
German Felipe Torres Vanegas

A DEEP LEARNING FRAMEWORK FOR
VIDEO TEMPORAL SUPER-RESOLUTION

Master of Science Thesis
Faculty of Information Technology and Communication Sciences

Examiners: Prof. Joni Kämäräinen
Esin Guldogan
October 2020

i

ABSTRACT

German Felipe Torres Vanegas: A Deep Learning Framework for Video Temporal Super-Resolution
Master of Science Thesis
Tampere University
Master’s Degree Programme in Information Technology
Major: Data Engineering and Machine Learning
October 2020

This thesis introduces a deep learning approach for the problem of video temporal super-
resolution. Specifically, a network architecture and training schemes are proposed to produce an
output video as it was captured using half the exposure time of the camera. By the recursive
application of this model, the temporal resolution is further expanded by a factor of 4, 8, . . . , 2N .
The only assumption is made is that the input video has been recorded with a camera with the
shutter fully open. In extensive experiments with real data, it is demonstrated that this methodol-
ogy intrinsically handles the problem of joint deblurring and frame interpolation. Moreover, visual
results show that the recursive mechanism makes frames sharper and sharper in every step.
Nevertheless, it fails at generating temporally smooth videos.

Keywords: temporal super-resolution, exposure time, deblurring, deep learning, convolutional
neural networks

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This thesis was done under the supervision of Professor Joni Kämäräinen, head of Com-
puter Vison group at Tampere University, and this work was also linked to a research
project of Huawei Company in Tampere. I express my profound gratitude to Professor
Joni Kämäräinen for letting me work as research assistant since a very early stage of my
master degree and providing me great support and guidance. His enthusiasm and advice
was a source of motivation to go forward in the project.

I would like to thank Esin Guldogan, Marti Ilmoniemi and Samu Koskinen from Huawei,
who were always willing to provide comments about my work. Especially, I thank them for
giving access to data that was utterly valuable for experimentation. I extend my gratitude
to Professor Jiri Matas who generously shared his knowledge and brilliant ideas that
undoubtedly nurtured this research topic. Besides, I would like to thank Dr. Said Pertuz
for being my first mentor in academia and showing me his altruistic passion towards
science and research, in general.

Last but not least, I would like to thank my family. To my parents, Anibal and Aminta, for
being my support in life and spurring me to dream up the highest. To my brothers, Julian
and Carlos, who are my confidants and primarily models of excellence.

Tampere, 12th October 2020

German Felipe Torres Vanegas

iii

CONTENTS

1 Introduction . 1

2 Background . 3

2.1 Video Formation Model . 3

2.2 Video Temporal Super-Resolution . 5
2.2.1 Previous work . 6

2.3 Deep learning . 9
2.3.1 Standard CNNs for image restoration 11
2.3.2 Learning process . 16

3 Methods . 20

3.1 Data-driven VTSR approach . 20
3.1.1 Recursive VTSR . 22
3.1.2 Advanced training schemes . 22

3.2 Neural network architecture . 24
3.2.1 Feature Pyramid Encoder (FPE) . 25
3.2.2 Feature Fusion Block (FFB) . 26
3.2.3 Feature Pyramid Decoder (FPD) . 28
3.2.4 Aggregation Block (AB) . 29

3.3 Loss function . 29

3.4 Image quality metrics . 30

4 Experiments . 32

4.1 Experimental settings . 32
4.1.1 Datasets . 32
4.1.2 Data preparation . 33
4.1.3 Implementation details . 33

4.2 Ablation studies . 34

4.3 Comparison of training schemes . 35

4.4 Joint deblurring and frame interpolation . 38

5 Conclusion . 42

References . 43

iv

LIST OF FIGURES

1.1 Blurry picture from Sony dataset . 1

2.1 Color acquisition in cameras . 3
2.2 Traditional ISP pipeline . 4
2.3 VFI vs. VTSR . 5
2.4 STSR approaches . 6
2.5 Self-similarity within and across temporal scales 8
2.6 Standard CNN architectures for image restoration 11
2.7 Convolution in LSI systems . 12
2.8 Filtering illustration . 13
2.9 Computation of a max-pooling operation . 14
2.10 Computation of transposed convolution . 15
2.11 Illustration of gradient descent . 17
2.12 Comparison of activation functions and their derivatives 19

3.1 VTSR learning framework . 20
3.2 Reconstruction training scheme . 23
3.3 Multilevel training scheme . 24
3.4 Overview of the VTSR pipeline architecture 25
3.5 Structure of the FPE block . 25
3.6 Fusion block with pre-alignment of features 26
3.7 Fusion block with spatio-temporal attention module 28
3.8 Diagram block of SSIM measurement system 31

4.1 Visual effect of pre-interpolation step for the blur generation 33
4.2 Examples of visual results on GOPRO and Sony 37
4.3 Visual examples on HuaweiRED videos . 39
4.4 Frame-wise performance on HuaweiRED videos 40

v

LIST OF TABLES

4.1 Ablation studies on DVD dataset of the Feature Fusion Block (FFB) 34
4.2 Quantitative results for training schemes on GOPRO and Sony 36
4.3 Training times on GOPRO and Sony . 36
4.4 Method comparison . 38

vi

LIST OF SYMBOLS AND ABBREVIATIONS

CNN Convolutional Neural Network

DNN Deep Neural Network

ISP Image Signal Processing

LSI Linear Spatially-Invariant

PSF Point Spread Function

PSNR Peak-Signal-to-Noise Ratio

ReLU Rectified Linear Unit

SGD Stochastic Gradient Descent

SSIM Structural Similarity

STSR Space-Time Super-Resolution

VFI Video Frame Interpolation

VTSR Video Temporal Super-Resolution

1

1 INTRODUCTION

Remarkable advances in video camera devices have been made during the last decades.
For instance, Iphone X camera is capable of capturing HD-resolution videos at a speed
up to 240 frames-per-second [1], which is 8 times faster, at much better resolution, than
the best phone camera devices available 10 years ago [2]. However, high-quality devices
are often more expensive in both computational resources and commercial cost. There-
fore, there is still need for algorithms that produce very sharp and slow-motion frame
sequences from low-frame-rate videos in cheaper devices. This might help as a video
enhancement solution for end-user purposes or traffic surveillance, as some application
examples. Even, this serves as a preprocessing step that improves the performance in
higher computer vision tasks such as object detection [3] and object tracking [4]. The
main challenge in this restoration task is the image blur. In practice, cameras require a
finite exposure time to accumulate light from the scene, which turns into an averaging
process and makes visual content less clear (blurry) in the presence of any movement.
Figure 1.1 exemplifies the inherent blur under the photography process.

Image or video super-resolution primary refers as the process of recovering high-resolution
spatial details from low resolution input image or video sequence [5]. Similarly, Video
Temporal Super-Resolution (VTSR) is defined as the operation that estimates fast frame
rate (short exposure) details from low frame rate (long exposure) frames. Accordingly, the
end-result of VTSR is a video that is captured at higher frame rate along with less visible
blur effect. The concept of temporal super-resolution was firstly coined by Shimano et al.
[6], although there were already works tackling the problem of "space-time super resolu-

Figure 1.1. Blurry picture from Sony dataset. Capturing a moving car generates blur.

2

tion" [7, 8]. Notwithstanding, these approaches correspond to traditional reconstruction
methods which are computationally expensive and require huge inference time.

In the recent years, deep learning frameworks have demonstrated astonishing perfor-
mance in different image restoration tasks such as image deblurring [9, 10] and video
interpolation [11, 12]. Results are incredible not only for the output image quality but also
for its fast computation. Particularly, Kupyn et al. [10] proposed a neural network archi-
tecture that takes only 0.04 seconds in average to produce comparable results to state-
of-the-art methods in image deblurring [9]. Image deblurring is the process of sharpening
a blurry image whose blur can be caused by camera shake or moving objects within the
scene during the exposure time. Nevertheless, this is a highly ill-posed problem as there
are many sharp frames that can generate the given blurry image. Video interpolation
aims at generating intermediate frames from sharp inputs, generally driven by optic flow
[11]. The problem is that original frames are usually blurry in the presence of fast moving
objects hindering the optic flow estimation, and subsequently the interpolation process.
A naive solution might be to apply a deblurring stage before interpolation. However, this
yields to sub-optimal solutions as the temporal information hidden in the blur has been
removed. Instead of addressing deblurring and interpolation independently, they are both
embedded to the established model of temporal super resolution, i.e. to reduce the blur
shortcoming by increasing the time resolution (shortening the exposure time), jointly.

To the best of our knowledge, no deep-learning-based solution has been previously pro-
posed for VTSR. Perhaps, the most similar work to ours is the one proposed by Jin et
al. [13]. They proposed a two-network architecture for joint deblurring and video frame
interpolation, increasing the time resolution 10 or 20 times. On one hand, a deblurring
network is responsible of estimating some sharp key frames for the output video. On the
other hand, an interpolation network computes the missing frames by using information
of the blurry inputs and the sharp key frames. However, no VTSR modeling is done in
this work, on the contrary, it uses a deblur-interpolation strategy.

The main goal of this thesis is to propose a neural network architecture for Video Tempo-
ral Super-Resolution. Specifically, the network takes two consecutive frames exposured
for τ seconds and expands the time resolution as they were captured at τ/2 seconds.
By recursively applying this method, it can reach the point where everything becomes
motionless. The only assumption we make here is that the camera has a shutter nearly
always open, namely one frame period equals the exposure time. Extensive experiment
with real data demonstrate the power of VTSR. In particular, we are able to restore static
appearance of fast moving objects and deblur burst sequences, yielding to a joint solution
for video interpolation and deblurring.

The reminder of this thesis is divided as follows. First, a literature review of traditional
methods for VTSR and the deep learning background are presented in chapter 2. Then,
the proposed deep-learning approach for VTSR and the performance quality metrics used
for assessment are described in chapter 3. Furthermore, experimental settings and corre-
sponding results are outlined in chapter 4. At last, chapter 5 draws the final conclusions.

3

2 BACKGROUND

2.1 Video Formation Model

First and foremost, it is imperative to establish how videos are produced by camera de-
vices. Initially, let us consider how a single image is captured and then we extend this
process for videos. A digital image is basically a multi-dimensional array that records the
colorimetric information at discrete units called pixels. Usually, each pixel stores three
color components: red, green and blue. Such cameras are referred as RGB devices.
Internally, they are composed of a 2D grid of coupled devices that sense the incoming
radiation [14]. The sensor response at each pixel p = (x, y) ∈ R2 is:

z(p) =

∫︂
λ∈Λ

E(p, λ)Sk(p)(λ)dλ (2.1)

where k(p) ∈ {1, . . . ,m} (m = 3 for RGB devices) denotes the color filter associated to
the sensor p, E(p, λ) is the input spectral radiance, Sk(p)(λ) is the spectral sensitivity
of the sensor, and Λ is the spectral domain in the range [400, 700] nm – this range
corresponds to the portion that is visible to the human eye. Figure 2.1 depicts the color
acquisition process, noting that raw measurements only captures one color component
for each pixel. Particularly, it illustrates the case of a camera with a Bayer color filter array
[15], which is broadly adopted in commercial RGB cameras. In addition, Figure 2.1(b)
exemplifies the spectral sensitivities that can be found in RGB cameras.

In practice, sensors need to be exposed for certain time such that they capture enough

(a) (b)

Incoming light

Filter layer

Sensor array

Response

Figure 2.1. Color acquisition in cameras. (a) Interaction of light with Bayer color filter
array and grid of sensors, (b) Example of spectral sensitivity for RGB cameras.

4

White
Balance

Demosaic

Color	Space
Conversion

Gamma
Correction

Raw
Image

Storage	or
Visualization

Denoise,
Sharpen

Figure 2.2. Traditional ISP pipeline.

light from the scene. Besides, they are sensible to noise sources. Therefore, a more
accurate expression for the raw image is given by:

zτ (p) = κ

∫︂ τ

t=0
z(p, t)dt+ η(z(p, t)) (2.2)

where z(p, t) stands for the instantaneous sensor response, η(z(p, t)) denotes the signal-
dependent noise component, κ is a scaling factor proportional to τ−1 [16], and τ is the
exposure time. Since the scene and/or the camera are not static, we obtain blurry images
of the scene. Intuitively, the longer is the exposure time, the more blur is visible in the
final image.

Once the raw measurements are obtained, they go through an Image Signal Processing
(ISP) pipeline, internally inside the camera, before the digital image is ready for viewing.
Figure 2.2 illustrates a simplified block diagram of the main stages that take place inside a
traditional ISP [17, 18]. First, some preprocessing tasks are executed to remove the noise
and focus problems. Then, White balance aims at mapping "white" measurements to a
true sensation of white, even when the light conditions change in the scene. Afterwards,
all the m color components are estimated for each pixel through demosaicing. Recall that
color filter arrays only allow to sense one color component per pixel. Subsequently, color
space conversion is performed in order to match the human and camera spectral sensi-
tivities. In other words, this makes pixel values to be seen as humans perceive colors.
Finally, a gamma correction applies a nonlinear Camera Response Function (CRF) that
maps the radiance to image intensities, namely the output digital values.

Regarding that the ISP involves many steps, it is quite convenient to focus on certain
blocks for research purposes. Concretely in this thesis, we only deal with the blur that is
consequence of the exposure time τ . Thus, by discarding the gamma correction block
and assuming the other tasks of the ISP are performed in optimal conditions, our image
formation model is simplified to:

zτ =
1

τ

∫︂ τ

t=0
z(t)dt = z(t) ∗ wτ (t) (2.3)

where z(t) is the instantaneous latent color image (as it has gone throughout the ISP),
and wτ (t) is equivalent temporal blur kernel, modeled as a rectangular window.

5

(a)

(b)

(c)

Figure 2.3. VFI vs. VTSR. (a) Scene to be recorded (a rotating ball), (b) LTR video with
sub-exposure time (upper), HTR video generated by VFI (lower), (c) LTR video with full-
exposure time (upper), HTR video generated by VTSR (lower). Example replicated from
[6].

For the case of videos, we simply consider the sequential application of the previous
image formation model at a given frame rate r = 1/T , being T the frame time. Then, we
denote a discrete frame of a video as:

z[n]|τ0 =
1

τ

∫︂ nT+τ

t=nT
z(t)dt (2.4)

Particularly, when the shutter is fully open, then τ = T .

2.2 Video Temporal Super-Resolution

Capturing videos under the presence of very fast dynamic objects is a challenging task
as it may happen that they move faster than the actual frame rate. This causes some
issues compromising the quality of videos such as jerkiness, motion blur and/or tempo-
ral aliasing. The presence of those shortcomings depends on the exposure time and
the frame rate, which in turn, control the temporal resolution. Video Temporal Super-
Resolution (VTSR) is the task that aims at recovering the rapid motion details which are
not clearly seen in a recorded video sequence [6, 19]. In practice, VTSR estimates a set
of high temporal resolution (HTR) frames from the captured low temporal resolution (LTR)
frames.

Accordingly, VTSR is a mechanism to increase the frame-rate of the input sequence.
Since Video Frame Interpolation (VFI) also aims at video frame rate up-conversion, some
researchers refers to VTSR as VFI [20, 21]. However, despite having this common goal,
there are methodological differences due to conditions in which the video is recorded. For
the sake of clarity, let us consider the toy example illustrated in Figure 2.3 . We consider
the process of capturing a video of a rapid ball following a circular trajectory with constant
angular velocity ωb =

2π
Tb

, Tb being the period of the movement (Figure 2.3(a)). Assuming
a low frame-rate camera with frame time T = Tb

2 and the capability to set the exposure
time, there are two main settings in which the video can be shot: 1) sub-exposure time,
where the exposure time τ is shorter than the frame time T ; and 2) full-exposure time,

6

(a) (b) (c)

Figure 2.4. STSR approaches. (a) Multi-video SR: measurements from multiple low-
resolution videos impose linear constrains on the high-resolution video, (b) Single-video
SR: similar patches within the low-resolution video can be interpreted as taken from dif-
ferent low-resolution videos, again inducing linear constrains on the high-resolution video,
(c) The space-time blur kernel Bi(x, y, t) is the composition of the spatial PSF ϕi and the
temporal rectangular window wτi with exposure time τi. Source: [19]

establishing τ = T . In the first case, discontinuous motion is observed since the camera
shutter remains open at short intervals (upper part of Figure 2.3(b)), loosing details of
the real ball trajectory. To improve the temporal resolution, intermediate frames can be
computed by using VFI methods, as illustrated in the red-colour frames in the lower part
of Figure 2.3(b). Nevertheless, the true movement is not successfully recovered, in this
specific example, because the time sampling rate is very low and VFI methods typically
assume linear displacement for the interpolation. In the second case, the right trajectory
of the ball is implicitly obtained, paying the price of motion blur in each frame (upper part
of Figure 2.3(c)). Under this scenario, VFI methods are not applicable as they do not allow
to resolve frame into two frames. Additionally, the motion blur makes difficult to establish
the dense correspondence for the motion estimation, necessary in VFI approaches. On
the contrary, VTSR solutions are suitable for full-exposed videos since they estimate a
high-resolution video as if it was captured using shorter exposure time. Consequently,
the temporal resolution is expanded.

2.2.1 Previous work

Multi-video spatio-temporal super-resolution

Initially, the VTSR was partially tackled in the more general context of Space-Time Super-
Resolution (STSR), where the resolution is increased in, both, temporal and spatial do-
main [7, 8]. Shechtman et al. [7] proposed a method for producing a high space-time
resolution video zh from a set of low-resolution video sequences {zli}Ni=1 recording the
same dynamic scene (Figure 2.4(a)). Regarding a set of space-time transformations Ti
that aligns the coordinate system between zh and zli for i = 1, . . . , N , then every space-
time pixel p = (x, y, t) in the high-resolution video is projected to pli = Ti(p), pli being pixels
into the ith low-resolution video. More precisely, the relation between the measurements

7

zli(p
l
i) and zh(p) is given by the video observation model:

zli(p
l
i) = (zh ∗Bi)(p)

=

∫︂
q=(x,y,t)∈supp(Bi)

zh(q)Bi(q − p)dq (2.5)

where Bi = ϕi ∗wτi is the space-time blur operator composed by the Point Spread Func-
tion (PSF) ϕi and temporal kernel blur wτi of the ith camera (Figure 2.4(c)). By stacking
those relations for every measurement in discrete form, a linear system of equations in
terms of the unknown high resolution elements of zh can be constructed:

Ah = l (2.6)

where h is a column vector containing all the unknown elements of the high-resolution
video zh, l is the column vector with the measurements taken from all the low-resolution
sequences {zli}Ni=1, and A denotes the matrix with the relative contributions of the un-
known elements to each low-resolution measurements defined by equation 2.5.

Naturally, the size of zh is bigger than the size of a single sequence zli, but when there
is access to an enough number of low-resolution videos, there are more equations than
unknowns in equation 2.6. Hence, a least-square solution can be computed for the linear
system. Nonetheless, Shechtman et al. additionally added a regularization term for
numerical stability and smoothness purposes, such that their STSR solution is given by:

ĥ = argmin
h
∥Ah− l∥2 + λsRs(h) + λtRt(h) (2.7)

where Rs(·) and Rt(·) are the regularization functions in spatial and temporal domain,
respectively, while λs and λt are their corresponding weights. In particular, Shechtman et
al. used directional regularizers that smooth the values along the space-time edges.

Alternatively, Mudenagudi et al. [8] extended the aforementioned work by adding non-
linear constraints, allowing them to achieve higher magnification factors. By formulating
the STSR reconstruction problem using the Maximum a posteriori-Markov Random Field,
they found a resembling optimization problem:

min
zh

∑︂
p∈Ω

N∑︂
i=1

αi(p, p
l
i)
[︁
(zh ∗Bi)(p)− zli(pli)

]︁2
+ λsRs(z

h) + λtRt(z
h) (2.8)

where Ω is the set of space-time pixels in the high-resolution video and αi(p, p
l
i) denotes

the non-linear constraints that selectively determine whether a low-resolution pixel pli con-
tributes to the reconstruction of the pixel p in the high-resolution video. In such work,
truncated linear functions are considered for the regularizers Rs(·) and Rt(·). Moreover,
they used graph-cut optimization to find the final solution.

8

Figure 2.5. Self-similarity within and across temporal scales. (a) across-scale simi-
lar patches provide "Example-based" constraints, i.e., Pa(zh) might look like P̂a

i (z
l), (b)

within-scale similar patches impose "Classical" constraints as additional linear constraints
can be added: Pw(zh ∗B) = P̂w

i (z
l). Source:[19]

Single-video spatio-temporal super-resolution

In the case of a single low-resolution video zl, our video observation model in equation
2.5 reduces to zl(T (p)) = (zh ∗ B)(p), where T stands for the space-time decimation
operator. As a result, the construction of the linear system in equation 2.6 remains un-
determined due to the higher number of elements in zh. Notwithstanding, self-similarity
can be exploited to add more constraints. The idea is inspired by the pioneer work of
Glasner et al. [22] which shows that small patches in a natural image tend to recur many
times inside the image, within and across multiple scales. This means that we can con-
sider similar patches as if they were extracted from the same high-resolution patch, which
leads to multiple constraints on the unknown elements of zh (Figure 2.4 (b)).

To be precise, self-similar patches can induce two types of constraints depending on
where the similar patches are taken from, as illustrated in Figure 2.5. Recurrence of
small patches across coarser spatio-temporal scales introduces "Example-based" con-
straints since it provides some "guesses" for the high-resolution video. The principle is
illustrated in Figure 2.5(a). Let us assume a reference patch in zl (small green) "recurs" in
a coarser scale (small pink). Thereby, the parent of the similar patch P̂a

i (z
l) (large pink)

serves as an estimation of how the slow-motion version of the reference Pa(zh) (large
green) might look like. On the other hand, recurrence of small patch within the same
video scale induces "Classical" constraints since they can be considered as if they were
captured by different cameras. In Figure 2.5(b), a reference patch in the low-resolution
video Pw(zl) (small red) has a similar patch within the same scale P̂w

i (z
l) (small blue).

Taking advantage of this similarity, we can introduce the constraint Pw(zh ∗B) = P̂w
i (z

l).
Overall, the optimization problem that includes the self-similarity priors can be written as:

9

min
zh

∑︂
p∈Ω

[︁
(zh∗B)(p)−zl(pl)

]︁2
+λa

∑︂
Pa

M∑︂
i=1

∥Pa(zh)−P̂a
i (z

l)∥2+λw
∑︂
Pw

N∑︂
i=1

∥Pw(zh∗B)−P̂w
i (z

l)∥2

(2.9)
whose second and third term respectively refer to the "Example-based" and "Classical"
constraints, {P̂a

i }Mi=1 is the set of across-scale similar patches for each reference patch
Pa, {P̂w

i }Ni=1 is the set of within-scale similar patches for each reference patch Pw, and
λa, λw are the weighting parameters.

In this way, Shimano et al. [6] proposed a VTSR method from a single video by incor-
porating the "Example-based" constraints from self-similar image patches across spatio-
temporal scales. In addition, a smoothness term Rt(zh), based on the Laplacian filter,
was included to avoid flickering effects, similarly as in equations 2.7, 2.8. As opposed to
2D image patches, Shahar et al. [19] extended the idea to 3D ST-patches along with the
use of the "Classical" constraints for the general case of STSR. Notably, they proposed an
efficient way to find similar ST-patches at sub-frame accuracy. Their visual results reveal
the capability to resolve severe motion aliasing and motion blur, especially for the case
of VTSR. More recently, Maggioni and Dragotti [23] presented a two-stage approach for
VTSR. Each stage starts by computing motion-compensated 3D patches, i.e., a stack of
2D blocks following a motion trajectory. In the first stage, a set of similar 3D patches are
matched to the references, registered at sub-pixel level, and aggregated at the pertinent
location in the high-resolution video. In the second stage, registration artifacts are fixed
by using an error-correcting linear operator, which is learned from self-similar patches
across temporal scales.

It is noteworthy to remark that VTSR is reduced from STSR by considering that the tem-
poral blur window only acts in the blur function, i.e., B(t) = wτ (t), and the transformation
T that aligns the coordinate systems between the high and low resolution videos cor-
responds to the temporal decimation operator. That is why STSR methods are equally
applicable to VTSR.

2.3 Deep learning

Deep learning is considered a subfield of machine learning that includes methods for the
data-driven learning of a hierarchically organized representation [24]. Commonly, deep
learning models are referred as Deep Neural Networks (DNNs) since their structure were
originally inspired by how the exchange of information, that yields to learning, occurs
among neurons inside the brain. To understand what DNNs really do, it is appropriated
to recall machine learning. Traditional machine learning methods aim at approximating
mapping rules through experience, which is achieved by providing data samples. Re-
markably, the performance heavily depends on the representation (features) of data they
are given. For instance, let us consider a machine learning system for face recognition.
Human beings can easily recognize faces by their oval shape comprised of eyes, mouth

10

and hair. Nonetheless, it can be challenging to define a computerized set of features that
matches with those high-level concepts, such that the machine learning algorithm can
find a decision rule based on those input feature values. For many years, part of the re-
search was dedicated to devise hand-crafted and application-oriented features that help
machine learning algorithms to solve a particular task. In contrast, deep learning meth-
ods discover, both, the representation and the mapping rule from raw data by building
complex concepts from simpler ones in a hierarchical way.

Although most of the principles and basic methods of deep learning were already seeded
back in the 1980s [25, 26, 27], it was not until after 2012 when they became popular
and successful in different computer-aided applications [28, 29, 30]. The increase in
performance can be attributed to three aspects. First, the access to larger datasets allows
DNNs to reach a generalized mapping rule at the end of the training phase [31]. Second,
the possibility to implement bigger models as the computational resources have improved
along the time. Nowadays, we rely on GPUs to train models that were excessively "deep"
in size to be stored and trained with computers in the past. At last, few advances in
regularization and optimization techniques enable the speed-up in convergence and to
reach more optimal solutions [32, 33].

In the beginning of the deep-learning boom, several architectures, specifically Convolu-
tional Neural Networks (CNNs) [27], were mainly used for image classification, wherein
an image is taken as input and produces a binary vector associated with an image label
[28, 34, 35]. Soon after, CNNs were extended to image-to-image problems, what means
that the network is able to output an entire image. In particular, end-to-end CNN-based
models have demonstrated to outperform traditional reconstruction algorithms for image
restoration problems [36, 37]. Despite of the fact that there is not a strong mathemat-
ical proof of how DNNs are able to restore the image, some researchers have found
relations between CNN-based models and traditional restoration algorithms. Notably,
Jain and Sebastian [38] showed the connection between CNNs and Markov random field
(MRF) methods in image denoising. Dong et al. [36] found that sparse-coding-based SR
methods can be interpreted as a particular CNN. Zhang et al. [37] pointed out that their
proposed CNN is a generalization of a one-stage trainable nonlinear reaction diffusion
(TNRD) model for image denoising.

Certainly, end-to-end CNNs for image restoration represent basis for the deep-learning-
based approach for VTSR that is presented in chapter 3. Thus, we introduce the reader
to the relevant deep-learning background for image restoration in the reminder of this
section. Concretely, the basic CNN architectures for image-to-image tasks and their main
components are described in section 2.3.1. Then, the mathematical foundations of the
learning process for DNNs are exposed in section 2.3.2.

11

encoder decoder

Conv Pooling

ReLU Upsample

(a)

(b)

(c)

Skip-connections

Figure 2.6. Standard CNN architectures for image restoration. (a) Fully-convolutional
architecture, (b) Fully convolutional architecture with residual connection, (c) Encoder-
decoder architecture

2.3.1 Standard CNNs for image restoration

The goal of any image restoration method is to recover a clean image z provided its
corresponding observed image y, which is the result of a degradation function ϕ, i.e.,
y = ϕ(z). Generally, this is an ill-posed problem, so that it is not easy to define an inverse
mapping ϕ−1 to restore the latent image. In a deep-learning framework, we use a large
set of data samples {yi, zi}Ni=1 to optimize the parameters Θ of a DNN f such that it
approximates to the inverse degradation function ϕ−1:

z ≈ f(y;Θ∗)

where Θ∗ denotes the optimized parameters of the network that are achieved once the
training process is executed. The way how the parameters Θ∗ are computed is explained
in section 2.3.2. Here, we merely focus on the basic architectures of f and their compo-
nents.

Figure 2.6 illustrates three standard DNNs that can be used for this purpose. To be spe-
cific, they are CNNs as they include the convolution layer (Conv) as their main building
block. The very basic architecture is only a finite cascading connection of a convolu-

12

LSI LSI

(a) (b)

Figure 2.7. Convolution in LSI systems. (a) Response to the unitary impulse signal δ, (b)
Response to an arbitrary signal s

tion layer (Conv) and a Rectified Linear Unit (ReLU), as shown in Figure 2.6(a). The
intuition behind this architecture is that more complex representations are computed af-
ter each Conv+ReLU operation until the last Conv layer that takes a regression role to
obtain the desired output. This architecture has been used, for example, by Dong et
al. [36] for single-image SR. The second architecture has practically the same structure
but it adds a residual connection to the input, i.e., the output is the summation between
the input and the result of the last Conv layer (Figure 2.6(b)). This strategy is advanta-
geous when the input and the output are highly correlated since the convolutional block
only has to estimate the residual image instead of the full clean target image. This ar-
chitecture has demonstrated faster convergence and superior performance compared to
the non-residual structure in single-image SR [39] and image denoising [37]. The third
architecture is based on the popular U-net [40] that was initially proposed for image seg-
mentation. This network (Figure 2.6(c)) is comprised of: (i) an encoder that extracts the
primary elements of the image while removing corruptions, (ii) a decoder encharged of
recovering image details from the encoded features, and (iii) skip connections that help
the decoder to restore a cleaner image. This network architecture has been used in many
image restoration methods [41, 42, 43] and other image-to-image tasks [44].

Convolution layer

The convolution layer is the core of the representation extraction for DNNs in image-
related applications. As its name suggests, this layer is based on the convolution oper-
ator. For 2D discrete signals, as in the case of images, the convolution is defined by:

r(x, y) = (s ∗ w)(x, y) =
∑︂
m

∑︂
n

s(m,n)w(x−m, y − n) (2.10)

where w(x, y) denotes the kernel filter, while s(x, y) and r(x, y) are the input and output
signals, respectively.

From linear system theory, it is well known that a Linear and Spatially-Invariant (LSI)
system can be characterized by its response w to the unitary impulse signal δ, as shown
in Figure 2.7(a). Being δ defined as:

δ(x, y) =

⎧⎨⎩1 x, y = 0

0 otherwise

13

0 01

1 1-4

0 01

(a) (b) (c) (d)

Figure 2.8. Filtering illustration. (a) Input image of the moon, (b) Output obtained by
convolution, (c) Laplacian kernel, (d) Frequency response of kernel in (c)

Besides, the output r of the system, to any input s, can be computed by the convolution
with its impulse response w using equation 2.10 (Figure 2.7(b)). This suggest that the
convolution layer can be interpreted as a signal s that goes through a LSI system with
response w. When the impulse response w is analyzed in frequency domain, it actually
emphasizes some spatial frequency components. For instance, let us consider the lapla-
cian kernel and its frequency response in Figure 2.8(c-d), respectively. We can notice
that the magnitude of its frequency response keeps a high value for high frequencies
(|Fx|, |Fy| ≈ 1) and it progressively reduces when it gets closer to the origin. Thus, the net
effect of this kernel in the output is to accentuate abrupt changes of intensity, as it occurs
in the edges, while suppressing or filtering constant values (low frequencies). That is
the reason why kernels are referred as filters, whereas the output is named feature map
since it highlights certain information.

In fact, multiple feature maps are extracted at once in a convolutional layer. To be precise,
the output signal r of size (C ′, H ′,W ′)1 of a convolutional layer with an input s of size
(C,H,W) is described by:

r(k) = b(k) +

C∑︂
l=1

w(k, l) ⋆ s(l), k = 1, . . . , C ′ (2.11)

where ⋆ denotes the valid 2D cross-correlation operator 2, b is bias vector of length C ′, w
is the kernel of size (C ′, C,K,K), C denotes the number of channels (maps), and H,W
denote the height and width of the respective discrete signals. Interestingly, w and b

belong to the set of learnable parameters Θ of the network f . In other terms, the network
learns itself a set of filters which extract features that contribute for a better reconstruction.
Since convolution layers are placed on top of previously computed feature maps, more
sophisticated and abstract features are extracted as we go through the deeper layers of
the network [46].

1In the case of unitary stride, no padding nor dilation, the output dimensions are H ′ = H −K + 1,W ′ =
W − K + 1. To keep the dimensions equal, one can add a total padding of K − 1 for each axis. For more
complex cases, the reader is referred to [45].

2The cross-correlation operator is equivalent to the convolution with the only difference that it does not
need the flipping operation and therefore is less computational expensive [24].

14

Figure 2.9. Computation of a max-pooling operation. This example takes a patch size
3×3 and stride 1×1, wherein the largest value in the shaded blue region is copied to the
highlighted location in the output green matrix. Source: [45]

Rectified Linear Unit (ReLU)

The Rectified Linear Unit (ReLU) is type of activation function that is used by default
for the hidden layers of a DNN. Typically, an activation function is added on top of an
affine operation (as is the case of a convolution layer) with the purpose of integrating a
non-linear behaviour in the network. The ReLu is mathematically defined as:

g(u) = max{0, u}

where u ∈ R. In simple terms, the ReLu is linear except that it outputs zero whenever u
is negative. It turns out that those small non-linearities are enough to produce complex
non-linear mappings in the network when it consist of many hidden layers. Likewise, the
ReLu become the default activation function for hidden layers in DNNs because it allows
them to accomplish better convergence and avoid the so-called problem of vanishing
gradients. In section 2.3.2, we go back to this issue, such that the reader understands
the important role of the gradients in the learning process. At this point, it is sufficient to
know that if the unit is active (u > 0), the gradients remain large and consistent.

Pooling layer

The pooling layer is used as a sub-sampling operator that incorporates a translation-
invariant property. This implies that if the input is translated a small amount, the pooled
features keep the same value [24]. To put it differently, the presence of a feature tends

15

Figure 2.10. Computation of transposed convolution. A 2×2 input (blue) is transposed-
convolved with a 3×3 kernel (gray), which turns into a 4×4 output (green). Source: [45]

to be more important than its specific location. Consequently, pooling layers helps to
filter out noise and corruptions in the encoder, while maintaining meaningful and coarser
features. Perhaps, the most widely used pooling operator in CNNs is the max-pooling as
it has exhibited better performance [47]. Basically, it extracts the maximum value over a
patch in the input feature map, similarly as shown in Figure 2.9. In this example, a patch
of size 3×3 is moving along the input matrix with stride 1×1. In every moving step, the
maximum value within the patch is concatenated into an output array in the same way the
patch is shifted along the input.

Upsampling layer

Upsampling layers are essential in DNN architectures where feature maps have to be
projected back to higher-dimensional spaces. Regarding the encoder block of the DNN
presented in Figure 2.6(c), one needs to up-sample the abstract feature maps of the last
encoded layer such that the dimensions of the input image and the network output match
each other. Otherwise, an end-to-end image restoration DNN could not be implemented.
For this purpose, several interpolation methods can be utilized such as nearest neighbor,
bilinear, and bicubic.

Transposed convolution constitutes another upsampling method for decoders in image-
to-image DNN [40, 45]. Its name comes from an analogy of matrix transposition. In fact,
the convolution operation can be unrolled and expressed as a matrix multiplication. For
instance, let us consider the valid convolution between a 4×4 array s and a 3×3 kernel w,
whose result is a 2×2 array r. Equivalently, the convolution can be executed by the matrix
multiplication of a 4×16 sparse matrix W with a 16-element column vector s, which ends
up with a 4-element column vector r, i.e., Ws = r. By applying the transposed matrix
over the 4-element column vector r, we have WT r = ˜︁s, being ˜︁s a 16-element column
vector. Hence, WT allows to project a feature map into a higher dimensional space.
Notwithstanding, transposed convolution is not implemented as a matrix multiplication
but in an algorithmic manner as exemplified in Figure 2.10. Particularly, this is equivalent
to the convolution of a 3×3 kernel with of a 2×2 input padded with a 2×2 border of zeros
using unitary strides. Similarly as in convolution layers, the kernel belongs to the set of
parameters Θ of the network f , what makes transposed convolution a learnable mapping.

16

Skip connections

Skip connections play an important role for the successful training of the encoder-decoder
network that fits the target restoration mapping. Firstly, pooling layers tend to remove too
much details that complicates the recovery task of decoder. Nevertheless, passing-by
the feature maps of the encoder towards the decoder makes to re-incorporate the missed
feature details, and so, it helps the decoder to restore a cleaner image. Secondly, skip
connections promote the convergence to a better solution in the optimization process. As
hypothesized by He et al. [35], residual mappings, referenced to the input of previous
stacked layers, are easier to learn than the whole mapping without reference. Under the
hood, the gradients, required in the learning process, often vanishes for deep architec-
tures. However, the skip connections automatically passes backwardly the gradients to
bottom layers, preventing the vanishing gradient problem to happen. Again, we go back
to this issue in section 2.3.2 once the back-propagation algorithm is presented.

2.3.2 Learning process

The learning stage concerns the methods for training a DNN f . In essence, we need to
adjust the set of parameters Θ of f that makes the DNN to produce the target mapping.
For this purpose, a cost function J∗(Θ) is primarily specified – generally as a minimization
cost. Then, we use an optimization algorithm to minimize:

J∗(Θ) = Ep(y,z)[L(f(y;Θ), z)] (2.12)

where E denotes the expectation operator across the data distribution p(y, z), L is the per-
example loss function, f(y;Θ) is the prediction for the input y, and z its corresponding
target. In practice, we do not know what is the true data generating distribution p(y, z),
instead we use the empirical distribution p̂(y, z) defined by the trained set {yi, zi}Ni=1 as
an approximation:

J(Θ) = Ep̂(y,z)[L(f(y;Θ), z)] =
1

N

N∑︂
i=1

L(f(yi; Θ), zi) (2.13)

where N is the number of samples in the training set. Contrary to many traditional ma-
chine learning models, the DNN f includes many non-linear elements that makes J a
nonconvex function. Hence, we must adopt iterative gradient-based optimizers that do
not guarantee convergence in global sense, namely they can lead to a very low cost but
never achieve the global minimum. The basics of this type of optimizers are described in
the next subsection.

After the optimization process, it is critical to examine how the DNN f with optimized
parameters Θ∗ behaves in the presence of unseen data, called as test set. In this regard,
a performance metric P is formulated and evaluated under the test set. One may wonder,
then, why P is not used a cost function as we are ultimately interested to minimize – or

17

(a) (b)

Figure 2.11. Illustration of gradient descent. (a) Bivariate function and their gradients
evaluated at several points (black arrows), (b) Iterations of the gradient descent algorithm

maximize depending on how P is defined – its value. The answer is simply that P is
commonly intractable for the optimization problem, so J is used as a surrogate with the
hope to optimize P .

Gradient descent optimization

In multi-variate calculus, the gradient of a scalar-valued function is a vector that contains
all the partial derivatives of the function. When the gradient is evaluated at a particu-
lar point, the resulting vector points to the direction wherein the function increases the
fastest. Figure 2.11(a) illustrates a simple bivariate function as a heatmap and their gra-
dients at various points. Since we are aiming to minimize a cost function J(Θ), the
parameters Θ can be adjusted by moving a small step towards the opposite direction of
the gradient. Thus, the updating rule of the gradient descent is:

Θnew = Θold − ϵ∇ΘJ(Θ
old) (2.14)

where ϵ ∈ R+ is the learning rate that determines the size of the step that is taken. Figure
2.11(b) shows every iteration of the gradient descent for a straightforward function and
how this yields to the minimum value.

Recalling the expression for the cost function in equation 2.13, the needed gradient can
be expanded and entails to an empirical mean of the per-example loss gradients over the
whole training set:

∇ΘJ(Θ) =
1

N

N∑︂
i=1

∇L(f(yi; Θ), zi) (2.15)

Considering the sizes of the dataset in deep learning problems, computing such a gradi-
ent is highly expensive. Alternatively, we can just estimate the true gradient – the gradient
computed for the whole dataset – by the average over a randomly sampled mini-batch of
size m < N . Due to this random selection, the gradient computed over the mini-batch

18

Algorithm 1: Stochastic gradient descent (SGD) update
Result: Optimized parameters Θ∗

Require: Learning rate schedule ϵ1, ϵ2, . . .
Require: Initial parameter Θ
k ← 1;
while stopping criterion not met do

Sample a minibatch {yi, zi}mi=1 from the training set {yi, zi}Ni=1 at random;
Compute gradient estimate: ĝ← 1

m∇Θ
∑︁

i L(f(yi; Θ), zi);
Apply update: Θ← Θ− ϵkĝ;
k ← k + 1;

Θ∗ ← Θ;

deviates from the true one. Nevertheless, the error in the gradient estimation reduces at
lower rate compared to the computational resources as m → N [24]. Therefore, it is not
needed to have a large mini-batch size. Equally interesting, the noise introduced by the
random sampling promotes generalization in the test set and helps to escape from bad
local minima [48].

At bottom, this random sampling is the main principle of the so-called Stochastic Gradi-
ent Descent (SGD), which is pinpointed in Algorithm 1. Noteworthy, the sampling noise
does not vanish when approaching a good local minimum, so the learning rate must be
gradually decreased over time for convergence. That is why the learning rate at iteration
k it is denoted by ϵk in the algorithm. The way how the the learning rate is reduced is
defined by a learning rate scheduler. Common learning rate schedulers are linear decay,
multi-step decay or exponential decay. Those are already implemented in deep-learning
libraries such as PyTorch [49].

Certainly, SGD is the most basic gradient-based algorithm that is used to train deep
models. Several extensions that regularize the updating rule in some way are commonly
used, ADAM being the most popular since it incorporates the ideas of the momentum
and AdaGrad [32].

Back-propagation

In practice, the set Θ is easily composed of thousands of parameters that are distributed
along the layers of the network f . For this reason, it is extremely challenging to de-
fine and evaluate an analytical expression of the gradient for each individual parameter.
Back-propagation is thus an algorithm that solves this problem by efficiently computing
the required gradients [25]. In short, an input y that is processed by the network f until
computing the per-example loss L can be viewed as a forward pass of a computational
graph. This computational graph is comprised of nodes that represents the tensors, ma-
trices, vector or scalars that are computed throughout the hidden layers of the network,
and edges symbolizing the operations that are applied from one node to the other. Back-
propagation processes the graph in backward direction and computes the gradients by
recursively applying the chain rule. This substantially reduces the runtime because avoids

19

(a) (b)

Figure 2.12. Comparison of activation functions and their derivatives. (a) Sigmoid func-
tion, (b) ReLU

the computation of common subexpressions that are previously computed for higher lay-
ers of the network.

Intuitively, the gradients for the bottom layers of the network involve the product of nu-
merous intermediate terms. Since gradients tend to be small, i.e.< 1, the total gradient
for the parameters placed in such layers approaches 0. Regarding that the parameters
move proportional to the gradient, learning is much slower at first layers compared to
the parameters placed in last layers. This is known as the vanishing gradient problem
that was mentioned in previous sections of this chapter. Specifically, we introduced skip
connections as a mechanism to reduce the gradient vanishing. The net effect of skip
connections in the backward pass is to aggregate the gradients of the last layers, which
are larger in general. Therefore, learning in first layers is boosted and yields to higher
performance.

The gradient vanishing problem can be caused by a bad selection of activation functions
as well. Figure 2.12 depicts the sigmoid and ReLU functions along with their derivatives.
It can be seen that when u is around the saturation zone in the sigmoid function, the gradi-
ents are nearly zero causing the vanishing gradient problem (Figure 2.12(a)). Conversely,
the derivative of the ReLU function is 1 whenever u > 0 (Figure 2.12(b)). That explains
why the introduction of ReLU units for the hidden layers fosters higher performances of
the DNNs.

20

3 METHODS

In this chapter, the proposed methodology and the techniques utilized for experimentation
are described. In section 3.1, the main principle of the deep-learning based approach for
VTSR is presented along with its training scheme variants. Then, a full description of the
network architecture that has been used for experimentation is provided in section 3.2.
Additionally, section 3.3 specifies the supervised loss function that is utilized for training
the network. Finally, the selected performance metrics for evaluation are listed in section
3.4.

3.1 Data-driven VTSR approach

The deep-learning based approach proposed in this work consists of training a DNN f

that learns to transform two consecutive frames as they were captured half the exposure
time. This supervised traning scheme is represented in Figure 3.1. Expressively, the
DNN f is trained to learn the ideal mapping function f∗:

(︁
z[n]|T0 , z[n+ 1]|T0

)︁ f∗
−→

(︂
z[n]|TT/2, z[n+ 1]|T/20

)︂
(3.1)

For the sake of clarity, every frame captured by the camera device z[n]|ba is denoted in
equation 3.1 as:

z[n]|ba =
1

b− a

∫︂ nT+b

nT+a
z(t)dt

where T is the time frame of the input video, [a, b] is the exposure interval, n ∈ Z and
z(t) the latent continuous-time varying scene. Therefore, the ideal mapping f∗ takes two

Figure 3.1. VTSR learning framework.

21

consecutive frames z[n]|T0 and z[n + 1]|T0 , integrated over the time intervals [nT, nT + T]

and [(n+1)T, (n+1)T+T], respectively, and produces two frames z[n]|TT/2 and z[n+1]|T/20

exposed during [nT + T/2, nT + T] and [(n + 1)T, (n + 1)T + T/2]. In other words, the
frames captured using exposure time T are expanded to frames captured by T/2. As it
can be inferred from Figure 3.1, the whole video is processed by applying the DNN f in
a sliding fashion.

In practice, the signal z(t) is not accessible, which makes difficult to construct the pairs of
inputs and targets needed for training in a supervised scheme. This is because one cam-
era cannot synchronously shoot two videos along with different frame rate. Nevertheless,
the technological advances of digital cameras in the recent years, make even possible to
capture 240-fps videos with cell-phone devices. Having then access to a recording z[m]

of the scene z(t) with a high-speed camera, the pairs of inputs and ground-truths can be
approximated by the discretization of time with T =Mτ ; being M positive and even, and
τ the frame time of the high-speed video whose frame rate is r = 1/τ . Thus, each one of
the terms in the equation 3.1 are approximated by:

z[n]|T0 =
1

T

∫︂ nT+T

nT
z(t)dt ≈ 1

M

nM+M∑︂
m=nM

z[m]

z[n+ 1]|T0 =
1

T

∫︂ (n+1)T+T

(n+1)T
z(t)dt ≈ 1

M

(n+1)M+M∑︂
m=(n+1)M

z[m]

z[n]|TT/2 =
1

T/2

∫︂ nT+T

nT+T/2
z(t)dt ≈ 1

M/2

nM+M∑︂
m=nM+M/2

z[m]

z[n+ 1]|T/20 =
1

T/2

∫︂ (n+1)T+T/2

(n+1)T
z(t)dt ≈ 1

M/2

(n+1)M+M/2∑︂
m=(n+1)M

z[m]

(3.2)

To put it simply, equation 3.2 says that the pairs of inputs and ground-truths are computed
by averaging M and M/2 consecutive frames, respectively. Notably, the only assumption
is made for this to work, is that the high-speed camera has a shutter nearly always open,
i.e, one frame period equals the exposure time. With this computational mechanism, it is
then possible to impose a loss LT/2(n, n+1) to train the DNN f that outputs an estimation
of the temporally super-resolved frames ẑ[n]|TT/2 and ẑ[n + 1]|T/20 , as depicted in Figure
3.1. More generally, LT/2N (n, n+ 1) refers to the loss function that takes the groundtruth
and output frames at indices n, n+ 1, being super-resolved at a frame rate of 2N/T . The
choice of this loss LT/2N (n, n + 1) is independent of the proposed learning framework
and it is, in fact, comprised of different terms. The actual supervised loss terms utilized
along with the VTSR methodology are pinpointed in section 3.3.

Bearing in mind the basic principle of the deep-learning method for VTSR, more complex
training procedures can still be added on top of it to avoid possible artifacts in the testing
phase. Furthermore, the way how VTSR is presented here can be exploited in a recur-
sive way to accomplish a methodologically-ingenious technique to deblur and interpolate

22

frames, altogether. These further ideas are disclosed in the reminder of this section.

3.1.1 Recursive VTSR

In essence, the above-mentioned VTSR approach aims at building a DNN f that in-
creases the frame rate and reduces the exposure time in a factor of 2. Then, the recursive
application of this model yields to the following result:

(︁
z[n]|T0 , z[n+ 1]|T0

)︁ f−→
(︂
ẑ[n]|TT/2, ẑ[n+ 1]|T/20

)︂
f2

−→
(︂
ẑ[n]|T3T/4, ẑ[n+ 1]|T/40

)︂
...

fN

−−→
(︂
ẑ[n]|TT−T/2N , ẑ[n+ 1]|T/2

N

0

)︂
(3.3)

whereN corresponds the number of times that f has been recursively applied, i.e., fN =

f ◦fN−1 = f ◦f ◦fN−2 = f ◦· · ·◦f , denoting ◦ as the composition operator. By making N
big enough, the exposure interval of the obtained output frames turns to be infinitesimally
small, which implies to achieve the level when even the fastest motion is frozen and the
frames become spatially sharp. Overall, the recursive application of the VTSR method
allows to increase the time resolution and reduce the blur, simultaneously. Thus, this
mechanism corresponds to a novel method to tackle the problem of joint deblurring and
frame interpolation. Effectiveness of recursive method, compared also to state-of-the-art
techniques in the aforementioned task, is evaluated in section 4.4.

3.1.2 Advanced training schemes

The supervised training approach proposed in section 3.1 simply consists of providing
examples of the target frames. We refer to this scheme as basic training. Anyway, it might
still be a weak regularization to accomplish a good approximation of the temporal super
resolution function in equation 3.1, in broader sense. For this reason, more complex
training schemes are designed such that they fulfill some of the properties we expect from
our VTSR method. Specifically, two more schemes are unveiled here: reconstruction and
multilevel training. The performance of the provided schemes are compared in section
4.3.

Reconstruction training

Since the target mapping function in equation 3.1 only works with a pair of frames, sliding
processing is required to fully expand the time resolution of an input video by a factor of
2. This procedure is represented in Figure 3.2. As it is illustrated, the summation of the
resulting frames, that are in-between the action of consecutive VTSR models f , equals

23

Figure 3.2. Reconstruction training scheme.

the middle input frame exposed from 0 to T . Mathematically, it is found that:

z[n+ 1]|T0 =
1

T

∫︂ (n+1)T+T

(n+1)T
z(t)dt

1

T

[︄∫︂ (n+1)T+T/2

(n+1)T
z(t)dt+

∫︂ (n+1)T+T

(n+1)T+T/2
z(t)dt

]︄
1

2

[︄
1

T/2

∫︂ (n+1)T+T/2

(n+1)T
z(t)dt+

1

T/2

∫︂ (n+1)T+T

(n+1)T+T/2
z(t)dt

]︄
1

2

(︂
z[n+ 1]|T/20 + z[n+ 1]|TT/2

)︂
(3.4)

This dictates a useful constraint to guide the training phase. Accordingly, we can in-
stead take triplets of consecutive frames and enforce a reconstruction constraint based
on equation 3.4 during training. Thus, the global loss turns to be a sum of the following
terms:

L = LT/2(n, n+ 1) + LT/2(n+ 1, n+ 2) + λrLr(n+ 1) (3.5)

where LT/2(n, n+1), LT/2(n+1, n+2) are the supervised loss terms computed with the
respective ground-truth and output frames, λr a weighting hyper-parameter, and Lr(n+1)

is the reconstruction loss term given by:

Lr(n+ 1) = ∥1
2

(︂
ẑ[n+ 1]|T/20 + ẑ[n+ 1]|TT/2

)︂
− z[n+ 1]|T0 ∥1 (3.6)

Roughly speaking, this scheme allows the network to produce outputs coherent with the
input and promotes temporal consistency.

24

Figure 3.3. Multilevel training scheme.

Multilevel training

The ultimate goal of VTSR is to find such a mapping function f that expands the time
resolution no matter what is the frame rate in the input. Secondly, we want to reach the
point of motionless video by recursion. Nonetheless, even if the VTSR network is trained
under several time expansion levels, it is clear that the space of input images differs in
recursive settings because of the possible artifacts produced by the network itself. In fact,
this difference is more noticeable for deeper time expansions as the amount of artifacts
increases in every recursive application. To deal with this issue, we can supervisely train
the VTSR network f regarding multiple resolution levels that result from the recursive
application of f . To prevent a huge overload in training, we only consider the expansion up
to two higher levels as shown in Figure 3.3. The global loss function is thereby computed
as L = LT/2(n, n+1)+LT/4(n, n+1), where LT/2(n, n+1) and LT/4(n, n+1) correspond to
the supervised loss terms when the time is expanded by 2 and 4, respectively. In this way,
the network has at least a mechanism to correct inaccuracies produced after a recursion.

3.2 Neural network architecture

The general architecture for the VTSR network is illustrated in Figure 3.4. This struc-
ture is mainly inspired by state-of-the-art deblurring neural networks: DeblurGANv2 [10]
and EDVR [9]. First of all, the proposed network architecture takes a pair of consecu-
tive frames z[n]|T0 and z[n + 1]|T0 and by residual-learning produces the estimated target
frames ẑ[n]|TT/2 and ẑ[n+ 1]|T/20 . It means that the network only learns the needed pixel-
wise changes that are applied to the inputs. In fact, the residual scheme has demon-
strated more accurate results than the standard reconstruction in different image restora-
tion task [39, 41] and that is why is also used in many deblurring networks [3, 9, 10,
42]. The architecture is composed of the four main components. The Feature Pyramid

25

Figure 3.4. Overview of the VTSR pipeline architecture.

Convolution block

Max pooling layer

Figure 3.5. Structure of the FPE block.

Encoder (FPE) and Feature Pyramid Decoder (FPD) blocks are familiar from U-Net-like
structures [40]. The Feature Fusion Block (FFB) combines features extracted from the
two frames for the decoder and Aggregation Block (AB) aggregates features from multiple
resolutions. Typically, the weights of each one of the convolutional filters in those blocks
are different, except in the FPE blocks which share the same coefficients. A detailed
explanation of these blocks is found below.

3.2.1 Feature Pyramid Encoder (FPE)

This processing block extracts a multi-scale feature representation for a given image.
Towards this end, we use a DNN structure as it is illustrated in Figure 3.5. Technically,
this DNN is comprised of convolutional blocks and maxpooling layers that downsample
the features. Unlike the encoder structure of the image restoration networks presented in
section 2.3.1, convolutional block involve more complex layers. Those blocks are based
on the backbone networks used in image classification problems since the trained models
have demonstrated to successfully extract more semantic information of the input images.
Inspired by the work of Kypyn et al. [10], the MobileNetv2 backbone network [50] is used
in our network since it provides a good trade-off between good contextual representation
and computational resources required. In total, two deep pyramid feature representation

26

Figure 3.6. Fusion block with pre-alignment of features.

F l[n] and F l[n + 1], such that l = 1, . . . , 5, are extracted from the input frames z[n] and
z[n+ 1], respectively.

3.2.2 Feature Fusion Block (FFB)

Extracted features from both frames are fused to incorporate relevant information that is
found in the other frame. At a l-level, fused features F̂

l
[n] and F̂

l
[n + 1] can be simply

obtained by fusion convolution, namely:

F̂
l
[n] = gn

(︂[︂
F l[n], F l[n+ 1]

]︂)︂
F̂

l
[n+ 1] = gn+1

(︂[︂
F l[n+ 1], F l[n]

]︂)︂ (3.7)

where g is a function consisting some convolutional layers and [·, ·] denotes the concate-
nation operation.

Notwithstanding, fusion convolution in equation 3.7 may not easily infer the inter and intra-
frame complexities that are caused by the presence of occlusions, paralax problems and
the misalignment of semantic elements among the given frames. Based on the work by
Wang et al. [9], two modules can be incorporated in this block for an effective and efficient
aggregation of the relevant information found in the given frames: Spatial pre-alignment of
features and Spatio-temporal attention mechanism. These modules are described below
and the benefit of adding them in the FFB is analized in our ablation studies – section
4.2.

Spatial pre-alignment of features

One of the issues that challenges the fusion among the given frames is the misalignment
due to the motion of the camera or objects in the scene. Inspired by the networks EDVR
[9] and TDAN [51], this module allows supportive frames to be spatially aligned to a
reference, at feature level across the pyramid encoders. Being precise, F l[n+ 1] is firstly
aligned to the reference F l[n] to produce the fused map F̂

l
[n], while F l[n] is aligned to

27

F l[n+1] before generating F̂
l
[n+1]. In this work, instead, we assume that the alignment

of features can be achieved by an affine transformation conditioned to the input by using
spatial transformer networks [52].

Considering, for instance, the case in which F l[n] is the reference feature map, F l[n+ 1]

is aligned and fused as shown in Figure 3.6. Inside the spatial transformer, there is a
localization network floc that estimate the parameters θ of the affine transformation that
should be applied to the feature map F l[n + 1], i.e., θ = floc(F

l[n + 1]). Then, the grid
generator Tθ(G) defines the set of points where the input feature map F l[n + 1] should
be sampled to produce the desired transformation, such that the output pixels lie on a
regular grid G = {Gi} = {(xti, yti)}. In this case, the point-wise transformation is:

⎡⎣xsi
ysi

⎤⎦ = Tθ(Gi) = Aθ

⎡⎢⎢⎢⎣
xti

yti

1

⎤⎥⎥⎥⎦ =

⎡⎣θ11 θ12 θ13

θ21 θ22 θ23

⎤⎦
⎡⎢⎢⎢⎣
xti

yti

1

⎤⎥⎥⎥⎦ (3.8)

where (xti, y
t
i) are coordinates of the regular grid in the transformed feature domain,

(xsi , y
s
i) are the corresponding sampling points in the input feature map, and Aθ is the

2-by-3 affine transformation matrix. For computational reasons, both pairs of coordinates
are normalized in the range [−1, 1]. At last, the sampler determines the value for every i
pixel in the spatially modulated feature map F l

∆n
[n+1] = {Vi} by the bilinear interpolation

of the pixel values in the input feature map F l[n+ 1] = {Ujk} as follows:

Vi =
H∑︂
j

W∑︂
k

Ujk max(0, 1− |xsi − k|)max(0, 1− |ysi − j|) (3.9)

where Ujk is the pixel value of the input feature map F l[n + 1] at location (k, j), Vi is the
output value for the pixel i of the modulated feature map F l

∆n
[n + 1] that is located at

(xti, y
t
i), and H,W are the spatial dimensions of the input feature map F l[n + 1]. Like-

wise, the modulated feature map F l
∆n+1

[n] is the result of aligning F l[n] to the refer-

ence F l[n + 1]. Subsequently, F̂
l
[n] and F̂

l
[n + 1] are fused through equation 3.7 with[︁

F l
∆n

[n+ 1], F l[n]
]︁

and
[︂
F l
∆n+1

[n], F l[n+ 1]
]︂
, respectively.

Spatio-temporal (ST) attention mechanism

The relevant information from temporally separated frames is conveyed through soft-
attention maps, similarly as shown in Figure 3.7. Following the strategy of Wang et al.
[9], the attention weights aw for the reference frame n are computed as:

aw(F
l[n], F l[m]) = σ

(︂
ψ(F l[n])Tϕ(F l[m])

)︂
(3.10)

where m ∈ {n, n + 1}, ψ(F l[n]) and ϕ(F l[m]) are two embeddings obtained by a con-
volution block, and σ(·) denotes the sigmoid function that keeps the maps in the range

28

Dot product

Element-wise

multiplication

Convolutional block

Figure 3.7. Fusion block with spatio-temporal attention module.

[0, 1]:

σ(u) =
1

1 + e−u

Concretely, equation 3.10 measures the spatially-specific similarity distance between a
supporting frame m and the reference n, in an embedding space.

Subsequently, the spatio-temporal maps aw are used to emphasize the important features
that boost the fusion process. Thus, attention-modulated features F l

∆n
[m], referenced to

the frame n, are calculated by pixel-wise multiplication with the original features F l[m] as:

F l
∆n

[m] = F l[m]⊙ aw(F l[n], F l[m]) (3.11)

Finally, the fused features F̂
l
[n] and F̂

l
[n+1] are obtained by using the fusion convolution

in equation 3.7 with
[︁
F l
∆n

[n], F l
∆n

[n+ 1]
]︁

and
[︂
F l
∆n+1

[n+ 1], F l
∆n+1

[n]
]︂
, respectively.

3.2.3 Feature Pyramid Decoder (FPD)

As typically done in U-net based architectures, higher spatial resolution features are re-
constructed as:

F̃
l
[n] = g

(︂
F̂

l
[n] + (F̂

l+1
[n])↑2

)︂
(3.12)

where (·)↑s refers to the upsampling operator by a factor s, and l = 1, . . . , 4. As in any de-
coder structure, spatially higher levels of the pyramid are reconstructed from semantically
richer features F̂

l+1
[n], along with the image details contained in F̂

l
[n].

29

3.2.4 Aggregation Block (AB)

The goal of this component is to aggregate the features at different resolutions such that
produces the required residual changes ∆z[n] and ∆z[n + 1] that need to be applied to
the inputs z[n]|T0 and z[n + 1]|T0 , respectively. For this purpose, high levels of the feature
pyramid are firstly upsampled and fusion convolution layers are used for the aggregation.
For instance:

∆z[n] = hn

(︃
gn

(︂[︂
F̃

1
[n], (F̃

2
[n])↑2, . . . , (F̃

l
[n])↑2

l−1
]︂)︂↑2)︃

where h denotes a general convolution operation followed by a tanh activation layer to
keep the output in the range of [−1, 1].

3.3 Loss function

Given a pair of consecutive outputs ẑ[n]|T
T−T/2N

and ẑ[n+ 1]|T/2
N

0 – obtained by applying
fN– and their corresponding ground-truth frames, the supervised loss function is a linear
combination of the following terms:

LT/2N (n, n+ 1) = λ1L1 + λpLp + λsLs (3.13)

where λ1, λp, λs correspond to the weighting values which are set by experimentation.

Pixel-wise loss L1: This term incorporates the widely used pixel-wise error between
the estimation and the groundtruth in L1 sense. This term is computed as:

L1 = ∥ẑ[n]|TT−T/2N − z[n]|
T
T−T/2N ∥1 + ∥ẑ[n+ 1]|T/2

N

0 − z[n+ 1]|T/2
N

0 ∥1

Perceptual loss Lp : In order to encourage more visually convincing frames to human
eye, we use the perceptual distances that makes estimated frames sharper. This loss is
defined as:

Lp = ∥ϕ(ẑ[n]|TT−T/2N)− ϕ(z[n]|
T
T−T/2N)∥2 + ∥ϕ(ẑ[n+ 1]|T/2

N

0)− ϕ(z[n+ 1]|T/2
N

0)∥2

where ϕ refers to the conv4_3 feature maps of the ImageNet pretrained VGG16 model
[34].

Sharpness loss Ls : This term is added to emphasize sharpness at the edges. It is
defined as:

Ls = ∥∇2ẑ[n]|TT−T/2N −∇
2z[n]|TT−T/2N ∥1 + ∥∇

2ẑ[n+ 1]|T/2
N

0 −∇2z[n+ 1]|T/2
N

0 ∥1

30

where ∇2 denotes the laplacian operator computed by the convolution with the laplacian
kernel k:

k =

⎡⎢⎢⎢⎣
0 1 0

1 −4 1

0 1 0

⎤⎥⎥⎥⎦

3.4 Image quality metrics

For the quantitative assessment of the proposed VTSR method, frame-wise quality is
evaluated by computing two widely-used full-reference metrics for image restoration prob-
lems: Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM).
In this context, "full-reference" metrics means that a distortion-free image (ground-truth)
is used as a reference to evaluate the quality of the method estimation.

Peak Signal-to-Noise Ratio (PSNR): It is an error-based metric that has a clear phys-
ical meaning. Specifically, it measures the ratio between maximum power of the signal
and the power of the noise, in logarithmic scale. Understanding the noise as the error
image, the PSNR is mathematically expressed as:

PSNR(z, ẑ) = 10 log10

(︄
max2(z)
1
M ∥z − ẑ∥

2
2

)︄
(3.14)

where M denotes the image size, while z and ẑ are the reference and estimation, respec-
tively.

Alternatively, the Signal-to-Noise Ratio (SNR) differs from PSNR in the numerator of the
ratio since it considers the power of the signal, instead of its maximum. Nevertheless, we
only use the PSNR as quality metric because it is less content-dependent. For instance,
let us consider two images, one brighter than the other in average. Assuming the esti-
mation achieves the same mean squared error (equivalent to the power of the noise) for
both images, the SNR is higher for the brighter image. This is because the power of the
signal is correlated to the image brightness. Conversely, the PSNR keeps the same as
the maximum is usually 255 per color channel in a 8-bit representation. Therefore, the
PSNR value lean on the estimation accuracy rather than the image content.

Structural Similarity Index Measure (SSIM): In contrast to the PSNR, SSIM is a
perceptual-based quality metric. In other words, the quality of the image is evaluated
by modeling how the human visual system perceive images. Wang et al. [53] devised
this metric by assuming that the change in structural information provides a suitable mea-
surement of the perceived distortion. Figure 3.8 depicts the block diagram for its com-
putation. First, luminance and contrast measurements are extracted and compared to
each other by computing local means and standard deviations, respectively. Then, the

31

Figure 3.8. Diagram block of SSIM measurement system. Source: [53]

structural similarity is extracted by comparing local patterns of pixel intensities that have
been normalized for luminance and contrast, as shown in the diagram. Ultimately, the
SSIM is combination of the luminance, contrast and structure similarities. For a detailed
description of the involved expressions in the SSIM computation, the reader is referred to
the authors’ work [53].

32

4 EXPERIMENTS

This chapter describes the experiments and their corresponding results in order to study
the capabilities of the proposed deep-learning solution for the VTSR problem. First, we
describe the general settings throughout all the performed experiments in section 4.1.
Secondly, some ablation studies in the network architecture are presented in section 4.2.
Then, section 4.3 introduces the comparison results between our the different training
schemes that are designed for the network. Finally, a comparison against recent methods
for joint deblurring and frame interpolation are outlined in section 4.4.

4.1 Experimental settings

4.1.1 Datasets

For video deblurring there are several datasets which contain fast frame rate videos: GO-
PRO [54], DVD [42] and Sony Low-Motion (Sony) [13]. The GOPRO dataset is comprised
of 33 720p-videos captured by a GoPro Hero 4 camera at a frame rate of 240 frames per
second (fps). We adopted the train/test split suggested by the authors, namely, 22 and
11 video sequences for training and testing, respectively. The DVD dataset contains 133
high-speed videos recorded at 240fps and 720p resolution. Those videos were captured
by several cameras such as iPhone 6s, GoPro Hero 4 and Nexus 5x. Since many videos
involve strong artifacts in this dataset, we only included 68 videos which were randomly
split to the training (56) and testing (12) sets. The Sony dataset was collected by using
a Sony RX V camera at 250 fps. In total, it contains 63 video sequences split into 46
and 17 sets for training and testing, respectively. Roughly, each video is comprised of
1000 frames at a 1080p resolution. Qualitatively, all datasets include dynamic objects
and camera movements from outdoor and indoor scenes.

With the purpose of avoiding dataset bias, we included also 2 videos captured by a RED
camera at 300 fps and 2K resolution. Those videos are generously provided by Huawei
company in Tampere, Finland. Such videos are exclusively used in evaluation for the
fair comparison between our VTSR method and joint deblurring and frame interpolation
methodologies. Thus, we compare performances with data unseen during training or
validation. We refer to those videos as the HuaweiRED dataset.

33

(a) (b)

Figure 4.1. Visual effect of pre-interpolation step for the blur generation. (a) Without
frame-interpolation. (b) With frame-interpolation

4.1.2 Data preparation

It must be pointed out that datasets differ in terms of resolution. To avoid performance
differences caused by the input image resolution, datasets are converted at 720p. Ob-
viously, this only applies for Sony and Huawei datasets which have higher resolution. In
practice, Sony is converted to such resolution by using the FFmpeg tool [55], whereas
REDLINE [56] is used for Huawei videos because this is the associated software tool to
the RED camera that has been used for their acquisition.

Furthermore, we realized by visual inspections that video frames do not fully satisfy the
assumption of shutter almost open, particularly for GOPRO and DVD videos. To alleviate
this issue, we interpolate 7 frames and average them including the reference frame as
a surrogate of true full-exposed frames. To this aim, we utilized the frame interpolation
method proposed by Jiang et al. [11] which allows the computation of multiple intermedi-
ate frames in one step. This pre-processing step also helps in the generation of more real
blur when averaging consecutive frames as it is illustrated in Figure 4.1. In Figure 4.1(a),
it can be noticed some jerkiness problem in the obtained blur near strong edges, espe-
cially around the nearest window car. On the contrary, the produced blur looks smoother
when pre-interpolation of frames is applied before the blur generation (Figure 4.1(b)). In
this manner, videos look like they were full-exposed.

4.1.3 Implementation details

The proposed network and its model variations are implemented with Pytorch [49]. In
the training phase, we keep 90% of the video clips for actual training, the rest is used for
validation. Moreover, we generate the pairs of inputs and outputs on the fly. Specifically,

34

Recursion level FFB variation PSNR SSIM

f

baseline 28.473 0.8732
+ST attention 28.344 0.8719

+pre-alignment 27.567 0.8637

+ST attention+pre-alignment 27.582 0.8619

f2

baseline 26.387 0.8301
+ST attention 25.386 0.8121

+pre-alignment 25.466 0.8109

+ST attention+pre-alignment 25.108 0.8052

f3

baseline 24.201 0.7684
+ST attention 23.681 0.7564

+pre-alignment 23.866 0.7591

+ST attention+pre-alignment 23.616 0.7548

Table 4.1. Ablation studies on DVD dataset of the Feature Fusion Block (FFB). The fusion
of features is mainly performed by fusion convolution of equation 3.7 (baseline). Yet, we
can incorporate the Spatio-temporal attention module (+ST attention) and/or Spatial pre-
alignment of features (+pre-alignment).

we randomly average 8, 4, or 2 consecutive frames for the inputs and the outputs are
then accordingly averaged by 4, 2, or 1 frames. This mechanism forces the network to
increase the frame rate by 2 no matter what is the input frame rate. However, we only
sample 20 pairs of inputs and outputs per video sequence for faster computation. Also,
frames within the same video are highly correlated, then the network does not need to
sample every single frame to learn from that data. Subsequently, images are rescaled
to an image size of 512x512 and then randomly cropped to a size of 224x224. Random
horizontal flipping is the only data augmentation mechanism included. The batch-size
is set to 8 and models are trained for 100 epochs using Adam optimizer with a starting
learning rate of 1e-4. We incorporate a multi-step scheduler that change the learning rate
with gamma 0.7 every 10 epochs. In addition, we freeze for one epoch the backbone in
the FPE with weights pretrained on ImageNet [31]. For the subsequent epochs, those
weights are freely optimized in the training phase.

4.2 Ablation studies

An ablation study on the Feature Fusion Block (FFB), presented in section 3.2.2, is per-
formed to assess the impact of including the Spatio-temporal attention module and the
Spatial pre-alignment of features. In this experiment, we only used the DVD dataset and
considered the basic training scheme, which is refered in section 3.1.2. For training, the
weights of the supervised loss function are set to λ1 = 0.6, λs = 0.15, λp = 0.05. For
testing, original videos with frame rate r are consecutively averaged every 8 frames and

35

take them as the input – input videos then have a frame rate of r/8. As our network
is trained to double the time resolution, we recursively apply the method to recover the
original video. Expressively, we apply f3 = f ◦ f ◦ f to an input video with frame rate r/8
in order to produce a video with frame rate r, which matches to the original video.

Table 4.1 summarizes the PSNR and SSIM values obtained for each model variation and
for each one of the three recursion levels. In this table, baseline stands for to the fusion
that is performed by the fusion convolution of equation 3.7. The addition of the Spatio-
temporal attention module and the Spatial pre-alignment of features are denote by +ST
attention and +pre-alignment, respectively. Interestingly, performance always drops by
the recursive application of the proposed method, no matter the model variation. This is
easily expected since ground-truths of higher time-expansion levels become less similar
to the input which makes things more challenging for the networks. Besides, artifacts
surely accumulate by recursion. Yet we hypothesized that either the Spatial pre-alignment
of features or the Spatial pre-alignment of features may aid the fusion process, we failed
to demonstrate such idea since the baseline outperforms any other model variation in
terms of, both, PSNR and SSIM. On one hand, scenes contain objects that move in many
different ways, and so features do too. Hence, the affine model that was assumed for
Spatial pre-alignment of features might be quite rigid to properly align the features coming
from different frames. Perhaps, less restrictive models such as deformable convolution
blocks [57] or flow-based alignment modules would suit better for this task. On the other
hand, the baseline architecture might be complex enough that it does not gain much
flexibility by adding the concerned modules in the FFB. Thus, we choose the baseline
model of the FFB for our network architecture and use it for the rest of the experiments.

4.3 Comparison of training schemes

In section 3.1.2, three different schemes have been devised for the training of the pro-
posed deep-learning-based VTSR method: basic, reconstruction, and multilevel training.
In this experiment, we aim at comparing the effectiveness of those strategies by using
the GOPRO and Sony datasets. We keep the same weights of supervised loss function
of the previous experiment (λ1 = 0.6, λs = 0.15, λp = 0.05). Additionally, we set λr = 0.15

that is used in the reconstruction training scheme. For testing, we again average 8 con-
secutive frames to construct the inputs and use the recursion to recover the original video
– applying f3.

Table 4.2 presents the PSNR and SSIM results obtained. Indeed, the advanced schemes
(reconstruction, multilevel training) tend to improve the performance as they are con-
ceived to regularize the temporal super-resolution problem. Notwithstanding, it is not
clear which of them turn to be better. Although the multilevel scheme overcomes the
others in GOPRO dataset, the reconstruction scheme gets some of the best metrics in
Sony dataset. Moreover, the gap in the quantitative results seems not to be significant.
Regarding then the training time for each one of the schemes that are listed in Table

36

GOPRO Sony

Recursion level Scheme PSNR SSIM PSNR SSIM

f

Basic 28.341 0.8795 35.664 0.9621

Reconstruction 28.316 0.8768 35.699 0.9612

Multilevel 28.783 0.8905 35.274 0.9652

f2
Basic 26.014 0.8346 33.611 0.9470

Reconstruction 26.033 0.8345 33.617 0.9466

Multilevel 26.220 0.8426 33.264 0.9481

f3
Basic 23.889 0.7780 32.326 0.9337

Reconstruction 23.913 0.7791 32.339 0.9388
Multilevel 23.975 0.7835 32.186 0.9340

Table 4.2. Quantitative results for training schemes on GOPRO and Sony. Such training
schemes are described in section 3.1.2.

Basic Reconstruction Multilevel

Training time 19h 0m 16s 26h 41m 38s 54h 23m 7s

Table 4.3. Training times on GOPRO and Sony.

4.3, we conclude that the reconstruction scheme has the best trade-off between training
computational cost and performance. It is observed from Table 4.3 that the multilevel
scheme almost doubles the training time of the reconstruction scheme, but it does not
gain a substantial improvement.

Curiously, what is more noticeable from Table 4.2 is the performance gap between the
GOPRO and Sony datasets. For instance, the PSNR is more than 7 dB lower in GOPRO
compared to Sony. That is explained by the dataset quality. As mentioned in section 4.1,
the frame rates for GOPRO and Sony datasets are respectively 240 and 250 fps. Then, as
inputs are equally generated by averaging 8 consecutive frames, blur becomes stronger
in GOPRO due to longer temporal distances between frames. Likewise, GOPRO contains
mostly blur produced by drastic camera movements, which we found more challenging
for our method. In contrast, sequences in Sony tend to include more blur produced by
dynamic objects which is local and easier to inferred for the network.

For qualitative assessment, we show some visual examples in Figure 4.2. Examples in-
clude the input and the subsequent time-expanded frames until recovering the original
frame rate, i.e., apply f3 to recursively accomplish r/8 → r. Overall, our method pro-
gressively makes frames sharper under the recursive application of the network. Espe-
cially, Figure 4.2(a) shows a successful recovery under the presence of a smooth camera
movement. Edges and persons contour increasingly get sharp, even the left-side let-
ters. Similarly, satisfactory temporal super-resolution is demonstrated in Figure 4.2(b)

37

(a)

(b)

(c)

Figure 4.2. Examples of visual results on GOPRO and Sony. From left to right: input
(r/8), f (r/8→ r/4), f2 (r/4→ r/2), f3 (r/2→ r). (a) Successful results on GOPRO, (b)
Successful results on Sony, (c) ineffective result on GOPRO.

that involves an input with dynamic objects as cars are. It is observed the gradual edge
enhancement for the background cars and for the front wheel. Nevertheless, we found
the proposed method to be sensible towards strong global motion as shown in Figure 4.2.
Although edges turn sharper and sharper, an artistic-like appearance is obtained, which
is not what one expects from a temporal super-resolution system. We argue that the
multi-scale feature pyramid strategy is not enough to deal with strong global blur. A good
solution would be to incorporate a proper image pyramid as in the work proposed by Nah
et al. [54]. An image pyramid allows to tackle different levels of blur in a coarse-to-fine
manner.

38

Clip 1 Clip 2

Time expansion Method PSNR SSIM PSNR SSIM

r/16→ r/8
doing nothing 41.524 0.9961 39.076 0.9959

Ours (f) 42.9883 0.9965 40.443 0.9961

r/8→ r/4
doing nothing 40.236 0.9936 37.614 0.9932
Ours (f2) 40.272 0.9933 38.038 0.9928

r/4→ r/2
doing nothing 39.448 0.9920 36.818 0.9913
Ours (f3) 38.512 0.9904 36.590 0.9899

r/2→ r
doing nothing 38.929 0.9905 36.413 0.9897

Ours (f4) 37.193 0.9874 35.591 0.9871

r/15→ r DeblurGAN-v2+SloMo 27.900 0.9222 28.332 0.9323

r/20→ r Jin et al. 39.822 0.9915 37.448 0.9902

Table 4.4. Method comparison. Whereas the original video with frame rate r is recovered
by recursion in our methodology, DeblurGan-v2+SloMo and Jin et al. are fixed for a time
expansion of x15 and x20, respectively.

4.4 Joint deblurring and frame interpolation

Our VTSR method is ultimately compared to recent methodologies for joint deblurring and
frame interpolation. In this experiment, we utilize the two-video dataset HuaweiRED for
evaluation, exclusively. Since those videos have a very high temporal resolution (300 fps),
averaging by 8 frames does not create significant blur for the input frames of our system.
Therefore, we use instead 16 consecutive frames as inputs to our system, i.e., we are
required to apply f4 to recover the original frame rate r. Furthermore, we use the model
that was trained with the reconstruction training scheme for testing. As competitors, two
methods are considered:

1. The naive combination of deblurring and frame interpolation. In particular, we use
the DeblurGAN-v2 [10] for deblurring and SloMo [11] for frame interpolation. We
refer to this method as DeblurGAN-v2+SloMo. Bering in mind that DeblurGAN-v2
outputs the middle frame from the averaged input, an odd number for averaging
is more appropriate. Specifically, we use 15 frames. Then, SloMo [11] is used to
interpolate the missing 14 frames. With this methodology an input video sequence
with frame rate r/15 is recovered to the initial one r.

2. The system proposed by Jin et al. [13] that is explicitly designed for joint deblurring
and frame interpolation. This method only allows to expand the temporal axes x10
or x20. We therefore use x20 because is closer to the time expansion of our method
(x16). Thus, we average 20 consecutive frames to generate the corresponding
inputs.

Noteworthy, any of the itemized methods recovers the original frame rate at a single

39

(a)

(b)

Figure 4.3. Visual examples on HuaweiRED videos. From left to right: doing nothing,
Ours (f4), Jin et al. , ground-truths. (a) Clip 1, (b) Clip 2

step, in contrast to our method that needs recursion. To assess the effectiveness of the
recursion, we compare also the performance of doing nothing. To be precise, by doing
nothing we mean to duplicate the input frame every recursive step. In this way, we can
see how well our method behaves compared to the simple solution of repeating frames.

Table 4.4 condenses the performance metrics we obtained for the aforementioned method-
ologies. Firstly, our method just surpasses the performance of doing nothing in the two
first recursive steps. However, the performance of our method drops in the next re-
cursions, turning doing nothing to be quantitatively better. In second place, comparing
against the single-step solution for joint deblurring and frame interpolation, we observe
that our method overcomes with good margin the naive solution of DeblurGan-v2+SloMo.
Conversely, the method by Jin et al. outperforms ours as well. In fact, Jin et al. achieves
the best metrics in the recovery of the original videos. Anyhow, since our methodology is
trained to double the input frame rate, VTSR is versatile, in theory, to many different time
expansions.

40

Ours

(a)

Ours

(b)

Figure 4.4. Frame-wise performance on HuaweiRED videos. (a) Clip 1, (b) Clip 2

Surprisingly, the PSNR and SSIM results in Table 4.4 are much higher compared to the
performances presented in the other experiments. By inspection on visual results, we
realize that a larger proportion of the scene remains static meanwhile few dynamic ele-
ments are corrupting the video. That might explain why doing nothing seems to be better
than the proposed method. Figure 4.3 exhibits some examples of the recovered video
at frame rate r from the two clips in the dataset. Specifically, it depicts results for doing
nothing, our methodology, and Jin et al. – compared to the ground-truths. Examining
the zoom areas, more clear distortions are seen for our method. Yet one may think it
looks sharper than doing nothing. Consequently, PSNR and SSIM could not be the best
metrics for evaluation. Perhaps, by masking the corrupting elements, it is still possible to

41

use then but only under the masked regions. On the other side, Jin et al., again, man-
ifests better qualitative results though the blur of the dynamic objects is quite strong to
accomplish perfect reconstruction.

By reproducing the video results, we observe a flickering effect every certain time. With
the aim of analyzing such issue, we construct a plot of the frame-wise SSIM per each clip,
which is depicted in Figure 4.4. Indeed, an oscillation pattern was found for doing nothing
and our method, whose minima match to each other. To be specific, this happens every
16 frames that corresponds to the number of frames that has been used for averaging in
the construction of the inputs. We believe that the perceptual loss, which is the bigger
responsible for the sharp appearance, makes borders to be attached at the moment
they are more visible and does not allow them to move smoothly. Despite adding a
reconstruction loss to promote temporal consistency, it seems this regularization is not
enough to produce temporal smoothness. One solution to this might be to come up with
a stronger loss that guarantees a smooth behaviour along the time. Also, the introduction
of recurrent neural units in the network architecture would let the system have a memory,
but such models are harder to train. Another aspect that is probably causing weakness
in our method is that averaging 16 frames may yield to stronger local blur than the one
presented during training. Although the recursive mechanism is intended to progressively
expand the time until even the fastest motion is frozen and the frames become spatially
sharp. In practice, there might be limitations in the number of recursive steps due to the
artifacts that are highlighted every step.

Conversely, Jin et al. does not reveal a high oscillation pattern as shown in Figure 4.4.
Anyhow, it is impacting that at some instances doing nothing overcomes Jin et al., al-
though the last one is undoubtedly better by visual inspection. This is another reason that
makes us believe PSNR and SSIM are not the best performance metrics for this task. A
final comment about those plots is that the substantial declining trends are caused by
the appearance of corrupting elements in the scene – objects moving. Otherwise, the
performance would be perfect as SSIM≈ 1.

42

5 CONCLUSION

In this thesis, a deep-learning-based methodology was proposed for the problem of video
temporal super-resolution. In spite of the fact that temporal super-resolution has been
previously studied, this approach had not been considered in recent deep learning solu-
tions to extract slow-motion videos from blurry ones. We demonstrated that the recursive
application of the proposed method, which expands the time by a factor of 2, gradually
reduces the blur. Notwithstanding, the appearance of artifacts can limit, in practice, its
use. There is uncertainty of how many times the recursive mechanism can be applied
until artifacts exploit in the resulting video.

We also found that this method suits better for local blur produced generally by dynamic
objects rather than strong global blur caused by substantial camera movement. A down-
side of this method is the lack of temporal smoothness that generates a flickering effect in
the video results. To solve this issue, we incorporated a temporal consistency regularizer
in the training phase of our network, but further regularization is still needed to ensure
smoothness. In our experiments for the task of joint deblurring and frame interpolation,
the method by Jin et al. [13] overweight any other method. Interestingly enough, our deep
learning system is never trained, explicitly, for such a task. Instead, our network aims at
super-resolve the temporal domain, yet our method inherently tackles the deblurring and
frame interpolation problem. Furthermore, a miss-match between quantitative and visual
results was observed in some cases. Thus, we argue that an evaluation based of PNSR
and SSIM might not be appropriate for the problem of temporal super-resolution.

43

REFERENCES

[1] Apple. iPhone X - Technical Specifications. URL: https://support.apple.com/kb/
SP770?viewlocale=en%7B%5C_%7DUS%7B%5C&%7Dlocale=es%7B%5C_%7DES.

[2] Gsmarena. Sony Ericsson C510 - Full phone specifications. URL: http://www.
gsmarena.com/new%7B%5C_%7Dfrom%7B%5C%%7D3Cbr%20/sony%7B%5C_%7Dericsson%

7B%5C_%7Dc510-2640.php.
[3] Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D. and Matas, J. Deblurgan: Blind

motion deblurring using conditional adversarial networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, 8183–8192.

[4] Kotera, J., Rozumnyi, D., Šroubek, F. and Matas, J. Intra-frame Object Tracking by
Deblatting. arXiv preprint arXiv:1905.03633 (2019).

[5] Park, S. C., Park, M. K. and Kang, M. G. Super-resolution image reconstruction: a
technical overview. IEEE signal processing magazine 20.3 (2003), 21–36.

[6] Shimano, M., Okabe, T., Sato, I. and Sato, Y. Video temporal super-resolution
based on self-similarity. Asian Conference on Computer Vision. Springer. 2010,
93–106.

[7] Shechtman, E., Caspi, Y. and Irani, M. Space-time super-resolution. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 27.4 (2005), 531–545.

[8] Mudenagudi, U., Banerjee, S. and Kalra, P. K. Space-time super-resolution using
graph-cut optimization. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 33.5 (2010), 995–1008.

[9] Wang, X., Chan, K. C., Yu, K., Dong, C. and Change Loy, C. Edvr: Video restora-
tion with enhanced deformable convolutional networks. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2019, 0–0.

[10] Kupyn, O., Martyniuk, T., Wu, J. and Wang, Z. Deblurgan-v2: Deblurring (orders-of-
magnitude) faster and better. Proceedings of the IEEE International Conference on
Computer Vision. 2019, 8878–8887.

[11] Jiang, H., Sun, D., Jampani, V., Yang, M.-H., Learned-Miller, E. and Kautz, J. Super
slomo: High quality estimation of multiple intermediate frames for video interpola-
tion. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2018, 9000–9008.

[12] Niklaus, S., Mai, L. and Liu, F. Video frame interpolation via adaptive separable
convolution. Proceedings of the IEEE International Conference on Computer Vi-
sion. 2017, 261–270.

[13] Jin, M., Hu, Z. and Favaro, P. Learning to Extract Flawless Slow Motion From Blurry
Videos. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2019, 8112–8121.

https://support.apple.com/kb/SP770?viewlocale=en%7B%5C_%7DUS%7B%5C&%7Dlocale=es%7B%5C_%7DES
https://support.apple.com/kb/SP770?viewlocale=en%7B%5C_%7DUS%7B%5C&%7Dlocale=es%7B%5C_%7DES
http://www.gsmarena.com/new%7B%5C_%7Dfrom%7B%5C%%7D3Cbr%20/sony%7B%5C_%7Dericsson%7B%5C_%7Dc510-2640.php
http://www.gsmarena.com/new%7B%5C_%7Dfrom%7B%5C%%7D3Cbr%20/sony%7B%5C_%7Dericsson%7B%5C_%7Dc510-2640.php
http://www.gsmarena.com/new%7B%5C_%7Dfrom%7B%5C%%7D3Cbr%20/sony%7B%5C_%7Dericsson%7B%5C_%7Dc510-2640.php

44

[14] Nyström, D. Colorimetric and multispectral image acquisition. PhD thesis. Institu-
tionen för teknik och naturvetenskap, 2006.

[15] Bayer, B. E. Color imaging array. US Patent 3,971,065. July 1976.
[16] Boracchi, G. and Foi, A. Modeling the performance of image restoration from mo-

tion blur. IEEE Transactions on Image Processing 21.8 (2012), 3502–3517.
[17] Ramanath, R., Snyder, W. E., Yoo, Y. and Drew, M. S. Color image processing

pipeline. IEEE Signal Processing Magazine 22.1 (2005), 34–43.
[18] Nikkanen, J. Computational color constancy in mobile imaging. PhD thesis. Ph. D.

dissertation, Tampere University of Technology, 2013.
[19] Shahar, O., Faktor, A. and Irani, M. Space-time super-resolution from a single video.

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. IEEE Computer So-
ciety, 2011, 3353–3360. ISBN: 9781457703942. DOI: 10.1109/CVPR.2011.5995360.

[20] Nah, S., Son, S., Timofte, R., Lee, K. M., Siyao, L., Pan, Z., Xu, X., Sun, W., Choi,
M., Kim, H. et al. AIM 2019 Challenge on video temporal super-resolution: methods
and results. 2019 IEEE/CVF International Conference on Computer Vision Work-
shop (ICCVW). IEEE. 2019, 3388–3398.

[21] Park, B., Yu, S. and Jeong, J. Robust Temporal Super-Resolution for Dynamic Mo-
tion Videos. 2019 IEEE/CVF International Conference on Computer Vision Work-
shop (ICCVW). IEEE. 2019, 3494–3502.

[22] Glasner, D., Bagon, S. and Irani, M. Super-resolution from a single image. 2009
IEEE 12th international conference on computer vision. IEEE. 2009, 349–356.

[23] Maggioni, M. and Dragotti, P. L. Video temporal super-resolution using nonlocal
registration and self-similarity. 2016 IEEE 18th International Workshop on Multime-
dia Signal Processing (MMSP). IEEE. 2016, 1–6.

[24] Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. MIT press, 2016.
[25] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning representations by

back-propagating errors. nature 323.6088 (1986), 533–536.
[26] Hinton, G. E. et al. Learning distributed representations of concepts. Proceedings

of the eighth annual conference of the cognitive science society. Vol. 1. Amherst,
MA. 1986, 12.

[27] LeCun, Y. et al. Generalization and network design strategies. Connectionism in
perspective 19 (1989), 143–155.

[28] Krizhevsky, A., Sutskever, I. and Hinton, G. E. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems.
2012, 1097–1105.

[29] Girshick, R., Donahue, J., Darrell, T. and Malik, J. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2014, 580–587.

[30] Sun, Y., Chen, Y., Wang, X. and Tang, X. Deep learning face representation by
joint identification-verification. Advances in neural information processing systems.
2014, 1988–1996.

https://doi.org/10.1109/CVPR.2011.5995360

45

[31] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. Imagenet: A large-
scale hierarchical image database. 2009 IEEE conference on computer vision and
pattern recognition. Ieee. 2009, 248–255.

[32] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

[33] Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015).

[34] Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014).

[35] He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, 770–778.

[36] Dong, C., Loy, C. C., He, K. and Tang, X. Image super-resolution using deep convo-
lutional networks. IEEE transactions on pattern analysis and machine intelligence
38.2 (2015), 295–307.

[37] Zhang, K., Zuo, W., Chen, Y., Meng, D. and Zhang, L. Beyond a gaussian denoiser:
Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing 26.7 (2017), 3142–3155.

[38] Jain, V. and Seung, S. Natural image denoising with convolutional networks. Ad-
vances in neural information processing systems. 2009, 769–776.

[39] Kim, J., Kwon Lee, J. and Mu Lee, K. Accurate image super-resolution using very
deep convolutional networks. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, 1646–1654.

[40] Ronneberger, O., Fischer, P. and Brox, T. U-net: Convolutional networks for biomed-
ical image segmentation. International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer. 2015, 234–241.

[41] Mao, X., Shen, C. and Yang, Y.-B. Image restoration using very deep convolutional
encoder-decoder networks with symmetric skip connections. Advances in Neural
Information Processing Systems. 2016, 2802–2810.

[42] Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W. and Wang, O. Deep Video
Deblurring for Hand-held Cameras. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2017, 1279–1288.

[43] Mustaniemi, J., Kannala, J., Matas, J., Särkkä, S. and Heikkilä, J. LSD _2-Joint
Denoising and Deblurring of Short and Long Exposure Images with Convolutional
Neural Networks. arXiv preprint arXiv:1811.09485 (2018).

[44] Isola, P., Zhu, J.-Y., Zhou, T. and Efros, A. A. Image-to-image translation with con-
ditional adversarial networks. Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, 1125–1134.

[45] Dumoulin, V. and Visin, F. A guide to convolution arithmetic for deep learning. arXiv
preprint arXiv:1603.07285 (2016).

[46] Zeiler, M. D. and Fergus, R. Visualizing and understanding convolutional networks.
European conference on computer vision. Springer. 2014, 818–833.

46

[47] Scherer, D., Müller, A. and Behnke, S. Evaluation of pooling operations in con-
volutional architectures for object recognition. International conference on artificial
neural networks. Springer. 2010, 92–101.

[48] Wilson, D. R. and Martinez, T. R. The general inefficiency of batch training for gra-
dient descent learning. Neural networks 16.10 (2003), 1429–1451.

[49] PyTorch. URL: https://pytorch.org/.
[50] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L.-C. Mobilenetv2:

Inverted residuals and linear bottlenecks. Proceedings of the IEEE conference on
computer vision and pattern recognition. 2018, 4510–4520.

[51] Tian, Y., Zhang, Y., Fu, Y. and Xu, C. TDAN: Temporally deformable alignment
network for video super-resolution. arXiv preprint arXiv:1812.02898 (2018).

[52] Jaderberg, M., Simonyan, K., Zisserman, A. et al. Spatial transformer networks.
Advances in neural information processing systems. 2015, 2017–2025.

[53] Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P. Image quality assess-
ment: from error visibility to structural similarity. IEEE transactions on image pro-
cessing 13.4 (2004), 600–612.

[54] Nah, S., Kim, T. H. and Lee, K. M. Deep Multi-Scale Convolutional Neural Network
for Dynamic Scene Deblurring. The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). July 2017.

[55] FFmpeg. URL: https://ffmpeg.org/.
[56] RED. Use REDLINE. URL: http://docs.red.com/955-0004_v42/REV-A/HTML/

955-0004_V42%5C%20Rev-A%5C%20%5C%20%5C%20RED%5C%20PS,%5C%20REDCINE-

X%5C%20PRO%5C%20Operation%5C%20Guide/Content/11_REDLINE/1_Intro_

REDLINE.htm.
[57] Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H. and Wei, Y. Deformable convo-

lutional networks. Proceedings of the IEEE international conference on computer
vision. 2017, 764–773.

https://pytorch.org/
https://ffmpeg.org/
http://docs.red.com/955-0004_v42/REV-A/HTML/955-0004_V42%5C%20Rev-A%5C%20%5C%20%5C%20RED%5C%20PS,%5C%20REDCINE-X%5C%20PRO%5C%20Operation%5C%20Guide/Content/11_REDLINE/1_Intro_REDLINE.htm
http://docs.red.com/955-0004_v42/REV-A/HTML/955-0004_V42%5C%20Rev-A%5C%20%5C%20%5C%20RED%5C%20PS,%5C%20REDCINE-X%5C%20PRO%5C%20Operation%5C%20Guide/Content/11_REDLINE/1_Intro_REDLINE.htm
http://docs.red.com/955-0004_v42/REV-A/HTML/955-0004_V42%5C%20Rev-A%5C%20%5C%20%5C%20RED%5C%20PS,%5C%20REDCINE-X%5C%20PRO%5C%20Operation%5C%20Guide/Content/11_REDLINE/1_Intro_REDLINE.htm
http://docs.red.com/955-0004_v42/REV-A/HTML/955-0004_V42%5C%20Rev-A%5C%20%5C%20%5C%20RED%5C%20PS,%5C%20REDCINE-X%5C%20PRO%5C%20Operation%5C%20Guide/Content/11_REDLINE/1_Intro_REDLINE.htm

	Introduction
	Background
	Video Formation Model
	Video Temporal Super-Resolution
	Previous work

	Deep learning
	Standard CNNs for image restoration
	Learning process

	Methods
	Data-driven VTSR approach
	Recursive VTSR
	Advanced training schemes

	Neural network architecture
	Feature Pyramid Encoder (FPE)
	Feature Fusion Block (FFB)
	Feature Pyramid Decoder (FPD)
	Aggregation Block (AB)

	Loss function
	Image quality metrics

	Experiments
	Experimental settings
	Datasets
	Data preparation
	Implementation details

	Ablation studies
	Comparison of training schemes
	Joint deblurring and frame interpolation

	Conclusion
	References

