [86].
The schema used in the sole Postgres table is shown as Appendix B.3.

3.3.2 Task definition

Now that we have the database instances up and data in place, we are ready to plan how
to carry out the comparison. What are we comparing exactly?

We compare the speed of aggregating data from the database systems.

The aggregation speed is definitely not the only aspect to take into consideration when
choosing a database system. Other aspects are for example the memory consumption
and the disk space requirement, but we will assume that we have plenty of both in our
disposal. We also want to choose a basic standalone setup, we assume this is all we
need for the job at hand. Both of the compared databases can be expanded to a cluster
of servers or to a cloud environment if need be. As we compare, we keep in mind that
for topic modelling we need to create a Bag-of-Words model. For that we need the words
present in each document and the number those words appear in each document. To
simplify testing, we aggregate the word counts in the collection level, discarding the doc-
ument level information. We choose to query for nouns only, because nouns are likely
to be important in topic modelling later on. Both of the database systems offer multiple
ways to query data. We choose six different strategies in total, three for MongoDB and
three for Postgres.

MongoDB strategies in detail

For MongoDB the strategies we choose are:

1. Get the nouns from each document to a list with a basic find query and use Python
to aggregate the counts of each word

2. Aggregate the word counts using MongoDB’s map-reduce functionality

3. Aggregate the word counts using MongoDB’s Aggregation pipeline functionality.

Each of the methods are applied to two fields, nouns and word_counts.noun_counts, in
the schema presented as Appendix B.2. The former is the nouns of the document as a
list and the latter is a list of dictionaries. These are also visible in Appendix B as Listing
6, for understanding the structure better. Both of these fields contain exactly the same
information, only in a different form.

Strategy 1 in detail means querying data from MongoDB with the basic find() query

29

[74] seen in Appendix B as Listing 7. The result set from MongoDB is piped to Python
Counter instance from the standard library module collections, to aggregate the number
each word is present in the collection. The counter instance also sorts the word counts
in descending order. This can be considered a baseline method for MongoDB.

Strategy 2 uses the MongoDB’s map-reduce [74]. A map-reduce operation has two
phases. In map phase each document is processed and a result is emitted forward.
In our case the map phase simply emits the counts for each noun in the document.
Then the reduce phase combines the result of the map phase. In our case it means
combining the count of each word in document level to the count of that word in collection
level. This method is again applied on two fields. MongoDB uses JavaScript functions
of a predefined form as the mapper and the reducer in the map-reduce framework it
implements, these functions for both fields we query are shown in Appendix B as Listing
8. The aggregation happens completely inside the database system.

Strategy 3 uses the Aggregation pipeline MongoDB implements. It is a multi-stage
pipeline of different operations [74] to produce the end result. The aggregation pipeline
can be used in a sharded MongoDB as can the map-reduce framework. We will use a
three stage pipeline of unwind, group and sort to aggregate from the list of dictionaries
and also from the list of words. These pipelines are almost identical and are visible in Ap-
pendix B as Listing 9. Using the pipeline, the aggregation takes place completely inside
the database system.

PostgreSQL strategies in detail

The strategies of querying from PostgreSQL:

1. Get the nouns from each document to a list with a basic select query and use
Python to aggregate the counts of each word

2. Aggregate the word counts from a JSON column using Postgres’s JSON function-
ality

3. Aggregate the word counts from an array column using Postgres’s array functional-
ity.

For PostgreSQL the testing is a bit clearer and more straight forward. We only apply each
of the three strategies to one column, instead of applying them on two columns as we
did with MongoDB. There is no point in using other built-in functions or strategies on the
JSON columns than the those specifically designed for doing this. As well as there is no
point in trying to apply JSON functions on an array column, when Postgres comes with
functions designed especially for this [86].

Strategy 1 means retrieving the text array column called nouns for each document with
a very basic select query. Then extending the result to a one long list and using collec-
tions.Counter once again to aggregate the word counts and sort them. The basic query
is visible in Appendix B as Listing 10. This is the baseline for PostgreSQL.

30

Strategy 2 uses Postgres’ built-in functionality to query inside a column type JSON or
JSONB [86]. The query is substantially more complex than was with the 1. approach.
Still querying solely one table keeps this relatively simple, even though we need a nested
query. We use the function json_array_elements to expand a JSON array to a set of
values of JSON. Then we use the JSON operator -» to get an element as text. Then we
group the result and sort it. The query can be seen in Appendix B as Listing 11. All the
aggregation is done neatly inside the RDBMS.

Strategy 3 is utilizing the functionality Postgres implements for working with an Array of
valid data types [86]. Again we are able to produce the aggregation completely inside
the database system. We will take advantage of the unnest function, which expands an
array so that each element becomes a row [86]. This relatively simple query is shown in
Appendix B as Listing 12.

The results of the database system comparison are discussed in Section 4.

3.4 Data acquisition and preprocessing

The research begins with collecting the raw material and processing it to a suitable form to
gain knowledge from it. In this case the raw material consists of the scientific publications
in Trepo repository and the related metadata. To answer the second research question
”What is the optimal way to extract data from Trepo?” we will try out two strategies
of harvesting the metadata from the Trepo repository. The first option is by using the
provided service of OAI-PMH. The second option is by getting the web site’s HTML code
with a script and parsing the metadata from there. After the metadata is collected, we
download the full text publication if possible.

3.4.1 Collecting metadata

Metadata can be fetched from Trepo by using the offered OAI-PMH service. The service
is located at trepo.tuni.fi/oai. The location of this resource is not easilly available at the
Trepo web site but the service is mentioned in the privacy statement of Trepo repository
[99]. We will use a Python library called Sickle for this [94]. It is dependent on the libraries
requests and lxml. The latter is an XML toolkit and a Python binding for two libraries writ-
ten in C: libxml2 and libxslt [69]. Sickle provides an easy to use API and a request to
the resource returns a Python’s iterator object, which can be iterated over lazily and thus
memory effieciently. Retrieving the metadata is very simple as can be seen in Listing 1.
You only need one request to the API to retrieve metadata for the whole collection.

Another way to fetch metadata is to scrape the Trepo web site https://trepo.tuni.fi/. It
provides all the necessary meta information for a human user, who is utilizing a web
browser, and thus we can collect that same information with a web scraper. In the privacy
statement of Trepo [99] it is stated that the information regarding the publications is openly

31

from sickle import Sickle

if __name__ == '__main__':
sickle = Sickle('https://trepo.tuni.fi/oai/request')
params = {

'metadataPrefix': 'mets', # xml schema to use
'from': '2020-02-20' # harvest from this date on

}
for record in sickle.ListRecords(**params):

print(record.metadata) # do something with the metadata

Listing 1. Fetching documents is simple with Python and Sickle using OAI-PMH

readable with a web browser. For metadata collection by web scraping the Trepo site we
use Requests, which is a HTTP library for Python. After retrieving a single web page we
pause for one second, because we do not want to put too much load on the Trepo servers.
We then extract all the metadata information on individual publications, from the fetched
HTML pages, using the Beautiful Soup library. All the other data in the HTML pages we
discard. As was mentioned in Subsection 3.2 metadata fields in Trepo are repeatable,
meaning they are can be present more than once in a publication’s meta info. We solve
this problem usually by turning a value to a list of values, whenever a repeating field is
encountered, so that we do not lose information. Next we serialize the parsed data to
JSON format and save it to hard disk, compressed in gzip file format. The size of the
compressed file, consisting of the metadata for over 43400 publications, is only about 37
Mb.

3.4.2 Acquiring full text content

If we get the metadata using OAI-PMH we have a possibility to download the full text as a
plain text file in some cases. We can do that with the Requests library and be done with
it. It the plain text is not available a PDF version might be. If that is the case we need to
download the PDF and then extract text from it. First we filter out the publications that do
not have the full content available, which leaves us with 30487 publications to download.
For downloading we use the Requests library once again and save the acquired PDF files
to hard disk. From the 30487 publications tagged with the availability of a downloadable
full text, we actually managed to download 30459. The space these file occupy on disk is
82 Gb. Then we need to extract the text content.

Portable Document Format (PDF) file format is more complex than a plain text file, con-
sisting also of vector graphics, raster images, fonts and more. We could insert the com-
plete PDF files to Postgres database as a binary string, using the bytea data type. For
sure we want to keep hold of the files, because it may be in our interest to extract images
from them later on for some other task. Right now we are interested in text only, and to be
able to use it we need to separate it. For this we use Apache Tika. Tika is a framework
for content detection and analysis. It is funded by the Apache Software Foundation and

32

written in Java. Tika-Python is a Python library offering a binding to Tika REST server.
To use Tika-Python you also need to have Java Runtime Environment installed, so that
Tika-Python can launch the Tika server it uses. With Tika you can extract text from dif-
ferent file types. It can also extract metadata from a PDF with it, so we could try to add
more metadata information to our publications also if we can find some from the PDF
files. In an article published by Forbes in 2016 [36], Tika is mentioned being one of the
technologies used to analyze millions leaked documents known as the Panama Papers.

We used Python modules pdf2image, PIL and Python-tesseract to back Tika up in case
it doesn’t find any text from a PDF file. Here we were mainly thinking of the case were
a publication from the 1970’s or 1980’s was scanned to PDF from a paper version. The
combination functions so that first the pdf2image module converts the PDF files to PIL
images page by page. Then Python-tesseract uses Google’s Tesseract-OCR Engine to
recognize and extract text that is embedded in those images. Using this setting we man-
aged to get text extracted from 29133 of the total number of 30459 PDF files as shown in
Figure 3.2. This operation took 6 hours 25 minutes to perform on our computing environ-
ment.

Figure 3.2. A chart showing the total number of publications, the number we managed
to download as PDF and the number we were able to extract text content from.

At this point we have the metadata and the associated full texts extracted. Next we want
to combine them and insert to a database for later use.

3.4.3 Applying NLP

The data set in whole consists of various lengths of publications from articles to books.
The abstracts on the other hand are alike in length in all types of scientific papers. It
would most definitely be interesting to topic model the whole data set, and for instance by
using the abstracts this could be carried out. Also it would be interesting to topic model
the abstracts of Master’s theses side by side with the whole text content and make a
comparison. Those research subjects will be saved for later, yet the ground work for the
data pipeline to use in those interesting subjects is prepared here. As of now, we have the
data collected and we want to sharpen out research focus to what we defined earlier in the
introduction 1. As stated, the research interest here is on the Master’s thesis level publi-
cations written in English, and their abstracts. All of these pieces of information are avail-
able in the harvested metadata 3.2. The publication type information is using a field name
dc.type.publication, the abstract can be found as the field called dc.description.abstract,
and the language information is identifiable by the key dc.language.iso. Sometimes there

33

are many abstracts in different languages. In those cases we will use a key found as an
extra information from the metadata and combine that with the abstract key to create a
new field. In the case of an English abstract this field is called dc.description.abstract_en.

We want to be applying topic modelling on the abstracts and one way to do that is on the
raw texts. The abstracts we use are not as long as the full texts, this should definitely
reduce the dimensionality of our vocabulary and the bag-of-words models. But the least
we should do is to remove punctuation and lowercase the words before we split the
collection to a word list representations and start building the word vectors. If we don’t
remove the punctuation and lowercase letters our vocabulary will have for example terms
like ”cat.”, ”cat,”, ”cat” and ”Cat” as four different terms. Still after these operations we
will end up with an unnecessarily huge vocabulary as words like ”nebula” and ”nebulae”
will be identified as two different terms. A solution to this problem is normalisation with
lemmatization or with stemming. Stemming will only shorten the words and this might
make us lose too much information. For example the Porter stemmer will stem all of
the words operate, operative, operation and operator to oper [70]. Lemmatization on the
other hand can make a difference between these terms, and save precious information
by not reducing them to a one single term. Lemmatization will provide us dimensionality
reduction and in addition information gain compared to stemming, so we will choose that
option.

If we want to reduce dimension even more, we can perform Part of Speech (POS) tagging
and then apply topic modelling on a selected subset of nouns, noun phrases, adjectives,
verbs, adverbs etc. All of this Natural Language Processing (NLP) and more is provided to
us by various powerful NLP frameworks and libraries such as gensim Natural Language
Toolkit (NLTK), spaCy, StanfordNLP, the neural parser pipeline by TurkuNLP. We will go
with spaCy, mainly because of a personal preference and the intuitive and easy to use
API it provides. It also has performed well in a dependency parser comparison by Choi
et al. in 2015 [25]. SpaCy does not have support for finnish language at the moment.
There exists a work around for this as the StanfordNLP has two Finnish treebanks to use
with its state-of-the-art neural pipeline. Also there exists a Python package that takes the
StanfordNLP library and wraps it so that you can use those models as a spaCy pipeline,
with the spaCy interface. The said package is called spacy-stanfordnlp. In our case we
don’t have to worry about this since we are using English abstracts, but this is nice to
know for future reference, if we want to use this same pipeline for documents written in
Finnish.

SpaCy uses convolutional neural network models for performing POS tagging, depen-
dency parsing and entity recognition. Neural networks are discussed in Subsection 2.2.1.
The statistical components of spaCy pipeline are independent of each other, so you can
swap the order of them or leave some components out of the pipeline [50]. It also is worth
mentioning that spaCy usable with CPU only, you don’t need a separate GPU to utilize it.
It is not self-evident when using neural networks, because using a GPU will often speed
up the computing quite a lot [9]. By adding the POS tags to the document collection

34

metadata we are on our way of adding value and possible ways to utilize the data set.
We can add for example Named Entity Recognition (NER) tags and dependencies with
spaCy if we want to, but this we will not do for now. One feature spaCy has, and we are
using, is language detection. This we want to utilize to make sure that the abstract is
written in English, especially in the cases when the publication has two abstracts this is a
necessary backup plan to make sure we labelled the correct abstract as the English one
when we extracted metadata from the Trepo repository.

After extracting the linguistic features with spaCy it is wise to insert them to the database
also. This can be done using only one table for now, as adding another table will not
be that beneficial because all the relations are one-to-one relations. Yet, for the sake of
clarity, we divide the table in two. We also change the names for some fields introduced
earlier, because the raw names vary depending on which XML schema is used when har-
vesting through OAI-PMH and are quite cumbersome. As an example, the original field
telling the top level organization of the publication was called dc.contributor.organization.
This likely comes from a nested XML or JSON, so we have replaced it here with a simpler
field name organization. The schema we propose to use is shown in Figure 3.3. In the
table documents there is the content before extracting the linguistic features. In the table
linguistic_features we have inserted the results from NLP processing with spaCy on the
abstracts. Here the primary key column id of the documents table is a foreign key in the
linguistic_features table. Now we are ready to consume the pre-processed data from the
database to perform topic modelling.

integerid

texttitle

orig_meta_xml

textlang

textorganization

textpublication_type

textfaculty

textdepartment

text[]author

booleandownloadable

textpdf_link

integeryear_issued

textfile_name

textaccess_level

textabstract_en

texttxt_link

textabstract_fi

text[]abstracts

datedate_available

textidentifier_uri

text[]keywords

documents

text[]nouns

text[]adjectives

text[]verbs

jsonbnoun_counts

jsonbadjective_counts

jsonbverb_counts

text[]lemmas

texttokens

integerdocument_id

integerdocument_type

text[]noun_chunks

linguistic_features

document_id:id

jsonborig_meta_json

text

Figure 3.3. Tables used for storing the metadata (documents) and the refined data from
abstracts (linguistic_features).

35

3.5 Topic modelling in practice

To see how different topic modelling algorithms behave with our data set we first omit the
”over time” demand and model the abstracts from Master’s thesis level publications in En-
glish using both Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization
(NMF) based topic modelling. We use nouns only to reduce dimensionality and expect to
get good results, because nouns are important content words in revealing the topics [77,
111]. For the implementation we use the scikit-learn machine learning library for Python,
as it comes with an easy to use implementation for both algorithms. We also use the
same library for building the Bag-of-Word models and for turning the document collec-
tion into numerical feature vectors. The latter is known as vectorization. This approach
is chosen because scikit-learn implements a Term Frequency (TF) vectorizer as well as
a Term Frequency-Inverse Document Frequency (TF-IDF) vectorizer, and they are quite
simple to use. The vectorizers and the vocabulary created here can be reused later on
when topic modelling over time.

Our strategy is to use TF vectorizer with the LDA model and then TF-IDF vectorizer with
the NMF model, because from the literature we find suggestions for doing so [18, 24]. TF-
IDF can be used with LDA to e.g. prune the vocabulary [17], but it likely doesn’t improve
the results of the model. We already prune the vocabulary with lemmatization and use of
nouns only. NMF also can be used with TF matrix, because it consists of non-negative
numbers. Yet it lacks the additional measure TF-IDF weight normalization gives about the
importance of a word to a document in the collection. Also in the literature we find that
NMF tends to yield better results compared to LDA for short text data sets. Chen et al.
state this is because NMF ”contains much more priors such as TF–IDF (term frequency
and inverse document frequency) encodings for texts (instead of the only TF in LDA),
Gaussian distribution for the noises with Frobenius norm, and implicit low-rank structures
w.r.t. the original term–document datasets (while LDA does not have this); besides, the
deterministic MU [65] algorithm in NMF also contributes to more stable and better results
than the stochastic Gibbs sampling without enough word co-occurrences in LDA” [24]. It
is unclear how a short text is defined. An abstract might be a short text but if we move to
modelling the full text publications we are not talking about short texts anymore.

After the initial familiarization with models covering the whole collection at once, we will
move to modelling over time. This is done by applying the dynamic topic models using
LDA as described by Blei et al. [16] and by applying similar concept using NMF as
described by Greene et al [43]. Both of these algorithms are applied using a readily
available implementation. Afterwards we compare the results. The comparison will then
be reflected in the proposed pipeline.

36

3.5.1 Initial LDA and NMF modelling

For the exploratory analysis of the latent topics we use scikit-learn library, which is a
machine learning library for Python. It is built on NumPy, SciPy, and matplotlib [91] and
implements a simple and consistent interface.

Vectorization and preserving vectorizers

The vectorization process of the text corpus using the scikit-learn library is behind the
following steps

1. Filter the publications that are of type Master’s thesis and written in English

2. Get the nouns to a list of lists and join to a list of strings

3. Build the vocabulary and the CountVectorizer (TF vectorizer)

4. Build the TfidfVectorizer (TF-IDF vectorizer)

5. Save the vectorizers to disk or to database.

The first step is easily achieved with a Python script using the metadata we have stored
in the PostgreSQL. We also have already extracted the nouns with spaCy as described
in Subsection 3.4.3. In the second step we have to take care of joining the tokenized
nouns of each document to one string representing that document, because the input for
the vectorizer we use is a list of strings. The third step is building the vocabulary and the
TF vectorizer. With the tools we have chosen, these two can be done together, as the
scikit-learn implementation of TF vectorizer called CountVectorizer builds the vocabulary
automatically from the corpus it is provided. It also is possible to give the vocabulary as
a parameter to the vectorizer. This could be useful if we want to use a larger vocabulary
than the one derived from the text corpus we feed to the vectorizer. We modify the default
parameters for the constructor a little by setting the minimum document frequency for a
word to 2 and maximum to 0.95. This means only words present in less than 2 documents
are discarded and words present in more than 95% of documents are also discarded. The
scikit-learn models usually come with a simple API of fit and transform and a combined
method fit_transform, which does both at once. This is the case here also. We can
initiate both vectorizers with the same parameters (Steps 3 and 4) and fit them by giving
the corpus we constructed in Step 2. The TF-IDF vectorizer class is called TfidfVectorizer
in scikit-learn. If we wanted to follow Steps 3 and 4 more strictly, we could produce the
TfidfVectorizer from the CountVectorizer using a class called TfidfTransformer also from
scikit-learn and especially made for this purpose [91]. In the case of Tfidfvectorizer the
samples, matrix rows, are normalized individually to unit norm. The default normalization
parameter is called ”l2” and means that the squares of (row) vector elements add up to
1. Also when using the l2 norm, the dot product of two vectors is the cosine similarity
between the two.

Last step is saving the vectorizers. Python has modules in the standard library for seri-

37

alizing and deserializing objects in whole. Such modules are for example marshal and
pickle [89]. The Python official documentation states that marshal is more primitive and
pickle should always be preferred. Also the documentation warns that pickle is not safe,
you only should unpickle trustworthy data. A third party library jsonpickle is available to
serialize complex Python objects to JSON format. Since JSON is safer format than Pickle
and more universal too, this is what we will be using as a baseline method. There exists
another strategy for serialization in addition to serializing the whole Python object. For
instance in the case of CountVectorizer you can only extract the vocabulary and the pa-
rameters from a trained vectorizer and serialize them. Then when loading the vectorizer,
you deserialize the parameters and create a new instance of the CountVectorizer class
using them. Then set the vocabulary attribute of the new instance from the serialized
vocabulary. In the case of TfidfVectorizer you also need to serialize a numpy array con-
taining the inverse document frequencies. Then as you deserialize, you make a sparse
matrix from it and plug that matrix into the vectorizer. These processes are shown in
Listing 13 found from Appendix C. Both of these strategies create a JSON object, which
can be saved to a PostgreSQL database using JSONB datatype as well as stored to a
file on disk.

We carried out a quick comparison between the two strategies using a collection of 3231
paper abstracts. The dictionary for this collection consists of 33736 distinct words. The
number of words in the collection is 570942 in total. The TfidfVectorizer object serialized
using jsonpickle was 28,8 Mb on disk, while saving only the essential parts using the
other strategy came out with a 2,0 Mb JSON file in size. The latter serialization strategy
can potentially save great amount of space on disk in comparison to serializing the whole
Python object, and in many cases it should be preferred in our opinion. Especially in the
case of topic modelling over time you create many vectorizer instances from different time
slices and the difference in size on the disk will multiply.

LDA and NMF with scikit-learn

The scikit-learn implementations of LDA and NMF implement the same API we got to
know with the vectorizers in Subsection 3.5.1. We decide to infer 10 topics with one
model and 20 topics with another model for both LDA and NMF. Models are trained in
a straight forward manner. You need to extract the TF matrix or the TF-IDF matrix from
the vectorizer and then train the topic model with it using the fit function. Both models
basically only need an instance of the model created with default parameters, and you
are good to go. You can modify the parameters in quite a few ways, but the scikit-learn
documentation states the default settings usually work well [91]. Other than changing the
number of topics to infer we stick to the defaults. Some of the parameters are shown in
the table with a description and the default value [91].

We use CountVectorizer and a term-document matrix to train the LDA model and Tfid-
fVectorizer and a TF-IDF matrix to train the NMF model. Then we print the top_n terms
for each topic to a CSV file and visualize using Tableau. The top_n terms for a topic

38

Model Parameter Default Description

Common n_components 10 Number of topics

max_iter 200 Maximum number of iterations

LDA doc_topic_prior 1/n_components Prior of document topic distribution

θ (discussed in Subsection 2.2.2)

topic_word_prior 1/n_components Prior of topic term distribution

β (discussed in Subsection 2.2.2)

learning_decay 0.7 Learning rate in the online learning; κ

learning_offset 10 Downweights early iterations; τ0
NMF solver ’cd’ coordinate descent Numerical solver to use

beta_loss frobenius Beta divergence to be minimized

dFro (discussed in Subsection 2.2.2)

alpha 0 Multiplier of the regularization terms

l1_ratio 0 Penalty ratio between L1 and L2

Table 3.5. Some of the parameters for LDA and NMF models in scikit-learn.

means the n ∈ {1, 2, 3, ...} words having the highest probability that the word is assigned,
or belongs, to the topic. These terms describe the topic but inferring a title for it needs
subjective judgement. To derive more objective a title this inferring process can be done
in a quantitative manner: e.g. by using a majority vote among a sample from some target
population. The results of the initial topic modelling are shown in Section 4.

3.5.2 Modelling over time with LDA

After the initial LDA and NMF modelling in Subsection 3.5.1 we have gotten some grasp of
the topics these documents consist of. In addition we have created a vocabulary with the
CountVectorizer from the scikit-learn library and we can reuse that when modelling over
time. In addition we have the tokenized and lemmatized documents, which in addition we
have POS tagged. We plan to use the nouns only once again for this task, so presumably
we don’t have need for stop word removal.

For the implementation of the modelling over time with Latent Dirichlet Allocation (LDA)
based algorithm we use the Dynamic Topic Models (DTM) by Blei and Lafferty [16]. As
already described in Subsection 2.2.2 DTM is an extension to the idea of LDA, which
allows the representations of the topics to evolve over fixed time intervals. The length of
a time interval can be e.g. an hour, a day, a month, a year or a decade. We feel that a
natural starting point in the case of the scientific publications is one year, and that is what
we will go forth with. One important factor using DTM is that the time interval is fixed. The
amount of documents in each time slice on the other hand doesn’t have to be fixed, DTM
is not opining on or restricting this quality in the data set. Yet this might have impacts on
the modelling quality, and we feel that after seeing the distribution of all the documents in
Trepo in Figure 3.1, we want to take a look at the distribution of the Master’s theses data

39

set we are about to use.

Total amount of documents having an English abstract is 4018. This is our data set. As
is visible in the figure the distribution between years is not close to even.

Figure 3.4. A bar chart visualizing the distribution of those Master’s thesis level publica-
tions that have an English abstract present in the Trepo metadata [100]

The amount of publications is constantly ascending in big picture with a couple of years
deviating from this trend for some reason. It seems only the publications from the 21st
century have abstracts included in the metadata. This is unfortunate, especially because
it would be interesting to see the evolution all the way from the 1970’s and 1980’s to
this day. There are not that many publications from those decades in Trepo, but from
the 1990’s there are significantly more. Maybe we could get more English abstracts
to our data set by extracting them directly from the full text contents instead of using
metadata. This is something to consider in the future. Right now we decide to model the
topics of this entire data set without excluding any years. We decide we use a python
wrapper provided by the gensim NLP library [39] for the original C++ implementation of
the Dynamic Topic Models [33] to implement topic modelling over time with LDA. To use
the wrapper we need to compile the binaries of the C++ implementation first, but these
steps are well documented in the gensim documentation. Workable bash commands
for the deed for debian based Linux distibutions are visible in Listing 2. They include a
mandatory installation of the The GNU Scientific Library [41].

The gensim DTM wrapper expects some additional preprocessing for the documents.
The corpus needs to be an ”iterable of iterable of (int, int)” [39]. This means a bag-
of-words representation where the first element of the tuple is the term’s index in the
vocabulary. The second element is the number of times (count) the word appears in the

40

git clone https://github.com/blei-lab/dtm.git
sudo apt-get install libgsl0-dev
cd dtm/dtm
make

Listing 2. Compiling the binaries for DTM C++ implementation [39]

given document. This format only includes the terms with count greater than zero, so it
factually is a sparse matrix in LIL [54] format. This format is demonstrated in Table 3.6.
For example the text ”This document is the second document” seen in the table gets the
representation [(1, 2), (3, 1), (5, 1), (6, 1), (8, 1)] in this case.

VOCABULARY [term | index]

DOCUMENTS and | 0 document | 1 first | 2 is | 3 one | 4 second | 5 the | 6 third | 7 this | 8

This is the first document. (1, 1) (2, 1) (3, 1) (6, 1) (8, 1)

This document is the second document. (1, 2) (3, 1) (5, 1) (6, 1) (8, 1)

And this is the third one. (0, 1) (3, 1) (4, 1) (6, 1) (7, 1) (8, 1)

Is this the first document? (1, 1) (2, 1) (3, 1) (6, 1) (8, 1)

Table 3.6. A table demonstrating the bag-of-words representation of a corpus the gensim
wrapper for DTM ingests. The representation is a list of lists having one row for each
document.

In addition we need to arrange the documents in ascending order by the issuing year
to be able to track topics in time. Also we must manually provide the gensim wrapper
the information on how many documents belong to each time slice, it is not capable of
inferring that otherwise. Some of the preprocessing is visible in Jupyter notebook 3.5.

The original C++ implementation expects an input of two files. First file foo-mult.dat is a
one-document-per-line file consisting of bag-of-words representations of the documents.
The documents need to be sorted in ascending order in time. The second file foo-seq.dat
consists of information on the number of time slices and of lines indicating how many doc-
uments in foo-mult.dat belong to each time slice [33]. The gensim wrapper also creates
these files temporarily but abstracts this away with the API it offers to the user.

We will build a DTM model using the same amount of topics we used earlier with sklearn
models, which is 20. DTM will produce a constant number of topics for each time slice
[33]. The process of inferring topics with the gensim wrapper is visible in Jupyter notebook
3.6.

After building the model we use the gensim wrapper’s built-in functions to dig out word
probability distributions for each topic at each time slice. From this we build a data source
for a visualization tool to consume. We will use Tableau for visualizing the model outputs
and helping in quality evaluation. To achieve this we need to create row-oriented data
which Tableu and other business intelligence tools such as Power BI are optimized to
consume. This process is shown in Jupyter notebook 3.7.

41

preprocess_dtm_gensim

May 28, 2020

[]: import json
from collections import Counter

Load the abstract data from a .json file.

[]: data_file_name_with_path = '/masters_abstract_en_lemma_nouns_only.json'
with open(file=data_file_name_with_path, mode='r') as file:

data = json.load(fp=file)

Change all ‘dc.date.issued’ values to year format yyyy only (some are in yyyy-mm-dd).

[]: for d in data:
d['dc.date.issued'] = str(d['dc.date.issued']).split('-')[0]

Sort by the ‘dc.date.issued’ field. Then extract abstracts.

[]: data = sorted(data, key = lambda di: di['dc.date.issued'])
abstracts = [di['abstract_lemma_nouns_only'] for di in data]

Use a Counter to extract counts for documents by year. Then destructure to get a sorted tuple
where each element is a doc count for one year.

[]: c = Counter([d['dc.date.issued'] for d in data])
years, counts = zip(*sorted(c.items()))

Create a dict consisting of the abstracts and time slice info.

[]: json_data = {
'abstracts': abstracts,
'time_slices': list(counts)

}

Finally dump the dict to a .json file.

[]: out_filename_with_path = '/data/abstracts.json'
with open(file=out_filename_with_path, mode='w') as f:

json.dump(json_data, fp=f, ensure_ascii=False, indent=2)

1

Figure 3.5. Jupyter notebook demonstrating the preprocessing for the gensim DTM wrap-
per.

3.5.3 Modelling over time with NMF

For modelling topics over time with Non-negative Matrix Factorization (NMF) we follow
the setup described for DTM in Subsection 3.5.2 as closely as we can. Only this time
we use a different algorithm of course. The data set is the same one described in Fig-
ure 3.4. For the algorithm there exists an implementation of the Dynamic NMF method
proposed by Greene and Cross [43] provided also by the same authors. We will use
this implementation written in Python to model over time with DNMF. What is nice here
is that this implementation uses a similar approach for setting up the data as the Blei
and Lafferty implementation of Dynamic Topic Models [33]. Only instead of arranging the
documents in files that represent time windows the data needs to be divided in subfolders
which correspond to the time windows. The order of the time windows is presented as
the alphabetical order of the subfolder names. Each document is then placed in those

42

run_dtm_gensim

May 29, 2020

[]: # Std library imports
import json
import os

Third party imports
from gensim.models.wrappers.dtmmodel import DtmModel

Local imports
from topic_model_2020.dtm.gensim_wrap import DTMcorpus

Load the data from the .json file created in preprocessing Notebook.

[]: filename_with_path = '/data/abstracts.json'
with open(file=filename_with_path, mode='r') as f:

data = json.load(fp=f)

Tokenize the abstracts. Then feed the result to DTMcorpus constructor.

[]: documents = [abstract.split() for abstract in data['abstracts']]
corpus = DTMcorpus(documents)

Finally create the model using the gensim wrapper. It needs to know the path to the compiled
C++ implementation because that will run under the hood. We set the number of topics to 20 and
initialize the model.

[]: dtm_path = os.getenv('DTM_PATH', '/dtm/dtm/main')
num_topics = 20
model = DtmModel(dtm_path,

corpus=corpus,
time_slices=data['time_slices'],
num_topics=num_topics,
id2word=corpus.dictionary,
initialize_lda=True)

1

Figure 3.6. Jupyter notebook showing the use of the gensim DTM wrapper.

folders in separate plain text files - one document per file [34]. This preparation process
is shown in Jupyter notebook 3.8. Note that are using term time window here because it
is used by Greene and Cross in their work [34, 43]. This term is interchangeable with the
term time slice we have used before. We will also use window topic synonymously with
time window topic.

As DNMF is not a probabilistic approach the algorithm will not produce probability distri-
butions for words over topics or topics over documents as the LDA models do [16, 18].
Instead it will produce ranks for the words in the dynamic topics at each time window
[34]. Also it is notable that a dynamic topic at some time window may consist of many
window topics and the number of existing topics on each time window can vary [34].
When training a model for a time window DNMF will by default only take into account the
terms that are present in over 10 documents in that time window. We will change that to
2 documents as it has been with other topic modelling algorithms thus far.

Inferring topics with the implementation by Greene and Cross is fairly straight forward.
They have created step by step instructions for their command line interface. You only
need to clone the repository and prepare a Python interpreter with the required depen-

43

postprocess_dtm_gensim

May 30, 2020

[]: # Std library imports
import csv

Third party imports
from gensim.models.wrappers.dtmmodel import DtmModel

Load the previously save dtm model

[]: filename_with_path = '/data/dtm_model/dtm_model_20.pickle'
model = DtmModel.load(fname=filename_with_path)

Write a .csv file to consume with Tableu. Each line has a probability for a term within a topic at a
time slice.

[]: csv_filename_with_path = f'/data/dtm_model/dtm_data_{model.num_topics}_'
f'topics_top{top_n}_terms.csv'

years = [y for y in range(2000, 2021)]

with open(csv_filename_with_path, 'w', newline='') as csv_file:
writer = csv.writer(csv_file, delimiter=';',

quotechar='|', quoting=csv.QUOTE_MINIMAL)
writer.writerow(['Year', 'Topic', 'Term', 'Probability'])
for slice_ in range(len(model.time_slices)):

year = years[slice_]
for topic_id in range(model.num_topics):

for proba, term in model.show_topic(topicid=topic_id,
time=slice_,
topn=len(model.id2word)):

writer.writerow([year, topic_id, term, round(proba, 5)])

1

Figure 3.7. Jupyter notebook showing some post-processing of gensim the DTM wrapper
outputs.

dencies [34].

The steps we will go through with the algorithm are listed below. The bash commands for
the steps are shown in Listing 3.

1. Preprocessing consists of tokenizing, removing stop words and creating a docu-
ment term matrix utilizing the prep-text.py script. We will use flags - -tfidf to create
a TF-IDF matrix and - -norm flag to normalize document length. Inputs are the files
we created earlier using the Jupyter notebook.

2. Window Topic Modeling consists of generating the time window topics by applying
NMF on each preprocessed data file from Step 1. The script to use here is find-
window-topics.py. We are using the flag -k 20 to infer 20 topics.

3. Dynamic Topic Modeling is where the algorithm combines the time windows and
generates dynamic topics spanning across multiple time windows. The script used
for this step is find-dynamic-topics.py. We will use the flag -k 20 to infer constant
number of 20 topics.

4. Display topics is for showing the top ranked words for the inferred topics across all
time windows. This is implemented in the script display-topics.py.

5. Track dynamic topics will output the top terms for each time window from the

44

dynamic model. We will use flag - -top 1000 to output top 1000 terms at each
moment in time. The flag - -long gives us a better output format for post-processing.
We will also redirect the output to a text file using tee

6. Choose topic number automatically is an extra step. The implementation pro-
vided by Greene and Cross uses topic coherence based on gensim’s Skipgram
word2vec model [39] to try to infer the number of topics for the data set [34, 43].
Basically this means that the algorithm will build models using all numbers of topics
from the given range of numbers. Then based on the topic coherence it will give
three recommendations for each time window and for the dynamic model. There
are three stages to achieve this

• Build the word2vec model using the script prep-word2vec.py and save it

• Use the word2vec model to automatically find best number of topics for each
time window. The model to use is indicated with the flag -m and the interval of
topic numbers we want to examine is given by -k 5,25. The script used in this
step is find-window-topics.py

• Lastly we automatically infer the best number of topics for the dynamic topics
with find-dynamic-topics.py. We will also use the flag -k 5,25 again to limit the
automatic inference between 5 and 25 topics. The word2vec model is again
given with the flag -m and is the same model we used for time window topics.

We will not use the result for the automatic inference in the actual topic modelling.
It is something to consider in the future research but for now the only purpose is to
see how much the algorithm’s proposition differs from our choice of 20 topics.

The DNMF implementation includes a feature of automatic proposition for the best num-
ber of topics [34], which we will explore to see if our choice for 20 topics is close to the
automated proposition. This is described as the step 6 in the list of steps for DNMF
modelling.

After building the models and outputting the tracking of topics to a file we will post-process
the output to produce a row-oriented table optimized for a Tableau visualization. This step
of post-processing is shown in Jupyter notebook 3.9.

It is notable that for each time window it is possible for the dynamic topic to be a com-
bination of many time window topics. This option is taken into account by using the opt
variable in the notebook.

45

Step 1: Preprocessing
python prep-text.py data/sample/* -o data --df 2 --tfidf --norm

Step 2: Window topic modelling
python find-window-topics.py data/*.pkl -k 20 -o data/out

Step 3: Dynamic topic modelling
python find-dynamic-topics.py data/out/*.pkl -k 20 -o data/out/dynamic

Step 4: Display topics
python display-topics.py data/out/dynamic/dynamictopics_k20.pkl

Step 5: Track dynamic topics, pipe to file
python track-dynamic-topics.py --top 1000 --long \

data/out/dynamic/dynamictopics_k20.pkl data/out/*.pkl | tee track.log

Step 6: Automatically choosing the best number of topics
python prep-word2vec.py data/sample -o data/adv-out -m sg

python find-window-topics.py data/*.pkl -k 5,25 -o data/adv-out \
-m data/adv-out/w2v-model.bin -w selected.csv

python find-dynamic-topics.py data/adv-out/*.pkl -k 5,25 \
-o data/adv-out/dynamic -m data/adv-out/w2v-model.bin

Listing 3. Steps used to run the DNMF implementation by Greene and Cross [34].

preprocess

May 30, 2020

[]: import json
from pathlib import Path

Load the data. Change all ‘dc.date.issued’ to year format only yyyy (some are in yyyy-mm-dd).
Sort the data by the ‘dc.date.issued’.

[]: data_file_name_with_path = 'masters_abstract_en_lemma_nouns_only.json'
with open(file=data_file_name_with_path, mode='r') as file:

data = json.load(fp=file)

for d in data:
d['dc.date.issued'] = str(d['dc.date.issued']).split('-')[0]

data = sorted(data, key = lambda di: di['dc.date.issued'])

Write the abstract data to a folder structure the Dynamic NMF algorithm expects. For example
one document to a file data/sample/2000/1.txt.

[]: p = Path('/data/sample')

for idx, d_ in enumerate(data):
folder = str(d_['dc.date.issued'])
year_folder = p / folder
year_folder.mkdir(exist_ok=True)
with open(file=(year_folder / f'{idx}.txt'), mode='w') as file:

file.write(d_['abstract_lemma_nouns_only'])

1

Figure 3.8. Jupyter notebook showing the preprocessing for the DNMF algorithm.

46

log_to_csv

May 30, 2020

Read data from the .log file written by the Dynamic NMF algorithm.

[]: import csv
file_name, data = 'track.log', []
with open(file_name, 'r') as file:

for line in file:
data.append(line)

Create 2-dimensional list structure with columns ‘Topic’, ‘Year’, ‘Opt’, ‘Term’ and ‘Rank’. This
means each row consists of a Term having a Rank within and Opt within a Topic at some Year. Opt
is a window topic from which the Dynamic topics consist at a time window. Usually there’s only
1 Opt at a time but there can be many concurrently. Year is the time window as we have divided
our data in time by year

[]: topic, opt, prev_year = -1, 0, 1999
years = [_ for _ in range(1999, 2021)]
to_csv = [['Topic', 'Year', 'Opt', 'Term', 'Rank']]
for line in data:

if line.startswith('Overall'):
topic += 1

else:
window, words = line.split(':')
num = window.split()[1]
year = years[int(num)]
opt += 1 if year == prev_year else 0
prev_year = year
for idx, word in enumerate(words.split(','), start=1):

to_csv.append([topic, year, opt, word.strip(), idx])

Write the data to a .csv file for Tableu to consume.

[]: csv_filename_with_path = 'dynamic-nmf-log.csv'
with open(csv_filename_with_path, 'w', newline='') as csv_file:

writer = csv.writer(csv_file, delimiter=';',
quotechar='|', quoting=csv.QUOTE_MINIMAL)

for row in to_csv:
writer.writerow(row)

1

Figure 3.9. Jupyter notebook showing the post-processing step for the DNMF output.

47

4 RESULTS AND ANALYSIS

This chapter is divided into three sections each dedicated to one research question. In
Section 4.1 we discuss the results of the database comparison. Next is Section 4.2
where we review and discuss the results of topic modelling over time using DTM and
DNMF. Finally is Section 4.3 in which we propose a data pipeline to build the automation
of the topic modelling process of Trepo repository upon.

4.1 Comparison between PostgreSQL and MongoDB

Our first research question was What is the best data storing solution for the data set from
the perspective of further consumption? We chose to compare two database manage-
ment systems: one RDBMS and one document store that falls to the category of NoSQL
databases.

The results of the comparison are visible in Figure 4.1. In the figure on x-axis is the
database and the method of execution mapped to colors. The x-axis is divided by the
target field: Array is a list e.g. [”house”, ”house”, ”child”]. JSON is a list of dictionaries
e.g. [{”word”: ”house”, ”count”: 2}, {”word”: ”child”, ”count”: 1}]. On y-axis is the average
time of 5 runs.

When the query was targeted to the Array field the fastest method was PostgreSQL array
functions with an average of 5,5 seconds. By far the worst performer was the MongoDB
map-reduce functionality with the average of 203,9 seconds. This method is visible on
the left in Figure 4.1. On the right in the same figure we can see the results when the
queries are targeted to the JSON field. PostgreSQL has dedicated functions for handling
arrays and json so we only used each dedicated method for the field (column) type it is
meant to be used with. Again the Postgres dedicated functions gave the best result with
an average of 10,3 seconds and the MongoDB map-reduce came last with 233,1 seconds
and a huge gap to others.

In our research are only using the standalone versions of the DBMS’ and we did not ex-
plicitly index any fields. A cluster of database instances and indexed fields might give
different results. MongoDB natively supports sharded clusters to boost performance with
large data sets and high throughput applications [74]. MongoDB map-reduce function-
ality is especially designed for sharded clusters and performs badly with a standalone
instance. PostgreSQL community also has added a support for partitioning tables since
the version 10 [86]. In addition there are many separate forks of Postgres implementing

48

Figure 4.1. Results of the comparison between database systems.

sharding to help with scaling out. PostgreSQL sharding is more recent and it might be so
that MongoDB has more mature an implementation for this.

Also it is notable that while the best results were achieved with PostgreSQL the aggre-
gation pipeline of the MongoDB did well on both query targets. If the application the
database is intended to be used with is not very time critical MongoDB with the aggre-
gation pipeline seems like a valid choice also. That being said if we want to use a single

49

instance database system with out-of-the-box settings in a time critical application for this
type of data, our comparison indicates PostgreSQL to be a better performing option.

4.2 Topic modelling over time

This section focuses on the the third research question we stated as What is the most
suitable algorithmic approach to topic modelling our data set over time? First we mod-
elled topics over the entire data set using LDA and NMF algorithms from scikit-learn [91].
This was done without paying attention to the publication years of the documents, and
is covered in Subsection 4.2.1. The topic modelling over time using DTM [16, 33] is dis-
cussed in Subsection 4.2.2. Then we cover the results of modelling with Dynamic NMF
[34, 43] in Subsection 4.2.3. Finally we compare the results of the two approaches in
Subsection 4.2.4.

4.2.1 Topic modelling with LDA and NMF from sklearn

For the initial testing of Latent Dirichlet Allocation and Non-negative Matrix Factorization
we used the algorithms offered by the sklearn library. We derived 20 topics with each
and the purpose was to see if they give comparable results. Both of the algorithms were
trained by using the default parameters changing only the amount of topics to 20. The
number of topics was chosen by using subjective judgement, it is probably not the best
possible number to describe the data. The main idea behind this number was to use
enough topics to find some clearly separating ones and also to keep the number low
enough for the relatively small data set.

The Jupyter notebook used to derive topics with LDA is found as Appendix C.1 and the
notebook for the NMF model is added as Appendix C.2.

Table 4.1. 20 topics inferred by the sklearn Latent Dirichlet Allocation model

Rank Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

1 cell market network company system

2 coating company distribution process software

3 surface business fault study model

4 tissue strategy text research design

5 sample model operator customer process

Rank Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

1 analysis camera child system game

2 policy concentration family performance video

50

Table 4.1 continued from previous page

3 community algorithm parent network player

4 society ph support sensor medium

5 state oxidation life signal content

Rank Topic 10 Topic 11 Topic 12 Topic 13 Topic 14

1 image power system innovation education

2 method energy cloud organization student

3 gene measurement energy management research

4 cancer system data job teacher

5 protein simulation service music university

Rank Topic 15 Topic 16 Topic 17 Topic 18 Topic 19

1 user health material policy building

2 application patient water language work

3 system care temperature immigrant construction

4 design group structure vietnam plan

5 web woman sample migration site

The top 5 terms for each derived topic are represented in Table 4.1 for LDA and in Table
4.2 for the NMF. We have taken the freedom to remove some general words present in
many topics, such as study and research, by hand to show more character in five terms.
It is clearly visible that both of the algoritmns have inferred information technology and
natural sciences dominant topics. The amount of topics related to fields of technology
or natural sciences is 12 (Topics 0, 2, 4, 6, 8, 9, 10, 11, 12, 15, 17) for LDA and 12
for NMF (Topics 0, 3, 4, 5, 6, 8, 12, 13, 14, 15, 17, 18). Both of the algorithms have
derived some economics related topics (LDA 3, 13; NMF 1, 19), built environment (LDA
19; NMF 10) and some topics related to social sciences and humanistic fields of study.
Still given the size of e.g. the Faculty of Social Sciences with 3000 students and 430
employees [96] we feel they are likely to be underrepresented here. Why do these fields
have underrepresentation then? Maybe the Master’s theses they produce are mainly
written in some other language than English. Maybe the number of topics derived should
be higher to catch those fields better. Or maybe the parameters of the algorithms need
adjustment.

51

Table 4.2. 20 topics inferred by the sklearn Non-negative Matrix Factorization model

Rank Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

1 system customer policy user cell

2 robot business eu experience gene

3 control company discourse interface cancer

4 implementation value state interaction protein

5 automation market country usability prostate

Rank Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

1 service game model material child

2 cloud video simulation property care

3 customer player business surface parent

4 provider industry machine temperature health

5 delivery gamification result coating family

Rank Topic 10 Topic 11 Topic 12 Topic 13 Topic 14

1 building student software power web

2 design education testing voltage iot

3 city teacher project converter technology

4 housing school automation grid platform

5 space university integration frequency sensor

Rank Topic 15 Topic 16 Topic 17 Topic 18 Topic 19

1 image product energy network management

2 algorithm process consumption distribution project

3 learning company electricity lte organization

4 feature manufacturing harvesting fault process

5 classification cost battery traffic risk

When comparing the quality of the derived topics by LDA and NMF we cannot see a clear
difference. None of the topics have strikingly exciting words in top ranks, but we feel the
top words give us some overall understanding on the subject of practically every topic. In

52

fact only from Topic 7 of the NMF model we are unable to get hold of the subject domain.
Then again we feel that in Topic 18 of the NMF model 4.2 we have the only interestinly
specialized word in the whole set of top words of both models: lte. Given the context of
the topic in general this seems to refer to a wireless broadband communication standard
called LTE (Long Term Evolution). Based on this comparison we believe it is worthwhile
to proceed to modelling topics over time with both algorithms.

4.2.2 Dynamic Topic Models

Having the option to utilize the gensim wrapper [39] for the Dynamic Topic Models (DTM)
implementation [33] was a nice feature to have. Gensim made it possible for us to imple-
ment all of our code in Python. The functionality the wrapper api provides was sufficient
for our task. We had to preprocess the data to bend it to the format the wrapper ingests,
which resulted in a 3.8 Mb json file. Deriving 20 topics from our data took 28 minutes and
43 seconds on our research environment which we described earliear in Table 3.3.

DTM produces constant topics meaning that in each time slice the number of topics re-
main the same. As it is a probabilistic model and the topic-term proportions are drawn
from a Dirichlet distribution all the terms are present in all of the topics, only their probabil-
ities change [18]. Also the probabilities for each term change within each topic in different
time slices. We have tried to present the most influential terms for each topic across the
time slices in Table 4.3. This is achieved by summing up the probabilities for each word
within a topic in all of the time slices. The result is very similar to what we saw earlier
when modelling the data set using sklearn’s LDA and NMF algorithms. The topics are
technology and natural science heavy. We believe it is possible to recognize many topics
that are basically identical to those inferred by the sklearn algorithms. There are some
which seem to be showing a different point of view to a subject. For example Topic 8
seems to be labour or workplace related but the perspective it gives with top terms safety,
worker, knowledge, job, report points to occupational safety and health. Also Topic 14
looks like telecommunications related, but the top terms signal, communication, channel,
frequency, receiver possibly point to more abstract concepts than LDA Topic 8 with top
terms system, preformance, network, sensor, signal shown in Table 4.1. These differ-
ences in capturing a tone are small and they may not even exist, but there is a possibility
that DTM yields at least comparable if not better results than sklearn models when used
this way.

Table 4.3. Terms describing the DTM model of 20 topics. Terms are chosen by using the
cumulative probability from all time slices by topic.

Rank Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

1 society gene health cell network

2 discourse protein woman tissue system

53

Table 4.3 continued from previous page

3 identity cell child sample energy

4 conflict mutation age particle production

5 state disease intervention treatment plant

Rank Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

1 patient area software safety policy

2 cancer sensor application worker country

3 eye radio image knowledge EU

4 voice tag design job Finland

5 gaze antenna test report government

Rank Topic 10 Topic 11 Topic 12 Topic 13 Topic 14

1 family education measurement power signal

2 care study surface control communication

3 child school material voltage channel

4 support research temperature output frequency

5 health university layer wind receiver

Rank Topic 15 Topic 16 Topic 17 Topic 18 Topic 19

1 security company user organization community

2 market management application innovation child

3 risk service game accounting group

4 price business device capital participation

5 migration product web stakeholder role

Next let’s take a look at the topic evolution more closely. We surveyed the evolution
of terms inside topics and use line plot visualization implemented with Tableau. The
selected terms shown here are a result of subjectively finding something of interest when
examining the topic evolution. In the figures we have the years on the x-axis. On the y-
axis we have the probability for that term in that topic in the given time slice. It’s important
to notice the scale of the probabilities: it differs from one topic to another and therefore
the figures are not comparable with each other. The terms are chosen so that they have
a relatively strong presence in the topic they are picked to represent here.

54

In Figure 4.2 we have some extracted terms from Topic 0. This topic seems to have some-
thing to do with conflicts, international relationships and maybe also on how societies are
interpreting them. Maybe it is a historical topic or a journalistic one. There are many
possibilities here, but as the terms related to Russia and politics are loosing meaning it
doesn’t seem to be mainly about those subjects; at least not anymore. Because terms
Syria and geopolitic have flat zero probabilities this topic surely doesn’t have anything
to do with geopolitics of the Middle East. All in all this topic seems difficult to interpret
because even the strong terms like conflict reach only 0,01 probability at most.

Figure 4.2. DTM Topic 0 evolution.

From Topic 6 we have picked four terms of interest. The topic seems to have something
to do with hardware for radio waves and frequency ranges. Words representing this topic
include technology, tag, sensor, radio and antenna. Interestingly the significance of the
term radio has constantly decreased as can be seen in Figure 4.3. Radio waves are
widely used in modern technology, so this might not be the reason here. At the same
time the increase of terms RDIF and tag might point to Radio-frequency identification
which are used in biometric passports for example. Also sensor has gained influence
rapidly.

Topic 7 seems to have some interesting terms in it. This topic in general is likely about
developing software. The increase in probability for the terms cloud, robot and machine
seem to point to machine learning, artificial intelligence and cloud computing. The shift
in this topic seems to be towards AI related publications as seen in Figure 4.4.

Even though it is difficult to interpret Topic 9, it seems to be about European Union and
integration policies to some extend. The increase in use of term Vietnam is interesting
and surprising in Figure 4.5. Maybe it has to do with the grown number of Vietnamese
immigrants in Finland in the 2010’s.

Our inferred Topic 13 is about electricity, batteries, power grids. Maybe the increase in
use of battery as visible in Figure 4.6 is related to electric cars? It is curious that the term

55

Figure 4.3. DTM Topic 6 evolution.

Figure 4.4. DTM Topic 7 evolution.

wind has come down even though renewable energy is a hot topic. This can also point
to topic being about something else but energy sources. It should be certain that wind is
referring to a noun, because we only use nouns for topic modelling here, and therefore it
can’t point to winding something as a verb.

What is interesting about Topic 15 is the increase in importance of the term ecosystem,
which can point to presently increased concerns about climate change. This is visualized
in Figure 4.7 This topic in general seems to have something to do with welfare society.

It seems that the evolution of terms inside the topics swifts beautifully but we have not
captured many truly interesting changes in our examples. We did try to find terms with
high variance to reveal interesting points. An example of such a term-variance histogram
is shown in Figure 4.8. The relatively small and imbalanced data set (see Figure 3.1) is
possibly causing problems to find interesting term evolution inside the topics.

56

Figure 4.5. DTM Topic 9 evolution.

Figure 4.6. DTM Topic 13 evolution.

4.2.3 Dynamic NMF

The implementation we used for Dynamic NMF produced a dynamic topic model over all
of the time windows in the data. The top words for the topics are shown in Table 4.4.
Basically the results are very much in line with what we have seen before using other
algorithms and implementations. The topics are again very technology weighted. Not
many things come up as surprises here but we can find a few terms that seem more
specific and interesting. In Topic 2 which seems to be about human biology or medicine
there are terms hydrogel and proliferation present. These terms are perhaps not so
generic as the terms seen in top positions for our topics tend to be. Maybe these terms
shift the topic more towards cellular biology or research related to cancer? In Topic 19
the term mrna looks to be interesting. As the topic seems to be about genetics research
it is likely mrna is short of messenger RNA and fits the topic description well.

57

Figure 4.7. DTM Topic 15 evolution.

The DNMF algorithm also produced ranks for terms at each time window. We have again
chosen terms from different topics and visualized their evolution.

Table 4.4. Terms describing the DNMF model of 20 topics. Terms are chosen from the
overall rank provided by the algorithm.

Rank Topic 0 Topic 1 Topic 2 Topic 3 Topic 4

1 society software cell user company

2 health application gene interface supplier

3 patient test cancer experience customer

4 woman framework hydrogel interaction product

5 questionnaire engineering proliferation usability market

Rank Topic 5 Topic 6 Topic 7 Topic 8 Topic 9

1 power system child sensor building

2 voltage implementation care protocol architecture

3 converter manufacturing health lte city

4 grid automation parent distribution space

5 signal requirement family communication environment

Rank Topic 10 Topic 11 Topic 12 Topic 13 Topic 14

58

Table 4.4 continued from previous page

1 game service material model image

2 player customer property simulation algorithm

3 video quality surface process video

4 experience cloud temperature value classification

5 control web coating characteristic feature

Rank Topic 15 Topic 16 Topic 17 Topic 18 Topic 19

1 education policy energy project protein

2 student state electricity management gene

3 university eu consumption process tissue

4 teacher discourse water organization mrna

5 institution russia efficiency risk mutation

Looking at Topic 1 on Table 4.4 it seems quite clearly to be about software engineering.
From Figure 4.9 we can spot some interesting evolution of terms inside this topic. If we
look at terms Java, JavaScript and Python which all point to programming languages
we can see that only Java has been around in this topic the whole span of years. One
reason for the late emerge of JavaScript could be that there is another topic for web
development, Topic 11 perhaps? JavaScript came to this topic only as recently as in
2015 but has had a high rank since then. For Python the reason for late appearance
might be its use mainly in scripting even though it is well utilized in software engineering
also. Python has increased its importance all the time since showing up in 2011. Looking
at the terms referring to application frameworks we can see that Spring first emerged in
2008 an has climbed in rank since then. Curiously it has come down rapidly since year
2017 which is problematic for our interpretation of this topic’s domain: Spring is nowadays
at the peak of its popularity as a framework to build enterprise applications with. Python
web framework Flask is present in this topic and chosen as another example of software
development frameworks. It emerged in year 2013 and vanished again in 2018. The
timing fits with the timing of Python’s emerge but clearly Flask is not an important word
in this topic. Lastly we take a look at some terms referring to modern technologies.
cloud is present making appearance at the same time as one of the biggest public cloud
providers Amazon. Cloud has actually been very highly ranked a term in recent years.
This is fitting well with current trends of software development. The term Azure refers
to another big public cloud provider but it has solely been in this topic in the year 2019.
The term container points to a package of software that has lately become a standard for
software development and deployment. A container image is a portable software package
containing everything needed to run the application such as code, runtime, system tools,

59

Figure 4.8. DTM Topic 15 variance.

system libraries etc. A model of containerized application is visible as Appendix B.1. In
this topic container appeared in year 2016 but for some reason it has gone up and down
in ranks since. This is also curious behaviour because nowadays containerization is the
de facto industry standard.

Earlier we speculated that Topic 2 was about cellular biology or research related to can-
cer. Now having seen the evolution of some key terms inside this topic in Figure 4.10 it is
more evident that the topic revolves around cancer quite a lot: both prostate and breast
are well ranked. These terms seem likely to refer to two strongly gender dependent types
of cancer that are also common among the human population. The term hydrogel had a
very high rank in the overall term-importance, as seen in Table 4.4. Hydrogels are poly-
mer networks extensively swollen with water [1]. The possible use of them in cancer or
cellular biology related research is completely beyond the scope of this study. What we
find curious is that the term hydrogel seems to be present in this topic only between the
years 2015 and 2017. It is a top ranked term in 2016 and 2017 but its high importance in
the overall ranking is surprising given this brief time span it appears at all.

In the evolution of our Topic 3 we have tried to find some terms that could have been
trending at slightly different years. This topic is visualized in Figure 4.11 and the subject

60

Figure 4.9. DNMF Topic 1 evolution. The words are plotted only for the years in which
they appear in the topic.

Figure 4.10. DNMF Topic 2 evolution. The words are plotted only for the years in which
they appear in the topic.

of this topic seems to be user experience, user interfaces and usability. The terms in-
terface and usability are high in the ranks from the beginning of the 2000s but the term
accessibility emerges only in the year 2011. This seems to be indicating that accessibility
in the user interfaces has gained importance only lately and has then been climbing in
rank until today. Screen reader programs have been around for quite a long time but per-
haps the late emergence of accessibility refers here to some more recent technologies
like Optical Character Recognition (OCR). Or maybe it refers to late realizations in web
development of e.g. the importance of actually including a descriptive alt attribute to an
 tag in a HTML page.

We also wanted to see if the terms smartphone and touchscreen appear later than the

61

term phone and this was true. Regarding the different operating systems we chose to see
how terms Windows and Linux compare. There was nothing really interesting there but
some oddity in the late appearance of both of the terms. More interestingly we wanted to
see the evolution of operating systems designed for mobile devices and chose to see An-
droid and Symbian. As expected Android emerged later and is quite highly ranked today.
At first glance Symbian seems to be peculiarly appearing between the years 2008 and
2012. This feels out of the place because Nokia used it extensively with their S60 user
interface already in the early 2000s. Perhaps this topic can’t reach the use of Symbian in
those days for some reason. In the end the timeline seen here with the evolution of Sym-
bian emerging in 2008 and then disappearing as Android occupies the space since 2012
fits quite well with what has happened. In year 2008 Nokia purchases the Symbian Ltd
and then published the Symbian 3 OS in year 2010. Then in year 2011 Nokia announced
a partnership with Microsoft and plans to use Windows Phone as their main mobile oper-
ating system hence. Already in the end of the year 2010 Android had overtaken Symbian
as the most popular mobile OS. So by the year 2012 Symbian had become obsolete in a
sense and the plotted lines in Figure 4.11 are able to capture this. As an extra we have
chosen the term Nokia to see how it plays with the evolution of Symbian inside this topic.
It might be fitting the time line being hyped in the year 2010. Still it is unclear and unset-
tling even why Nokia is not appearing in the 2000s at all. For some reason this particular
topic is not able to capture Nokia’s importance in the end of their golden years.

Figure 4.11. DNMF Topic 3 evolution. The words are plotted only for the years in which
they appear in the topic.

The reason why we have chosen to visualize some terms from Topic 8 in Figure 4.12 is
the year the timeline for this topic begins. Topic 8 emerges as a topic in the year 2005

62

with top term being architecture. The top term of this topic overall is sensor and that term
has its first appearance in the year 2010 in the scope of this topic as is seen in the figure.
Even though we did choose to infer 20 topics overall the DNMF algorithm behaves so that
not all of those 20 topics exist in all of the time windows the data covers. The other terms
plotted here are ber and lte which seems to point to Bit Error Rate (BER) and Long Term
Evolution (LTE) in this order. Both of which along with the term sensor are revealing the
domain of this topic to be somewhere near communication technologies.

Figure 4.12. DNMF Topic 8 evolution. The words are plotted only for the years in which
they appear in the topic.

Here is some interesting evolution in Topic 14 visualized in Figure 4.13. This topic seems
to consist of publications in the fields of signal processing and pattern matching algo-
rithms. The term image is very important to this topic ever since the year 2002. The term
classification is also important but appeared only in the year 2011. Another term related
to classification is machine. It could have non-machine-learning related meanings inside
this topic also but because we have not included bigrams to our model we are not able
to tell the difference. Given what the topic seems to be about it seems fairly safe to say it
mostly refers to machine learning at least in the recent years. It also is a top ranked term
since the year 2016. Lastly we have highlighted the term cnn which is likely to be an ab-
breviation of convolutional neural network. We discussed neural networks in Subsection
2.2.1 Deep learning for NLP and a CNN is branch of deep neural networks. It fits here
well since a common application of CNN is analyzing visual imagery. It seems that deep
learning has strongly affected this topic since the year 2017.

Terms representing the Window Topic
WT 1 tool process information BI visualization metric

WT 2 investment cost manufacturing location production transportation

WT 3 customer startup market sale delivery branding

Table 4.5. Combination of window topics that form a dynamic topic in a time window
representing the year 2015.

63

Figure 4.13. DNMF Topic 14 evolution. The words are plotted only for the years in which
they appear in the topic.

Having plotted selected terms from a few topics we have discovered interesting and also
curious behaviour. Finding an explanation to e.g. unexpected complete disappearances
of terms inside a topic evolution is a subject for further study. The DNMF algorithm has a
property of being able to capture a dynamic topic, at some given time window, consisting
of several merged window topics. Using a Sankey diagram it might be possible to capture
the flow of window topics merging and demerging inside a dynamic topic. In Table 4.5 we
have illustrated our model’s take on Dynamic Topic 4 at the time window pointing to the
year 2015. The dynamic topic is consisting of many merged window topics. According to
Table 4.4 the most influential terms for Topic 4 are company, supplier, customer, product,
market and the domain of the topic derived from there seems to be business studies.
Looking at Table 4.5 Window Topic 1 (WT1) consists of terms that relate to collecting,
measuring and analysing the business data. The term BI in the WT1 is an abbreviation
of business intelligence. The WT2 seems to have the viewpoint of manufacturing products
at as low a cost as possible. The WT3 comes in from the angle of marketing and selling
the products. This combination makes sense and it is also extremely interesting to see
that the DNMF model has been able to capture these 3 different perspectives coming
from 3 separate window topics. It is notable that most of the time the dynamic topics
consist of only one time window topic at the time. Having a combination of 3 window
topics is quite rare in our data. In this case it perhaps indicates that the year 2015 was
relatively business heavy in the issued scientific publications.

The DNMF algorithm’s implementation has an added feature of inferring a suggestion for
the best number of topics for the data [34]. We explored that feature and illustrate the
results on Table 4.6. As parameters we gave the algorithm a lower limit of 5 topics and an
upper limit of 25 topics. Basically all of the recommended numbers for window topics are
well inside those limits. As we can see from the table the years 2000-2010 have generally
lower recommended numbers of topics than the years 2011-2020. This is the result of
the number of publications-by-year having increased significantly in the data set as we

64

Year 1st 2nd 3rd

2000 8 10 9

2001 9 8 7

2002 7 6 8

2003 7 10 9

2004 13 12 8

2005 23 5 22

2006 5 6 7

2007 5 25 6

2008 9 8 7

2009 10 12 16

2010 6 9 17

2011 23 20 18

2012 25 23 24

2013 19 22 21

2014 23 21 22

2015 24 23 22

2016 20 22 18

2017 23 22 21

2018 18 19 25

2019 22 21 18

2020 15 17 21

Dynamic 24 23 25

Table 4.6. Top 3 suggestions for topic number by year given by the automatic recom-
mending feature. The recommendation for the number of dynamic topics is at the end of
the table.

showed in Table 3.1. When we look at the suggestions for the number of dynamic topics
in the end of Table 4.6 we interestingly see that the recommendations are 24, 23 and 25 in
that order. This tells us that the automatic topic recommendation feature suggests clearly
higher number of topics we have used in our research. Another take away here is that
the the term evolution inside the topics might suffer greatly from the topic number being
chosen very poorly for some time slices. Our corpus is highly imbalanced with respect
to documents belonging to each time slice and it is difficult to find one topic number that
suits all the time slices. The same problem can affect the DTM algorithm as well.

4.2.4 Algorithm comparison

Let’s start by comparing the training speed of the algorithms. As we trained the models
we also measured the time consumption of the training. You can see from Table 4.7 that
Dynamic NMF is significantly faster than DTM. For DTM the average of three training runs

65

was 28 minutes and 43 seconds (1722.93 s) and for DNMF 5 minutes and 27 seconds
(327.13 s). It is evident this big a difference is an important factor in favor of DNMF.
As the corpus consists of a little over 3000 documents and we are using only nouns
from the abstracts, the size of the data set is very modest. When having a corpus of
thousandfold in size, choosing to use all the words and bigrams or full text content will
have an impact on the model creation speeds. It seems that at least in the case of DTM
an interactive web app implementing on-demand training with tolerable waiting time is
difficult to achieve. Parallelizing the training might reduce the time consumption and be
possible to implement. After all the time slices are separate and thus could be processed
at least partly concurrently.

Run DTM Dynamic NMF

1st 1711.45 s 326.63 s

2nd 1766.05 s 327.53 s

3rd 1691.28 s 327.25 s

Average 1722.93 s 327.13 s

Table 4.7. Time consumption of training the DTM and DNMF models. Times for three
separate runs and their average.

When comparing the implementations for the two algorithms we feel that the DNMF imple-
mentation [34] is more versatile than the DTM implementation [33]. The reasons behind
this conclusion include the fact that DNMF is capable of inferring merging and separat-
ing window topics inside the dynamic topics. With further study this feature could prove
beneficial as our demonstration in Table 4.5 hints. Another indication of better versatility
comes with the automatic recommendation feature for the number of topics. Both of these
features can be engineered into DTM but with DNMF they come out of the box. With the
DTM implementation we had to calculate the overall ranks for the terms by ourselves
while this feature is built-in to the DNMF implementation. We are speaking of the ranks
over all time slices (time windows) here.

On the other hand DTM has the gensim wrapper implemented and that gives us a stan-
dardised gensim interface to work with. The algorithm itself is still implemented with C++
making it significantly faster than a pure Python implementation would be. The DNMF im-
plementation is purely Python which is bound to be slower because it is interpreted rather
than compiled. In our case the data set was so small that the speed of the implementa-
tion was not a factor. Also there is a good possibility that because DNMF uses only linear
algebra for computations it can compete in speed with DTM even when implemented in
a slower language. Being purely implemented in Python the DNMF is easy to include in
a larger Python software body. You don’t have a need to install C++ dependencies and
everything can be handled with a Python package installer such as pip.

The programming interface of the DNMF implementation is less standardised compared
to the gensim wrapper for DTM but the source code is licensed under the Apache 2.0

66

[34] and thus any modifications are allowed [3]. Speaking of the licensing the original
implementation of DTM in C++ is released under the GNU GPL v2.0 [33] which allows
for modification [42]. The gensim wrapper is licensed under the GNU LGPL v2.1 [39] so
that could be modified too as long as you disclose the source code of those modifications
[68]. Licensing is not a decisive factor between the algorithms.

The fact that the DTM algorithm outputs probabilities while DNMF ouputs ranks plays in
favor of DTM in our opinion. This is mainly because the probabilities incorporate more
possibilities for interpreting the importance of words in topics and topics in corpus. From
DTM we can often tell if the topic is full of noise without any strong terms that really define
it. The ranks given by DNMF are discrete and bound to linearity and because of that the
output of the algorithm doesn’t have the same expression power as the output of DTM
has. As an example let’s say we have an arbitrary topic with four top words summer,
winter, spring, autumn. DNMF then gives us overall ranks: 1. summer, 2. winter, 3.
spring and 4. autumn. From this we could interpret that the topic is about seasons
because we don’t know how big a difference there is between the terms. But if the DTM
gives us probabilities: summer 0.87, winter 0.05, spring 0.04, autumn 0.04. From this we
can infer that the topic is not really about seasons but about summer.

Let’s compare the the evolution for some terms in DTM and DNMF. Above in Figure 4.14
we have the evolution of terms Android, JavaFX, JavaScript, Unity within Topic 17 from
DTM. This topic seems to be about web development and game development. Below in
the same figure we have the terms Android, JavaScript, Unity from the DNMF Topic 10.
That topic looks to be about video games. These topics are not completely comparable
but the closest we were able to find. First if you look at the x-axis on both figures you can
see that with the DTM it begins from the first year present in the data set as it does in
all cases. The topics exist constantly throughout the time span present in the data and
if a word is not present in a topic in some time slice the probability for that term is 0 in
the time slice. In the case of NMF the x-axis begins from the year 2012. This is the first
year the word Android appears in the topic. It could indicate that the topic appears in the
year 2012 also but that’s not the case here as Topic 10 first emerged in year 2010. In any
case the possible emergence and disappearance of topics makes it more complicated to
follow their evolution compared to the DTM topic evolution. In our opinion this is a clearly
an advantage for DTM when wanting to keep things relatively simple. You can also see
that the lines with DTM evolve smoother and the minimums and maximums are quite flat.
In the case of NMF the local minimums and maximums are sharp very often. Both of the
trends are repeating in our data. One reason for this is that the probabilities might evolve
in slower rate than the ranks. Another reason is that between the first appearance and
the last appearance of a term in a DNMF topic the term can disappear completely only to
emerge again later. If a term is non-existent in some time window we don’t have a rank
for it at all at that moment. The upside for this is that there is a possibility to detect an
important point in time for a term by looking at the moment it emerges the first time. For
example in the case of Unity the probability within Topic 17 of DTM stays quite constant.
If the term truly refers to the game engine, which we can’t verify, this doesn’t really tell

67

Figure 4.14. Comparison 1 between evolution of similar words. Above DTM Topic 17 and
below DNMF Topic 10. For DNMF the words are plotted only for the years in which they
appear in the topic.

us anything useful. On the other hand the appearance within Topic 10 of DNMF happens
in the year 2014. Unity was first launched in 2005 but 2013 was important as Facebook
then integrated an SDK for games using the Unity. Also 2015 was important as Unity 5
was released and that is the global maximum for the term in our plot. This is something
DNMF possibly has captured but DTM defenitely has not.

Another comparison is between software development and programming related terms
Java, Python, Amazon, container. In Figure 4.15 we have DTM Topic 7 plotted above
and DNMF Topic 2 plotted below. As you can see the term Java is present in both
models from the year 2000 and has decreased in importance. The other terms here
behave quite differently. As the lines are basically flat within the DTM topic for Python,
Amazon and container they have a large variance within the DNMF topic. We feel that
the late appearance of all the three terms in DNMF actually reflect the real world events
quite well since Python has become substantially more significant in the 2010s through
the extensive use in data science. Also the public cloud technologies and container
technologies are nowadays at the top of the heap in software industry. This behaviour

68

Figure 4.15. Comparison 2 between evolution of similar words. Above DTM Topic 7 and
below DNMF Topic 2. For DNMF the words are plotted only for the years in which they
appear in the topic.

is quite repeating in our data: the DTM curves tend to be flatter, smoother and more
stable. This is not the case always as we have seen in Figures 4.3 and 4.6 where there
is significant variance present with some terms. One possible reason for the repeating
behaviour of flat curves is that the data set of 4018 abstracts we used is not big enough
to capture interesting change with the DTM algorithm. Another possible reason are the
clear imbalances of the data set. There are not enough publications from the 2000s to
get a good result from those years. This distribution of publications by year was shown
in Figure 3.1. Also there exists another imbalance which relates to the fields of study the
data comes from. As we have seen in Figures 4.1, 4.2, 4.3 and 4.4 most of the topics
are technology or hard-science related. This seems to indicate there are not enough
publications from other fields of study to manifest as separate topics with the chosen
topic number.

It’s important to point out that we have not tried to find the best parameters for the al-
gorithms but have mostly remained with the defaults. There definitely might be room for
improvement by fine-tuning the parameters. Our research focused on a complete data

69

pipeline and parameter tuning was deliberately left out of the scope. The preprocessing
steps we took possibly fit one algorithm better than the other.

4.3 Proposition for a pipeline

Thus far we have covered quite a few stages that represent pipeline components.

1. Collecting metadata from Trepo repository.

2. Storing the acquired metadata to a database

3. Acquiring full text content

4. Natural Language Processing

5. Topic modelling over time

6. Visualization

By using well informed decision making to select the correct component at each stage to
assembly the pipeline, we are revealing the answer to our main goal: What is the optimal
pipeline leading from the original data in Trepo repository to modelling topics over time?

We have illustrated the pipeline in Figure 4.16. All of the components from 1 to 6 accom-
panied by a number reference to the enumeration above. The black arrows represent
data flows. Some of the arrows are two-headed meaning in practice that after the data
has being pushed to a pipeline component the output is fetched and stored back to the
database. Our pipeline consists of separate steps that can be combined to produce the
input for a visualization tool of choice. The pipeline can be automated and scheduled to
run periodically with relatively small effort.

To achieve an automated run a controller can be built to orchestrate the sequential data
processing stages. It could make sense to build the system so that the controller software
is the only piece of software acting with the database in steps 1 to 5. The controller pulls
and pushes the data between the database and the pipeline components and takes care
of the correct timing for the pipeline steps. Thus the pipeline components are not aware
of being a part of the Pipeline. Their sole purpose is to get an input and produce an
output. In the pipeline illustration the controller is also pictured bolted to the side of the
database. We have not implemented a controller in the scope of the study. The controller
can be scheduled to run e.g. as a cron job. Earlier in the study we already used Docker
and it could be a nice fit here also. A cron job that spins up Docker containers for the
duration of running the pipeline.

The only other part of the pipeline communicating directly with the database besides the
controller is the step 6 (visualization). This is a natural choice because the modern BI
tools have a wide support for connecting with database systems. If the decision is to
build a web application instead it is a separate software development project altogether
consisting of proper back end and front end solutions. The back end can then very well
access the database on it’s own having read only rights. This brings us to a debate of

70

whether or not the step 6 should be included in the pipeline at all. We decided to include
it to be able to demonstrate an end-to-end solution.

1. Collecting metadata from Trepo repository The second research question was
What is the optimal way to extract data from Trepo? The research indicates it is by
using the provided The Open Archives Initiative Protocol for Metadata Harvesting (OAI-
PMH) service. To begin with we had identified two possible ways for consuming the data
source: by harvesting the OAI-PMH service and by scraping the Trepo web site. By
taking advantage of e.g. the sickle Python package with OAI-PMH you can collect all
the metadata between dates given as parameters to the harvester as was seen in Listing
1. When wanting to harvest only the fresh publications from Trepo it’s easy to fetch the
last date already obtained from the database and continue from there. You need one call
to the resource to get an iterator of all the metadata records to work with. Meanwhile
by scraping the web site it is much more difficult to fetch records between certain dates.
Utilizing web scraping you will have to fetch another html page for each publication to get
to its metadata and then find the correct tags within the page. On the other hand while
using the OAI-PMH service you only need one call to the resource to fetch the metadata
for the entire corpus. This plays greatly to the advantage of OAI-PMH since the number
of calls to external services should generally be minimized. Also the OAI-PMH service
is less likely to change than the web page structure so your code will work with higher
probability in the future. We recommend using the OAI-PMH but one thing to consider
then is the metadata XML schema, as some of the schema formats provided don’t include
links to full text content and might lack some other fields too. The Metadata Encoding and
Transmission Standard (METS) format seemed to work well for our research having all
the relevant fields present. You could consider implementing a web scraper to back up the
OAI-PMH harvester. A combination could work so that if some of the important metadata
fields are not available in XML you can try to get them through the Trepo web site then.

2. Storing the acquired metadata to a database The first research question was What
is the best data storing solution for the data set from the perspective of further consump-
tion?. Our answer to this question is PostreSQL. Because the amount of publications in
Trepo was 43401 at the moment we collected the data it is manageable without parallel
computing clusters and distributed data storage. As there was 4000 new publications in
year 2019 as shown in Figure 3.1 this will be the case in the near future also. Thus we
decided to compare standalone versions of PostreSQL and MongoDB as our database
candidates. Both systems are scalable to a sharded cluster if need be and both work well
for this type of a data set. The test results are visible in Figure 4.1 and we found that
Postgres performed better in our test setup. In addition to storing the raw metadata from
Trepo to it right after it’s been collected, we also separately preserve the output of each
of the following steps to the database which is implied in Figure 4.16 too.

3. Acquiring full text content If you want to use full text content instead of only ab-
stracts for topic modelling you will need to download them separately. Even when using

71

only the abstracts this could be beneficial. Especially older publications don’t often have
an abstract included in the metadata but you could extract it from the publication itself.
Some publication metadata include a link to the full text context as a plain text file. Some
only include a link to a PDF file. If the link is not available but the access level of the
publication is openAccess (see metadata fields in Table 3.2) this is a case where you
could use a web scraper as a backup to try getting a download link from the web site. If
the provided link points to a text file it is simple to download it, read the contents and then
store as text to Postgres. In the case of a PDF file we need to extract the text content
using Apache Tika setup we described in Section 3.4. This setup worked well but took
some time: we successfully extracted text from 30459 PDF files and it took 6 hours 25
minutes. In most of the cases where Tika failed to extract text our backup setup consisting
of pdf2image, PIL and Python-tesseract also failed - so it mostly was not worth the while
to utilize the backup. We also recommend storing the PDF files to the database along
with the extracted text content because they contain other useful data such as images.

4. Natural Language Processing Whether you plan to use the full texts or the ab-
stracts it helps with topic modelling to enrich and normalize the data by applying some
Natural Language Processing (NLP) techniques on it beforehand. We utilize deep learn-
ing from spaCy neural pipeline to lemmatize and POS tag the corpus. This will reduce
dimensionality and help the machine learning models to yield better results. You could
also perform morphological tagging or dependency parsing to extract noun phrases. Af-
ter the preprocessing we store the enriched data to a new relation in the PostgreSQL. In
Figure 3.3 such a table is shown along with another table holding the metadata informa-
tion.

5. Topic modelling over time The third research question we had was What is the
most suitable algorithmic approach to topic modelling our data set over time? We com-
pared two different algorithms here: DTM and Dynamic NMF. When the preprocessed
texts are available we first create vector representations of the documents and train the
models to track topic evolution. We can then save the models to the database by serializ-
ing them to JSON form. If you additionally want to serialize the TF or TF-IDF vectorizers
you can save some space by using the techniques shown Appendix 13. Which algorithm
to prefer then? Quality wise we were not able to find a decisive answer in the scope of
this Master’s thesis. The DNMF implementation was significantly faster to train and has
more built-in features. Based on those we recommend it over the DTM implementation.
A good option might be to build a system featuring both algorithms, and letting the end
user then choose which one to use with the current data set. Both of the algorithms
have quite nice printing functions bolted for outputting the topic evolution related data.
Some post-processing is needed to get the data to a nice format for further use. After the
post-processing step we once again insert the information obtained into the database.

6. Visualization The last part of our pipeline is the visualization of the results. We have
used Tableau to achieve this and tracked the evolution of individual terms inside topics.

72

You could also visualize by tracking the change in top terms for each topic. Another way
to visualize could be by tracking the evolution of topic importance inside the corpus: how
many documents belong to each topic at each time slice etc. There are many possibilities
here that we haven’t explored. A good option for visualization is an interactive dashboard.
We have our topic modelling results in the database and it can be consumed from there
by a BI tool or a web app to build the dashboard with.

Finally here below, as an answer to the main research question, is the illustration of the
proposition for an ideal pipeline (Figure 4.16).

PostgreSQL

Apache Tika

trepo.tuni.fi

Trepo Repository

OAI-PMH

1

2

Metadata
Harvester

Full Text Content

3

Topic Modelling
Over Time

6

NLP with spaCy
4

5

Visualization

BI Tool Web App

Controller

Figure 4.16. The proposed data pipeline.

73

5 CONCLUSIONS

Everyone loves a good story. There are numerous inspiring quotes about stories by
intellectual giants throughout history. One such comes from the American poet Maya
Angelou: ”There is no greater agony than bearing an untold story inside you” [2]. A
collection of scientific publications from a university is not capable of feeling agony but
there are untold stories there certainly. This study went after those stories: the evolution
of hidden topics over time within the scientific papers.

We propose a complete data pipeline from metadata repository to visualizing the topic
modelling results. The data source for the research is Trepo, the scientific publication
repository of Tampere Universities. The data set consists of the English-language ab-
stracts of the Master’s thesis level publications between years 2000-2020. The research
concentrates on finding an optimal pipeline leading from Trepo to modelling latent top-
ics in the publications over time. We studied separate stages including data ingestion,
preprocessing steps, data persisting and topic modelling. These components eventually
compose the final pipeline. The resulting composition is shown in Figure 4.16.

Even though discovering a pipeline was the main goal, we had three research questions
the optimal pipeline is then built upon. Some of the findings regarding these questions
are the most intriguing output of this study. The thesis compared two methods of mod-
elling topics over time: Dynamic Topic Models (DTM) and Dynamic Non-negative Matrix
Factorization (DNMF). Our research findings indicate DNMF to be the recommended al-
gorithm. The recommendation is based on the model training speed and versatility of the
algorithm implementation. The research could not find a clear recommendation based on
the quality of the topics produced by the algorithms.

The topics discovered by DNMF and DTM were very similar overall. We were also able to
identify the topics as well for both algorithms. An interesting finding was that among the
topics technical themes were strongly emphasized. This can be a symptom of the data
set originating mostly from Tampere University of Technology. It also indicates that the
algorithms have trouble handling a corpus which is imbalanced in regard of the number
of documents coming from different fields of study. The latent topics seem to strongly
arise from the dominant fields and the minority fields among the collection are shadowed
by the majority fields. Thus to efficiently take advantage of the algorithms it is beneficial
build a balanced corpus in regard of the fields of study it consists of. One way to achieve
this is to construct a corpus separately for each field. As we compared the topic qualities
for the algorithms we tracked the evolution of individual terms inside a topic. We tried to

74

identify evolution reflecting the events that happened in the real world at the given time.
We were able to see terms reflecting the current happenings, trends and technological
advancements to some extend. Still we were not able to make a clear difference in
the quality in which the two algorithms reflect the real world events. Our corpus was
imbalanced in terms of the number of documents belonging to each observed time slice.
This could disturb the term evolution but it should be disturbing both algorithms then. For
these reasons our research concludes that quality wise either algorithm is applicable but
both have issues that need further attention and follow-up research.

While DNMF was considerably faster to train it still took minutes to build a model on
our data set. This means interactive applications where a new model is trained on the
selected data on-demand and the training result is expected to be in use while-you-wait
in comfortable time is difficult to achieve. Because the training process is time consuming
we suggest training the models as scheduled batch jobs in our the pipeline. The data set
we used was relatively small and training a significantly larger data set might still increase
the training time greatly. The possible impact of the increased data set size is mitigated
by running the training as a scheduled job in any case. As we recommend batch training
the significance of training time diminishes and as the quality of the topics the algorithms
produce is comparable, you could also train both models and let the end user decide
which one to use.

To find out the best alternative for storing the data topic models will consume and the
models themselves, we compared MongoDB and PostgreSQL. We concentrated on ag-
gregate queries and in our research environment PostgreSQL performed better. Our
recommendation is Postgres but MongoDB performance was good also except for its
map-reduce functionality. The extremely poor performance of MongoDB map-reduce is
an interesting finding. Another interesting finding is that the JSON functions of Post-
greSQL did perform faster than MongoDB even though Postgres is a relational database
to begin with and MongoDB is a document store especially designed to work with data
in JSON format. We conclude that, based on our results, when building a real world ap-
plication you can safely use either one of the database systems as the data back-end.
If you already have data in MongoDB there is no reason to move it to Postgres. That
being said, based on our findings it’s difficult to see a reason to choose MongoDB as a
persistence layer for a new system.

As for ingesting the metadata from Trepo to the topic modelling pipeline we learnt that
using the provided OAI-PMH service is the cleanest and most effective method. The
compared method was web scraping the Trepo site. We couldn’t find any reason to make
use of web scraping in stead of the OAI-PMH service. Yet it is important to pick well the
XML schema from the ones the OAI-PMH service offers. Some schemata seemed to lack
fields such as the download link to the publication’s full text content, but this finding is true
in the Trepo context only.

We have identified many interesting paths to continue the research with. Instead of devel-
oping the pipeline as a whole these paths begin from the individual components studied in

75

this thesis. Looking at the results of the DBMS comparison it is evident that PostgreSQL
can be used as a document store in addition to using it as a relational database. Its JSON
functions are efficient and Postgres offers a possibility of organizing part of the data in
traditional relations and part of the data in JSON fields without a need to preprocess or
normalize it. The results we had evoke a question: is there a reason to ever choose
MongoDB over PostgreSQL? Is Postgres as user friendly as MongoDB when utilized as
a document store? How does its memory consumption compare to that of a dedicated
document database? This study compared standalone versions of the databases. Maybe
a sharded cluster would yield more favorable results for MongoDB and especially for its
map-reduce functionality. Our research focused on the output speed of aggregate queries
and there might be other factors to consider more important in some particular use cases.

In the topic modelling algorithm comparison the model training was time consuming for
both of the algorithms. It might be possible to parallelize parts of the training to reduce the
time consumption. In the case of DTM it’s hard to see enough improvement happening to
make it possible to e.g. train new models interactively in a web app and get the resulting
model in a reasonable time to immediately play with. For DNMF this could be achievable,
depending on the time an average end user is willing to wait. Besides parallelism an
interesting follow-up subject would be to study how the data set size correlates with the
training time with each algorithm.

When we studied the quality of the topic modelling results we had trouble finding clear
evidence in favor of either one of the algorithms. We trained the models using only nouns
and mostly default parameters. Parameter tuning and using other parts of speech along
with nouns might have an influence on topic qualities. One parameter is the number
of topics. Choosing different amounts of topics to infer could reveal new insights. In
addition it might be able to counter the bias the corpus had in the study field distribution it
consists of. Our data set was skewed in regard of the amount of documents per year also.
Would having a more evenly distributed data set generate different results on quality?
Our perspective for the topic evolution quality was surveying the evolution of terms inside
topics. There are other possible perspectives such as the evolution of topic proportions
inside the documents over time. These are possible subjects for further research. In
addition there is an interesting follow-up possibility in the preprocessing and NLP part
of the pipeline. We performed the lemmatizing and POS tagging with spaCy. The data
source for this research is a Finnish university and many of the publications it produces
are written in Finnish. As spaCy doesn’t have support for Finnish language yet, the
inclusion of those publications would require studying the available options.

The pipeline we present can be used to build an automated backbone for a real world
topic modelling application having Trepo or some other repository as the data source.
The stages make the pipeline modular, individual components can be replaced without
touching others. The pipeline can be used as a design for building a similar application
by using the public cloud providers’ offerings. For instance Azure Data Factory is suitable
for implementing the pipeline components.

76

Results we had on individual stages can be used in other contexts as well. Almost any ap-
plication has a persistence layer and our results indicate that PostgreSQL could be used
as a pure document store even more efficiently than a dedicated document database.
The findings from the comparison of the over-time topic modelling algorithms can be uti-
lized in any application of the subject. If you dig deeper into this thesis you might find
interesting insights from the NLP tasks and other preprocessing steps we applied on the
data along the pipeline. If we are very lucky this work gives someone an inspiration to
start exploring the ample domains of Natural Language Processing and Topic Modelling.

77

REFERENCES

[1] Ahmed, E. M. Hydrogel: Preparation, characterization, and applications: A review.
Journal of advanced research 6.2 (2015), 105–121.

[2] Angelou, M. I Know why the Caged Bird Sings. A Bantam Trade Paperback. Ban-
tam Books, 1997. ISBN: 9780553380019. URL: https : / / books . google . fi /

books?id=8Gz7dDRzqPkC.
[3] Apache-2.0. May 27, 2020. URL: https://www.apache.org/licenses/LICENSE-

2.0 (visited on 05/27/2020).
[4] Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., Wu, Y. and Zhu,

M. A practical algorithm for topic modeling with provable guarantees. International
Conference on Machine Learning. 2013, 280–288.

[5] Arora, S., Ge, R. and Moitra, A. Learning topic models–going beyond SVD. 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science. IEEE. 2012,
1–10.

[6] Azure docs. Aug. 25, 2020. URL: https://docs.microsoft.com/en-us/azure
(visited on 08/25/2020).

[7] Beaulieu, A. Learning SQL, 3rd Edition. O’Reilly Media, 2020. ISBN: 9781492057611.
URL: https://learning.oreilly.com/library/view/learning- sql- 3rd/
9781492057604/.

[8] Bengio, Y., Courville, A. and Vincent, P. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35.8 (2013), 1798–1828.

[9] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D. and Bengio, Y. Theano: a CPU and GPU math ex-
pression compiler. Proceedings of the Python for scientific computing conference
(SciPy). Vol. 4. 3. Austin, TX. 2010.

[10] Berne, O., Joblin, C., Deville, Y., Smith, J., Rapacioli, M., Bernard, J., Thomas,
J., Reach, W. and Abergel, A. Analysis of the emission of very small dust par-
ticles from Spitzer spectro-imagery data using blind signal separation methods.
Astronomy & Astrophysics 469.2 (2007), 575–586.

[11] Berry, M. W. and Browne, M. Email surveillance using non-negative matrix fac-
torization. Computational & Mathematical Organization Theory 11.3 (2005), 249–
264.

[12] Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P. and Plemmons, R. J. Al-
gorithms and applications for approximate nonnegative matrix factorization. Com-
putational statistics & data analysis 52.1 (2007), 155–173.

https://books.google.fi/books?id=8Gz7dDRzqPkC
https://books.google.fi/books?id=8Gz7dDRzqPkC
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://docs.microsoft.com/en-us/azure
https://learning.oreilly.com/library/view/learning-sql-3rd/9781492057604/
https://learning.oreilly.com/library/view/learning-sql-3rd/9781492057604/

78

[13] Bhardwaj, A., Di, W. and Wei, J. Deep Learning Essentials: Your hands-on guide to
the fundamentals of deep learning and neural network modeling. Packt Publishing
Ltd, 2018.

[14] Blanton, M. R. and Roweis, S. K-corrections and filter transformations in the ultra-
violet, optical, and near-infrared. The Astronomical Journal 133.2 (2007), 734.

[15] Blei, D. M. Probabilistic topic models. Communications of the ACM 55.4 (2012),
77–84.

[16] Blei, D. M. and Lafferty, J. D. Dynamic topic models. Proceedings of the 23rd
international conference on Machine learning. 2006, 113–120.

[17] Blei, D. M. and Lafferty, J. D. Topic models. Text mining. Chapman and Hall/CRC,
2009, 101–124.

[18] Blei, D. M., Ng, A. Y. and Jordan, M. I. Latent dirichlet allocation. Journal of ma-
chine Learning research 3.Jan (2003), 993–1022.

[19] Bonaccorso, G. Mastering Machine Learning Algorithms. Packt Publishing Ltd,
2018.

[20] Brill, E. A simple rule-based part of speech tagger. Proceedings of the third con-
ference on Applied natural language processing. Association for Computational
Linguistics. 1992, 152–155.

[21] Buneman, P. Semistructured Data. Proceedings of the Sixteenth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’97.
Tucson, Arizona, USA: Association for Computing Machinery, 1997, 117–121.
ISBN: 0897919106. DOI: 10 . 1145 / 263661 . 263675. URL: https : / / doi . org /

10.1145/263661.263675.
[22] Cambridge Dictionary. Jan. 2020. URL: https://dictionary.cambridge.org

(visited on 01/13/2020).
[23] Cambridge Dictionary Grammar. Feb. 2020. URL: https://dictionary.cambridge.

org/grammar/british-grammar/ (visited on 02/09/2020).
[24] Chen, Y., Zhang, H., Liu, R., Ye, Z. and Lin, J. Experimental explorations on short

text topic mining between LDA and NMF based Schemes. eng. Knowledge-Based
Systems 163 (2019), 1–13. ISSN: 0950-7051.

[25] Choi, J. D., Tetreault, J. and Stent, A. It depends: Dependency parser comparison
using a web-based evaluation tool. Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers). 2015, 387–
396.

[26] Chung, M. T., Quang-Hung, N., Nguyen, M.-T. and Thoai, N. Using docker in high
performance computing applications. 2016 IEEE Sixth International Conference
on Communications and Electronics (ICCE). IEEE. 2016, 52–57.

[27] Citus Community official. Jan. 2020. URL: https://www.citusdata.com/product/
community (visited on 01/24/2020).

[28] Codd, E. F. A Relational Model of Data for Large Shared Data Banks. Software
Pioneers: Contributions to Software Engineering. Ed. by M. Broy and E. Denert.

https://doi.org/10.1145/263661.263675
https://doi.org/10.1145/263661.263675
https://doi.org/10.1145/263661.263675
https://dictionary.cambridge.org
https://dictionary.cambridge.org/grammar/british-grammar/
https://dictionary.cambridge.org/grammar/british-grammar/
https://www.citusdata.com/product/community
https://www.citusdata.com/product/community

79

Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, 263–294. ISBN: 978-3-642-
59412-0. DOI: 10.1007/978-3-642-59412-0_16. URL: https://doi.org/10.
1007/978-3-642-59412-0_16.

[29] DB-Engines. Feb. 2020. URL: https://db- engines.com/en/ranking_trend
(visited on 02/04/2020).

[30] Deckler, G. Learn Power BI: A beginner’s guide to developing interactive business
intelligence solutions using Microsoft Power BI. Packt Publishing, 2019. ISBN:
9781838646653. URL: https://books.google.fi/books?id=Z-mvDwAAQBAJ.

[31] Devarajan, K. Nonnegative matrix factorization: an analytical and interpretive tool
in computational biology. PLoS computational biology 4.7 (2008).

[32] Docker documentation. Mar. 6, 2020. URL: https://docs.docker.com/ (visited
on 03/06/2020).

[33] DTM original c++ implementation. Mar. 12, 2020. URL: https://github.com/
blei-lab/dtm (visited on 03/12/2020).

[34] Dynamic NMF implementation. Mar. 12, 2020. URL: https://github.com/derekgreene/
dynamic-nmf (visited on 03/12/2020).

[35] Eito-Brun, R. XML-based Content Management: Integration, Methodologies and
Tools. Chandos Publishing, 2017.

[36] Forbes article. Mar. 6, 2020. URL: https://www.forbes.com/sites/thomasbrewster/
2016 / 04 / 05 / panama - papers - amazon - encryption - epic - leak/ (visited on
03/06/2020).

[37] Freato, R. and Parenzan, M. Mastering Cloud Development using Microsoft Azure.
Packt Publishing, 2016. ISBN: 9781782173342. URL: https://books.google.fi/
books?id=2vtvDQAAQBAJ.

[38] Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. and François, O. Fast and ef-
ficient estimation of individual ancestry coefficients. Genetics 196.4 (2014), 973–
983.

[39] gensim documentation. Mar. 12, 2020. URL: https://radimrehurek.com/gensim/
index.html (visited on 03/12/2020).

[40] Ghosh, S. and Gunning, D. Natural Language Processing Fundamentals. Packt
Publishing, 2019. ISBN: 9781789954043. URL: https://learning.oreilly.com/
library/view/natural-language-processing/9781789954043/.

[41] GNU Scientific Library. May 18, 2020. URL: https://www.gnu.org/software/
gsl/ (visited on 05/18/2020).

[42] GPLv2. May 27, 2020. URL: https://www.gnu.org/licenses/old-licenses/
gpl-2.0.html (visited on 05/27/2020).

[43] Greene, D. and Cross, J. P. Exploring the political agenda of the european par-
liament using a dynamic topic modeling approach. Political Analysis 25.1 (2017),
77–94.

[44] Griffiths, T. L. and Steyvers, M. Finding scientific topics. Proceedings of the Na-
tional academy of Sciences 101.suppl 1 (2004), 5228–5235.

https://doi.org/10.1007/978-3-642-59412-0_16
https://doi.org/10.1007/978-3-642-59412-0_16
https://doi.org/10.1007/978-3-642-59412-0_16
https://db-engines.com/en/ranking_trend
https://books.google.fi/books?id=Z-mvDwAAQBAJ
https://docs.docker.com/
https://github.com/blei-lab/dtm
https://github.com/blei-lab/dtm
https://github.com/derekgreene/dynamic-nmf
https://github.com/derekgreene/dynamic-nmf
https://www.forbes.com/sites/thomasbrewster/2016/04/05/panama-papers-amazon-encryption-epic-leak/
https://www.forbes.com/sites/thomasbrewster/2016/04/05/panama-papers-amazon-encryption-epic-leak/
https://books.google.fi/books?id=2vtvDQAAQBAJ
https://books.google.fi/books?id=2vtvDQAAQBAJ
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/index.html
https://learning.oreilly.com/library/view/natural-language-processing/9781789954043/
https://learning.oreilly.com/library/view/natural-language-processing/9781789954043/
https://www.gnu.org/software/gsl/
https://www.gnu.org/software/gsl/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html
https://www.gnu.org/licenses/old-licenses/gpl-2.0.html

80

[45] Han, J., Pei, J. and Kamber, M. Data Mining: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 2011.
ISBN: 9780123814807. URL: https://books.google.fi/books?id=pQws07tdpjoC.

[46] Hapke, H. M., Lane, H. and Howard, C. Natural language processing in action.
Manning, 2019. URL: https://learning.oreilly.com/library/view/natural-
language-processing/9781617294631/.

[47] Harrington, J. Relational Database Design and Implementation. Elsevier Science,
2016. ISBN: 9780128499023. URL: https : / / books . google . fi / books ? id =

yQgfCgAAQBAJ.
[48] Haskins, C. H. The Rise of Universities. Routledge, 2017.
[49] Hofmann, T. Probabilistic latent semantic indexing. Proceedings of the 22nd an-

nual international ACM SIGIR conference on Research and development in infor-
mation retrieval. 1999, 50–57.

[50] Honnibal, M. and Montani, I. spaCy 2: Natural language understanding with Bloom
embeddings, convolutional neural networks and incremental parsing. To appear.
2017.

[51] Huttunen, H. Pattern Recognition and Machine Learning. University Lecture. 2019.
URL: http://www.cs.tut.fi/courses/SGN-41007/ (visited on 02/14/2020).

[52] Isson, J. Unstructured Data Analytics. Wiley, 2018. ISBN: 9781119129752. URL:
https://learning.oreilly.com/library/view/unstructured-data-analytics/

9781119129752/.
[53] Joachims, T. A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text

Categorization. Tech. rep. Carnegie-mellon univ pittsburgh pa dept of computer
science, 1996.

[54] Johansson, R. Numerical Python: Scientific Computing and Data Science Appli-
cations with Numpy, SciPy and Matplotlib. Apress, 2018.

[55] Juba, S. and Volkov, A. Learning PostgreSQL 11: A beginner’s guide to build-
ing high-performance PostgreSQL database solutions, 3rd Edition. Packt Publish-
ing, 2019. ISBN: 9781789535211. URL: https://books.google.fi/books?id=
ZtOGDwAAQBAJ.

[56] Kane, S. P. and Matthias, K. Docker: Up & Running, 2nd Edition. O’Reilly Media,
2018.

[57] Kanerva, J., Ginter, F., Miekka, N., Leino, A. and Salakoski, T. Turku Neural Parser
Pipeline: An End-to-End System for the CoNLL 2018 Shared Task. Proceedings
of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies. Brussels, Belgium: Association for Computational Linguistics,
2018.

[58] Korenius, T., Laurikkala, J., Järvelin, K. and Juhola, M. Stemming and lemmati-
zation in the clustering of finnish text documents. Proceedings of the thirteenth
ACM international conference on Information and knowledge management. 2004,
625–633.

https://books.google.fi/books?id=pQws07tdpjoC
https://learning.oreilly.com/library/view/natural-language-processing/9781617294631/
https://learning.oreilly.com/library/view/natural-language-processing/9781617294631/
https://books.google.fi/books?id=yQgfCgAAQBAJ
https://books.google.fi/books?id=yQgfCgAAQBAJ
http://www.cs.tut.fi/courses/SGN-41007/
https://learning.oreilly.com/library/view/unstructured-data-analytics/9781119129752/
https://learning.oreilly.com/library/view/unstructured-data-analytics/9781119129752/
https://books.google.fi/books?id=ZtOGDwAAQBAJ
https://books.google.fi/books?id=ZtOGDwAAQBAJ

81

[59] Krohn, J., Beyleveld, G. and Bassens, A. Deep Learning Illustrated: A Visual, In-
teractive Guide to Artificial Intelligence. Addison-Wesley Professional, 2019.

[60] Kuhn, T. S. The structure of scientific revolutions. University of Chicago press,
2012.

[61] Kupiec, J. Robust part-of-speech tagging using a hidden Markov model. Computer
speech & language 6.3 (1992), 225–242.

[62] Lagoze, C., Sompel, H., Nelson, M. and Warner, S. The Open Archives Initiative
Protocol for Metadata Harvesting. (June 2002).

[63] LeCun, Y., Bengio, Y. and Hinton, G. Deep learning. nature 521.7553 (2015), 436–
444.

[64] Lee, D. D. and Seung, H. S. Learning the parts of objects by non-negative matrix
factorization. Nature 401.6755 (1999), 788–791.

[65] Lee, D. D. and Seung, H. S. Algorithms for non-negative matrix factorization. Ad-
vances in neural information processing systems. 2001, 556–562.

[66] Leskovec, J., Rajaraman, A. and Ullman, J. D. Mining of massive data sets. Cam-
bridge university press, 2019.

[67] Lewis, D. D. and Gale, W. A. A sequential algorithm for training text classifiers.
SIGIR’94. Springer. 1994, 3–12.

[68] LGPLv2. May 27, 2020. URL: https://www.gnu.org/licenses/old-licenses/
lgpl-2.1.en.html (visited on 05/27/2020).

[69] lxml library docs. Mar. 6, 2020. URL: https://lxml.de/ (visited on 03/06/2020).
[70] Manning, C. D., Raghavan, P. and Schütze, H. Introduction to information retrieval.

Cambridge university press, 2008.
[71] MariaDB Server documentation. Jan. 2020. URL: https://mariadb.com/kb/en/

documentation/ (visited on 01/28/2020).
[72] Mikolov, T., Chen, K., Corrado, G. and Dean, J. Efficient estimation of word repre-

sentations in vector space. arXiv preprint arXiv:1301.3781 (2013).
[73] Mitchell, R. Web Scraping with Python: Collecting More Data from the Modern

Web. O’Reilly Media, 2018. ISBN: 9781491985526. URL: https://books.google.
fi/books?id=TYtSDwAAQBAJ.

[74] Mongodb official page. Feb. 2020. URL: https://www.mongodb.com/ (visited on
02/04/2020).

[75] Murphy, K. P. Machine learning: a probabilistic perspective. MIT press, 2012.
[76] Narkhede, N., Shapira, G. and Palino, T. Kafka: the definitive guide: real-time data

and stream processing at scale. " O’Reilly Media, Inc.", 2017.
[77] Nguyen, T. H. and Shirai, K. Topic modeling based sentiment analysis on social

media for stock market prediction. Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1: Long Papers). 2015, 1354–
1364.

[78] Nickoloff, J. Docker in action. Manning Publications Co., 2019.

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://lxml.de/
https://mariadb.com/kb/en/documentation/
https://mariadb.com/kb/en/documentation/
https://books.google.fi/books?id=TYtSDwAAQBAJ
https://books.google.fi/books?id=TYtSDwAAQBAJ
https://www.mongodb.com/

82

[79] Nielsen, F. Å., Balslev, D. and Hansen, L. K. Mining the posterior cingulate: seg-
regation between memory and pain components. Neuroimage 27.3 (2005), 520–
532.

[80] Nigam, K., McCallum, A. K., Thrun, S. and Mitchell, T. Text classification from la-
beled and unlabeled documents using EM. Machine learning 39.2-3 (2000), 103–
134.

[81] O’callaghan, D., Greene, D., Carthy, J. and Cunningham, P. An analysis of the co-
herence of descriptors in topic modeling. Expert Systems with Applications 42.13
(2015), 5645–5657.

[82] Ozdemir, S. and Susarla, D. Feature Engineering Made Easy: Identify unique fea-
tures from your dataset in order to build powerful machine learning systems. Packt
Publishing Ltd, 2018.

[83] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–
2830.

[84] Perkins, L., Redmond, E. and Wilson, J. Seven Databases in Seven Weeks: A
Guide to Modern Databases and the NoSQL Movement. Pragmatic Bookshelf,
2018. ISBN: 9781680505979. URL: https : / / books . google . fi / books ? id =

rC5aDwAAQBAJ.
[85] Plejic, B., Vujnovic, B. and Penco, R. Transforming unstructured data from scat-

tered sources into knowledge. 2008 IEEE International Symposium on Knowledge
Acquisition and Modeling Workshop. Dec. 2008, 924–927. DOI: 10.1109/KAMW.
2008.4810643.

[86] PostgreSQL documentation. Jan. 2020. URL: https://www.postgresql.org/
docs/current/index.html (visited on 01/19/2020).

[87] Psycopg2 documentation. Mar. 12, 2020. URL: https://pypi.org/project/
psycopg2/ (visited on 03/12/2020).

[88] PyMongo documentation. Mar. 12, 2020. URL: https : / / api . mongodb . com /

python/current/ (visited on 03/12/2020).
[89] Python documentation. Mar. 12, 2020. URL: https://docs.python.org/3/ (vis-

ited on 03/12/2020).
[90] Qi, P., Dozat, T., Zhang, Y. and Manning, C. D. Universal Dependency Parsing

from Scratch. Proceedings of the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies. Brussels, Belgium: Association for
Computational Linguistics, Oct. 2018, 160–170. URL: https://nlp.stanford.
edu/pubs/qi2018universal.pdf.

[91] Scikit-learn documentation. Mar. 12, 2020. URL: https://scikit-learn.org/
(visited on 03/12/2020).

[92] Sekine, S., Sudo, K. and Nobata, C. Extended Named Entity Hierarchy. LREC.
2002.

https://books.google.fi/books?id=rC5aDwAAQBAJ
https://books.google.fi/books?id=rC5aDwAAQBAJ
https://doi.org/10.1109/KAMW.2008.4810643
https://doi.org/10.1109/KAMW.2008.4810643
https://www.postgresql.org/docs/current/index.html
https://www.postgresql.org/docs/current/index.html
https://pypi.org/project/psycopg2/
https://pypi.org/project/psycopg2/
https://api.mongodb.com/python/current/
https://api.mongodb.com/python/current/
https://docs.python.org/3/
https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://nlp.stanford.edu/pubs/qi2018universal.pdf
https://scikit-learn.org/

83

[93] Services, E. Information Storage and Management: Storing, Managing, and Pro-
tecting Digital Information in Classic, Virtualized, and Cloud Environments. EMC
Education Services. Wiley, 2012. ISBN: 9781118094839. URL: https://books.
google.fi/books?id=tPLBUi8JSogC.

[94] Sickle library docs. Mar. 6, 2020. URL: https://sickle.readthedocs.io/en/
latest/index.html (visited on 03/06/2020).

[95] Srinivasa-Desikan, B. Natural Language Processing and Computational Linguis-
tics. Packt Publishing Ltd, 2018.

[96] Tampere Universities web site. May 18, 2020. URL: https://www.tuni.fi/fi
(visited on 05/18/2020).

[97] Thomas, A. Natural Language Processing with Spark NLP. O’Reilly Media, 2020.
ISBN: 9781492047766. URL: https://learning.oreilly.com/library/view/
natural-language-processing/9781492047759/.

[98] Trepo OAI. Mar. 6, 2020. URL: https://trepo.tuni.fi/oai/ (visited on 03/06/2020).
[99] Trepo privacy statement. Mar. 6, 2020. URL: https://www.tuni.fi/fi/yksityisyys/

tietosuojailmoitus-trepo-sahkoinen-julkaisuarkisto (visited on 03/06/2020).
[100] Trepo repository. Feb. 16, 2020. URL: https : / / trepo . tuni . fi/ (visited on

02/16/2020).
[101] Twitter developer API. Jan. 2020. URL: https://developer.twitter.com/ (visited

on 01/08/2020).
[102] Vanhala, M., Lu, C., Peltonen, J., Sundqvist, S., Nummenmaa, J. and Järvelin,

K. The usage of large data sets in online consumer behaviour: A bibliometric
and computational text-mining–driven analysis of previous research. Journal of
Business Research 106 (2020), 46–59.

[103] Wang, Q., Cao, Z., Xu, J. and Li, H. Group matrix factorization for scalable topic
modeling. Proceedings of the 35th international ACM SIGIR conference on Re-
search and development in information retrieval. 2012, 375–384.

[104] Wang, X. and McCallum, A. Topics over time: a non-Markov continuous-time
model of topical trends. Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining. 2006, 424–433.

[105] Wang, X., Mohanty, N. and McCallum, A. Group and topic discovery from relations
and text. Proceedings of the 3rd international workshop on Link discovery. 2005,
28–35.

[106] Ward, J. S. and Barker, A. Undefined By Data: A Survey of Big Data Definitions.
2013. arXiv: 1309.5821 [cs.DB].

[107] Wikipedia. Jan. 2020. URL: https://www.wikipedia.org/ (visited on 01/13/2020).
[108] Wittgenstein, L. Philosophical investigations. John Wiley & Sons, 2009.
[109] Wolfram MathWorld. Feb. 16, 2020. URL: http://mathworld.wolfram.com/ (vis-

ited on 02/16/2020).
[110] Wu, X., Kadambi, S., Kandhare, D. and Ploetz, A. Seven NoSQL Databases in a

Week: Get up and running with the fundamentals and functionalities of seven of

https://books.google.fi/books?id=tPLBUi8JSogC
https://books.google.fi/books?id=tPLBUi8JSogC
https://sickle.readthedocs.io/en/latest/index.html
https://sickle.readthedocs.io/en/latest/index.html
https://www.tuni.fi/fi
https://learning.oreilly.com/library/view/natural-language-processing/9781492047759/
https://learning.oreilly.com/library/view/natural-language-processing/9781492047759/
https://trepo.tuni.fi/oai/
https://www.tuni.fi/fi/yksityisyys/tietosuojailmoitus-trepo-sahkoinen-julkaisuarkisto
https://www.tuni.fi/fi/yksityisyys/tietosuojailmoitus-trepo-sahkoinen-julkaisuarkisto
https://trepo.tuni.fi/
https://developer.twitter.com/
https://arxiv.org/abs/1309.5821
https://www.wikipedia.org/
http://mathworld.wolfram.com/

84

the most popular NoSQL databases. Packt Publishing, 2018. ISBN: 9781787127142.
URL: https://books.google.fi/books?id=irZTDwAAQBAJ.

[111] Xianghua, F., Guo, L., Yanyan, G. and Zhiqiang, W. Multi-aspect sentiment analy-
sis for Chinese online social reviews based on topic modeling and HowNet lexicon.
Knowledge-Based Systems 37 (2013), 186–195.

https://books.google.fi/books?id=irZTDwAAQBAJ

85

A DATABASE SYSTEMS

In Appendix A we have examples related to database systems introduced in Section 2.1.2
Database systems.

{
'customers': [

{
'id': 1,
'fname': 'George',
'lname': 'Blake',
'accounts': [

{
'account_id': 103,
'balance': 75.00,
'products': {

'product_id': 'CHK',
'name': 'Checking'

},
'transactions': [

{
'txn_id': 978,
'txn_type_id': 'DBT',
'amount': 100.00,
'date': 2004-01-22

}, {}
]

}, {}
]

},
{

'id': 2,
'fname': 'Sue',
'lname': 'Smith',
'accounts': [{}, {}, {}]

}
]

}

Listing 4. A truncated example of a possible document database entry in JSON format
of the same data as in Figure 2.1

86

B DATABASE COMPARISON

In Appendix B we have JavaScript and SQL code examples, YML files and JSON files
related to database comparison in Section 3.3. Also we have a figure demonstrating the
Docker containerization model we talk about in Section 3.2.

version: '3'
services:

postgres:
image: postgres:11
environment:

POSTGRES_USER: ${POSTGRES_USER:-postgres}
POSTGRES_PASSWORD: ${POSTGRES_PASSWORD:-postgres}
PGDATA: /data/postgres

volumes:
- ./:/data/postgres
ports:
- "54321:5432"
restart: unless-stopped

mongo:
image: mongo:4
volumes:
- ./:/data/db
ports:
- "270170:27017"
restart: unless-stopped

Listing 5. A docker-compose.yml file for spinning up a PostgreSQL and a Mongodb

87

Hardware

Host	OS

Container	Engine

CONTAINERCONTAINER

Application	BApplication	A

Bins	/	Libs Bins	/	Libs

Figure B.1. The model of application containerization adapted from Docker [26, 32].

{
'title': 'Sunny in Sevilla during winter?'
'word_counts': {

'noun_counts': [
{

'word': 'sun',
'count': 2

},
{

'word': 'river',
'count': 1

}
]

'nouns': ['sun', 'river', 'sun']
'topics': {

'lvl_0': 'Travelling',
'lvl_1': 'Europe',
'lvl_2': 'Spain',
'lvl_3': 'Andalucia',
'lvl_4': 'Sevilla'

}
}

Listing 6. An example of the hierarchy in a Suomi24.fi document in JSON format.

88

objectid_id

listadjectives

stringanonnick

integercid

datecreated_date

integerday_created

datedeleted_date

integermonth_created

listnouns

integertid

stringtitle

maptopics

stringtopics.lvl_0

stringtopics.lvl_1

stringtopics.lvl_2

stringtopics.lvl_3

stringtopics.lvl_4

stringurl

arrayverbs

mapword_counts

listword_counts.adjective_counts

integerword_counts.adjective_counts.count

stringword_counts.adjective_counts.word

listword_counts.noun_counts

integerword_counts.noun_counts.count

stringword_counts.noun_counts.word

listword_counts.verb_counts

integerword_counts.verb_counts.count

stringword_counts.verb_counts.word

integeryear_created

s24_matkailu_mongodb

Figure B.2. The schema used for mongoDB in testing with Suomi24 data.

integerid

biginttid

bigintcid

texttitle

textanonnick

smallintyear_created

smallintmonth_created

smallintday_created

timestampcreated_date

timestampdeleted_date

texturl

text[]nouns

text[]adjectives

text[]verbs

jsontopics

jsonnoun_counts

jsonadjective_counts

jsonverb_counts

textmongo_id

s24_matkailu_postgres

Figure B.3. The only table in the schema used for PostgreSQL in testing with Suomi24
data.

89

// Find from 'word_counts.noun_counts'
find(

{},
{

'word_counts.noun_counts.word': 1,
'word_counts.noun_counts.count': 1,
'_id': 0

}
)

// Find from 'nouns'
find(

{},
{

'nouns': 1,
'_id': 0

}
)

Listing 7. Simple find queries with MongoDB. The first is applied on a list of dictionaries
and the second on a list of words.

// Mapper for querying 'word_counts.noun_counts'
function () {

for (var idx in this.word_counts.noun_counts) {
var key = this.word_counts.noun_counts[idx].word
var value = this.word_counts.noun_counts[idx].count
emit(key, value)

}
}
// Reducer for querying 'word_counts.noun_counts'
function (key, values) {

return Array.sum(values)
}

// Mapper for querying 'nouns'
function () {

for (var idx in this.nouns) {
var key = this.nouns[idx]
emit(key, 1)

}
}
// Reducer for querying 'nouns'
function (key, values) {

return Array.sum(values)
}

Listing 8. JavaScript functions used for map-reduce in MongoDB. The first two are ap-
plied on a list of dictionaries and the last two on a list of words.

90

// Aggregation pipeline of 3 stages for querying 'word_counts.noun_counts'
aggregate(

[
{'$unwind': '$word_counts.noun_counts'},
{'$group': {

'_id': '$word_counts.noun_counts.word',
'count': {

'$sum': '$word_counts.noun_counts.count'
}

}
},
{'$sort': SON([('count', -1), ('_id', -1)])}

]
)

// Aggregation pipeline of 3 stages for querying 'nouns'
aggregate(

[
{'$unwind': '$nouns'},
{'$group': {'_id': '$nouns', 'count': {'$sum': 1}}},
{'$sort': SON([('count', -1), ('_id', -1)])}

]
)

Listing 9. Aggregation pipelines for MongoDB. Above is the pipeline applied on a list of
dictionaries, and below is the one applied on a list of nouns.

SELECT t.nouns
FROM s24_matkailu_postgres t;

Listing 10. A very simple sql query to retrieve the nouns for all the documents.

SELECT t.word_count->>'word' as word,
SUM(CAST(t.word_count->>'count' AS INTEGER)) as wcount

FROM(
SELECT json_array_elements(nouns) AS word_count

FROM s24_matkailu_postgres
) t

GROUP BY word
ORDER BY wcount DESC;

Listing 11. A query using Postgres’ JSON functionality to aggregate word counts.

SELECT word, count(word) as wcount
FROM s24_matkailu_postgres, unnest(nouns) AS word

GROUP BY word
ORDER BY wcount DESC;

Listing 12. A query that uses Postgres’ array functionality to aggregate word counts.

91

C TOPIC MODELLING

Appendix C includes code regarding the LDA and NMF modelling of the whole data set
and serialization of vectorizers.

lda_abstracts_nouns

May 31, 2020

Load the data and extracts the abstracts from it.

[]: import json

data_file_name_with_path = 'masters_abstract_en_lemma_nouns_only.json'
with open(file=data_file_name_with_path, mode='r') as file:

data = json.load(fp=file)

abstracts = [di['abstract_lemma_nouns_only'] for di in data]

Create a term-frequency vectorizer and fit it with the data.

[]: from sklearn.feature_extraction.text import CountVectorizer

tf = CountVectorizer(min_df=2, max_df=0.95, lowercase=True)
X = tf.fit_transform(raw_documents=abstracts)

Create the LDA model of 20 topics.

[]: from sklearn.decomposition import LatentDirichletAllocation

topics = 20
lda = LatentDirichletAllocation(n_components=topics, verbose=True)
lda.fit(X)

Finally write a .csv file using a custom print_topics function. Write top 15 terms from each topic to
file.

[]: from topic_model.topic_model_stuff import print_topics

top_n = 15
csv_filename_with_path = 'lda_abstracts_{topics}_topics_top{top_n}_terms.csv'
print_topics(model=lda, vectorizer=tf,

top_n=top_n, file_name=csv_filename_with_path)

1

Figure C.1. A jupyter notebook on topic modelling with sklearn LDA.

92

nmf_abstracts_nouns

May 31, 2020

Load the data and extracts the abstracts from it.

[]: import json

data_file_name_with_path = '/masters_abstract_en_lemma_nouns_only.json'
with open(file=data_file_name_with_path, mode='r') as file:

data = json.load(fp=file)

abstracts = [di['abstract_lemma_nouns_only'] for di in data]

Create a term frequency–inverse document frequency vectorizer and fit it with the data.

[]: from sklearn.feature_extraction.text import TfidfVectorizer

tfidf = TfidfVectorizer(min_df=2, max_df=0.95, lowercase=True)
X = tfidf.fit_transform(raw_documents=abstracts)

Create the NMF model of 20 topics.

[]: from sklearn.decomposition import NMF

topics = 20
nmf = NMF(n_components=topics, verbose=True)
nmf.fit(X)

Finally write a .csv file using a custom print_topics function. Write top 15 terms from each topic to
file.

[]: from topic_model.topic_model_stuff import print_topics

top_n = 15
csv_filename_with_path = f'nmf_abstracts_{topics}_topics_top{top_n}_terms.csv'
print_topics(model=nmf, vectorizer=vectorizer,

top_n=top_n, file_name=csv_filename_with_path)

1

Figure C.2. A jupyter notebook on topic modelling with sklearn NMF.

93

import json
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
import scipy.sparse as sp

def default(obj):
"""Helper for numpy serialization.
"""
if type(obj).__module__ == np.__name__:

if isinstance(obj, np.ndarray):
return obj.tolist()

else:
return obj.item()

raise TypeError('Unknown type:', type(obj))

def serialize_vectorizer(vectorizer, file):
"""Serialize a vectorizer.
"""
serialize = dict()
if isinstance(vectorizer, TfidfVectorizer):

serialize['idf_'] = vectorizer.idf_
serialize['vocabulary'] = vectorizer.vocabulary_
serialize['params'] = vectorizer.get_params().pop('dtype', None)
try:

with open(file=file, mode='w') as f:
json.dump(obj=serialize, fp=f, indent=2, default=default)

except TypeError:
raise

def deserialize(file):
"""Deserialize a vectorizer.
"""
with open(file=file, mode='r') as f:

deserialize_dict = json.load(fp=f)
if deserialize_dict.get('idf_'):

vectorizer = TfidfVectorizer(**deserialize_dict.get('params'))
idfs = np.asarray(deserialize_dict.get('idf_'))
vectorizer._tfidf._idf_diag = sp.spdiags(idfs, diags=0,

m=len(idfs), n=len(idfs))
vectorizer.vocabulary_ = deserialize_dict.get('vocabulary')
return vectorizer

vectorizer = CountVectorizer(**deserialize_dict.get('params'))
vectorizer.vocabulary_ = deserialize_dict.get('vocabulary')
return vectorizer

Listing 13. Serialize and deserialize vectorizer properties instead of the whole vectorizer
object to save space on disk.

	Introduction
	Theoretical background
	Collecting and storing data
	Data structure
	Database systems

	Knowledge discovery
	Natural Language Processing
	Topic modelling

	Research methodology and material
	Trepo repository - the data source
	Research environment
	Database comparison
	Setup
	Task definition

	Data acquisition and preprocessing
	Collecting metadata
	Acquiring full text content
	Applying NLP

	Topic modelling in practice
	Initial LDA and NMF modelling
	Modelling over time with LDA
	Modelling over time with NMF

	Results and analysis
	Comparison between PostgreSQL and MongoDB
	Topic modelling over time
	Topic modelling with LDA and NMF from sklearn
	Dynamic Topic Models
	Dynamic NMF
	Algorithm comparison

	Proposition for a pipeline

	Conclusions
	References
	Appendix Database systems
	Appendix Database comparison
	Appendix Topic modelling

