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ABSTRACT

More than 50 million people worldwide suffer from epilepsy and around 6.3 million
have Parkinson’s disease (PD). These are two examples of the many neurological dis-
orders. Depending on the severity, one available solution is deep brain stimulation
(DBS). DBS is a method to send electrical impulses to the desired region of the brain
by using an electrode implant to regulate abnormal impulses. Another stimulation
method, known as optogenetics, uses optical stimulation. This method is already
popular in experiments on mice and non-human primates, but not in humans. Con-
sidering the recent research and development in optogenetics, its implementation in
humans could be another solution for neurological treatment.

The objective of this thesis was to develop a wireless fully implantable brain ma-
chine interface (BMI) which can be applied to both animals and humans. In this the-
sis, we propose the concept of the Wireless Nanonetworking Device (WiOptND),
which is batteryless and small in size. We found that this device is feasible to be im-
plemented with existing technology by considering optogenetic specifications and
light intensity requirements. Furthermore, we propose a system charging protocol
that can be integrated into this device. We found that by employing a suitable charg-
ing protocol, the efficiency and the effectiveness of the device can be maximised.
Moreover, it can support spatially distributed stimulation, where multiple devices
can support synchronous neuronal stimulation. In addition to that, we investigated
light propagation behaviour in neuronal tissue. Interestingly, the light exhibited fo-
cusing effect for spherical and pyramidal-shaped neurons.

In summary, all the results of this thesis contribute to the development of wireless
BMI. This development opens up more opportunities for both laboratory observa-
tions, such as freely moving experimental subjects, and clinical implementations,
such as daily neurological treatments.
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1 INTRODUCTION

The continuous development of wireless communication technology focuses on per-
formance, scalability, reachability, accessibility, interoperability, and security. Per-
formance — including data rate, stability, and latency — sets the upper bound of
the application implementation feasibility [61] [80] [88]. Scalability anticipates the
growing number of network elements during the implementation [27] [13] [106].
Reachability and accessibility are closely related to the network coverage, which mea-
sures the availability of connections with other network entities [91] [64]. Interop-
erability ensures the seamless communication compatibility among all communi-
cation system technologies [94] [74]. Security guarantees the separation between
private and public domains [77] [22] [3]. In the broader scope of the wireless com-
munication system, the concept of the Internet of Things (IoT) attempts to maximise
scalability, reachability, accessibility, and interoperability. Its network entities are
not limited to devices that only require human interaction, as in the existing con-
ventional communication system, but are also capable of interaction among them-
selves. The IoT introduces autonomous communication, such as device-to-device
(D2D) and vehicle-to-everything (V2X) communication [5] [37]. Furthermore, the
concept inspires other concept categories, such as the Internet of Medical Things
(mIoT) [23] [38], Internet of Nano Things (IoNT), and Internet of Bio Nano Things
(IoBNT) [2] [7] [58] [25].

The concept of IoBNT or molecular communication (MC) emphasises the role
of the (synthetic) biological entities in a novel communication and networking sys-
tem [2] [69]. This extends the communication and network engineering from the
conventional communication system that concentrates solely on radio frequency
(RF) waves to a larger scope, including mechanical waves, electromagnetic waves,
chemical signals, and biological signals. Calcium signalling [18] [70], neuronal com-
munication [59], the microfluidic system [19], and pheromone communication [33]
are some examples of MC. In this case, MC is considered a bio-inspired communica-
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tion, since the technique either utilises natural/living things or mimics their natural
behaviour. Therefore, there are two major components for a system to be consid-
ered an MC: information exchange and chemical/biological entities. In this case, the
entities should play a major role during the communication process in the form of
nanomachines and/or molecular carriers.

1.1 Brain Machine Interface (BMI)

A brain machine interface (BMI) is a device or system that has a direct connection
to the brain and enables humans to monitor and/or manipulate neuronal activity.
In order to do so, a BMI should be able to encode and decode human readable in-
formation into neuronal activity. BMIs are divided into two major categories based
on the physical connection methods between the device and the brain: invasive and
non-invasive [60]. A BMI is invasive when the device has direct contact with the
brain tissue, while a non-invasive BMI has direct contact only with the scalp. Re-
garding neuronal activity monitoring and manipulation, an invasive BMI provides
better accuracy in spatiotemporal resolution and a stronger received signal. How-
ever, an invasive BMI requires surgical procedures in order to implant the intracra-
nial electrodes, which is one of the significant factors to consider in implementation
in humans.

Concerns about device miniaturisation are more relevant in an invasive BMI com-
pared to a non-invasive BMI. This is due to the nature of the former, which needs
to be implanted inside the skull. The invasive device comprises three major com-
ponents, namely the internal, external, and the connection between them. In most
cases, the bigger components — such as the power supplies and controllers — are
located in the external part.

The amount of electrodes has a proportional correlation with the spatiotemporal
resolution. This translates into the accuracy of the information about the neuronal
activity. In order to have a higher resolution, a BMI should accommodate a dense
neuron population monitoring/manipulation in a certain coverage area. This is the
reason why an optimal design is required to determine the size and the number of
electrodes in the internal part.

Patients tend to choose a non-invasive rather than an invasive BMI. Earlier, for
epilepsy treatments, patients underwent a surgical procedure called electrocorticogra-
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phy (ECoG) to map a certain brain section in order to identify the damage caused by
the seizure. In this treatment, part of the skull was removed in order to place the elec-
trodes in direct contact with the brain tissue. Consequently, the patient was prone
to infection during the ECoG procedure. By introducing the electroencephalogram
(EEG), epilepsy patients have a less/non-invasive option. For example, a subdermal
EEG requires only skin (dermis) removal, but not the skull. Therefore, a subder-
mal EEG is considered the less invasive option. Furthermore, a scalp EEG is clearly
categorised as non-invasive [71] [1].

1.2 Objective of the Thesis

In this thesis, we focus on the future implementation of optogenetics on human
brain. We emphasise neuron stimulation based on the human neocortex/cerebral cor-
tex, which is the outer part of the cerebrum. Therefore, the main objective of this
thesis is to design an implantable wireless BMI for optogenetic stimulation that sup-
ports spatially distributed stimulation. This device, which is called a Wireless Op-
togenetics Nanonetworking Device (WiOptND), communicates using both acoustic
and optical signals rather than an RF signal. Therefore, in addition to the hardware
components of the WiOptND, we also elaborate on these communication signals in
order to design an efficient and effective small-scale BMI. Additionally, we propose
a charging protocol that enables synchronous spatially distributed stimulation by a
network of several WiOptNDs. In order to support this feature, a WiOptND also
requires electrical circuit alteration to incorporate the time delays into its stimula-
tion timing.

Furthermore, we analyse light propagation in the brain tissue and characterise its
interaction with the neurons based on their morphology. This is important consid-
ering there are different types of neuron geometry and the possibility of direction
deviation in light propagation. Additionally, we study light propagation behaviour
through multiple neurons in order to observe its effect on the received light signal.

1.3 Methodology

The research reported in this thesis utilises a mainly quantitative approach based on
theoretical formula derivations, computer simulations, and the existing experimen-
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tal data from the corresponding research literature. All supporting data and theories
were obtained by literature study, and the laboratory experiment was conducted by
our collaborator at the University at Buffalo, New York, who has the authorisation
for this experiment.

The data on the neuron and brain morphology, physiology, and activity were
obtained from a literature study of the existing research on mammals including mice,
non-human primates, and humans [76] [95]. In particular, we referred to the study
on macaque monkeys for brain activity during specific tasks and the observation of
mice regarding BMI implementation.

The aim of the literature review was to determine the most effective and suit-
able component in designing the WiOptND, whereas the theoretical and numerical
analyses and computer simulations were to validate the WiOptND design and to as-
sess its implementation feasibility. The simulation software used in this research was
MATLAB, COMSOL Multiphysics, and Python. The data was preprocessed using
Python and fed into MATLAB for further processing and final analysis, whereas
COMSOL Multiphysics was used mainly for the investigation of light propagation
behaviour [93] [73].

For the theoretical analysis, we applied well established theories, such as the Mod-
ified Beer-Lambert law and Mie scattering to investigate light propagation in scat-
tering media. The difference between the traditional and modified Beer-Lambert
law is that the latter approximates the mean path length instead of absolute values
[6]. Furthermore, the Mie scattering analysis is based on the fact that the size of
the organelles is comparable to the wavelength, and the size parameter lies in the
range where it should be analysed by Mie scattering theory. Additionally, in COM-
SOL Multiphysics, we simulated photon diffusion based on the Helmholtz equation,
which enables the simplification of partial differential equations (PDEs). Helmholtz
omits the time dependency of PDEs, leaving only the space domain in the equations.

1.4 Main Results of the Thesis

The main results and the contributions of our publications included in this thesis
are listed as follows.

Publication 1: Wireless Optogenetic Neural Dust for Deep Brain Stimulation
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In publication [I], the concept of WiOptND is proposed to facilitate the wireless
optogenetics stimulation. The proposal includes the system and hardware device
architectures. The implementation concentrates on a fully implantable and
batteryless BMI. This solution is feasible by incorporating micro-scale electrical
components complemented by a piezoelectric-based energy harvester.

Publication 2: Wireless Optogenetic Nanonetworks for Brain Stimulation:
Device Model and Charging Protocols

In publication [II], the improvement of WiOptND implementation in terms of
synchronised multi-device operation control is elaborated upon. It includes the
additional component of a voice–operated switch (VOX), which enables the
charging control of multiple devices. Additionally, the time delay relay component
is also introduced to elevate the functionality of the device in terms of stimulation
timing management. The combination of these two additional components
introduces charging protocols resulting in different behaviours in optogenetic
stimulation.

Publication 3: Wireless Communications for Optogenetics-based Brain
Stimulation: Present Technology and Future Challenges

In publication [III], the development of BMI is studied and compared to the
proposed WiOptND. The comparison concentrates on the hardware
implementation, energy management, and communication technology. Moreover,
the future challenges, especially in communication perspective, are profoundly
elaborated upon.

Publication 4: Light Propagation Analysis in Nervous Tissue for Wireless
Optogenetic Nanonetworks

In publication [IV], the light propagation in nervous tissue is investigated. The
analytical analysis based on cell geometry and propagation phenomena is
elaborated upon. Phenomena such as the neuron focusing effect are introduced.
This effect occurs due to blocking neurons along the path of the target neuron.
Furthermore, the analysis is validated using COMSOL simulation. Regarding the
multipath propagation, based on the optical properties of the neuron, it is observed
that the reflected path has an insignificant effect on the received light intensity.
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Publication 5: Analysis of Light Propagation on Physiological Properties of
Neurons for Nanoscale Optogenetics

In publication [V], the light propagation analysis is extended by incorporating the
cell geometry and the effect of organelles. The analysis is performed by considering
Mie scattering and three different neuron shapes, namely spherical, pyramidal, and
fusiform. The results from this publication can further support the axonal
biophoton communication hypothesis.

Publication 6: Channel Impulse Analysis of Light Propagation for
Point-to-point Nano Communications through Cortical Neurons

In publication [VI], the light channel impulse response from the source to the
receiver is analysed. The analytical analysis is based on light propagation
incorporating multiple neuron obstructions along the path. The study employs the
ray tracing method and numerical analysis using MATLAB.

1.5 Potential Applications

It is envisioned that the WiOptND will be able to facilitate both laboratory experi-
ments and human clinical implementations. For example, in laboratory experiments
where mice are observed, the device would allow the mice move freely. As a result,
the researchers could expand the experimental area or give freedom to the mice to
explore tiny holes while controlling them wirelessly.

Particularly in human clinical implementations, this device focuses on the case
where neuron stimulation is required, such as in epilepsy and tremor reduction in
Parkinson’s disease (PD). In epilepsy, this device can give vagus nerve stimulation
(VNS) used to prevent or lessen seizures by sending a regular stimulus though the
vagus nerve. Similar to epilepsy patients, PD patients can benefit from this device
by its minimising the motor symptoms of stiffness, slowness, and tremor. This can
be done by stimulating certain areas of the brain, such as the subthalamic nucleus or
the globus pallidus interna. Thus, the WiOptND can be an alternative to the existing
neuron stimulator.
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1.6 Outline and Structure of the Thesis

The organisation of the remainder of this thesis is as follows.
The background and the fundamental theories of neuron morphology, optoge-

netics, wireless BMI, and light propagation in biological tissues are presented in
Chapter 2. Furthermore, the problem formulation and challenges of the BMI are
also elaborated on in this chapter.

In Chapter 3, the architecture and the circuit design of WiOptND concept are
proposed. The elaboration of each hardware component, including theory and im-
plementation, is presented in this chapter.

A detailed explanation of the phenomena occurring when a light wave interacts
with the brain tissue/neurons is presented in Chapter 4. This includes an analysis of
the neuron geometry that affects light propagation.

The end-to-end channel impulse responses for three neuron geometries are dis-
cussed in Chapter 5. The analysis incorporates light propagation though multiple
neurons in a one-dimensional array arrangement.

Regarding the multiple device implementation, two charging protocols are elab-
orated on in Chapter 6. Each protocol translates into different implementation pos-
sibilities and limitations. Additionally, the analysis of each protocol is presented.

Finally, the conclusion of this thesis and the further discussion — on wireless
BMIs in general and WiOptND in particular — are provided in Chapter 7.
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2 BACKGROUND

2.1 Morphology of the Brain and Neurons

Nervous tissue is one of the four biological tissue types, along with the epithelium
and the connective and muscle tissues [89]. In humans and bilateral animals, this
tissue forms two major nervous systems, namely the central nervous system (CNS)
and the peripheral nervous system (PNS). The brain and spinal cord are categorised
under the CNS, and they act as the main controllers of the body organs. The PNS
comprises the nerves and ganglia, which connect the CNS to all the limbs and organs
of the body.

2.1.1 Brain

Anatomically, the brain is divided into three main parts, namely the cerebrum, cere-
bellum, and brainstem. The first is the largest, comprising the left and right hemi-
spheres. It is responsible for the senses, such as sight, touch, and hearing, as well as
memory, speech, and emotional response. The cerebellum (the little brain) is the
smaller part of the brain, which is located under the cerebrum. This part is im-
portant for muscle coordination and motor control. The brainstem functions as a
relay connection between the aforementioned parts of the brain and the spinal cord
(the rest of the body). It plays an important role in basic bodily functions, such as
breathing, the sleep cycle, digestion, and many other automatic bodily functions.

Based on its structure, the brain is divided into white and grey matter. Both con-
tain blood vessels and glial cells, but they have different amounts of proteins and
lipids, in the form of myelin, in their corresponding structure. White matter mostly
consists of myelinated nerve fibres that are responsible for effective nerve signal con-
duction and axon protection, while the grey matter comprises the somata, axons,
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Figure 2.1 Illustration of the main components of a neuron

dendrites, and synapses. The thick and dense irregular membrane of the connective
tissue on the outer layer of the brain and spinal cord is called the dura mater. This
layer is inflexible in order to protect the CNS. It consists of two layers, namely the
pia mater and arachnoid mater. In between the dura mater sublayers, the subarach-
noid space is filled with the clear, colourless cerebrospinal fluid (CSF).

2.1.2 Neuron

A neuron is a structural and functional basic unit that forms the nervous system.
It is a cell that carries and transfers electrical impulses. A neuron consists of the
cell body (soma) and nerve fibres (dendrites and axon). The soma comprises the
cell nucleus and other organelles, namely ribosomes, mitochondria, the endoplas-
mic reticulum, lysosomes, and the Golgi complex, which float in a fluidic medium
called the cytoplasm. Both the dendrites and axon are cytoplasmic projections from
the soma. However, the dendrites can be perceived as the signal receiver from the
other neuron(s), while the axon is the signal transmitter. The axon is thicker and
longer compared to the dendrites. Unlike the dendrites, which branch throughout
its length, the axon branches only at its distal end. Figure 2.1 depicts a neuron with
its main components [63].

Neurons use both chemical and electrical signals to build their communication
network. An action potential is a form of electrical signal caused by a rapid change
in the membrane potential of a neuron. This is used by the neuron to transfer signals
from the dendrites to axon terminals, which can be further transmitted to adjacent
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neurons. This process is dubbed intraneuron communication since it occurs within a
single neuron. The next process of transferring information from one neuron to an-
other is called interneuron communication. The structure that enables signal trans-
mission between two neurons is the synapse. A synapse can either be electrical or
chemical. A chemical synapse is triggered by the action potential of a presynaptic
neuron and it stimulates the release of the neurotransmitters that are able to bind to
the receptors of the postsynaptic neuron. Furthermore, the electrical synapse occurs
via a special channel called the gap junction, which is capable of conducting action
potential from presynaptic to postsynaptic neurons [52] [66].

2.1.3 Cerebral Cortex Neurons

The outer layer of the cerebrum is called the cerebral hemisphere, and it consists of a
complex grey matter layer. The cerebral cortex is the outermost neural tissue layer in
humans and mammals. Its thickness is approximately 2–4 mm and it is significantly
populated by neural cell bodies and glial cells. Most of the neurons in the cerebral
cortex have vertical arrangements forming unique cortical columns. This column
exhibits information transmission among its layers. Neurons from different layers
in each cortical column perform a specific function. In total, the six layers of cerebral
cortex are

1. Layer I (molecular layer)

2. Layer II (external granule layer)

3. Layer III (external pyramidal cell layer)

4. Layer IV (internal granule layer)

5. Layer V (ganglionic or internal pyramidal cell layer)

6. Layer VI (multiform layer)

Morphologically, the neuron soma of the neocortex can be categorised into three
main groups: pyramidal cells, granule cells, and fusiform/spindle-shaped cells.

1. Pyramidal cells are the major population of layers III and V of the neocortex.
These cells have four size categories (height×width), namely small (Schankleit)
(12 μm× 10 μm), medium (25 μm× 15 μm), large (45 μm× 15–20 μm), and
giant (50-100 μm × 25–60 μm) [90].
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2. Granule cells are mostly located in layers III and IV of the neocortex, and they
vary geometrically. Their shapes are spherical, polygonal, or oval. In terms of
size, these cells are approximately 15–30 μm × 10–15 μm [90].

3. Fusiform/spindle-shaped cells are located in layer VI of the neocortex. They are
considered to be long, as their apical dendrites extend up to layer I and their
basal dendrites spread into layer VI. The size range of these cells is approxi-
mately 15–30 μm × 10–15 μm [90].

2.2 Optogenetics

Artificial neuron stimulation might be needed in research or therapy. For this pur-
pose, the most common methods are electrical and optical stimulation. Electrodes
are required for electrical stimulation, while a genetically engineered neuron and a
light source are the minimum requirements for optical stimulation. The technique
for controlling neurons in–vivo using optical stimulation is called optogenetics [20]
[105] [30].

Optogenetics outperforms electrical stimulation in many aspects, including pre-
cision, cell stress level during stimulation, and interference. As mentioned earlier,
an electrical signal is basically the natural communication signal among the neurons;
therefore, using the same means of stimulation causes disadvantages compared to op-
tical stimulation.

Optogenetics utilises a certain wavelength to stimulate the neurons. Depending
on the protein utilised to genetically engineer the neuron, optogenetic constructs
can exhibit either excitatory or inhibitory characteristics. These effects can be ob-
served based on the behaviour of the postsynaptic neurons. Excitatory postsynaptic
potential (EPSP) occurs when the cell membrane depolarises — causing the sodium
and calcium ion membrane channels open — and generates action potential. Con-
versely, inhibitory postsynaptic potential (IPSP) occurs when the cell membrane hy-
perpolarises, causing the chloride or potassium ion membrane channels to open,
blocking the generation of action potential.

The channelrhodopsin-2 (ChR2) optogenetic construct utilises the opsins from the
green algae chlamydomonas reinhardtii, and it exhibits excitatory behaviour. The ac-
tion potential generation is triggered by blue light (wavelength 430–520 nm) illumi-
nation. On the other hand, the halorhodopsin (NpHR) construct, which utilises the
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Figure 2.2 Steps towards developing an optogenetic construct and its stimulation process. The figure

also illustrates the depolarisation process where ion pumps are activated. [II]

opsins from archaen natronomonas pharaonis, exhibits inhibitory behaviour. When
it is illuminated by green, yellow, or red light (wavelength 500–600 nm), the chloride
ion channels open, suppressing the action potential. Alternatively, the utilisation of
proton pumps can also generate an inhibitory effect. The optogenetic constructs
that activate proton pumps instead of chloride channels are archaerhodopsin-3 (Arch)
from Halorubrum sodomense, mac from the fungus leptosphaeria maculans, and eBR
from Halobacterium salinarum. Figure 2.2 shows the optogenetic construct devel-
opment and stimulation, as well as, the excitatory and inhibitory behaviour during
the ion channel activations [39] [68] [40] [17].

2.3 Optogenetics in Humans

Optogenetic experiments and studies on mice and non-human primates have been
conducted many times, and recently optogenetics has been considered ready for im-
plementation in humans. In March 2016, RetroSense Therapeutics (Ann Arbor,
Mich., USA) pioneered the first optogenetic clinical trial on humans using an optogenetics-
based gene therapy, RST-001 for restoring vision in patients with retinitis pigmentosa
(RP). The therapy is performed by injecting ChR2 into the patient’s retinal ganglion
cells. Later, in January 2018, GenSight Biologics (Paris, France) began the PIO-
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NEER Phase I/II study of GS030 for patients with the same disorder. Instead of
using ChR2, they used ChrimsonR in an adeno-associated virus (AAV) injection,
resulting in sensitivity to orange/red light (wavelength of 590 and 630 nm).1 If these
clinical trials are successful, they will open up wider opportunities for optogenetics
in treating other disorders such as cochlear cell loss [14] [32] [11].

2.4 Wireless Brain Machine Interface

In addition to the stimulation method, a BMI can be categorised further based on
the communication method between two components. Those components are the
attached device that interacts with the neuron and the device that interacts with
humans and controls or monitors neuron activity. They can be connected by ei-
ther a direct physical (wired) or wireless connection. An example of a wired BMI is
the functional electrical stimulation (FES) device that helps patients to restore hand
function and bladder control [65] [34] [51]. The wireless BMI offers a solution to a
drawback that arises from wired implementation, which is wire tangle. During the
experiment, an observed experimental subject might experience a movement lim-
itation. An unexpected movement by the subject might cause the dislocation or
detachment of the cable, resulting in disturbance in the experimental process.

The wireless BMI can either be head mounted or fully implantable. This is dic-
tated by the size, the wireless technology/frequency, and the power supply method.
A fully implantable device must be sufficiently small in size in order to minimise
intrusion in the brain tissue. In many BMIs, the battery as a power supply com-
ponent occupies a considerable amount of space. Additionally, the risk of battery
leakage during the operational period should also be taken into consideration during
design. Furthermore, some wireless technologies, such as infrared (IR), require an
unobstructed path between the transmitter and the receiver. Table 2.1 shows the ad-
vantages and disadvantages of four wireless technologies that are commonly utilised
for device communications. Figure 2.3 illustrates both head mounted and fully im-
plantable solutions for optogenetic BMIs.

• Wireless Optofluidic Systems functions as the optogenetic stimulator and the
drug deliverer (Figure 2.3a). This head-mounted BMI with the dimensions of

1It is claimed that for human eyes, red light is less harsh than blue light.
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Table 2.1 Comparison of different wireless technology solutions. [III]

Wireless Technology Pros

(Frequency) Cons

Infrared (IR) Low power consumption;

(300 GHz – 430 THz) Multi-band transmissions.

[45] [41] LoS between base station and implanted unit;

Requires a battery unit for the head unit.

Medium propagation loss in biological tissue;

High Frequency (HF) Cheap and easy to manufacture;

(3 – 30 MHz) Supports energy harvesting circuitry.

[86] Coil dimension of approx. 1 cm;

Requires surface mounted chip (NFC).

Ultra High Frequency (UHF) Smaller coil diameter than HF circuitry;

(300 MHz – 3 GHz) Cheap and easy to manufacture;

[31] [67] [75] Supports energy harvesting circuitry.

High propagation loss in biological tissue.

Low propagation loss in biological tissue;

Ultrasound Size of hundreds of μm;

(≥ 20 kHz) Supports energy harvesting circuitry;

[85] Safe utilisation in human tissue.

Complex circuit manufacturing;

Difficulty in ultrasound frequency addressing.

3× 9× 10 mm3 has two rechargeable lithium ion battery as its power supply.
The communication between controller and the BMI uses IR technology [45].

• Programmable Wireless LED Stimulator for Optogenetics employs multiband-
band IR and multicode signals to avoid interference for simultaneous multi-
ple IR channel transmission (Figure 2.3b). The head-mounted receiver is sup-
ported by a lithium polymer battery to stimulate the ChR2 construct [41].

• Flexible Near-Field Wireless Optoelectronics combines power transmission and
optogenetic stimulation by using a copper coil and micro-sized chip (Figure 2.3c).
Since this fully implantable BMI adopts the near field communication (NFC)
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concept, it operates on the frequency of 13.56 MHz. Furthermore, to ensure
the biocompatibility and stability of the device, it is encapsulated by Parylene
and Polydimethylsiloxane [86].

• Combined Optogenetics and Electrophysiological Recording Wireless Headstage
supports both optogenetic stimulation and activity recording (Figure 2.3d).
The head mount is powered by a lithium-ion battery which can support the
device for 70–105 minutes depending on the stimulation activity. The com-
munication between the controller and the BMI uses a frequency of 2.4 GHz
[31].

• Wireless Powered, Fully Internal Optogenetics employs RF technology and a coil
for both powering the device and sending the signal to trigger the optogenetics
(Figure 2.3e). This fully implantable solution weighs approximately 20–50 mg
with the dimensions of 10–25 mm3. The operating frequency is 1.5 GHz,
which is radiated by a large resonant cavity [67].

• Soft, Stretchable, Wireless Optogenetics System combines the stretchable fila-
ments and a flexible polymer encapsulation to create a device that can com-
fortably be embedded into the spinal cord and peripheral nervous system (Fig-
ure 2.3f). It utilises RF technology for both energy harvesting and stimulation
triggering. The antenna occupies a surface area of 3 × 3 mm2 and it operates
on a frequency of 2.3 GHz with a bandwidth of 200 MHz. The deformation of
the device causes operating frequency shifting and coupling efficiency decrease
[75].

2.5 Light Interaction Theory

When a light wave propagates in biological tissue, both its intensity and propaga-
tion direction can change. These changes are caused by several light-medium interac-
tions, namely reflection, refraction, absorption, and scattering [48]. An illustration
of these phenomena is depicted in Figure 2.4.

• Reflection and Refraction. As light propagates from one medium to another
with different refractive indices, the light can be partially reflected and par-
tially transmitted. Furthermore, the transmitted light experiences refraction
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Figure 2.4 Illustration of refraction, reflection, absorption, and scattering of light on a soma. [IV]

(a change in the angle of propagation) due to the different refractive indices
of the media. Since a biological component, such as a neuron, has a low re-
flectance index of 0.5%, the reflection is negligible [29].2 The refracted part
of the light undergoes changes in propagation direction as it traverses two dif-
ferent media. The effect of the refractive index difference on the propagation
direction deviation is explained by Snell’s law. Both reflection and refraction
phenomena, which follow Fresnel’s equation and Snell’s law respectively, are
dictated by the refractive indices.

• Absorption. The light energy decreases as it is absorbed and converted to heat
due to the vibration of atoms and molecules in the biological tissues. The
absorption behaviour of the tissue relies heavily on the light wavelength. Most
of the visible light utilised in optogenetic applications is less than 625 nm, in
which the absorption coefficients range from 0.5 to 5/cm [54].

• Scattering. The heterogeneous biological medium causes the deflection of light
waves to one or more paths deviated from the straight trajectory. This sit-
uation occurs when waves pass through two different media with different
optical properties. The Henyey-Greenstein phase function defines this phe-
nomenon by the anisotropy factor, g [54]. The scattered light waves can be in
either a forward or backward direction indicated by the value of g . A positive
value indicates that forward scattering is more dominant, which is common

2The surface of the neuron can also be considered a Lambertian surface, resulting in the phe-
nomenon of Lambertian reflectance or diffuse reflection [101]. As part of the light is reflected and the
rest is transmitted, this kind of reflection can also be dubbed Fresnel reflection.
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in biological tissues whose range is 0.5–0.95 [54]. A reduced scattering pa-
rameter, μ′s , incorporates this factor so that a more accurate light propagation
model can be implemented. It is defined as μ′s = (1− g )μs , where μs itself
denotes the scattering coefficient. According to the size of the tissue compo-
nents and the light wavelength, the scattering property may follow either the
Rayleigh or the Mie regime.

2.6 Problem Formulation

Since a wired BMI with an electrode stimulator provides more reliability and free-
dom for direct human brain stimulation (intrusively), it is still the only option for
medical treatment. However, it might not be the most comfortable option in terms
of long-term treatment/usage. The same issue exists during observed laboratory ex-
periments, such as the possibility of a tangled or detached wire due to certain move-
ments. In addition, periodic battery replacement is needed to ensure the device con-
tinues to operate. The usage of batteries might introduce an additional issue due to
the possibility of chemical leakage. As mentioned in Section 2.2, the electrode stim-
ulator inherits some disadvantages, namely interference and cell stress. Additionally,
when single-neuron stimulation is targeted, spatial temporal precision becomes an
additional issue for this method. Thus, a novel approach is required for better and
more comfortable BMI implementation.

The goal of wireless optogenetics nanonetworking devices (WiOptNDs) is to
provide applicable interconnected miniature brain implants that are capable of syn-
chronous spatial distributed neuron-level optogenetic stimulation. This device em-
ploys state-of-the-art components and technologies based on current studies and re-
search. It focuses on the BMI component that is directly attached to the brain tissue.
It is designed to be fully implantable, wireless, and biocompatible. Additionally, the
device is supported by a compatible charging protocol that is suitable for handling
the various neuron spike (action potential) patterns of a group of neurons. More-
over, since the light source of the device has a size that is comparable to a neuron,
the light propagation behaviour in the brain tissue and single/multiple cell(s) needs
to be investigated.
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2.7 Challenges

There are many electrical components and wireless technologies that can be utilised
for optogenetic BMI design. However, the chosen components and technology should
fulfil both micro-scale design and optogenetic construct specification requirements.
Also required are thorough investigations of the implementation feasibility through
analytical analysis, modelling, and simulation.

Since a fully implantable BMI is the target of this research, the size of the device
should be sufficiently small and biocompatible so that it does not trigger a severe
foreign body reaction (FBR), which causes tissue-encapsulation of the implant. Fur-
thermore, neuron size sets the limit for the light source size (hundreds of microns)
and requirements, since single-neuron stimulation is the aim. Besides that, the dense
population of the neurons should also be considered in the stimulation process, since
undesired neurons can introduce an obstacle along the light propagation path. Fi-
nally, the biological components introduce various propagation phenomena, such as
attenuation, that affect the propagation analysis.
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3 WIRELESS OPTOGENETIC

NANONETWORK SYSTEM ARCHITECTURE

In [I], the system architecture and the circuit design of WiOptND are proposed.
The system architecture determines the placement and the operational environment
of the device, which set the boundaries for the hardware and wireless technology
requirements. Based on those requirements, the hardware components and electrical
circuit of the device are specified. Furthermore, the energy and power compliance
of the device are analysed numerically in both [I] and [II].

3.1 System Architecture

For the optogenetic stimulation system, several fundamental specifications of the
BMI are concentrated in this thesis. First, the BMI is fully implantable, which means
it is still intrusive but significantly small in size, and it is made from biocompatible
material to avoid any severe disturbance to the brain tissue. Secondly, the device
targets stimulation on the level of a single neuron, and lastly, the design proposal
focuses on the implant, which has direct contact with brain tissue, not the human
interface component, which controls the implant.

ChR2 is used in this this thesis. This construct is sensitive to blue light (wave-
length approximately 470 nm) and exhibits exhibitory behaviour. Even though this
device can stimulate any area of the brain, the neocortex is considered an ideal envi-
ronment due to its layered structure, with its approximately uniform type of cell in
each layer. The total thickness of the neocortex is approximately 2–4 mm.

Regarding wireless technology, there are several options that can be considered.
One of them is RF, whose frequency ranges from 3 kHz to 300 GHz. However,
considering the size requirement of a device at least in the mm level, the operating
frequency should be in GHz. In this frequency range, the wave is significantly at-
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tenuated by the brain tissue. On the other hand, when an acoustic wave (frequency
more than 20 kHz) is utilised instead of RF, the attenuation caused by the tissue is
significantly lower [43] [85].

The entire system architecture of the WiOptND is illustrated in Figure 3.1. A
sub-dura transceiver interfaces between the external receiver, which is controlled
by the human, and the WiOptNDs, which are directly attached to the brain tis-
sue. They are located in the dura mater, under the skull. The sub-dura transceiver
transmits the ultrasound signals to instruct the WiOptNDs to stimulate the neurons
and at the same time providing (charging) the required energy for the stimulation.

Cortex

Sub-dura
transceiver

External
transceiver

Ultrasound
beam

Nanowires

Wi-opt neural dust

Figure 3.1 Illustration of the WiOptND system model where the sub-dura transceiver communicates with

the external transceiver and transmits ultrasound signals to the WiOptNDs in the neocortex.

[II]

One WiOptND is responsible for stimulating one optogenetic construct; there-
fore the light source should be located as close as possible to the target soma. Fig-
ure 3.2 illustrates the location of a WiOptND with respect to its corresponding op-
togenetic construct. This device uses a blue micro-light-emitting-diode (μ-LED) as
a light source.

3.2 Circuit Diagram of the WiOptND

The WiOptND comprises three major components, namely an energy harvester,
an energy storage component, and a light source. The energy harvester is required
in order to omit a dedicated battery component as a power supply to the device.
It avoids the need for periodic battery maintenance and omits potential chemical
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Figure 3.2 Illustration of a WiOptND and its corresponding optogenetic construct in the brain tissue. [I]

leakage during implementation. Since the energy generated by the harvester cannot
directly be used to power the device, the storage component acts as a temporary
battery that stores the energy from the harvester for a very short period of time.
Finally, when the stored energy is sufficient, it can power the light source to shine
the optogenetic construct at a certain wavelength. Figure 3.3 shows the WiOptND
circuit diagram in detail. In the following subsections, each component is elaborated
on in detail.

Figure 3.3 Circuit diagram of the WiOptND. [I]
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3.2.1 Energy Harvester

A piezoelectric material is capable of generating electrical charges when a mechanical
stress is applied to it, and this mechanism also works in the reverse direction. In this
case, the WiOptND can benefit from this effect to convert mechanical energy from
acoustic pressure sent by the sub-dura transceiver to the electrical charges. How-
ever, a piezoelectric transducer generates an alternating current (AC) that cannot be
directly fed to the next stage (storage component). Therefore, a rectifier is needed to
convert it into a direct current (DC). Regarding the ultrasound exposure, the Food
and Drug Administration (FDA) regulates a safety limit of 720 mW/cm2.

3.2.1.1 Material

There are variety of materials and geometries to choose from in terms of the piezo-
electric transducer. For example, lead zirconate titanate (PZT), aluminium nitride
(AlN), barium titanate (BaTiO3), and zinc oxide (ZnO) in the form of either a crys-
tal or nanowires can be used. The ZnO nanowire component is used for WiOptND
since it generates sufficient energy to supply power for stimulation (determined by
the electromechanical coupling coefficient). However, this material is not biocom-
patible, hence a biocompatible coating is needed. A thin layer (<100μm) of poly-
methyl methacrylate is applied, since it does no harm to the brain tissue and intro-
duces no performance degradation. Figure 3.4 illustrates the piezoelectric mecha-
nism that is utilised by WiOptND. The vibration of the ultrasound bends the ZnO
nanowires back and forth, generating AC electric charges. Besides the piezoelectric
properties, the density of the nanowires also determines the amount of electricity
charge generated [49].

3.2.1.2 Ultrasound Intensity

As the ultrasound wave traverses the brain tissue, its intensity degrades as a func-
tion of distance and frequency. The ultrasound attenuation in the brain tissue (α) is
0.435 dB/(cm·MHz). Furthermore, the received ultrasound power depends on the
effective area of the energy harvester. During the vibration of the nanowires, the
received power cannot be entirely converted from mechanical energy to electrical
energy. The conversion rate (η) determines the amount of the converted electrical

48



Figure 3.4 Piezoelectricity mechanism.

power with respect to the received mechanical power by the nanowires.

3.2.2 Electrical Storage Component

Before the converted electrical charges are stored in the storage component, namely
the capacitors, the electrical current should be rectified, since the nanowires generate
AC instead of DC. Therefore, a full-wave rectifier is connected between the energy
harvester and the storage capacitors. The capacitors should comply with the size
limitation; consequently, micro-supercapacitors based on interdigital electrodes of
reduced graphene oxide and carbon nanotube composite are employed in the circuit
[9]. They have a surface area of 100×100 μm2 with a 280 μF capacitance. The stor-
age component has two states, namely charging and discharging. In the charging
state, the capacitors are connected in parallel, while in the discharging state, they are
connected in a series to fulfil the voltage requirement of the light source in corre-
spondence to the voltage generated by the energy harvester. The voltage level of the
storage capacitors during the charging and discharging process can be obtained by

V c ha r g e
ca p (ncyc l e ) =Vg

�
1− e

− ncyc l eΔQ

Vg Cca p

�
, (3.1a)

V d i s c ha r g e
ca p (ncyc l e ) =Vg e

− ncyc l eΔQ

Vg Cca p , (3.1b)

where Vca p is the voltage level of the storage capacitor and the superscript charge/dis-
charge indicates the corresponding process, ncyc l e is the number of the cycle that is
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related to the time duration,ΔQ represents the amount of electrical charge supplied
and stored in the capacitors, and Vg is the generated voltage from the nanowires.

3.2.3 Light Source

There are two light source options to be used in optogenetic stimulation, namely
lasers and LEDs. The latter has advantages in terms of price, size, and energy effi-
ciency, but not directivity. Considering the size and the energy harvesting method of
the WiOptND, the LED is the perfect candidate. The off-the-shelf InGaN Cree’s Di-
rect Attach DA2432 LED shines 450–470 nm blue light and requires only a minimum
level of 5 mA of electrical current. Upon that operating condition, it can produce
approximately 5 mW or more of optical power. This fulfils the operating require-
ment of the ChR2, which requires a light intensity of approximately 1 mW/mm2.
However, depending on the specification of the optogenetics, some have a lower sen-
sitivity around of 8-12 mW/mm2, and this factor is also taken into consideration in
the analysis [53] [24] [82] [12].

3.3 Method and Evaluation

The analysis and justification of the hardware design is done by numerical analy-
sis based on the data gathered and compiled from the various corresponding litera-
ture, books, and component specifications. Each incorporated hardware component
is compatible according to either its technical specification or experimental data.
Therefore, this methodology is limited for ideal cases and working environment.
Energy and power numerical simulations are performed using MATLAB, while the
simulation of light interaction with neurons is implemented using COMSOL Mul-
tiphysics, as discussed in Section 2.5. Table 3.1 shows the simulation parameters for
the energy and power design validation.

Considering the power intensity requirement of the optogenetics and the dis-
tance between the light source and the neuron, the minimum light intensity from
the LED can be obtained by considering the absorption coefficient of the brain tissue
(depicted in Figure 3.5(a)). During the charging and discharging periods of the stor-
age capacitors, depending on the required intensity, the stored energy level changes
as a function of time (analysed in Figures 3.5(b) and 3.5(c)). It was also observed that a
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Table 3.1 Simulation Parameters. [I][II] [104]

Parameter Value [Unit] Description

Neural Dust Density 0.024 to 1.2 [/cm3] Randomly scattered

Frequency 500 to 3M [Hz] Ultrasound freq

Depth Radius 2 to 4 [mm] Into the brain

Interfiring period 6 [ms] Mean (exponential dist)

Data sample 10,000 Randomly generated

Nanowire surface area 104 to 2×104 [μm2] Energy harvester

LED diameter 100 [μm] Light source

Neuron diameter 100 [μm] Spherical soma

higher light intensity requirement causes faster charging and discharging behaviours.
The same case but with doubled energy harvester surface area was also considered.
For both (charging and discharging) scenarios, the time and the amount of stored
energy are proportional to the surface area (shown in Figures 3.5(d) and 3.5(e)). Fi-
nally, Figure 3.5(f) shows no significant difference when the operating ultrasound
frequency is varied.

The results confirm that the circuit design for the WiOptND is feasible for imple-
mentation. It complies with the size limitation (hundreds of microns), biocompati-
bility — by using proven material coating — and the implementation (light intensity)
requirements for optogenetics.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5 (a) The light source intensity as a function of distance for three different intensity require-

ments. (b) The capacitor energy during the charging period (ultrasound frequency of 500 Hz;

500 μm distance from the μ-LED). (c) The capacitor energy during the discharging period

(frequency of 500 Hz; 500μm distance). (d) The capacitor energy during the charging period

for two different energy harvester surface areas (intensity I(λ,d) of 10 mW/mm2; frequency of

500 Hz; 500μm distance). (e) The capacitor energy during the discharging period for two dif-

ferent energy harvester surface areas (Intensity I(λ,d) of 10 mW/mm2; frequency of 500 Hz;

500 μm distance). (f) The capacitor energy during the charging process with ultrasound

frequency variations. [II]
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4 LIGHT INTERACTION WITH NEURONS

The behaviour of light propagation in brain tissue and neurons are the focus of [IV],
[V], and [VI]. This investigation is important considering the neuron density in the
neocortex. A denser neuron population results in a greater probability that one
or more neurons block the target neuron with respect to the line of sight of the
light source. In addition, the micro movement of neurons due to natural growth
or a probe/interface effect results in unpredictable neuron positions [56] [78] [79].
These aforementioned factors can lead to one or more undesired stimulation when
they are not well understood. In [IV], the reflection, absorption, and refraction phe-
nomena of one and two blocking neurons are analysed. Furthermore, the analysis is
extended in [V] by considering three different cell geometries (spherical, pyramidal,
and fusiform) and the scattering behaviour of light propagation.

4.1 Modified Beer Lambert Law

The modified Beer Lambert law is an extension of the Beer Lambert law, which is
used for continuous wave (CW) absorption measurement in scattering media [21].
According to this photon transport model, light wave absorption is proportional
to the concentration of the major chromophores in the tissue, which is defined as a
semi-infinite medium. Additionally, the wave is considered to experience constant
scattering losses. Due to the chromophores in biological tissue, the photon does not
propagate in a straight line from the source to the detector; it experiences changes in
direction caused by random collision with the chromophores. This phenomenon is
represented as the differential path length factor (DPF). DPF is the scaling factor of
the euclidean distance between two points in the biological tissue since the propaga-
tion path is deviated from the straight line as the light interacts with the biological
components, and it is studied analytically, experimentally, and numerically for dif-
ferent kinds of biological tissues [84] [26] [55] [42]. This parameter is obtained from
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DP F (λ, d ) =
1
2

√√√3μ′s (λ)
μa(λ)

�
1− 1

1+ d
�
(3μa(λ)μ′s (λ)

	
, (4.1)

where DP F (λ, d ) is the differential path length factor as a function of the wave-
length λ and the distance d , and μa(λ) and μ′s (λ) are the absorption and the reduced
scattering coefficients of the propagation medium, respectively.

After obtaining the DPF, the medium transmittance can be calculated by

I (λ, d )
Io(λ)

≡ T (d ) = e−μa (λ) d DP F (λ,d )+G(λ), (4.2)

where Io(λ) is the light source intensity, I (λ, d ) is the light intensity at distance d
from the source, and G(λ) is a medium- and geometry-dependent constant and is
largely unknown.

In this thesis, the modified Beer Lambert law is particularly used for numerical
analysis to assess the energy and power requirement of the device and their changes
with respect to distance.

4.2 Helmholtz Equation

The Helmholtz equation simplifies the optical wave partial differential equation
(PDE) form in both space and time by omitting its dependence on time. COMSOL
models the system with Helmholtz representation using a finite element method.
The considered optical phenomena in the COMSOL simulation include scattering
and absorption given the optical and geometry of the brain tissue and neurons. The
purpose of this simulation is to obtain the fluence rate (light intensity) u orΦ(r, t ), as
the function of the diffusion coefficient c or D(r, t ), the absorption coefficient a or
μa , and the source term f or S(r, t ) according to the following Helmholtz equation

−∇D(r, t )∇2Φ(r, t )+μaΦ(r, t ) = S(r, t )

∇(−c∇u)+ au = f .
(4.3)

In this thesis, COMSOL is mainly used to solve the Helmholtz equation of the
system and to analyse of the light radiation behaviour in the brain tissue.
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4.3 Mie scattering

As discussed briefly in Section 2.5, scattering is one of the phenomena when light
propagates through a heterogeneous biological medium. This causes the light to be
deflected from its straight trajectory to one or more deviated paths. When the light
traverses into the soma of a neuron, it encounters many cell organelles floating in
the cytoplasm. Among those organelles, the nucleus is the largest. Furthermore, the
nucleus has a slightly different refractive index compared to the cytoplasm, which
results in the light wave being scattered. Based on the size parameter χ , scattering
can be categorised into either Rayleigh or Mie. This category determines the shape
of the radiation pattern. The value of parameter χ can be obtained by

χ =
2πno r
λ

= k r, (4.4)

where no is the refractive index of the cytoplasm, r is the particle radius, and k is
the wave vector by definition.

Mie scattering occurs when the size parameter is between the range of 0.2 and
2,000, which means the particle size is comparable to the radiation wavelength, while
Rayleigh scattering occurs when it is between 0.002 and 0.2. Numerical scattering
analysis is used to determine the scattering radiation pattern in this thesis.

4.4 Method and Evaluation

The analysis of the light interaction with brain tissue and neurons was done analyt-
ically, numerically, and experimentally. The equation derivation for analytical anal-
ysis is based on the neuron geometry, the modified Beer Lambert law, Snell’s law,
ray tracing, and other formulas. This includes the evaluation of the light behaviour
based on the power, geometry-related properties (angle, coordinates, vectors), and
channel impulse response of the propagation medium. Afterwards, the system was
analysed numerically by combining the derived formulas and the experimental data.
It included comparing the numerical and experimental results for theoretical justifi-
cation. The numerical evaluation was done mostly using MATLAB. The simulation
based on the Helmholtz equation was implemented using COMSOL Multiphysics.
Finally, one particular light interaction related to the focusing effect by the nucleus
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was validated by the collaborators in a laboratory in the Department of Pathology
and Anatomical Sciences, University at Buffalo, New York, USA. Table 4.1 lists the
values that were used for the simulation of light propagation.

Table 4.1 Simulation Parameters. [IV] [VI]

Parameter Value [Unit] Description

ρ̄ 0.5 [%] Reflectance index of the neuron [29]
v0 3 · 108 [m/s] Speed of light in vacuum

λ 456 [nm] Wavelength of light

nt 1.35 Refractive index of the brain tissue [62]
nc 1.36 Refractive index of the neuron

μ(c)a 0.9 [/mm] Neuron absorption coefficient [104]

μ′(c)s 3.43 [/mm] Neuron reduced scattering coefficient [104]

μ(u)a 20 [/mm] Brain tissue absorption coefficient [10]

μ′(u)s 1.34 [/mm] Brain tissue reduced scattering coefficient [10]

4.4.1 Multipath Propagation (Reflection) Model

The main components in the multipath are the waves that are reflected from the
surrounding neurons. The total path loss and the delay must be characterised to
investigate the significance for the received power. For a light that has been reflected
k t h times, the power degradation can be written as

Γ (k) = P0ρ̄1ρ̄2...ρ̄k = k ρ̄ P0 = k

�
nt − nc

nt + nc

	2
P0, (4.5)

where nt and nc are the refractive index for the brain tissue and neuron, ρ̄ is the
reflectance index, and P0 is the power from the light source.

The total power delay profile (PDP) can be formulated as

h(t ) =
Nad j∑
k=0

hk (t ;Φn), (4.6)

where hk (t ;Φn) is the PDP from each reflected component as a function of time and
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propagation delay and Nad j is the total number of neurons that reflect the wave to
the receiver.

The illustration of this scenario is depicted in Figure 4.1(a) where the light source
is represented as red circle on the upper left, shining the intermediate neuron on the
upper right, and bottom circle is considered as the target neuron. The direct light
rays from the light source to the target neuron are not considered to limit the anal-
ysis solely for the light reflection case. Additionally the delay profile is visualised in
Figure 4.1(b) showing the arrival time and transmittance of the reflected light rays.
Based on the calculation, the effect of multipath propagation is negligible, since its
value is extremely small compared to the line of sight (LoS) and the refracted com-
ponents. The main reason is that the reflectance index of the neuron is significantly
low (0.5%), in addition to the light absorption along the path to the target neuron,
resulting more than 80 dB path loss in total.

4.4.2 Blocking Neuron (Refraction) Model

In this subsection, the blocking neuron propagation model is detailed. This is the
situation where the space between the light source and the target neuron is occupied
by other (blocking) neurons. When the light rays traverse these blocking neurons,
they experience direction deviation. This behaviour can be evaluated by tracing the
rays from the source to the target/receiver. By employing the Helmholtz equation,
COMSOL simulates this scenario where two blocking neurons are incorporated into
the system. The simulation results (Figures 4.2 and 4.3) show the light radiation
pattern and the energy-preserving behaviour measured in decibels (dB). They depict
the light behavior for two scenarios, the brain tissue without any neuron along the
light propagation path and with three neurons. Furthermore, the geometrical and
ray tracing analysis are presented in Figure 4.4 to show different interactions based
on the neuron morphology.

In general, the total path loss that is experienced by a light wave traversing N
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(a) The illustration of the reflected light rays by one neuron be-
fore hitting the target neuron.

(b) Delayed components on the receiver.

Figure 4.1 Neuron reflection model. [IV]

number of any given shape of neurons is formulated as

P Lt ot al =4.343
�
Nμ(c)a (λ)da DP F (λ, da)

+ (N − 1)μ(u)a (λ)de DP F (λ, de )

+μ(u)a (λ)(dE + dR)DP F (λ, (dE + dR))
�
, (4.7)

where da and de indicate the average propagation distances inside a neuron and be-
tween two neurons, respectively, and dE and dR are the distances of the light source
from the first neuron and the receiver from the last neuron, respectively. The super-
script (c) or (u) indicate whether a parameter correlates with the neuron or brain
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Figure 4.2 COMSOL simulations for light propagation in nervous tissue (a) without neurons and (b) with

three neurons. [IV]

Measurement line

N1 N3N2

-LED
Photon Source

Figure 4.3 COMSOL numerical path loss simulations for light propagation in nervous tissues without

neurons and with three neurons. [IV]

tissue, respectively.

By having knowledge of the light interaction on various neuron geometries, the
optimum location and orientation of the WiOptND can be determined. The result
can be combined with the hypothesis of biophoton communication proposed in [57]
to direct the photon to the desired axon location, avoiding undesired stimulation.
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(a) Pyramidal. (b) Fusiform.

(c) Spherical.

Figure 4.4 Ray tracing analysis for three different 2-D projected neuron geometries. [V]

4.4.3 Nucleus Scattering Model

As mentioned in Section 4.3, the size parameters should be calculated to determine
the scattering category. Based on the system properties, such as using a 456-nm light,
a nucleus with a diameter of 3–18 μm and the refractive index of the nucleus, nnuc ,
of 1.39 [35], and the cytoplasm, ncy t o , of 1.36–1.39 [16], the size parameter is in the
range of 28.32 to 169.89, which is obviously categorised as Mie scattering. In Mie
scattering, the intensity in the forward direction is more dominant than in the back-
ward direction; this is depicted in Figure 4.5. This shows that the neuron resembles
a convex lens in behaviour [28].

4.4.4 Microscopy Experiment

The validation of the analytical and numerical analysis was performed in the mi-
croscopy laboratory of the Department of Pathology and Anatomical Sciences, Uni-
versity at Buffalo, New York, USA. It was done to observe the forward scattering
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(a) The scattering amplitudes polar plot of S1 on
0o ≤180o and S2 on 180o ≤360o .

(b) The logarithmic Cartesian plot of light inten-
sity as a function of scattering angle.

Figure 4.5 The scattering intensity pattern when the light is scattered by the nucleus. [V]

(a) (b) (c) (d)

Figure 4.6 Neural progenitor cells (NPCs) differentiated from human embryonic stem cells were plated

on a tissue culture dish. Phase contrast images of NPCs were acquired by changing the focal

plane distance using a Zeiss AxioObserver inverted wide-field fluorescence microscope. The

lateral view of the experiment is illustrated in (a). The focused light was observed at three

distances; (b) on the cell surface, (c) and at 5 μm and (d) 10 μm below the cell surface.

The orange circles in the figures show the region of interest (nucleus). The arrows indicate

nucleoli in (b) and light spots of cumulated light in (d). [V]

and focusing effect of the incident light. The experimental setup is illustrated in
Figure 4.6(a) by using fusiform-shaped neural progenitor cells (NPCs) as specimens.
During the experiment, the focus plane was controlled to observe the focusing dis-
tance. Figures 4.6(b)–(d) show the imaging result difference among three focus plane
distance variations. The light is focused at a distance of 10 μm below the specimen.
This value is close to the lower bound of the focus area obtained from the numerical
analysis, which is approximately 10.4 μm.
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5 LIGHT PROPAGATION THROUGH NEURAL

TISSUE

Depending on the path it takes, each light ray experiences a different level of inter-
action phenomena. In this case, the path is determined by the neuron morphology.
The neuron shape variation causes a different delay profile of the light rays. When a
light short pulse is transmitted, the received pulse form is altered as a result of the su-
perposition of the delayed waves. In [VI], the end-to-end propagation is analysed by
incorporating multiple neurons along the path. This analysis focuses on the channel
impulse response using the time and frequency domain.

5.1 Ray Tracing Model

Light transmission though multiple neurons can be analysed using the ray tracing
model. In this model, the geometry of the neurons is considered the main factor de-
termining the propagation path of the rays. Therefore, with this method, all three
neuron geometries — namely spherical, fusiform, and pyramidal — can be separately
analysed. Figure 5.1 illustrates the difference in behaviour among the three afore-
mentioned neuron shapes. In this illustration, it can be observed that some phenom-
ena are unique to each geometry — for example, leaking rays in the spherical neuron
where part of the transmitted rays are no longer transmitted to the next neuron, and
consecutive refraction in the pyramidal neuron, which deviates the rays from the
main propagation path. The common phenomena of geometrical gain or focusing
effect can be found in the fusiform and spherical neuron model. Additionally, for all
the shapes, the light experiences medium loss. The last two factors (geometrical gain
and medium loss) affect the final received signal in terms of intensity level. For the
ray tracing simulation using MATLAB incorporating multiple neurons, the pseudo
code in Appendix A.1 is used.
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Figure 5.1 Geometrical analysis of light propagation using ray tracing as it propagates through a one-

dimensional array of neurons; this includes (a) fusiform, (b) spherical, (c) pyramidal neurons.

[VI]

5.2 Channel Impulse Response

When understanding the channel impulse response of the propagation medium, it
is important to characterise the transmission channel, since it alters the transmitted
impulse form. The channel impulse response can be analysed in both the time and
frequency domains. In the time domain, the impulse response of each channel com-
ponent should be known [81]. Conversely, in the frequency domain, the received
and the transmitted signals should be transformed and processed to obtain the chan-
nel impulse response. Equation 5.1 shows the analysis of the time domain based on
the convolution of each channel component, while equation 5.2 is for the frequency
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domain analysis.

h(t ; dt ot al ,λ) =
N�

n=1
h (n)a (t ; d ,λ)�

N+1�
n=1

h (n)e (t ; d ,λ), (5.1)

where h (k)(t ; d ,λ) is the impulse response of the light ray corresponding to the nt h

neuron and subscript a or e indicates if it is intra- or inter-neuron propagation, λ is
the wavelength, and t is the time.

h(t ; d ,λ) =�−1(H ( f ; d ,λ) =�−1

�� (Er (t ; dt ot al ,λ)
� (Et (t ; d ,λ)

�
, (5.2)

where � (Et ) and � (Er ) are the Fourier transforms of the transmitted and the re-
ceived signals, respectively.

5.3 Method and Evaluation

The channel impulse response characterisation was done analytically and numeri-
cally both in the time and frequency domains. The numerical simulation was im-
plemented in MATLAB for three neuron geometries. The analysis incorporated the
superposition of the received signals and the ray tracing to observe the delay profile
of the system.

The impulse was implemented as a gaussian short pulse which has a full-width
at half-maximum (FWHM) duration of 1 fs. The received signals are depicted in
Figure 5.2 for three different shapes of neurons arranged in a one-dimensional array.
The transmitted impulse propagates for several picoseconds and undergoes different
signal form deviation depending on the shape of the neuron along the propagation
path. Furthermore, Figure 5.3 shows the analysis of channel impulse responses and
PDPs for the same neuron arrangement. It includes the intensity analysis represent-
ing the signal attenuation, frequency and channel impulse response analysis charac-
terising the propagation medium, and power delay profile showing time difference
between transmitted and arrival time of the impulse.

This analysis is important for characterising the neural tissue as the propagation
medium for a light wave. It can generally be applied further for different transmitted
light wave forms. In this simulation, the gaussian short pulse was used as the general
light signal.
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Figure 5.2 The pulse shapes of the transmitted and the received signals after 450 μm propagation

through a one-dimensional array of neurons. [VI]

Figure 5.3 Time and frequency analysis of light propagation along fusiform, spherical, and pyramidal

neurons. (a) The normalised intensity of the transmitted and the received signals in the time

domain; (b) Absolute value of the transmitted and the received signal in the Fourier domain;

(c) Channel impulse response; (d) Power delay profile. [VI]
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6 SYSTEM CHARGING PROTOCOLS

In [II], the charging protocol to support the spatially distributed stimulation feature
is elaborated upon. The purpose is to generate a certain stimulation pattern to stim-
ulate the optogenetic constructs. For the protocols that require the integration of
the time delay feature, an alteration of the device’s electrical circuit is needed. There
are two types of charging protocols introduced in [II]. The first protocol is the basic
protocol that integrates the addressing capabilities into the system, and the second
protocol is the improvement of the first one considering the requirement of the neu-
rons’ action potential firing pattern.

6.1 Spatial Distributed Nanonetworking

Even though the WiOptND is capable of working in any area of the brain, as men-
tioned in Chapter 3, the focus of the WiOptND is implementation in the neocor-
tex. The neocortex’s layered structure contains neurons that communicate with each
other, especially within one cortical column. This connection is perceived as an op-
portunity for multiple WiOptND implementation, as it forms a particular pattern
in neuron firings. By controlling synchronous device activation timing, the neu-
ron firing pattern can be imitated. This is useful in the case of a failed neural com-
munication due to a neuron connection problem, as illustrated in Figure 6.1. The
solution given by WiOptND is to introduce the spatially distributed nanonetwork-
ing, which enables a synchronous cooperation among devices in terms of activation
timing within a scattered but limited working environment. This requires the mech-
anism to at least activate a set of targeted devices (instead of all devices), which can
be perceived as an addressing mechanism. This can be done by employing multi-
ple ultrasound frequencies and assigning each device a unique frequency. Figure 6.2
illustrates the scattered devices in various layers of the neocortex.

To describe the basic architecture of the system charging protocol, three element
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Figure 6.1 Illustration of the healthy (left) and the disconnected (right) cortical neural networks. Failing

of action potential relays results in disconnected communication in the cortical column of the

cerebral cortex. [II]

L2 

L3 

L4 
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L6 

L3 

L6 . . 

. 

Figure 6.2 The WiOptND nanonetworks deployed in the cortical column, between L2/3 - L6. [II]

sets on both (neocortex) the environmental side and device side should be defined.
They are the neocortex layer set, L = {2/3, 4, 5, 6}, ultrasound frequency set, F =
{f1, f2, f3, ..., fn}, and device set, ND = {ND1, ND2, ND3, ..., NDm}, where {n, m}
∈�∗≤n . The system limitation from transmitter side is its capability to only transmit
a single frequency ultrasound for each time instance to avoid interference and har-
monic generation. However, the implementation of multiple frequency transmitter
is still feasible by choosing sufficient spacing between operational frequencies. The
frequency spacing will also determine the cutoff frequency for the band-pass filters.
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6.2 Charge and Fire Protocol

In this protocol, one ultrasound frequency correlates to one device. In order to sup-
port its implementation, the sub-dura transceiver is required to have prior knowl-
edge of the neuron firing sequence. Based on that, the corresponding frequency is
transmitted to charge and activate the device. Regarding the data of neuron firing
sequence, it can be obtained by prior observation on certain performed activity.
However, this method can only accommodate limited number of simple activities
due to its nature of direct observation. Since this protocol requires a mechanism to
address the devices, a voice–operated switch (VOX) is integrated into the circuitry
(Figure. 6.3). This component allows the device to be correlated to a certain ultra-
sound frequency for activation purposes. However, the frequencies allocated to this
protocol increase linearly with the number of devices. Furthermore, a considerable
distance between the frequencies used should be considered to avoid possible inter-
ference between them.

Figure 6.3 WiOptND circuit diagram with integrated VOX component for the Charge and Fire protocol.

[II]

Figure 6.4 visualises the working principle of this protocol. The firing analysis
is performed every time instance, and the corresponding WiOptND is activated to
address it. The problem arises when more than one neural spike occurs in the same
time instance. This leads to a misfiring event. Misfiring is a parameter to assess the
effectiveness of the protocol. It indicates the unaddressed spikes of the sequence/-
pattern.
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Figure 6.4 Charge and Fire protocol employs a one-to-one relation between frequency transmission
from the sub-dura transceiver and the neural spike sequence. [II]

6.3 Predictive Sliding Detection Window Protocol

The second protocol is the improvement of the first protocol in terms of firing ef-
ficiency and prediction. This protocol enables the activation of several devices fol-
lowing a certain firing pattern. This can be done by incorporating a time delay relay
component into the circuit. The fundamental idea is to activate several devices at
different time instances to address the firing pattern requirement. However, this
implementation increases the complexity of the device. The operation of this pro-
tocol is depicted in Figure 6.5. This protocol analyses and chooses the most similar
required firing pattern and the pattern provided by the available frequencies. Algo-

f1 

f2 

f3 

f1 

N1 

N2 

N3 

N1 

N2 

N3 

N1 

N2 

N3 

f1 f3 

f2 

N3 N1 N2 N1 N3 
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N3 

(f) 

f2 

t1 t2 t3 t4 

time 

t1 t2 t3 t4 t5 t6 t7 t8 t9 

Charging 
frequency 

Sliding window 

Figure 6.5 Illustration of the Predictive Sliding Detection Window mechanism with three ultrasound fre-
quencies/patterns: (a) presents the predicted patterns for three frequencies for three WiOpt-
NDs with respect to time, and (b) – (f) illustrates the sliding window with respect to time. The
selected frequency is based on the highest number of the matched firing pattern. [II]

rithm 1 details the step-by-step mechanism of this protocol. The initial step of this
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protocol is data provision regarding the frequencies and their corresponding firing
pattern (P[1...n]). The firing pattern prediction Mi j is truncated into a smaller unit
size based on the firing matrix size of one frequency Mi i . Afterwards, all the spikes
from the first column are checked to see if they have been addressed. If not yet ad-
dressed, the pattern Mi i is compared with the available patterns (from all frequencies)
and the most identical one is chosen. Based on that, the corresponding frequency is
transmitted.

Algorithm 1 Predictive Sliding Detection Window

1: Initialize P[1...n] 	 where n is total number of available frequencies
2: Mi j ← Pattern Prediction
3: for a = 1 to j do
4: Mi i ←M [:,a : a− 1+column(P [b ])]
5: if M [:, 1] �= 0 & Mi i �= 0 then
6: for b = 1 to n do
7: simTest← compare Mi i == P [b ]
8: end for
9: maxSim←max(simTest)

10: tempFiringSlot← 2× P [maxSi m]−Mi i
11: Mi i ← tempFiringSlot
12: end if
13: end for

6.3.1 Markov Chain-based Time-Delay Pattern

Determining the amount of frequencies and the individual firing pattern of each
frequency should not be done randomly. As mentioned above, within a cortical
column, neurons from different layers communicate to each other. Based on the
connection probability and its connection flow, a certain pattern is more likely to
occur than others. Thus, this method is an option to assign a certain pattern that cor-
responds to each ultrasound frequency. Figure. 6.6 shows the Markov Chain model
for connection probability and flow direction in the cortical column. This model is
derived based on the digital reconstruction of neocortical circuitry from the experi-
mental data done as a part of the Blue Brain Project at École Polytechnique Fédérale
de Lausanne, Switzerland. Furthermore, Table. 6.1 lists the connection pattern that
is more likely to occur.
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Figure 6.6 Markov Chain model of inter- and intra-layer connectivity for the cortical column. [II]

Table 6.1 Rank and Connection pattern. [II]

Rank Connection Patterns

1 L[5] → L[6] → L[4]→ L[2/3]
2 L[4] → L[5] → L[6]→ L[2/3]
3 L[2/3]→ L[6] → L[5]→ L[4]
4 L[6] → L[4] → L[5]→ L[2/3]

..
.

24 L[6] → L[2/3]→ L[4]→ L[5]

6.3.2 Circuit Alteration for the Sliding Window Mechanism

The number of patterns solely depends on the amount of ultrasound frequencies
used. Each frequency in the system corresponds to a VOX and a time delay relay
component as depicted in Figure 6.7. VOX controls the switch in choosing which
time delay relay is activated.
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Figure 6.7 WiOptND circuit diagram with integrated time-delay relay for the Predictive Sliding Detection

Window protocol. [II]

6.3.3 Firing Pattern Prediction Model

To automate the pattern prediction process, the mathematical model in [50] was
adopted. Based on the stimulus, this model can decide if the firing is generated. It
calculates the values of the threshold and the feedback in order to determine the
response of the stimulus. The model is represented as

r (t ) = δ(h(t ))−θ)ḣ(t )H (ḣ(t )), (6.1)

where

h(t ) = g (t )+ a(t )+
∫ t
−∞

r (τ)(1+ b (τ))P (t −τ)dτ, (6.2)

g (t ) =
∫ t
−∞

s (τ)F (t −τ)dτ, (6.3)

H (x) =

⎧⎨
⎩

1, if x > 0

0, otherwise,
(6.4)

where r (t ) represents the sum of delta function spikes when h(t ) crosses the prede-
termined threshold θwith a positive gradient slope. The function g (t ) is the filtered
stimulus s (t ) with filter F (t ) in the time domain. The parameters a(t ) and b (t ) are
the Gaussian noises, while P (t ) is the feedback potential.

One scenario that can be implemented using this model is vision detection, as
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depicted in Figure 6.8. The optical intensity captured in the eye can provide the
input to the external receiver in cases where there is a connection problem with the
connection from the eye to the lateral geniculate nucleus (LGN) cells. By employing
the mathematical model in (6.1), the neural firing pattern can be predicted.

Figure 6.8 Example deployment of the WiOptND nanonetwork in the brain’s visual cortex. The circuit

connection to the V1 primary visual cortex is impaired, requiring the deployment of WiOpt-

NDs, where the coordinated stimulation will compensate for the failed neurons. [II]

6.4 Method and Evaluation

The effectiveness of the protocol was analysed numerically based on the MATLAB
simulation of the predefined firing pattern. The pattern was randomly generated
using frequency data from a middle temporal cortex experiment on a macaque mon-
key. It uses dynamic a visual stimulus (Figure 6.10(a)) causing the variation of two
distinctive lower and higher neural spike frequencies (Figure 6.10(b)) [102]. In or-
der to assess the protocol performance, several measurement metrics were defined as
follows

nmi s =
T∑

t=0

|L|∑
y=0

� |L|∑
k=0

[min(s (L[y], t ), s (L[k], t ))
	
+H [L[y], t ], (6.5)
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where s (L[·], t ) indicates the state of a layer at time t , while y and k represent a
neocortex layer and a unit firing from a pattern of an ultrasound transmission, and

H [n, t ] =

⎧⎨
⎩

0, if E[n, t ]< Emax ,

1, if E[n, t ] = Emax ,
(6.6)

which represents whether the stored energy E[n, t ] is sufficient to turn on the LED
at time t , by comparing it to the required energy Emax .

The three other metrics of the neural spike misfiring ratio (γmi s (L[y])), stimu-
lation efficiency ratio (ηs t i m(L[y])), and stimulation ratio (γs t i m(L[y])), which di-
rectly represent the effectiveness of the protocol are written as

γmi s (L[y]) =
nmi s∑T

t=0 s[L[y], t ]
, (6.7)

ηs t i m(L[y]) = 100%− γmi s (L[y]), (6.8)

γs t i m(L[y]) =
∑T

t=0 |T xs u b [ fn , t ]|∑T
t=0 s[L[y], t ]

, (6.9)

where
∑T

t=0 |T xs u b [ fn , t ]| is the total number of frequency transmission during the
period of T .

Particularly for the predictive sliding detection window protocol, increasing the
number of ultrasound frequencies, which corresponds to available firing patterns,
does not show significant improvement in the stimulation ratio. However, it ensures
that each stimulation is more efficient by precisely addressing the desired neuron
firings. The results of the simulations are shown in Figure 6.9.

To compare both protocols, two neural firing frequencies were simulated. For
both cases, the predictive sliding detection window outperformed the charge and
fire protocol. In the charge and fire protocol, the sub-dura transceiver transmitted
more charging signals, but it did not necessarily lower the misfiring amount. On the
other hand, the predictive sliding detection window protocol showed a reasonable
increment for both the misfiring ratio and charging signal transmission when the
firing frequency increased due to certain activity. The simulation results are depicted
in Figures 6.10(c) and 6.10(d).
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(a) (b)

Figure 6.9 The stimulation (γs t i m(L[y])) and efficiency (ηs t i m(L[y])) ratios for Predictive Sliding De-

tection Window as a function of radiated ultrasound frequency quantity and the number of

WiOptNDs. [II]

Defining an optimum charging protocol was necessary to minimise the ultra-
sound transmission and to obtain certain precision in addressing the neural firing
pattern. Besides the WiOptND implementation, this charging protocol also offers
an energy efficiency solution for the operation of any BMI device.
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(a) (b)

(c) (d)

Figure 6.10 (a) The illustration of bi-directional stimuli separated by 60o for an achromatic random-dots

pattern that is visually observed by a macaque monkey. (b) The raster plot simulation

generated based on the experiment. As shown in the raster plot, both directions affect

the neuron spike frequency response [102]. (c) and (d) present the simulation results from

the number of misfirings before and after the frequency transition for both the Predictive

Sliding Detection Window and the Charge and Fire protocols. [II]
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7 CONCLUSIONS AND DISCUSSION

7.1 Conclusions

In this thesis, we focused on defining the system for wireless BMI that concentrates
on optogenetic stimulation. As presented in [I], we showed that it is feasible to de-
sign a small fully implantable brain implant for a long-term period using existing
technology. This implant, which is called the WiOptND, utilises a combination of
optical (light) and acoustic (ultrasound) waves for stimulation and energy harvesting.
The prominent features of this device are its miniaturised, wireless and batteryless
solutions, which we compared to the device for a similar purpose reviewed in [III].
Each component of the device is elaborated on with technical details to some ex-
tent in [I]. In addition, we analysed how the acoustic and light propagations define
the device requirements and limitations in [I] and [II]. According to the acoustic
propagation numerical analysis, the FDA ultrasound safety limit of 720 mW/cm2

provides sufficient energy of approximately 60 mW to power the device, which is
100×100 μm2. In a further calculation, this amount of power can generate the light
intensity required to stimulate ChR2. Furthermore, we investigated in depth the
light interaction with neuron and brain tissue in [IV]–[VI]. The interesting phenom-
ena of geometrical (focusing) gain and medium loss dictate the received signal power.
From the numerical analysis of three different neuron shapes, the transmitted light
wave is attenuated the least when it traverses an array of multiple spherical neurons
(approximately 20% of the transmitted power). In [VI], we characterised the channel
impulse response of the neural tissue and presented an algorithm for the recursive
numerical ray tracing analysis for point-to-point light propagation. Finally, to in-
tegrate the spatially distributed stimulation feature, we proposed a system charging
protocol that offers synchronous firing pattern stimulation. The implementation
requires the integration of VOX and time delay relay components into the device
circuitry. Furthermore, we employed a prediction algorithm for firing decision. Ac-
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cording to this algorithm, the firing decision is based on a mathematical model by
processing the stimuli intensity.

7.2 Discussion

Optogenetic treatment in humans is very promising, since an in vitro experiment for
human-derived cells and a clinical trial have been performed [83] [4]. The technique
that can be applied to humans involves gene therapies utilising the adeno-associated
virus (AAV) vector. This has been successfully performed without exhibiting long-
term toxicity in humans [72]. In [44] [46], treatment for heart failure is implemented
using this particular technique. However, this treatment stimulates an immunologi-
cal reaction against the injected virus, which reduces the efficiency of the treatment.
Thus, the reaction should be suppressed to maximise the treatment effect. In the
research field, the in vitro optogenetic application in human neuromuscular disease
and retinitis pigmentosa (RP) shows promising results by utilising ChR2 and NpHR
optogenetics [14] [87]. Thus, both the research and implementation of optogenetics
will significantly advance in the near future.

Regarding the hardware improvement, the research on biocompatible and micro
scale components is facilitating the implant miniaturisation even further, for exam-
pleμ-LEDs [15] [103], micro-super capacitors [92] [36], and piezoelectric nanowires
[47]. With this, a higher level of spatial resolution can be achieved by the BMI.

In this thesis, both the WiOptND concept and supporting scientific analysis con-
tribute to the advancement of future BMI design. Future improvements can include
considerations of both the advantages and disadvantages of the light propagation be-
haviour elaborated on in this thesis. The proposed concept still concentrates on
implant internal network system communication, but in the future, this will be a
part of the bigger network of IoBNT and IoT. At this point, the interoperability
of this heterogenous network should be carefully considered, including integrated
system security.
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A APPENDIX

A.1 Ray tracing algorithm for fusiform neuron

This algorithm requires input data, namely the optical properties of the medium
(nc , nt ), physical properties of the neuron (rc , dc ), and coordinates/direction of the
incoming ray (x2, h2,θi ). It calculates the angle and coordinates of the focus point
( f oc(θF , xF )) and the propagation direction and coordinates inside the neuron (li (x

′
3, h3),

lo(x4, h4), θ
(2)
i ). This algorithm is executed iteratively depending on the number of

neurons along the path.

Algorithm 2 Ray tracing for fusiform cell

Require:
nc , nt (refractive indices of neuron and tissue)
rc (the radius of the neuron)
x2 (the x ray coordinate of the previous cell)
h2 (the radius of incoming illumination)
dc (the distance between cells)
θi (the angle of the incoming ray)

Ensure:
f oc(θF , xF ) (the distance and angle of focus point)
li (x
′
3, h3) (the coordinate of the incoming ray)

lo(x4, h4) (the coordinate of the outgoing ray)
θ(2)i (the ray propagation angle in the cell)

1: CALCULATE(x ′2) 	 x ′2 = x2 measured from the 1s t surface,

x ′2 = (dc + 2rc )− x2
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2: CALCULATE(x3, h3) 	 x3, h3 = the coordinate where the ray hits the 1s t surface,

m2 = t an(180o −θi )

h3 =

⎡
⎢⎣

m2
2 + 1

2m2(h2+m2x ′2)
(h2+m2x ′2)2− r 2

c

⎤
⎥⎦

T ⎡
⎢⎣

x2
3

x3

1

⎤
⎥⎦

3: CALCULATE(θ(1)i ) 	 the incoming angle with respect to normal line of the 1nd

surface

θ′(1)i = a r c t an
� h3

|x3|
�
−θ(1)i

4: CALCULATE(θ(1)o ) 	 the refracted angle due to 1s t surface

θ(1)o = a r c s i n
�nt s i n(θ′(1)i )

nc

�

5: CALCULATE(x3, θ(1)o ) 	 with respect to 2nd surface

x ′3 = 2rc − (dc + |x3|)
θ(2)i = θ

(1)
i + (θ

′(
i 1)+θ(1)o )

6: CALCULATE(x4, h4) 	 the coordinate where the ray hits the 2nd surface

m3 = t an(−θ(2)i )

h4 =

⎡
⎢⎣

m2
3 + 1

2m3(h3+m3x ′3)
(h3+m3x ′3)2− r 2

c

⎤
⎥⎦

T ⎡
⎢⎣

x2
4

x4

1

⎤
⎥⎦

7: CALCULATE(θ(2)o ) 	 the refracted angle due to 2nd surface

θ(2)o = a r c s i n

�
nc

nt
s i n
�

a r c t an
� h4

x4

�
+θ(2)i

��
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8: CALCULATE(xF ) 	 the focus distance

θF = θ
(2)
o − a r c t an
� h4

x4

�

m4 = t an(θF )

xF =
m4x4− h4

m4
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Abstract—In recent years, numerous research efforts have been
dedicated towards developing efficient implantable devices for
Deep Brain Stimulation (DBS). However, there are limitations
and challenges with the current technologies. Firstly, the stimu-
lation of neurons currently is only possible through implantable
electrodes which target a population of neurons. This results
in challenges in the event that stimulation at the single neuron
level is required. Secondly, a major hurdle still lies in developing
miniature devices that can last for a lifetime in the patient’s
brain. Recently, the concept of neural dust has been introduced
as a way to achieve single neuron monitoring and potentially
actuation. In parallel to this, the field of optogenetics has emerged
where the aim is to stimulate neurons using light, usually by
means of optical fibers inserted through the skull. Obviously,
this introduces many challenges in terms of user friendliness
and biocompatibility. We address this shortcoming by proposing
the wireless optogenetic neural dust (wi-opt neural dust). The wi-
opt neural dust is equipped with a miniature LED that is able
to stimulate the genetically engineered neurons, and at the same
time harvest energy from ultrasonic vibrations. The simulation
results presented in the paper investigates the behaviour of the
light propagation in the brain tissue, as well as the performance of
designed circuitry for the energy harvesting process. The results
demonstrates the feasibility of utilizing wi-opt neural dust for
long term implantation in the brain, and a new direction towards
precise stimulation of neurons in the cortex.

I. INTRODUCTION

In recent years numerous neurological disorders have led
researchers to seek new solutions to improve monitoring as
well as treatment techniques. For example, solutions have
been developed for electrodes to be placed into the brain and
upon stimulation will lead to minimisation of trembling due to
parkinson disease. In another work, known as optogenetics, op-
tical light is used to stimulate genetically engineered neurons
that are sensitive to light at a particular wavelength [1]. The use
of optogenetics can lead to precise single neuron stimulation.
However, a major drawback with the current techniques is
the fact that the technologies require insertion of electrodes or
optical cables into the skull. While it does solve the problems,
and opens up innovation, the proposed techniques are not
practical for everyday use by the patients.

In this paper, we propose the wireless optogenetics neural
dust, which we refer to as wi-opt neural dust. The wi-opt

neural dust advances the neural dust proposed by [2], which
is only limited to monitoring the neurons and reporting back to
the sub-dura transceiver through back scattering. The benefits
of integrating the wireless optogenetic component to the neural
dust is to enable single neuron stimulation, while envisioning
long term implantation of the device. However, there are a
number of challenges in realising a fully operational wi-opt
neural dust. Firstly, the devices will need to be powered,
and this is a challenge given the miniature size of the entire
unit. For practical use, the device must avoid the use of
batteries, which could potentially lead to toxic leaks as well as
requirements of surgery to change them. Secondly, since our
objective is to stimulate the neurons, the energy harvesting
component is required to absorb sufficient amount of energy
that can be used for stimulation. The paper addresses each of
these challenges by proposing a design of the device that is
able to harvest energy from ultrasound waves, which is used
to power a LED unit. The paper presents simulation work
to demonstrate the feasibility of the wi-opt neural dust, by
initially presenting the behaviour of the light propagation in
the brain tissue based on the energy harvested, as well as
the energy harvesting efficiency based on variations of the
ultrasonic frequency, as well as size and components of the
wi-opt neural dust circuitry.

This paper is organized as follows: Sec. II introduces the
system model of the wi-opt neural dust. Sec. III presents the
circuitry of the device, while the simulation of the wi-opt
neural device is discussed in Sec. IV. Lastly, Sec. V presents
the conclusion.

II. SYSTEM MODEL

The neural dust architecture, first introduced in [2] is
illustrated in Fig. 1. It will be the same proposed in this
paper. The architecture consist of wi-opt neural dust devices
that are embedded in various parts of the cortex and interfaces
to neurons.

Unlike the neural dust, the wi-opt neural dust contains
a LED that interfaces to neurons and stimulates it using
light, as illustrated in Fig. 2. The neurons in this case are
engineered to be sensitive to light at a specific wavelength
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Fig. 1. Illustration of the ultrasound wi-opt neural dust network, which are
scattered in the various layers of the cortex. The sub-dura transceiver is used
to emit ultrasound signals to charge and trigger the wi-opt neural dust for
deep brain stimulation.

Fig. 2. Illustration of an wi-opt neural dust that interfaces to an engineered
neuron that is sensitive to light at a specific wavelength.

(in our case, this will be at 470nm). Above the cortex is the
sub-dura transceiver that communicates with the wi-opt neural
dust using ultrasonic signals. The purpose of the ultrasound
communication to the device is two fold: ultrasonic waves are
both used to instruct the device to stimulate the neuron and
to provide the required energy. The sub-dura transceiver acts
as a middle-man device that in turn communicates with the
external transceiver. Therefore, the entire architecture consists
of three layers of communication. In this paper, we only limit
the interaction between the sub-dura transceiver and the wi-opt
neural dust devices.

The cortex is composed of gray matter where the neural cell
bodies and glial cells are the major population. The neurons
are grouped into six vertical stacked layers with different cell
types, such as: pyramidal cells, spiny stellate cells, basket
cells, chandelier cells, and smooth stellate cells [3]. The total
thickness of the cortex is approximately 2-6 mm, and it is
within this region that the wi-opt neural dusts will be scattered.
In addition to vertical scattering, the wi-opt neural dust can
also be horizontally scattered, where each layer will have the
devices scattered at different densities. The average human
brain length and width is approximately 167 mm and 140
mm. Therefore, the wi-opt neural dusts should have certain
coverage to operate properly considering the attenuation due
to brain tissue absorption of the ultrasound, as well as the
number of damaged neurons that are required to be stimulated.

III. WIRELESS OPTOGENETIC NEURAL DUST

Fig. 3 illustrates the circuit diagram of the wi-opt neural
dust. The energy harvester of the wi-opt neural dust contains

Fig. 3. Device architecture of the wi-opt neural dust, including the internal
circuit diagram.

piezoelectric nanowires that that vibrate because of the ultra-
sounds, and through a transducer converts the mechanical en-
ergy to electrical energy. The power intensity of the ultrasound
wave source is regulated by the Food and Drug Administration
(FDA), where the safety level limit is 720mW/cm2. Since the
current generated from the piezoelectric nanowire is in AC,
the conversion to DC is achieved through a rectifier. The DC
current is then be charged through a series of capacitors which
stores the required energy for powering the LED. The circuit
also contains a switch that passes the current to the LED, and
this is also sensitive to specific frequency of the ultrasound
waves (this is the inherent addressing mechanism of each of
the devices)

A. Energy Harvester

There are a wide range of available piezoelectric materials,
and these include lead zirconate titanate (PZT), aluminum
nitride (AlN), barium titanate (BaTiO3), and zinc oxide (ZnO)
in the form of crystal or nanowires [4] [2] [5]. The energy
harvester used in this paper is based on the ZnO nanowires
with thin coating to eliminate any negative effect on the brain
tissue. An example coating that could be used is based on the
works of [4] that used a thin layer (<100 µm) of acrylic Poly-
methyl methacrylate) coating. Experiments have also shown
that the coating did not exhibit any significant performance
degradation on the energy harvesting process. One important
component required in energy harvesting applications is the
electromechanical coupling coefficient. This parameter defines
the conversion efficiency between mechanical and electrical
energy. It is affected by the geometry structure of the material
[6].

The generated ultrasound wave traverses through the brain
tissue whose attenuation coefficient α is 0.435 dB/(cm·MHz)
[7]. As a result, the power intensity level received by the wi-
opt neural dust is less due to the attenuation according to the
following equation:

Pnd = Ps exp−(α f d/10), (1)



where Pnd and Ps are the power intensity level at the surface of
the device and the acoustic wave source, respectively, α is the
attenuation coefficient of the brain tissue, f is the acoustic
wave frequency, and d is the distance between the wi-opt
neural dust and the sub-dura transceiver. Due to this factor,
720 mW/cm2 acoustic wave radiation is attenuated to ≈ 60mW
on a 100× 100µm2 wi-opt neural dust mote implanted at 2
mm brain tissue of the cortex. Moreover, not all the acoustic
wave power received by the neural dust mote is converted to
electrical power, and this depends on the conversion rate of the
corresponding energy harvester. Suppose that the conversion
rate (η) is 0.5, the electrical power generated by it is 30 mW.
The conversion process is represented as

Pnd = indAEH , (2)

Pe = Pndη, (3)

where Pnd and Pe are the power received to vibrate the
nanowire energy harvester and the electrical power after the
conversion from mechanical to electrical energy; AEH is the
effective surface area of the energy harvester.

B. Storage Capacitors
As the nanowires generates AC current, full-wave rectifi-

cation is required before the generated signal is fed to the
capacitors. Since the generated voltage from nanowires (Vg)
is 0.42 V [8], several capacitors are required to fulfill the
energy requirement of the LED. For this purpose, micro-
supercapacitors based on interdigital electrodes of reduced
graphene oxide and carbon nanotube composite can be used
[9]. Based on the electrical power and voltage supplied by
energy harvester, the flowing current (Ig) can be represented
as:

Ig =
Pe

Vg
. (4)

A single micro-supercapacitor with the surface area of 100
x 100 µm2 has a capacitance value of 280 µF . Due to the
limited voltage source and power requirements of the LED,
different capacitor circuits are required during the charging and
discharging cycles. A parallel capacitor circuit is used during
the charging process, while a series connection is used for
the discharging process. For a single supercapacitor Ccap, the
number of different capacitance value n for the series Ccapser

and parallel Ccappar connections can be represented as:

Ccappar = nCcap, (5a)

Ccapser =
Ccap

n
. (5b)

Therefore, the total voltage fed to the LED is the sum of
the voltage of the n capacitors. Depending on the vibration
frequency of the nanowires, the electrical charging rate can be
formulated as [8]:

∆Q = Igtcycle =
Ig

f req
, (6)

where ∆Q is the electrical charge per cycle, Ig is the current
from the energy harvester, and tcycle =

1
f req is the cycle period

for the emitted ultrasound waves.

C. Light Source and Optogenetics

In optogenetics, the neurons are genetically engineered
so that the ion channels are sensitive to light at a specific
wavelength. Upon illumination of light, the neuron generates
Action Potential (AP) which in turn triggers an electro-
chemical signal along the axon of the cell. One approach
of engineering the cell is to use Channelrhodopsin-2 (ChR2)
which is a protein extracted from green alga Chlamydomonas
reinhardtii that modifies the cells to have light-gated cation-
selective membrane channels [10].

In order to model the circuit to excite the optogenetic
process, the light intensity level should be at an optimum
level. The excitation needs to be low enough to utilize the
limited electrical energy and sufficiently high to satisfy the
power requirements of the LED. The optogenetic construct
ChR2 gets activated by ≈ 470 nm light with an intensity of ≈
1 mW/mm2 [11]. For the LED unit, the InGaN Cree’s Direct
Attach DA2432 LED [12] can be used in this application. This
LED can operate with an electrical current level starting from
5 mA with wave length of 465 nm that generates ≈ 5 mW of
optical power [13].

Inside the brain tissue, light wave experiences scattering,
absorption, and conical (geometrical) spreading. This effect
can be formulated by the Kubelka-Munk model which gives the
theoretical calculation for light propagation through scattering
and absorptive media [14].

I(z)
I(z = 0)

=
ρ2

(Sz+1)(z+ρ)2 , (7)

ρ = r

√(
n

NA

)2

+1, (8)

where r is the radius of the light source, NA is the numerical
aperture, n is the refractive index of the tissue (1.36 for gray
matter), and S is the scatter coefficient per unit thickness (z).

The calculation of time required by the storage capacitors
to be able to have enough energy to illuminate the LED with
respect to the number of cycles (of ultrasound frequency) is
formulated as [8]:

ncyclecharge =

⌈
− VgparCcappar

∆Qpar
ln 1−

√
2Emaxpar

CcapV 2
gpar

)⌉
. (9)

Meanwhile for illuminating the LED which is related to
storage capacitor discharging, the required time with respect
to the number of cycle is calculated using the series circuitry,
and is represented as follows:

ncycledischarge =

⌈
− VgserCcapser

∆Qser
ln

(√
2Emaxser

CcapV 2
gser

)⌉
, (10)

where Emax is the maximum electrical energy that can be
stored in the storage circuit.



Furthermore, the voltage value during the charging and
discharging process can be calculated based on the approach
in [8], and is represented as follows:

Vcapcharge(ncycle) =Vgpar 1− e
−

ncyclepar ∆Qpar
VgparCcappar

)
, (11)

Vcapdischarge(ncycle) =Vgser e
− ncycleser ∆Qser

VgserCcapser . (12)

In Eq. (11) and (12), subscript par and ser indicate the parallel
and series connection of the storage capacitors, respectively.

Lastly, since we want to be able to invoke specific wi-opt
neural dust to stimulate certain neurons, an addressing mecha-
nism is required. In order to enable frequency selective lighting
of the LEDs, a frequency filter switch can be incorporated into
the circuit. The switch is a logical ’AND’ gate that decides if
the energy storage in the capacitor will lead to the discharging
process of the LED. In this case, the concept of VOX (Voice
Operated Switch) can be applicable.

IV. SIMULATIONS

TABLE I
SIMULATION PARAMETERS

Parameter Value [Unit] Description

Neural Dust Density 0.024 to 1.2 [/cm3] Randomly scattered
Frequency 500 to 3M [Hz] Ultrasound freq
Depth Radius 2 to 60 [mm] Into the brain
Interfiring period 6 [ms] Mean (exponential dist)
Data sample 10,000 Random data
Nanowire surface area 104 to 2×104 [µm2] Energy harvester

The wi-opt neural dust are simulated to investigate its
optical behaviour when interfaced to cells as well as the
behaviors of the device with respect to its charging and
discharging capabilities to light up the LED. The parameters
used for the simulations are presented in Table I.

A. Optical Light Behavior in Brain Tissue

Since the light source is embedded in the brain tissue, the
light intensity is attenuated as it propagates through the tissue
according to the attenuation coefficient of the medium. The
optical power produced by the LED depends on the applied
current percentage [13]. As the optical power level lessened
by distance, the placement of the wi-opt neural dust has to
consider the optimal position with regard to the optogenetic
construct.

Monte Carlo simulations [15] and the Kubelka-Munk model
[16] are often used to analyse light propagation in optogenetics
field. In this work, we simulate the light propagation in hu-
man brain tissue using COMSOL Multiphysics software with
Helmholtz model representation. The light transport model
with Finite Element Method in COMSOL simulation includes
the geometry and optical properties of the materials such as
scattering and absorption. The model solves the fluence rate
(light intensity) u or Φ(r, t), given the diffusion coefficient c

or D(r, t), absorption coefficient a or µa, and source term f or
S(r, t) according to the following Helmholtz equation:

−∇D(r, t)∇2Φ(r, t)+µaΦ(r, t) = S(r, t)

∇(−c∇u)+au = f .
(13)

In our scenario, the LED is modeled as an ellipsoid, whereas
the neuron cells and propagation medium as spheres. The
absorption coefficients of LED, neuron cells, and brain tissue
are set to 0, 0.36/mm, and 0.014/mm, respectively [15]. The
diameters of LED and brain tissue model are ≈100µm and
500µm, while we set 100µm diameter for single neuron cell
and various diameters for more than one neuron cell model.
The frequency domain study is chosen for wavelength of 470
nm which corresponds to blue light.

Fig.4(a) shows the light intensity generated by the light
source radiated by half of the ellipsoid surface. Close to the
source, the light intensity is high depicted by the red color.
When we add the neuron cell model with the distance of
10µm from the light source, the intensity pattern changes
due to different absorption coefficient of the materials. This
phenomenon is shown in Fig.4(b). We also investigate the
intensity pattern for the situation similar to the brain envi-
ronment where there are more than one neuron cell close to
each other. The distance range is between 10-20 µm by LED
vicinity. Therefore, we add several neuron cells with the same
optical properties but different sizes and distances from the
light source. Fig.4(c) shows the light intensity pattern affected
by multiple neuron cells.

From the simulation, it can be seen that distance and cells
affect the attenuation of light propagation. As a result, the
narrower pattern is formed as the number of surrounding
neuron cells increases. This can be beneficial as one wi-
opt neural dust might excite several optogenetic constructs if
desired. On the other hand, it will create unwanted effects
when excitation of undesired neuron occurs.
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Fig. 5. Illustration of storage energy as a function of time with frequency
variation where the neural dust mote is 2 mm deep into the brain during
charging process.

B. Energy and Power Evaluation

In order to figure out the operational characteristics of a sin-
gle wi-opt neural dust, it is important to evaluate the charging



(a) Wi-opt neural dust LED light emission model (b) LED light emission on a single neuron cell. (c) LED light propagation surrounded by several
neuron cells.

Fig. 4. COMSOL multiphysics simulation of the LED light propagation behaviour within the brain tissue.
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Fig. 6. Illustration of the storage energy as a function of time where the
neural dust mote is 2 mm deep into the brain during discharging process.
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Fig. 7. Illustration of storage energy as a function of time with frequency
variation where the neural dust mote is 2 mm deep into the brain during
charging process.

and the discharging duration of the storage capacitors. These
factors are affected mainly by the depth of the device planted
into the brain and the frequency of the ultrasonic waves emit-
ted from the sub-dura transceiver, while the constant intrinsic
values of the storage capacitors are calculated based on the
energy harvester and light source component. Considering the
ontogenetic requirements for neuron stimulation, the circuit
model explained in Sec.III has to be able to illuminate the
LED for at least 5 msec duration [17]. In our simulations, each
cycle utilizes 10 thousand random values for neuron sequence
firing. The neuron inter-firing period is based on exponential
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Fig. 8. Illustration of the capacitor power as a function of time where the
neural dust mote is 2 mm deep into the brain during discharging process. The
5 msec limit is the minimum duration threshold required by the LED to emit
light in order to successfully stimulate the neuron.
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Fig. 9. Illustration of storage energy as a function of time for various
frequencies and two different nanowire surface area.

distribution as their sequences can be represented as a poisson
process (Rate as a Spike Count and Fano Factor) [18]. Fig. 5
presents the amount of stored energy with respect to time.
Although higher frequencies suffer from higher attenuation
within the brain tissue, this difference is very small in terms
of the amount of energy stored with respect to time, as shown
in Fig. 5. This also means that using different frequencies for
the addressing mechanism will not come at a cost of variations
in the charging durations. This factor must also be included
in design consideration, especially when selective frequency
is required to invoke specific wi-opt neural devices as well as
the design of the sub-dura transceiver. Fig. 6 shows the graph



of the energy discharging of the capacitor storage. As shown
in the discharging plot, the period to release the energy goes
beyond the minimum 5 msec duration, ensuring that sufficient
light intensity is applied to the neurons. Comparing Fig. 5
and Fig. 6, there is significant gap in time. The reason behind
this is because the parallel and series capacitor connections
during charging and discharging process. This configuration
affects the electrical properties of the storage circuit, such as
the capacitance value and the voltage value.

Fig. 7 present the results when different quantity of capac-
itors are used for the devices. Intuitively, we can see that an
increase in the number of capacitors will definitely increase
the quantity of energy stored, but comes at a cost of longer
charging durations. This also means that higher number of
ultrasound frequency cycles are required. The benefit of this
configuration is that the device can maintain a certain amount
of energy to stimulate neuron with short inter-firing periods,
provided that a pausing process can be incorporated into the
circuit. Fig. 8 presents the amount of energy discharged and
compares between the different number of capacitors. For both
configurations we can see that the discharging process provides
sufficient amount of power and within the 5msec limit needed
to stimulate the neuron. Since the charging process is reliant
on vibration of the piezoelectric nanowires, Fig. 9 presents
the results for variations in the area of the nanowire. There
is no difference in the amount of energy charged when there
are variations in the ultrasonic frequency. However, we can
observe that the quantity of energy produced is increased when
the area is doubled.

V. CONCLUSIONS

The increased attention towards Deep Brain Stimulation
has attracted researchers to search for innovative solutions
that can enable long-term deployment as well as design
of miniaturised devices that can self-generate power. The
emergence of optogenetics has provided a new approach for
precise stimulation at the single neuron level. In this paper,
we propose the wi-opt neural dust that is constructed from
nanoscale components and can be embedded into the cortex
of the brain. A thorough description of the circuitry as well
as the components are presented, including mechanisms of
generating power through ultrasonic wave vibrations. The
paper presented simulation results on the behaviour of optical
light transmission and its effect on the brain tissue, as well
as the energy performance of the device based on variations
of ultrasonic frequencies and circuitry devices (e.g. capacitors
and piezoelectric nanowire area). The positive results from our
simulation study has demonstrated the feasibility of using the
wi-opt neural dust for long term deployments in the brain
in order to stimulate neurons and provide new approaches
for treating neurological diseases so that this study motivates
future work in this direction.
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Wireless Optogenetic Nanonetworks for Brain
Stimulation: Device Model and Charging Protocols

Stefanus A. Wirdatmadja, Michael T. Barros, Yevgeni Koucheryavy, Josep Miquel Jornet, Sasitharan
Balasubramaniam

Abstract—In recent years, numerous research efforts have
been dedicated towards developing efficient implantable de-
vices for brain stimulation. However, there are limitations and
challenges with the current technologies. They include neuron
population stimulation instead of single neuron level, the size,
the biocompatibility, and the device lifetime reliability in the
patient’s brain. We have recently proposed the concept of wireless
optogenetic nanonetworking devices (WiOptND) that could address
the problem of long term deployment, and at the same time
target single neuron stimulation utilizing ultrasonic as a mode for
energy harvesting. Additionally, a number of charging protocols
are also proposed, in order to minimize the quantity of energy
required for charging, while ensuring minimum number of neural
spike misfirings. These protocols include the simple Charge and
Fire, which requires the full knowledge of the raster plots
of neuron firing patterns, and the Predictive Sliding Detection
Window, and its variant Markov-Chain based Time-Delay Patterns,
which minimizes the need for full knowledge of neural spiking
patterns as well as number of ultrasound charging frequencies.
Simulation results exhibit a drop for the stimulation ratio of
~25% and more stable trend in its efficiency ratio (standard
deviation of ~0.5%) for the Markov-Chain based Time-Delay
Patterns protocol compared to the baseline Change and Fire.
The results show the feasibility of utilizing WiOptND for long-
term implants in the brain, and a new direction towards precise
stimulation of neurons in the cortical microcolumn of the brain
cortex.

I. INTRODUCTION

Each year, the prevalence of neurodegenerative diseases,
such as Alzheimer’s disease, amyotrophic lateral sclerosis
and Parkinson’s disease, is increasing. According to the 2016
World Health Organization (WHO) data statistics, more than
five million Americans are living with Alzheimer’s and it is
predicted that the number will increase to around 16 million
by 2050 [1]. Parkison’s affects 500,000 people in the US and
it will double by 2030 [2]. It has an estimated cost of 20
billion dollars in the US [3] and 13 billion euros in Europe [4].
This situation demands scientists and researchers to not only
develop prevention programs, but also solutions that might
assist the patients to live a normal lifestyle. In certain cases,
patients with Parkinson’s disease may receive benefits from
brain stimulation by placing Implantable Pulse Generator
(IPG) [5] to the targeted areas of the brain to treat essential
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tremor and dystonia symptoms. In the field of neuroscience,
optogenetics is gaining popularity as an alternative method for
neural stimulation. In optogenetics, the neurons are engineered
so that they are sensitive to light at specific wavelengths
in order to have either excitatory or inhibitory effects [6].
Optogenetics provides an advantage over the use of electrodes
due to its higher precision, less stress to the cells, and lower
noises. These noises may disturb the neural activity recording
process since the recorded signal does not merely come from
the target neurons, but also from the stimulation electrodes
[7]. However, further improvements are still required to the
current solutions. They include the degree of intrusion through
the skull and alternative power supply compared to the use of
batteries. These shortcomings limit the degree of practicality
for the patients in their daily life.

On neural networks, neurons communicate with each other
through the process of action potentials and synapses. The
neuron cell body (soma) connects to other cells using the
dendrites and axons, which receives and transmits signals with
neighbouring cells. The problem arises when this physical
transportation network is impaired due to various problem
such as aging, disease, or the death of cells, among others.
Even a single neuron failure may result in communication
impairments along the cortical circuit. This communication
impairment due to single cell level failure will result in the
discontinued transmission of action potential among cortical
layers as depicted in Fig. 1. In this case, the implementation
of a single neuron level stimulation implant can restore the
neural circuit communication between the layers.

We have recently proposed the concepts of wireless opto-
genetics integrated using nanoscale components [8], which we
term wireless optogenetic nanonetworking devices (WiOptND).
Considering the size of the soma which varies between 4-
100µm in diameter, the WiOptND is required to be ap-
proximately several hundreds microns in size in order to
deliver the required light intensity needed for the stimulation.
Since our aim is to embed the device into the brain, this
means that this miniaturization will require a light source
that can emit sufficient light intensity, and is powered using
energy harvesting [8] [9]. In this paper, we investigate the
light propagation behaviour through the tissue to determine
the effective distance required between the light source and
the neurons, and the energy harvesting technique based on
ultrasound vibrations of piezoelectric nanowires.

In addition, since we anticipate a network of WiOptNDs, a
suitable charging protocol is required to maximize the energy
efficiency and ensure that all devices are charged to minimize
misfiring of the neurons. In particular, since these devices will



2

Fig. 1: Illustration of healthy and disconnected cortical neural networks. Failing of action potential relays will result in
disconnected communication in the cortical column of the cerebral cortex.

be embedded into the cerebral cortex, the charging protocol
should consider the characteristics of the neural circuit, and
in particular, knowledge of the neural spike sequence. We
propose three protocols, including the simple Charge and Fire
protocol based on utilizing the full knowledge of the raster
plot firing sequence to individually charge each device in the
network, the Predictive Sliding Detection Window protocol
which employs the combination of neural spike prediction
and a more complex circuit for parallel charging in order
to minimize usage of ultrasound frequencies, and its variant
the Markov-Chain based Time-Delay Patterns, which utilizes
knowledge of the neuron population and their connection
probability between the cortical layers to predict the firing
sequence to also minimize the required ultrasound frequencies.

The structure of the paper is as follows: background in-
formation on optogenetics and its biological features are
provided in Sec. II. Going more into the WiOptND, the overall
model and the components are discussed in Sec. III. Light
propagation properties through the brain tissue is discussed in
Sec. IV, while in Sec. V the power management of WiOptND
is presented, particularly focusing on the energy charging
and releasing performance to power the light source. The
charging protocols of the WiOptND nanonetwork is discussed
in Sec. VI. Finally, the paper is concluded in Sec. VII.

II. OPTOGENETICS

Naturally, the communication between neurons is done both
electrically and chemically. In most cases, the electric signal
is used in transferring the information in one single neuron,
while chemical is used in inter-neuronal communications [10]
[11]. The electrical stimulation, action potential, propagates
from dendrites to the axons and stimulates the release of
neurotransmitter for inter-neuronal synapse communications.
The most common method in controlling the neural communi-
cations is using electrical and light stimulation (optogenetics).
Comparing both methods, optogenetics gives higher precision
in targeting specific neuron, minimizes the cell stress as com-
pared to electrical stimulation, and creates less interference
with the surrounding cells.

Optogenetics is a method of artificially manipulating neural
communication using light at a specific wavelength. Accord-
ing to its characteristics, the optogenetic construct can have

either excitatory or inhibitory effects. Excitatory postsynaptic
potential (EPSP) refers to the case when the cell membrane
depolarizes as a result of the opening of sodium and calcium
ion membrane channels, causing action potential to be gen-
erated. On the other hand, inhibitory postsynaptic potential
(IPSP) is when the cell membrane hyperpolarizes caused by
the opening of chloride or potassium ion membrane channels
which results in blockage of action potential generation.

In optogenetics, channelrhodopsin-2 (ChR2) exhibits exci-
tatory characteristics. This construct is obtained by genetically
engineering neurons with the opsins from green algae Chlamy-
domonas reinhardtii (Step 1 in Fig. 2) [12]. The blue light
illumination triggers the action potential generation (Step 2
and 3 in Fig. 2). For inhibitory effect, the hyperpolarization can
be done in two ways, using either chloride or proton pumps.
Chloride pump is realized by utilizing the halorhodopsin
(NpHR) from archaeon Natronomonas pharaonis [13]. The
improved version of NpHR is called eNpHR3.0 which can
be activated by green, yellow, or red light (Step 2 and 3
in Fig. 2). During its activation, chloride ion channel gates
open, bringing chloride ions into the cells. Proton pump is the
alternative of chloride pump to perform the inhibitory effect.
To create proton pumps, there are four types of optogenetics
that can be used. They are archaerhodopsin-3 (Arch) from
Halorubrum sodomense, Mac from the fungus Leptosphaeria
maculans, archaerhodopsin (ArchT) from Halorubrum strain
TP009, and eBR (an enhanced version of bacteriorhodopsin
from Halobacterium salinarum) [14]. In a nutshell, Fig. 2
concludes how the implementation of ChR2 and NpHR affects
the generation of action potentials upon the illumination of
blue light (480 nm) and yellow light (570 nm).

Since the focus of this paper is to excite the neurons,
the optogenetic construct that is used is the ChR2, which is
activated by blue light whose wavelength is approximately 480
nm.

III. SYSTEM MODEL

This section will first describe the devices for each of
the layers of the architecture, and this will be followed by
the device design, including the different components of the
circuitry.
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Fig. 2: Steps towards developing an optogenetic neuron and
its stimulation process. The figure also illustrates the depolar-
ization process where ion pumps are activated.

A. Wireless Optogenetic Nanonetworking Architecture

The entire network of the Wireless Optogenetic Nanonet-
working architecture is composed of three layers, which is
adopted from [15]. The lowest layer is the cerebral cortex
where the WiOptNDs are distributed, each are interfaced to
a neuron that requires stimulation as illustrated in Fig. 4.
Cerebral cortex is the gray matter of the brain and is responsi-
ble for sensory, motor, and associated functions. Horizontally,
the cerebral cortex is categorized based on their functional
areas, while vertically, it comprises of six layers containing
different type of neurons, which includes: pyramidal cells,
spiny stellate cells, basket cells, chandelier cells, and smooth
stellate cells [16], each of which can have a WiOptND
interfaced to the cell. The next layer up is the sub-dura
transceiver, which is located on the dura and below the skull,
and communicates with the WiOptND. The role of the sub-
dura transceiver is to emit ultrasound waves which are used to
charge the WiOptND. The sub-dura transceiver contains the
algorithm the determines both the charging and stimulation
sequence of the WiOptND, and this in turn emits the sequence
of ultrasound signals. Above the sub-dura transceiver is the
external transceiver, which communicates with the sub-dura
transceiver (please note that this paper does not focus on
the interactions between the external transceiver and the sub-
dura transceiver). However, for readers who are interested in
design of ultrasonic external device, [17] makes the Internet
of Medical Things (IoMT) ultrasonic patch and compares
the performance between ultrasonic link and Bluetooth Low
Energy (BLE). Ultrasonic link outperforms BLE mainly due
to biological tissue propagation.

B. Wireless Optogenetic Nanonetworking Devices

The circuit diagram of the WiOptND is illustrated in Fig. 5.
Acting as the energy harvester, the piezoelectric nanowires
vibrate in response to the radiated ultrasound wave emitted
from the sub-dura transceiver. As the nanowires oscillate,
the AC voltage is generated. In this stage, the mechanical
energy from the ultrasound pressure is converted into electrical

Cortex

Sub-dura
transceiver

External
transceiver

Ultrasound
beam

Nanowires

Wi-opt neural dust

Fig. 3: Illustration of the overall architecture of the Wireless
Optogenetic Nanonetwork. The WiOptND are scattered in the
various layers of the cortex, and is charged by the ultrasound
signals emitted from the sub-dura transceiver, which in turn
is communicated from the external transceiver.

Fig. 4: Illustration of a WiOptND that interfaces to an engi-
neered neuron that is sensitive to light at a specific wavelength.

energy in accordance to the piezoelectric material. However,
the ultrasound intensity must abide with the Food and Drug
Administration (FDA) safety regulation stating that the max-
imum permissible level is 720 mW/cm2. The generated AC
voltage is converted to DC by using a rectifier. The converted
electrical energy is then stored in the storage capacitor which
is charged to power the light source component, and in our
case is a Light Emitting Diode (LED). Since our aim is to be
able to signal each individual WiOptND in order to charge and
trigger the stimulation process, a unique addressing scheme
is required for each device. One approach is through the
utilization of a Voice Operated Switch (VOX) that responds to
different ultrasound frequencies. By integrating the frequency
filter switch, adopted from the VOX, enables the discharging
selection of one particular device, and this is achieved by
integrating a piezo element that is sensitive to specific resonant
frequency.

IV. LIGHT PROPAGATION IN BRAIN TISSUE

As the light emitted from the LED traverses via the brain
tissue, the irradiance or the intensity decreases. Absorption
due to the tissue chromophores increases as the light is scat-
tered along its propagation path. The main chromophores in
biological tissue include water, lipids, melatonin, oxygenated
and deoxygenated haemoglobin. Eighty percent of an average
human brain contains water, however, its absorption coefficient
is negligible especially for visible light. The same phenomenon
occurs for lipids as well, since the lipid content is approx-
imately 5% of the brain [18]. The large percentage of the
brain comprises blood which delivers oxygen from the lungs
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Fig. 5: Device architecture of the WiOptND, including the
internal circuit diagram.

to the brain and vice versa. Haemoglobin of red blood cells
contains the highest light absorbing chromophores.

For the light intensity requirement analysis for ChR2 activa-
tion, the Modified Beer-Lambert Law can be used for photon
transport modelling. According to the differential form of
this model, the absorption in the tissue is proportional to the
major chromophores concentration. Furthermore, this model
assumes constant scattering losses and homogeneous semi
infinite medium (tissue) reflected on the absorption factor. The
Differential Pathlength Factor (DPF) is dependent on the light
wavelength λ, absorption coefficient µa, reduced scattering
coefficient µ′s, and the distance from the source. This factor
can be estimated by [19]:

DPF (λ,d) =
1

2

√
3µ′s(λ)

µa(λ)

[
1− 1

1 +d
√

(3µa(λ)µ′s(λ)

]
. (1)

After obtaining the DPF value, the intensity ratio measured
from the light source can be formulated as:

I(λ,d)

Io(λ)
≡ T (d) = e−µa(λ) d DPF (λ,d)+G(λ), (2)

where Io(λ) is the light source intensity, I(λ,d) is the light
intensity at distance d from the source, and G(λ) is a medium
and geometry dependent constant and largely unknown.

The required light power intensity for ChR2 signal trig-
gering is 8-12 mW/mm2 [20]. From [21], the absorption
coefficient µa and the reduced scattering coefficient µ′s for
brain tissue are 0.07 mm−1 and 1.404 mm−1, respectively.
Based on these values, the light intensity ratio or transmit-
tance follows the curve depicted in Fig. 6, which decreases
exponentially as the distance from the light source increases.
This phenomenon occurs due to the absorption and scattering
factors which are represented as the DPF value.

V. ENERGY HARVESTING FOR WIOPTND

A. Piezoelectric Nanowires

The piezoelectric material has been widely used for harvest-
ing energy due to its unique ability to produce electric charge
with respect to the applied mechanical stress. The utilization

Fig. 6: Intensity ratio as a function of distance from the light
source. The curve is greatly affected by the light absorption
and scattering phenomenon in the brain tissue.

of certain piezoelectric material is based on the considera-
tion of the type of application, power requirement, vibration
frequency, and the geometry structure. Some well-known
materials used are lead zirconate titanate (PZT), aluminum
nitride (AlN), barium titanate (BaTiO3), and zinc oxide (ZnO)
in the form of crystal or nanowires [22] [15] [23]. Taking
into account the energy requirement, the WiOptND uses ZnO
nanowires complemented by thin coating of (<100 µm) of
acrylic Polymethyl methacrylate). The coating is important
to avoid harmful effects on the brain tissue. Related to the
power/energy conversion of the material, the electromechani-
cal coupling coefficient is one important parameter to consider
in deciding the appropriate material and geometry structure to
be used in harvesting the energy [24].

The attenuation experienced by ultrasound wave depends
on the frequency and the depth of the tissue. In this paper,
the maximum frequency used is 3 MHz. For brain tissue,
the attenuation coefficient, α, is 0.435 dB/(cm ·MHz) [25].
The effect on the transmitted signal power intensity can be
formulated as follows:

Ind = Is10−(αfd/10), (3)

where Ind and Is are the power intensity levels at the surface
of the energy harvester and the acoustic wave source, respec-
tively, α is the attenuation coefficient of the brain tissue, f is
the ultrasound wave frequency, and d is the distance between
the WiOptND and the sub-dura transceiver.

According to (3), if the ultrasound source emits 720
mW/cm2 wave intensity, the power for a 100× 100µm2

energy harvester is ~60 mW . This calculation is based on
the 2-mm depth of the cerebral cortex since dense population
of neuron bodies is within this depth (gray matter). While
white matter of the brain is mostly populated by myelinated
axons. The electromechanical conversion occurs in the energy
harvesting element, therefore, its conversion rate needs to be
taken into consideration. Assuming that the electromechanical
conversion rate, η, is 50% [26] [27], the effective electrical
energy generated is 30 mW . This result can be obtained from:

Pnd = IndAEH , (4)
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Pe = Pndη, (5)

where Pnd and Pe are the power received to vibrate the
nanowires of the energy harvester and the electrical power
after the conversion from mechanical to electrical energy,
respectively, and AEH is the effective surface area of the
energy harvester.

B. Storage Capacitor

The next stage after the energy is produced by the har-
vester and is rectified, is the storage of charge in the micro-
supercapacitor based on the generated voltage Vg from the
ZnO nanowires [28]. The micro-supercapacitor can be based
on the interdigital electrodes of reduced graphene oxide and
carbon nanotube composite [29]. This capacitor is considered
the most efficient for the WiOptND due to its miniature size
and large charge storage capacity. Using the power and voltage
of the energy harvester, the electrical current, ig , flowing in
the circuit can be represented as:

ig =
Pe
Vg
. (6)

The amount of electrical charge, ∆Q, supplied and stored in
the storage capacitor per charge cycle, tcycle, can be estimated
based on the nanowire vibration frequency, f , and the current,
ig , flowing from the energy harvester to the storage circuit.
This value can be obtained from [28]:

∆Q= igtcycle =
ig
f
. (7)

C. Charging Cycles

The energy from the capacitor is utilized to power the LED.
For the LED, the minimum light intensity requirement should
be fulfilled and at the same time having the low power demand
in accordance to the power availability in the storage capacitor
is important.

The time duration for charging and discharging period of the
storage capacitor can be represented by the number of cycles,
ncyclecharge and ncycledischarge , and this can be represented as
follows [28]:

ncyclecharge =

⌈
− VgCcap

∆Q
ln 1−

√
2Emax
CcapV 2

g

)⌉
, (8a)

ncycledischarge =

⌈
− VgCcap

∆Q
ln

(√
2Emax
CcapV 2

g

)⌉
, (8b)

where Emax is the maximum electrical energy that can be
stored in the capacitor, Ccap.

The voltage level in every cycle can also be determined for
both the charging and discharge processes. The instantaneous
voltage level in terms of cycle numbers is represented as:

Vcapcharge(ncycle) = Vg 1−e
−

ncycle∆Q

VgCcap

)
, (9a)

Vcapdischarge(ncycle) = Vge
−

ncycle∆Q

VgCcap . (9b)

TABLE I: Simulation Parameters

Parameter Value [Unit] Description

WiOptND density 0.024 to 1.2 [/cm3] Randomly scattered
Ultrasound Frequency 500 to 3M [Hz] -
Cortical Cortex Depth 2 to 4 [mm] -
Neural spike period λ = 6 [ms] Exponential dist.
Data sample 10,000 Randomly generated
Nanowire surface area 104 to 2×104 [µm2] Energy harvester

D. WiOptND Energy and Power Evaluation

In this section, we numerically evaluate the energy and
power storage circuitry of the WiOptND. The parameters
used for the simulations are presented in Table I. Since the
duration of the charging and discharging of storage capacitor
is sufficiently fast regardless of the 2-mm thickness of the
cerebral cortex layer and operating frequencies variants, the
main concern lies in the electrical specifications of the light
source component and energy harvester. This, in turn, affects
the constant intrinsic values of the storage capacitor.

Our analysis is based on determining the radiated intensity
from the LED in order to obtain desired light intensity on
the target neuron. Fig. 7(a) shows the result of the required
emitted light intensity of the LED to achieve the level inside
the range of optogenetics stimulating intensity, which is 8-12
mW/mm2 with respect to distance. Similar to the previous
calculations, Fig. 7(b) and 7(c) illustrates the effect of the
storage capacitor component to the required light intensity by
the optogenetics. For both charging and discharging processes,
higher light intensity exhibits faster periods related to larger
∆Q electrical charge. Fig. 7(d) and 7(e) presents the difference
of energy storage phenomena when the effective area of the
energy harvester is doubled. Larger effective surface area
leads to higher electrical charge supply. However, when the
frequency is varied, no significant change is noticeable in
term of energy in the storage capacitor, which is depicted in
Fig. 7(f).

The relation between the charging time duration and the
piezoelectric nanowires surface area with varying ultrasound
frequencies is analyzed in Fig. 8. From this simulation, it can
be observed that the surface area of the energy harvester is
linearly proportional to the generated energy resulting in faster
charging process. As shown in the result, the differences in the
frequencies have no effect on the quantity of stored energy.

VI. SYSTEM CHARGING PROTOCOLS

While the previous sections discussed the functionalities
as well as system performance of each device, this section
will discuss its operation as a network. Fig. 9 illustrates
the heterogeneous nature and density variation of neuronal
networks in a cortical cortex. The deployment and topology of
the WiOptNDs are highly correlated to the network structure
and characteristics of the neuronal networks. To represent
the basic system architecture, three element sets should be
defined, i.e., L = {2/3,4,5,6} which represents the set of
cortical layers, F = {f1,f2,f3, ...,fn} which represents the
list of transmitted frequencies, and ND = {ND1, ND2, ND3, ...
NDm}, {n,m} ∈ N∗≤n is for the set of WiOptNDs signalled
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Fig. 7: (a) Intensity at the light source as a function of distance with variations in the required intensity for the optogenetics.
(b) Illustration of storage energy during the charging period as a function of time with light intensity variations, and a constant
frequency of 500 Hz at 500µm distance. (c) Illustration of storage energy during the discharging period as a function of
time with light intensity variations, and a constant frequency of 500 Hz at 500µm distance. (d) Illustration of storage energy
during the charging period as a function of time with energy harvester effective area variations, and I(λ,d) of 10mW/mm2

with constant frequency of 500 Hz at 500µm distance. (e) Illustration of storage energy during the discharging period as a
function of time with energy harvester nanowire area variations, and I(λ,d) of 10mW/mm2 with constant frequency of 500
Hz at 500µm distance. (f) Illustration of storage energy charging process with ultrasound frequency variations.

by the sub-dura transceiver, Txsub. Additionally, Txsub(F )
represents the transmitting frequency F emitted by the sub-
dura transceiver. Since multiple devices are concerned, and
energy harvesting is required through the sub-dura transceiver,
a charging protocol is required. The charging protocols that
will be discussed in this section range from a simple Charge
and Fire, to more complex protocols that will maximize energy
efficiency, which include Predictive Sliding Detection Window
and its variant the Markov-Chain based Time-Delay Patterns
protocols.

A. Charge and Fire Protocol

For this protocol, the sub-dura transceiver transmits one fre-
quency, fi ∈ F , which corresponds to one specific WiOptND
when stimulation of a neuron is required. Considering
s(L[n], t) is the firing state of a neuron of nth layer in time
slot t, s ∈ {0,1}, the frequency transmission process could
be translated as s[L[y], t] = 1 → Txsub (fn). The proto-
col operating principle is as follows: The full neuron firing
sequence raster plot knowledge is held inside the sub-dura
transceiver. The sub-dura transceiver also has the knowledge
of which WiOptND device is interfaced to a specific neuron.
Based on a time-division access scheme, as the sub-dura
transceiver scans through the raster plot and encounters a
spike, it emits an ultrasound frequency fi to charge the device.

Fig. 8: Illustration of storage energy performance as a function
of time with ultrasound frequency variations. The performance
compares the storage energy performance for two different
nanowires surface area.

The design of the circuitry is very simple, as soon as the
ultrasound frequency is emitted, it immediately charges to
the full capacity of the micro-supercapacitor, E[n,t]→Emax,
which in turn discharges and powers the LED. This leads to the
illumination of the neuron. Based on our analysis in Fig. 7(b),
the ultrasound wave emission will last approximately 1 ms
in order to fully charge the micro-supercapacitor to maximum
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Fig. 9: WiOptNDs nanonetwork deployed in the cortical
microcolumn, between L2/3 - L6.

capacity.
As an example, Fig. 10 illustrates how this protocol handles

the firing pattern for three WiOptNDs. As shown in the figure,
each of the WiOptND has a unique ultrasound frequency,
which is based on the specific resonant frequency of the
piezo element of the VOX. At approximately t5, a mis-
firing occurs for WiOptND3 and this is due to the clash in
time-slot with the WiOptND1 (in our proposed approach, the
sub-dura transceiver can only emit ultrasound with a single
frequency). While the protocol is very simple, and requires
very basic circuitry, the major drawback is that the sub-
dura transceiver is required to emit ultrasound signals at a
unique frequency that corresponds to a device. This also
becomes a major challenge, when we consider that the piezo
element for addressing will also require different resonant
frequencies that have considerable spacings to not lead to
overlap with signaling other devices. However, by utilizing
the photoacoustic effect of the intermediate material which
has the property of rapid heating and thermoelastic expansion,
the sub-dura transceiver can generate the desired ultrasound
frequencies by adjusting the optical pulse duration and beam
width [30]. Another limitation is that the sub-dura transceiver
is required to have full knowledge of the raster plots for all
the cortical micro-column functionalities.

WiOptND1 

Misfiring 

t1 t2 t3 t4 t5 

f1 

WiOptND2 

WiOptND3 

f2 

f3 

Fig. 10: Charge and Fire scans the neural spike sequence, and
employs one-to-one relation between frequency transmission
from the sub-dura transceiver, and the WiOptND that needs to
be charged to stimulate a neuron. More than one neural spikes
in a single time-slot leads to a misfiring event.

B. Predictive Sliding Detection Window

Since ultrasound signals will emanate to the entire region of
the nanonetwork, this also means that all devices will automat-
ically get charged each time a sub-dura transceiver emits an
ultrasound signal. However, the fact that each device requires a
unique resonant frequency addressing scheme, means that in
the Charge and Fire protocol, the sub-dura transceiver will
still need to signal each device. This results in excessive
energy depletion of the sub-dura transceiver, and waste of
repeated charging signals that are emitted to devices that have
already been charged. At the same time, the diverse charging
frequencies may be limited by the piezo element technologies
that is used for the addressing scheme. Therefore, to address
this issue, this section presents the Predictive Sliding Detection
Window, which aims to, (1) lower the number of frequencies
that are required to signal to all the WiOptNDs, and (2)
minimize the emitted ultrasound frequencies from the sub-
dura transceiver to lower the energy depletion, by exploiting
a parallel charging scheme. In the case of (1), the different
devices should respond to the same ultrasound frequency to
charge multiple devices.

1) Parallel Charging: Fig. 11 illustrates an example of
the Predictive Sliding Detection Window charging protocol.
In this example, there are three different WiOptND devices
and three ultrasound charging frequencies. As illustrated in
Fig. 11 (a), each of the frequencies and the WiOptND devices
forms a matrix Mii that represents a random simulated pattern
with respect to time. For example, ultrasound frequency f1
signals WiOptND2 in the first time-slot, t = t0, followed by
WiOptND3 after one time-slot delay, t = t0 + 1, and finally
WiOptND1 after another time-slot delay, t = t0 + 2. This
means that if ultrasound frequency f1 is emitted at t0, there
needs to be a time delay for WiOptND3 and WiOptND1 before
they can discharge to light the LED and stimulate the neuron.
Frequencies f2 and f3 utilize similar three time-slot durations
but implementing different pattern predictions as illustrated in
Fig. 11 (a). The total frequencies and time-slots of one pattern
can be dubbed as the size of the sliding detection window.

In Fig. 11 (b) - (f), the sliding detection window protocol is
illustrated. The objective here is to slide the detection window
and find the overlaps between the neuron firing sequence
and time-slot of the pattern prediction for discharging the
device. Starting at t1 in Fig. 11 (b), the pattern prediction
sequence for frequency f1 perfectly matches to the sequence of
spikes for WiOptND1 and WiOptND3. Compared to the other
frequencies, the pattern of f1 is able to accommodate parallel
charging for most of the devices (2 out of 3). As the sliding
window moves along, it continuously checks prediction matrix
to decide which frequency pattern is the most compatible to
be emitted. Fig. 11 (c) shows that for all the three frequencies,
only one pattern matches to a device with a neural spike,
which is WiOptND2. Moving the sliding detection window
along in Fig. 11 (d), the pattern of f2 overlaps with two neural
spikes of WiOptND1 and WiOptND3. The remaining process
is illustrated for Fig. 11 (e) and (f).

Algorithm 1 explains in more detail the Predictive Sliding
Detection Window protocol. Initialization of the number of
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Fig. 11: Illustration of Sliding Detection Window mechanism utilizing three different frequencies/patterns. (a) presents the
predicted patterns for 3 different frequencies for 3 WiOptNDs with respect to time. (b) - (f) illustrates the sliding window
with respect to time, and the frequency used to charge the devices. The selected frequency is based on the highest number of
parallel devices that can be charged in that window.

patterns and time-delays can be represented as the array
matrix P [1..n] where n is the total amount of neural spiking
patterns. Based on the pattern prediction process, matrix Mij

is obtained which will be compared with the known neural
spikes within each window. Before moving to the next phase,
this protocol makes sure if the first time-slot of the detection
window contains at least a spike. Afterwards, matrix Mij will
be truncated so that the size is matched with the matrix of
the patterns. This truncated matrix Mii is compared against
all the patterns and the highest number of overlapping pattern
is selected by emitting the corresponding frequency. Finally,
when the selected frequency fi has been radiated, correspond-
ing spikes will be omitted and the protocol will analyze the
next time-slot until it reaches the end of the pattern sequence.

Algorithm 1 Predictive Sliding Detection Window

1: Initialize P[1...n] . where n is total number of available
frequencies

2: Mij PatternPrediction
3: for a = 1 to j do
4: Mii←M [:,a : a−1 + column(P [b])]
5: if M [:,1] 6= 0 & Mii 6= 0 then
6: for b = 1 to n do
7: simTest← compare Mii == P [b]]
8: end for
9: maxSim←max(simTest)

10: tempFiringSlot← 2×P [maxSim]−Mii

11: Mii← tempFiringSlot
12: end if
13: end for

2) Circuitry: The challenge is that since each device is
interfaced to different neurons that spike at different time-

slots, the charging process must consider the timing differ-
ence between the spikes when a single charging ultrasound
frequency is emitted. This means that when an ultrasound
frequency is emitted at t0+j , a time-delay for a predicted
overlap at t > t0+j is required for the circuit. This time delay
will count down until the specific time-slot has arrived, at
which point the charge will be released from the capacitor
to light the LED. This could be achieved by adding a time-
delay circuitry that extends over the original circuit presented
in Fig. 5, and used in the Charge and Fire protocol. The circuit
design of the WiOptND for the Predictive Sliding Detection
Window is illustrated in Fig. 12. Depending on the detected
frequency, the VOX switches on the desired time delay relay.
As the switch closes, the capacitor C1 is charged to forward
bias the zener diode DZ . This process activates the transistor
T1 whose collector is connected to the relay. To prevent the
relay clicking, the capacitor T2 is used to keep the base bias
steady. The diode D1 is to prevent counter-electromotive force
(CEMF) as the transistor T1 switched off. In this circuit, the
value of C1 determines the time delay period. In this circuit,
the time-delay relay circuit is situated between the storage
capacitor and the LED. The number of frequency-dependent
switch and time-delay relay pairs corresponds to the number
of operating frequencies used in the system. For instance, the
set of frequencies F ={f1, f2, f3, ..., fi}, where the complete
pattern that can be formed using i number of frequencies is
i! (factorial of i). However, the designated number of patterns
are kept as an independent variable during the design process
and currently it does not support real-time tuning.

3) Neural Spike Prediction: One limitation with the Charge
and Fire protocol, is that the sub-dura transceiver is required
to have the full knowledge of the raster plot neural spike
sequence. This could be a major challenge, given that the
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Fig. 12: WiOptND circuit diagram with integrated time-delay
relay for the Predictive Sliding Detection Window protocol
and its variant the Markov-Chain based Time-Delay Patterns
protocol.

sequence changes for variations in activities (this will be
illustrated later in Sec. VI-B4, when we demonstrate the
changes in the raster plot of the macaque monkey’s visual
cortex). Since the Predictive Sliding Detection Window pro-
tocol is already predicting the neural spikes, one approach is
to augment the protocol with existing neural spike prediction
solutions. In particular, since the sliding window is required
to scan future spikes, a prediction process can be integrated.
Numerous research has investigated prediction processes for
neural spikes, where in majority of the cases in-vivo neuronal
system have been known to contain patterns that corresponds
to a certain stimulus [31]. For example, when retinal cells
receive visual information, this data is conveyed through the
optic nerve and stimulates neurons firing in the V1 primary
visual cortex. The pattern of the neural spikes is directly
related to the light intensity, and determines four related
parameters which includes the time of occurrence, number
of spikes, jitter periods, and number of jitters [32]. In this
paper, we employ this specific neural spike prediction process
which is illustrated in Fig. 13. In this scenario, a light to
electrical converter will wirelessly transmit signals to the
external transceiver based on changes in the light intensity,
which is then transmitted to the sub-dura transceiver, and this
is used to guide the charging protocol.

Based on the mathematical model in [32], the pattern
prediction maps of the firing rate and spiking sequence is
formulated as follows:

r(t) = δ(h(t))−θ)ḣ(t)H(ḣ(t)) (10)

considering

h(t) = g(t) +a(t) +

∫ t

−∞
r(τ)(1 + b(τ))P (t− τ)dτ (11)

g(t) =

∫ t

−∞
s(τ)F (t− τ)dτ (12)

H(x) =

{
1, if x > 0

0, otherwise,
(13)
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Fig. 13: Example deployment of the WiOptND nanonetwork
in the Brain Visual Cortex. The neural circuit connection
to the V 1 primary visual cortex is impaired, requiring the
deployment of WiOptNDs, where its coordinated stimulation
will compensate for the failed neurons.

where r(t) is the sum of delta function spikes at one
particular time instance when h(t) crosses the threshold θ with
a positive gradient slope. The function g(t) defines the filtered
time domain response for stimulus s(t) and is obtained from
the convolution operation with filter F (t). The parameters a(t)
and b(t) represent Gaussian noises, while P (t) is a feedback
potential. This particular model has proved to perform well
when compared with real neural spiking patterns.

TABLE II: Simulation Parameters

Parameter Value [Unit] Description

Neural spike rate 100:5:130 [Hz] Exponential dist.
Cortical column layers 4 [layers] -
Number of predicted patterns 5, 10, 20 No. of Ultra. freq.
Raster plot period 10 [sec] -
Number of data 10 [cycles] Sim. cycles/freq.

4) Evaluation: In this section, we evaluate the performance
of the Predictive Sliding Detection Window protocol, and
compare this to the Charge and Fire protocol, using the light
stimulated neural spike prediction model of [32] as a case
study. We will first define the metrics that is used in our
evaluation. The total neural spike misfiring number, nmis, is
represented as:

nmis =

T∑

t=0

|L|∑

y=0

[ |L|∑

k=0

[min(s(L[y], t),s(L[k], t))

]
+H[L[y], t]

(14)
where

H[n,t] =

{
0, if E[n,t]<Emax,

1, if E[n,t] = Emax.
(15)

which represents whether the stored energy E[n,t] is suf-
ficient to turn on the LED at time t, by comparing it to the
required energy Emax.

The neural spike misfiring ratio, stimulation efficiency ratio,
and stimulation ratio can be formulated as:

γmis(L[y]) =
nmis∑T

t=0 s[L[y], t]
(16)
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ηstim(L[y]) = 100%−γmis(L[y]) (17)

γstim(L[y]) =

∑T
t=0 |Txsub[fn, t]|∑T
t=0 s[L[y], t]

(18)

where
∑T
t=0 |Txsub[fn, t]| is the total number of frequency

transmission during period of T .
As mentioned above, the time-delay patterns affect the

matching probability to the predicted neural spike sequence
and this is related to the number of ultrasound resonant
frequencies. In order to evaluate the protocols, simulations
were conducted in Matlab with the parameters presented in
Table II. The results presented in Fig. 14(a) and 14(b), compare
the performance of the Charge and Fire and Predictive Sliding
Detection Window protocols with respect to variations in the
spike frequencies.

(a) Stimulation ratio vs Spike frequency.

(b) Stimulation efficiency ratio vs Spike frequency.

Fig. 14: Comparison of the stimulation and efficiency ratio
for the randomly chosen patterns of the Predictive Sliding
Detection Window and Charge and Fire protocols. The simu-
lation generates the average and standard deviation values for
WiOptNDs deployed in four layers of the cortical column of
the cerebral cortex.

The results show that improved performance results from
higher neural firing rate as the stimulation ratio decreases.

Stimulation ratio (18) defines how many times the sub-dura
transceiver transmits the frequencies in comparison to the total
amount of neural spikes. However, in terms of stimulation
efficiency ratio (17) which defines the total amount of spikes
successfully targeted during the stimulation process compared
to the total amount of spikes, the randomness in the results is
observed, and this can be attributed to the randomly chosen
pattern predictions used.

Fig. 15(a) and 15(b) presents the performance analysis when
the number of ultrasound frequencies/patterns and number of
devices are varied. The number of devices has significant
effect on the stimulation ratio, while the number of frequen-
cies/patterns does not make a significant impact. This is due
to the increased possibility of targeting multiple neural spikes
based on using a smaller number of frequency transmission.

(a)

(b)

Fig. 15: The effect of the radiated ultrasound frequency
quantity and the number of WiOptNDs on stimulation and
efficiency ratio for Predictive Sliding Detection Window. Uti-
lizing higher number of ultrasound frequencies/patterns does
not have significant effect on the stimulation ratio, but it results
in each stimulation process to be more efficient by targeting
the desired neurons.

Our evaluation also considers how the changes in the firing
patterns can affect the misfiring ratio. In this evaluation, we
utilized the raster plot of the Middle Temporal Cortex neurons
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of a macaque monkey when the visual image is dynamically
changed. Fig. 16(a) illustrates two disks with moving dots that
were used in the experiments. The initial image is presented
on the left, where dots from Direction 1 and 2 are slowly
moving from the center to the circle perimeter. This movement
is later shifted as shown in the disk on the right. As we can
see from the raster plot in Fig. 16(b), this small change in the
image can totally change the sequence of neural spike patterns.
This raster plot is related to the visual stimulus s(t), which
based on the model in (10) will yield to the predicted sequence
r(t) [33]. Tuning curve represents the graphical presentation
of the neurons as a result of changes in the stimuli. For
example, the tuning curve can provide firing rate fluctuation
information as the angle of stimulus is varied (Fig. 16(a)). As
the spike frequency increases, both stimulation and misfiring
events are more likely to occur. This is simulated in Fig. 16(c)
and 16(d) for both the Predictive Sliding Detection Window
and the Charge and Fire protocols. However, we can observe
that for lower spike frequencies, the Charge and Fire protocol
experiences less misfirings since it scans each time-slots one
by one, unlike the Predictive Sliding Detection Window, which
uses the time-slot pattern matching based on the size of
the window. The lower stimulation number in the plots also
indicates the smaller number of radiated ultrasound signals
from the sub-dura transceiver.

C. Markov-Chain based Time-Delay Patterns

While the previous section demonstrated the benefits of
the Predictive Sliding Detection Window protocol, one issue
is the generation of the pattern prediction sequences, which
was randomly generated. In order to improve the accuracy,
knowledge of the connectivity in the cortical layers could be
utilized to determine the firing order patterns between neurons
of each layer. This could be used to minimize the inaccuracies
between the pattern prediction and the target neural spikes,
which in turn minimizes the energy expenditure from the sub-
dura transceiver. This section will discuss how the connectivity
knowledge of the different neurons in the cortical layers can
be utilized to improve the time-delay patterns.

Cortical columns of the brain gray matter are characterized
by highly sophisticated connections for both the intra and inter
layers. This complexity is largely based on the large number of
neurons with over 125 trillions of synapses in the cortex alone
[34]. There is an immeasurable effort from the neuroscience
community in modelling cortex connections, and one proposal
is a discrete-time Markov chain with |L| states, each represent-
ing one layer of the cortical column. The transition probability
matrix Pr is characterized by |L| × |L| elements, and P

should satisfy ∀i, j,Pri,j ∈ [0,1], and, ∀i,∑|L|j=1Pri,j = 1. The
markov chain representing the connectivity between the six
layers of the cortical column is represented in Fig. 17 [35].

Even though synapses can be stimulated from different lay-
ers of the cortical column containing the WiOptND nanonet-
works, the misfiring of neural spikes may still occur. This
scenario can result from the frequent number of optogenetic
excitation that occurs in layers with high connection distribu-
tion, which will result in the WiOptNDs of that layer to be

(a)

(b)

(c)

(d)

Fig. 16: (a) The illustration of bi-directional stimuli separated
by 60o for achromatic random-dots pattern that is visually
observed by a macaque monkey. (b) The raster plot simulation
generated based on the experiment. As shown in the raster plot,
both directions affect the neuron spike frequency response
[33]. (c) and (d) presents the simulation results from the
number of misfiring before and after the frequency transition
for both the Predictive Sliding Detection Window and the
Charge and Fire protocols.
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Pre-synaptic connection probabilities 
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Fig. 17: Markov Chain model of inter and intra-layer connec-
tivity for the cortical column.

TABLE III: Connection flow probability among cortical layers.

Postsynaptic neuron

II/III IV V VI

Pr
es

yn
ap

tic II/III 0.2 0.27 0.055
IV 0.25 0.325 0.095
V 0.175 0.15 0.325
VI 0.055 0.2 0.225

TABLE IV: Rank and Connection pattern.

Rank Connection Patterns

1 L[5] → L[6] → L[4]→ L[2/3]
2 L[4] → L[5] → L[6]→ L[2/3]
3 L[2/3]→ L[6] → L[5]→ L[4]
4 L[6] → L[4] → L[5]→ L[2/3]

..
.

24 L[6] → L[2/3]→ L[4]→ L[5]

discharged more frequently. Therefore, the selection of these
layers with high centrality for charging will highly depend on
the probability of connectivity between the layers as illustrated
in Fig. 17, and this particular property can be utilized to
improve the Predictive Sliding Detection Window protocol.

We can calculate the distribution of a connection either
entering to a layer (pre-synaptic synapse - Prpre) or leaving a
layer (post-synaptic synapse - Prpost). For the Markov chain
depicted in Fig. 17, the difference between the two is in
the transition probabilities. The probability of the connection
distribution L[y] for layer y can be represented as:

Pr(L[y]) = E[Prpre(L[y]) +Prpost(L[y])], (19)

where E[.] is the expected value, Ppre(.) is the probability of
a pre-synaptic connection and Ppost(.) is the probability of a
post-synaptic connection for a layer. These probabilities can
be calculated in the same way, but ultimately the behaviour is
different due to the transition probability values. Therefore,

Pr(.)(L[y]) =

∑|L|
k=0Pr(L[k]|L[y])

∑|L|
n=0

∑|L|
m=0Pr(L[n]|L[m])

. (20)

(a) Stimulation ratio vs Spike frequency.

(b) Stimulation efficiency ratio vs Spike frequency.

Fig. 18: Comparison of the stimulation and efficiency ratio of
predefined patterns for the Markov-Chain Time Delay Patterns
and the Charge and Fire protocols. The simulation generates
the average and standard deviation values of devices deployed
in four layers of the cortical column of the cerebral cortex.

Using the Pr(L[y]), the predefined time-delay patterns can
be adjusted based on the max{∀Pr(L[y])}. According to the
number of cortical layers, there are |L|! possible patterns to
be selected from. The connection probability is summarized
in Table III. An example of a single connection comparison
is between Pr(L[5]→ L[6]) = 0.325 and Pr(L[5]→ L[4]) =
0.15, which means that the connection flow from layer V to
layer VI is more probable than to layer IV. For this reason, in
the connection ranking process, a connection from Layer V to
layer VI will be placed higher. Table IV presents a partial table
of the ranks for all the feasible connection patterns of the four
layers in the cortical column. The combination of connection
chain probability is used for the ranking process. Based on
the analysis, the pattern of L[5]→ L[4]→ L[6]→ L[2/3] is
ranked the highest, while the L[6]→L[2/3]→L[4]→L[5] is
ranked the lowest. By listing all the |L|! = 4! = 24 possible
connections (Table IV), each predicted sequence patterns can
be assigned to the available frequencies. For a frequency set
of F = {f1,f2,f3, ...,fi}, there are i individual frequencies
which can be mapped to i ranked sequences in the list.
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Based on the predefined connection ranking table that is
used to define the pattern predictions for selected frequencies,
simulations in MATLAB was conducted and the results are
presented in Fig. 18. The stimulation ratio shows stable
decreasing trend with respect to the neuronal spiking rate.
However, lower stimulation ratio does not always translate to
higher efficiency if it results in higher number of spike misfir-
ing. This is reflected in the stimulation efficiency ratio result.
The efficiency ratio of Charge and Fire protocol experiences
steep decrement as the the firing rate increases, where we can
see that when the firing rate reaches 130 Hz, the Markov-
Chain based Time Delay Patterns with 5 patterns starts to
outperform the Charge and Fire protocol. This is due to the
nature of the sliding detection window protocol in targeting
several firing sequences of the neurons based on low number
of ultrasound frequency charging. Compared to the randomly
chosen pattern simulation (Fig. 14), the stimulation efficiency
is higher with smaller standard deviation showing consistent
improvement.

VII. CONCLUSIONS

The increased attention towards brain stimulation has at-
tracted researchers to search for innovative solutions that can
enable long-term deployment as well as design of miniaturized
devices that can self-generate power. At the same time, the
emergence of optogenetics has provided a new approach for
precise stimulation at the single neuron level. In this paper,
we propose the WiOptND that is constructed from nanoscale
components and can be embedded into the cortex of the
brain to stimulate neurons using light. A thorough description
of the circuitry, as well as the components, are presented,
including mechanisms of generating power through ultrasonic
wave vibrations. The paper presented simulation results on the
behaviour of optical light transmission and its effect on the
brain tissue, as well as the energy performance of the device
based on variations of ultrasonic frequencies and circuitry
devices (e.g. capacitors and piezoelectric nanowire area). A
number of charging protocols have also been evaluated ranging
from the simple Charge and Fire to the Predictive Sliding
Detection Window, and its variant the Markov-Chain Time
Delay Patterns. The Predictive Sliding Detection Window
utilizes predicted patterns of ultrasound frequencies to match
to the neural spike patterns. The difference between the
protocols is to improve energy efficiency by lowering the
number of ultrasound emissions from the sub-dura transceiver
while ensuring that neural spike misfiring ratio is low. In
particular, the Markov-Chain Time Delay Patterns extension
protocol resulted in the best performance. However, when the
efficiency ratio is considered, the protocol highly depends on
the neural spike rate and number of applied predicted patterns.
The results from our simulation study have demonstrated the
feasibility of using the WiOptND nanonetworks for long term
deployments in the brain in order to stimulate neurons and
provide new approaches for treating neurological diseases.
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Wireless Communications for Optogenetics-based
Brain Stimulation: Present Technology and Future

Challenges
Sasitharan Balasubramaniam, Stefanus A. Wirdatmadja, Michael Taynnan Barros, Yevgeni Koucheryavy, Michal

Stachowiak, Josep Miquel Jornet

Abstract—The ability to decipher brain functions and understand the neuronal communication networking properties to develop innovative solutions
to treat neurodegenerative diseases remains to be one of the biggest challenges in biomedicine. Since the early days, numerous solutions have been
proposed for Brain Machine Interface (BMI), largely concentrating on the use of tethered electrodes that are inserted into the brain to either stimulate
or suppress neural activities. In recent years, the field of optogenetics has provided a new alternative of utilising light to stimulate genetically
engineered neurons. While the original approach has proposed the use of tethered optical cables inserted into the skull to transfer light into the brain
for stimulation, numerous advances have been made to incorporate wireless technologies that will allow these devices to be attached to the skull or
implanted into the brain. This article presents a review on the current technologies that have been proposed for different wireless optogenetics
solutions, ranging from devices that are head mounted to miniature devices that can be embedded deep into the brain. We focus on a comparative
analysis of the architecture and structure of the devices, the wireless technology used for signaling to the unit, as well as the energy consumption
profile for each of the devices. Finally, the article presents future challenges to further miniaturize wireless optogenetic devices, concentrating
specifically on the communication properties.

Index Terms—Wireless optogenetics, Brain Stimulations, Ultrasound, Nano and Molecular Communications.

F

1 INTRODUCTION

Neurodegeneration, which is a systematic cause of neuron
death, can lead to a number of diseases that includes Alzheimer’s,
Parkinson’s, as well as Amyotrophic Lateral Sclerosis. The field
of Brain Machine Interface (BMI) [1] aims to support patients
who suffer from neurodegenerative diseases. The traditional BMI
method is based on electrical simulation, which is also known
as focal brain stimulation. This method requires implanting elec-
trodes deep into the brain, and is widely used in neuroscience
for providing therapeutic effects to patients with epilepsy and
Parkinson’s disease. A more recent approach is based on op-
togenetics, which aims to utilise light to stimulate genetically
engineered neurons, providing a better option for controlling the
cells compared to the conventional electrical stimulation [2]. First,
it can excite the particular neuron with approximately 10% higher
precision [2]. Second, for neural activity recording using light
stimulation, activity recording can be easily conducted since there
is no electromagnetic interference. Third, with light stimulation,
the target cells can be restricted only to certain cells which are
genetically engineered as opposed to the electric stimulation. This
provides a very fine granular control of neural circuits, which to
date has been a major challenge. Unlike electrical brain stimula-
tion, optogenetics has not yet been clinically tested on human’s
brain. Recently, Retina Foundation of the Southwest, through the
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sponsorship of RetroSense Therapeutics, plans to carry out the first
clinical trial on human patients with retinitis pigmentosa.

The early solutions for optogenetics utilised optical fibers that
are inserted into the skull to stimulate the neurons, which are
impractical for daily use. However, in recent years, thanks to the
wireless communications community, advancements have been
made by incorporating wireless technologies for optogenetics to
make them less invasive [2]. In this paper, we review a number of
solutions for wireless optogenetics, where we investigate the use of
wireless communication for head mountable devices to the more
recent approaches of miniaturization that can be embedded into the
cortex. Building on this, we provide a number of future challenges
for further miniaturization of wireless optogenetics, touching in
particular on the challenges for communications as well as other
emerging applications.

The paper is organised as follows: Section II presents back-
ground on optogenetics. Section III presents a comprehensive
review of current solutions for wireless optogenetics, while section
IV presents the future challenges. Lastly, section V presents the
conclusion.

2 BACKGROUND ON OPTOGENETICS

Before realizing the full operation of the optogenetic system,
the first step is to genetically engineer the neurons by spe-
cific transmembrane proteins (opsins) (Fig. 1). These proteins
include Channelrhodopsin 2 (ChR2) for triggering action po-
tential, Halorhodopsin (Halo) for neural activity inhibition, and
Archaerhodopsins (Arch) which hyperpolarizes the neuron (action
potential inhibition). The next step is light stimulation. The ChR2
is a light-gated ion channel, where upon illumination of blue light
will result in the opening of cation channel depolarize the neuron.
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On the other hand, NpHR (Halorhodopsin) is a light-controlled
pump, which injects chloride ions into the neuron upon yellow
light illumination, resulting in an inhibitory effect.

The current choice of optical neurostimulation components are
limited to lasers or µ-LED (micro-Light Emitting Diode). Laser
and laser diodes require high power consumption, slow warm-up
time, high cost, and the use of tethered optical fibers to steer the
light. However, they use narrow spectral bandwidth to produce
high light intensity with low beam divergence. On the other hand,
µ-LED has advantages in terms of wavelength range, low cost,
power consumption, stable illumination, compact size, and fast
response. The examples of the wavelength range with respect
to the required power include, blue µ-LED (465 nm) that can
deliver 25 mW, while yellow µ-LED (585 nm) can only deliver
3 mW from 200 µm diameter optical fiber. Sufficient power is
also required for the µ-LEDs to trigger the optogenetic process.
Therefore, a challenge for miniaturization and implantable wire-
less optogenetics is the ability to harvest the energy or wirelessly
transfer the energy.

There are two methods of creating optogenetic construct in
animals. First is the transgenic method where animals are bred
specifically with optogenetic induced cells. The second is through
virus injection for gene therapy to an existing neuron, which is
more suitable as long as there is no rejection from the immune
system. Another novel method is culturing and engineering in-
vitro neurons that can be implanted into the human brains. Cur-
rently, the optogenetic applications for humans is being planned
for clinical trials in the near future.

Fig. 1. Illustration of Wireless Optogenetic. Step 1 requires engineered genes
to be placed in the neuron. Step 2 illustrates the wireless optogenetic process,
where light is emitted onto the neurons that will either lead to stimulation or
inhibition (step 3).

3 CURRENT DEVELOPMENTS

Fig. 2 illustrates a subset of solutions that we will discuss in
this section, where we start with head mounted to fully im-
plantable units embedded into the brain or the nervous sys-
tems. The wireless communication technologies used for these
solutions include IR (Infrared), HF/NFC (High Frequency/Near
Field Communication), and UHF (Ultra High Frequency). We
evaluate each device which respect to their size, device construc-
tion, and wireless technology. The consideration for selecting the
appropriate technology includes propagation characteristics in the
medium, size of the device, and power sufficiency. Based on
this, we provide a comparison in Table 1 between the different
wireless optogenetic solutions, including ultrasound which is part
of our proposed system in this article. In terms of signal prop-
agation performance, ultrasound should be considered instead of
IR, HF/NFC and UHF technologies. In parallel, the ultrasound
energy has lower attenuation in biological tissues. According to
FDA (Food and Drug Administration) regulation, the ultrasound
exposure threshold level on the human body is 720 mW/cm2,
while RF is 10 mW/cm2. The drawback of ultrasound technology
is the manufacturing complexity. As the frequency goes up, the
antenna size gets smaller, which makes the usage of both HF
and UHF technologies more appealing for device miniaturization.
In conclusion, BMI design has to consider specific types of
communication for different types of application for a superior
communication performance.

3.1 WIRELESS OPTOGENETICS BASED ON INFRARED (IR)

3.1.1 WIRELESS OPTOFLUIDIC SYSTEMS

Device Properties: The device presented in [3], and illustrated
in Fig. 2 (a), combined drug delivery pharmacology and optoge-
netics stimulation. The drug delivery is through the microfluidic
channel that also contains the microscale inorganic light emitting
diodes (µ-ILEDs) based on Gallium Nitride (GaN) used for the
opto-stimulation. The major novelty of this solution is that the
conventional rigid metal cannulas and fiber optics are replaced by
four miniature, soft, and flexible microfludic channels made of
50 µm thick and ∼450 µm width elastomer polydimethylsiloxane
(PDMS) and µ-ILEDs. Each channel has cross-sectional area of
10 × 10 µm2. The PDMS material used for the microfluidic
channel is so transparent, that 95% of 400-700 nm wavelength
is able to traverse through.

Energy Management: Two small rechargeable lithium ion
batteries are used as the power source. The weight of the battery

TABLE 1
Comparison of different wireless optogenetic solutions.

Wireless Technology Frequency Pros Cons

Infrared (IR) 300 GHz - 430 THz Low power consumption; LoS between base station and implanted unit;
[3] [4] Multi-band transmissions. Requires a battery unit for the head unit.

Medium propagation loss in biological tissue; Coil dimension of approx. 1 cm;
High Frequency (HF) 3 - 30 MHz Cheap and easy to manufacture; Requires surface mounted chip (NFC).

[5] Supports energy harvesting circuitry.
Smaller coil diameter than HF circuitry;

Ultra High Frequency (UHF) 300 MHz - 3 GHz Cheap and easy to manufacture; High propagation loss in biological tissue.
[6] [7] [8] Supports energy harvesting circuitry.

Low propagation loss in biological tissue;
Ultrasound ≥ 20 kHz Size of hundreds of µm; Complex circuit manufacturing;

[9] Supports energy harvesting circuitry; Difficulty in ultrasound frequency addressing.
Safe utilisation in human tissue.
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Fig. 2. Various solutions for wireless optogenetics illustrating the different scale of the devices, as well as their locations on the brain.

is approximately 330 mg and the dimension is 3 × 9× 10 mm3

with an operating voltage of 3.6 V.
Communications: The signaling between a base station and

a head-mounted receiver using IR is based on 10 ms pulse width
with frequencies of 5, 10, 20, and 40 Hz. Since the receiver is
programmed to distinguish different activation signal, the head-
mounted receiver can have multiple functionalities for releasing
certain drugs. While the IR signaling at multiple frequencies pro-
vides flexibility in controlling the device, the major disadvantage
is the need for LoS (Line of Sight) communication which means
there should be clear path between transmitter and receiver.

3.1.2 PROGRAMMABLE WIRELESS LED STIMULATOR FOR OPTO-
GENETICS

Device Properties: A miniature wireless LED stimulator using
multiband infrared and multicode signals was developed in [4]
(Fig. 2 (b)). The system comprises three main components, i.e.
IR transmitter for the operator to control the desired signals, LED
stimulator mounted on the head and penetrating into the skull,
and small LEDs to trigger the action potential on the optogenetic
constructs.

Energy Management: The 12 V DC power to operate the
IR transmitter is provided through an AC adapter. For the LED
stimulator, the power is supplied using a lithium polymer battery
whose output is 3.7 V at 10 mAh.

Communications: The IR transmitted signal comprises of
three components, which includes the leader code, a 8-bit binary
code, and a stop bit. These 8-bit binary codes consist of 256 unique
identifications for each channel. These specific codes are used to
identify multiple IR transmitter for crosstalk avoidance between
the channels. Furthermore, the IR code can be modulated using
amplitude shift keying to carrier frequencies of 30, 38, or 56 kHz,
which features the multiband transmission.

As for the LED stimulator, 470 nm blue light LED is used
to trigger the ChR2 proteins. Here, the received IR signals are

decoded by an on board microcontroller which converts the 8 bit
binary code in order to activate the LED. Using IR instead of RF
transmission brings the advantage in term of weight, complexity
in constructing the IR communication system, which also has
benefits in terms of cost and power consumption. However, LoS
transmission is still required for the IR communication.

3.2 WIRELESS OPTOGENETICS BASED ON HIGH FREQUENCY

(HF)

3.2.1 FLEXIBLE NEAR-FIELD WIRELESS OPTOELECTRONICS

Device Properties: The device proposed in [5] incorporates a
copper coil for power transmission with surface-mounted chip for
control, a capacitor for impedance matching, a rectifier, and an µ-
ILED for optogenetic excitation (Fig. 2 (c)). Since the copper coil
is put on the surface of the brain, an injectable needle is required
to precisely locate the target neurons. The bilayer encapsulation of
Parylene and Polydimethylsiloxane applied on the device ensures
the stability during the operation.

Energy Management: The energy transfer and control sig-
naling is achieved through a combination of the copper coil and a
micro-sized chip. The fundamental operation of the coil is based
on the passive Near Field Communication (NFC) concept, which
utilises electromagnetic induction. The total size of the coil is
9.8mm× 60µm× 18µm. The optical output power of the device
depends on the distance and orientation of the RF generator.

Communications: The NFC frequency of 13.56 MHz can
accommodate transmission distance up to 30 cm between the RF
generator and the receiver loop antenna. At the same time, multiple
antenna operation can be supported using a multiplexer. Based on
the voltage-current measurement, the power generated is sufficient
enough to turn on the µ-ILEDs emitting different wavelengths (UV
- 390 nm, blue - 470 nm, green - 540 nm, yellow - 580 nm, and
red - 650 nm).
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Using the NFC approach for both power transfer and opto-
genetic excitation introduces a cheap and relatively easy avenue
towards manufacturing the device. From the propagation loss point
of view, the HF band utilisation gives lower loss than UHF band.
While this design is smaller than other similar design for BMI
applications, the size of the coil (diameter of 9.8 mm) should still
be considered for multiple device implementation.

3.3 WIRELESS OPTOGENETICS BASED ON ULTRA HIGH FRE-
QUENCY (UHF)

3.3.1 COMBINED OPTOGENETICS AND ELECTROPHYSIOLOGICAL

RECORDING WIRELESS HEADSTAGE

Device Properties: The combination of optogenetic stimulator
and multichannel electrophysiologcal recording using wireless
headstage is proposed in [6], and illustrated in Fig. 2 (d). This
device facilitates both neural activity recording and optogenetics
stimulation. The headstage is composed of two main components,
i.e. foldable printed circuit board (PCB) and a detachable im-
planted module. A major issue with this solution is the large head
mounted unit, which is impractical for daily use.

Energy Management: The power supply of the headstage
unit is fairly bulky and supplied by a 3.7 V, 100 mAh Lithium-
ion battery with a weight of 2.1 g, operating for 105 min. As far
as stimulation efficiency is concerned, for a 150 mA stimulation
current with 10% duty cycle at a firing rate of 45 spikes/s, it lasts
approximately 70 mins.

Communications: The communication for transmitting con-
trol signals is from an external base station that operates on the
2.4 GHz frequency. The data rate is reasonably fast, reaching a
maximum of 1.4 Mbps. For the light communication between the
LED and the neuron used for the stimulation, this device uses
a train of 10 ms pulse width with a current of 150 mA that is
used to drive the 465 nm blue LEDs generating 70 mW/mm2 light
intensity.

3.3.2 WIRELESS POWERED, FULLY INTERNAL OPTOGENETICS

Device Properties: A fully implantable wireless optogenetic de-
vice for stimulating the brain, spinal cord, and peripheral circuits
in mice is proposed in [7]. The radio-frequency transmitter is in
the form of a relatively huge resonant cavity, allowing the animal
to freely move. The entire light emitting implant, illustrated in
Fig. 2 (e), weighs around 20-50 mg and has a size of 10-25 mm3

which is claimed to be substantially smaller than the previous
version of wireless optogenetic implants.

Energy Management: In terms of optogenetics stimulation,
the µ-LED used in the system has an optimum efficiency (emitted
light power/input power) of 19%. This power level is sufficient to
emit the light power density required for optogenetics excitation,
which is 1-20 mW/mm2. Since the system utilises resonant cavity
to transmit the energy by resonance inductive coupling, the mouse
location interferes with the reception power. However, the center
point of the resonant cavity has the highest measurement of light
power density, which is approximately 27 mW/mm2.

Communications: The wireless power transmission consists
of a 1.6 mm diameter power receiving coil, while an aluminium
resonant cavity (21 cm diameter, 15 cm height) was used as the
transmitter. The wireless implant consists of the power receiving
coil, rectifier, circuit board, and blue µ-LED. On the transmit-
ter unit, the cavity radiates 1.5 GHz electromagnetic energy to
wirelessly power the implant. Considering the propagation of the

electromagnetic wave, the implanted device is placed around 3 cm
above the resonant cavity, and this includes the floor surface
structure in between. Since the system requires a large resonant
cavity which radiates RF frequency to transmit power and control
the implant, this is only suitable for a controlled lab environment
not for daily use in patients.

3.3.3 SOFT, STRETCHABLE, WIRELESS OPTOGENETICS SYSTEM

Device Properties: The optoelectronic systems proposed in [8]
utilised the combination of a stretchable filaments and a flexible
polymer encapsulation, that was embedded into the spinal cord
and peripheral nervous system (Fig. 2 (f)). The device comprises
of four major components i.e. RF power-harvesting unit, rectifier,
voltage multiplier, and a cellular-scale 470 nm LED. The dura-
bility of the entire unit has been tested by immersing into 37oC
saline for two months, and for six days in 90oC supraphysiological
temperature saline. Recently, authors in [10] developed this system
including smaller and lighter implant, and multichannel antenna to
control up to four reservoirs.

Energy Management: The unique design of the RF energy
harvester uses a miniaturized stretchable antenna whose total
surface area is 3× 3 mm with an operational frequency of 2.3 GHz
and a wide bandwidth of 200 MHz. This wider bandwidth, in
comparison to conventional patch antenna that uses 50 MHz band-
width, enables the device to harvest more energy. The transmitter
antenna from the base station is located outside the body and
transmits RF signals to power the device. The configuration of
four transmitter antennas can distribute approximately 2 W which
is sufficient for multiple devices activation within 20 cm range.

Communications: The same RF signal used for the energy
harvester is also used for control signaling to activate the LED.
The LED communicating to the neuron has an optical power
density of 10 mW/mm2, operating at a frequency of 20 Hz with
40% duty cycle, and pulse width of 20 ms. Even though the
device has been improved by using flexible material compared to
conventional rigid antenna, the size is still considered big for large
scale deployments if they are to be embedded into different parts
of the brain. In addition, they can be deformed due to movements
and biological strains. This can shift the center frequency to lower
values causing 12% coupling efficiency decrease for 30% strain in
the worst case.

4 FUTURE CHALLENGES OF MINIATURIZATION

The previous section describes developments in miniaturization
of wireless optogenetics devices, from head mounted units with
implantable optical fiber cables, to fully wireless devices that can
be embedded into the brain. However, the current solutions are still
in the millimeter scale. In order to target long-term deployment
into patients, to enable them to pursue a normal active life, further
miniaturization is required. Fig. 3 (a) illustrates our proposed
wireless optogenetic nanoscale device as well as the corresponding
components. As illustrated in the figure, energy management will
be a major issue, where a nano super-capacitor will be used to store
energy that is coming from a harvesting source, such as piezoelec-
tric nanowires [11]. Fig. 3 (b) illustrates how these devices can be
embedded into the cortex of the brain, and using the architecture
from [9], will receive power from a sub-dural transceiver, which
in turn will receive power from an external transceiver. The size
reduction of the device will minimize the irritation and other
side effects on the tissue, such as excessive heating. However,
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Fig. 3. Future miniaturization of wireless optogenetics unit: (a) proposed device architecture for a wireless optogenetic nanoscale device, (b) insertion of the wireless
optogenetic nanoscale device in the cortex (the architecture includes a sub-dural transceiver that stimulates the device and provides the energy, where this in turn
will receive signals from an external transceiver), (c) an interface of the wireless optogenetic nanoscale device to a neuron, illustrating the communication blocks
from the light communication, to the vesicle release by the neuron.

this will result in a number of challenges, in particular from the
constraints of the component size, and how this will affect the
communication performance. The field of nano communications,
which has emerged recently, can play a major role in directing the
future evolvement towards miniaturisation. Fig. 3 (c) illustrates the
communication representation of a miniature wireless optogenetic
nanoscale device stimulating a neuron. In this section, we will
present the challenges from the perspective of communications.

4.1 Communication Challenges

4.1.1 Data Link Layer

The challenge at the Data Link Layer lies mainly in the Layer 1
communication for charging as well as for initiating the device
to stimulate light. This may require separate ultrasound beams for
each of the two functionalities. The benefit of emitting ultrasound
waves for charging is the fact that this could be performed in
parallel due to the wide spread propagation of the signal that
covers all the devices. The schedule for the initiation, however,
will be dictated by the required firing patterns of the neuronal
networks within the cortex (e.g., specific activities will require a
certain pattern of neuron stimulation). Therefore, the scheduling
of device initiation will vary and change depending on the user’s
activities, and this will be controlled by programming into the sub-
dural transceiver. A challenge also lies in the optimal scheduling
of emitting ultrasound waves for charging from the sub-dural
transceiver to minimize energy depletion, since this device will be
embedded under the skull and will also require energy harvesting
capabilities on its own (e.g., heat or vibration).

4.1.2 Physical Layer

While miniaturization causes no significant impact on the Layer 1
communication, it will indeed have an impact on the Layer 2 light

emission propagation for optogenetics stimulation. Although the
Gallium Nitride (GaN) µ-LEDs by McCall et al. [12] successfully
decreased the thickness to only 6.5 µm, there are issues with
temperature increase that limits the illumination duration. A major
challenge also lies in the light propagation of light from a minia-
ture source to ensure that maximum intensity is applied to the
neuron’s surface. This is also important due to the blockages that
can occur from the soma, axons, and dendrites of neighbouring
neurons. These components can block the light signal propagation
and at the same time lead to excessive reflections, resulting from
specular and diffusive scattered propagation. The light reflection
from the cell material is also highly dependent on the contents of
the cells (e.g., cytoplasm), and the coefficients of absorption and
reflections are open research challenges. In [13], a nanoscale plas-
monic antenna was proposed for emitting electromagnetic waves
in the infrared spectrum. A similar approach can be developed for
wireless optogenetics at the nanoscale, which may enable further
miniaturization of the device.

4.1.3 Network Layer

One of the challenges in the network layer is addressing of the
wireless optogenetic nanoscale devices for the Layer 1 ultrasound
communication. Due to the minimal computational capabilities,
utilising a bit sequence addressing scheme may not be a viable
option, since a processor will be required for the device to process
the signals. Integrating the processor, will in turn, also increase
the size of the device. At the same time, a bit sequence of address
for each device will also mean that the sub-dural transceiver will
need to emit ultrasound signals for each bit (assuming a simple
on-off keying modulation is used where the clocks of all the
devices and the sub-dural transceiver are synchronised), leading
to excessive energy depletion. Another option is to use separate



SUBMITTED TO IEEE COMMUNICATIONS MAGAZINE 6

piezoelectric crystals that have different resonant frequencies, each
corresponding to an address of a device. However, a question
remains as to how scalable the network of the wireless optogenetic
nanoscale devices will be, given the limited separation of the
resonant frequencies between the different types of crystals.

4.1.4 Security Implications

A major issue is the security threats that wireless optogenetics
nanonetworks can pose, and in particular if the operation of
the devices can be controlled through the external signaling of
Layer 1. This means that the external transceiver, and possibly
the sub-dural transceiver will require security countermeasures
from misbehaving malicious sources that would like to change
the neural stimulation patterns. Since the wireless optogenetic
units are below the skull, and will only operate in response to
ultrasound signals, this prevents security threats from malicious
ultrasound signals. However, a challenge lies in the signaling
between the external transceiver and the sub-dural transceiver.
Therefore, the challenge for the external transceiver as well as
the sub-dural transceiver is to be able to recognize signals from
malicious devices that aim to get access to stimulating the wireless
optogenetic units. The security response must be performed in-
stantly as soon as an attack is performed to minimize any harmful
damage that can occur. Although the security threat is a challenge
with our proposed miniaturization of wireless optogenetics, and its
accompanying architecture, the threat also exists with the current
implantable solutions. The communication security system on the
higher layers (data link and network) is quite robust, since the units
are implanted into the brain. The physical access to the unit itself
are considerably difficult without surgical procedures to open the
cranium. The security breach on this level can only be performed
by inserting the intruder unit among the existing implanted units.
This requires the opening of the cranium to implant the intruder
unit.

4.2 Further Challenges

4.2.1 Interfacing to Molecular Communications

The field of molecular communications aims to develop artificial
communication systems from biological components. In particu-
lar, the Internet of Bio-Nano Things (IoBNT) [14] will interface
the artificial molecular communication systems to the Internet,
through a Bio-Cyber Interface. The wireless optogenetic unit can
represent a Bio-Cyber Interface that enters information into the
brain as illustrated in Fig. 3 (c). In this form of communication,
the bit transmission will be achieved through light stimulation
of neuron that releases the vesicles to communicate to the post-
synaptic neuron. The challenge is to engineer the neuron to
respond to different light intensity, and at the same time having
different synthetic circuits within the neuron that can produce
varying concentration of vesicle release. The reconnection of the
neurons (neuroplasticity) can further add noise into the network.
This can affect how digital information is transmitted through
the neurons as well as the scheduling sequence of light emission
during stimulation.

4.2.2 Nanoscale Dual Stimulation and Recording

An ideal implantable device should incorporate monitoring and
recording mechanisms. In [9], experimental validation have shown
how the neural dust mote, which powers itself through vibrating
piezoelectric crystal from an external ultrasound source, is able to

monitor the nerve signaling based on back scattering. However,
incorporating this onto the wireless optogenetic nanoscale devices
will be challenging. The current device do not penetrate through
the neuron, but rather emit light externally onto the cell, which
implies the lack of a mechanism for sensing the electro-chemical
signals propagated through the axon. Alternatively, the usage of
electrodes (e.g., optrode, stereotrode and tetrode microdrives) can
measure the signal along the axon. Another solution is to engineer
the neurons to emit genetically encoded fluorescence-based indi-
cator upon stimulation. Using this technique, each device can be
incorporated with a molecular imaging module that will capture
the stimulation process of the neuron. However, incorporating this
may lead to an increase in the size and power requirements of the
device.

4.2.3 Ethical Issues

Apart from technical and security challenges, ethical issues are
another important issues for BMI, including the field of optoge-
netics. These ethical issues can be perceived from both personal
and social points of view [15]. The patient’s consent to access
information on their brain functions will be mandatory and a
major hurdle due to the fact that this can be categorized as mind
reading, and potentially control a body subconsciously. This also
includes the optogenetic implementation for humans, which will
spark controversy on the use of genetic modification. From a social
perspective, the integration between human and machine leads to
liability issue if a misbehaved action is vaguely triggered by either
human intention or machine error. Besides this, social interactions
between BMI users and ordinary people in certain settings (e.g.,
competitions), may be questionable in terms of fairness in an
individual’s capabilities.

5 CONCLUSION

The emergence of optogenetic has proven to be an attractive
solution for treating neurodegenerative diseases, and numerous
advancements have been made in integrating wireless commu-
nication technologies to enable the devices to be implanted for
long term applications. In this article we review a number of
devices that have been proposed for wireless optogenetics, ranging
from larger units that are head mounted with deep insertion
into the cortex, all the way to miniature devices that can be
implanted into the cortex. While enormous strides have been made
in miniaturizing the wireless optogenetic devices, to the point that
they can be embedded into the brain or the peripheral nervous
systems, there still remains numerous challenges going forward
into the future. The particular challenges are the ability to scale
the devices down to the size of a typical neuron and having these
devices interface directly one-to-one for specific types of neurons.
Another emerging challenge is the ability to communicate and
power these devices, while considering the side effects that can
occur to the brain. In this article, we proposed the architecture that
can realize wireless optogenetic nanoscale devices, where we also
discuss the challenges from the perspective of communications.
We specifically touched on the challenges at the physical, the
data link, and the network layers, as well as discussions on the
security implications, and how the new field of nano and molecular
communication principles can be incorporated into the design
consideration. Realizing the development of wireless optogenetic
devices at the nanoscale can be a game changer for future Brain
Machine Interface technologies, and at the same time address
important challenges for treating neurodegenerative diseases.
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ABSTRACT
In recent years, numerous methods have been sought for developing novel solutions to counter neurodegenerative diseases.
An objective that is being investigated by researchers is to develop cortical implants that are able to wirelessly stimulate
neurons at the single cell level. This is a major development compared to current solutions that use electrodes, which
are only able to target a population of neurons, or optogenetics, which requires optical fiber-leads to be embedded deep
into the brain. In this direction, the concept of wireless optogenetic nanonetworks has been recently introduced. In
such architecture, miniature devices are implanted in the cortex for neuronal stimulation through optogenetics. One of
the aspects that will determine the topology and performance of wireless optogenetic nanonetworks is related to light
propagation in genetically-engineered neurons. In this paper, a channel model that captures the peculiarities of light
propagation in neurons is developed. First, the light propagation behavior using the modified Beer-Lambert law is analyzed
based on the photon transport through the nervous tissue. This includes analyzing the scattering light diffraction and
diffusive reflection that results from the absorption of neural cell chromophores, as well as validating the results by means
of extensive multiphysics simulations. Then, analysis is conducted on the path loss through cells at different layers of the
cortex by taking into account the multi-path phenomenon. Results show that there is a light focusing effect in the soma of
neurons that can potentially help the to stimulate the target cells.

Keywords: Optogenetics, Single-neuron Stimulation, Light Propagation, Wireless Nanonetworks

1. INTRODUCTION
In recent years the field of Brain Machine Interfaces (BMI) has led to numerous research initiatives aimed at developing new
solutions to interfacing to neural systems. These initiatives are discovering new solutions ranging from neuron stimulation
for patients who suffer from neurodegenerative diseases, all the way to the most recent vision of interfacing the brain to
computing systems to enhance their capabilities.

A traditional approach for stimulating the brain is through the use of electrodes. However, a major limitation is the
large population of neurons that get targeted during stimulation. This has led the research community to develop new
approaches to stimulate at single-cell level. The field of optogenetics enables single cells to be stimulated using light at
a specific wavelength. This requires that neurons are first engineered with genes that will express proteins to make the
neurons sensitive to light, where the emission of the lights can both activate or inhibit the neuron’s action potential. Since
the original proposed optogenetics architecture, which requires an insertion of optical cable into the skull, wireless device
models have also been proposed to provide more autonomy in the subjects that require stimulation.123 Most recently,
we proposed integrating the concept of wireless optogenetic for devices constructed from nanoscale components, i.e.,
Wireless Optogenetic Nanonetworking Device (WiOptND), where these devices could form nanonetworks to coordinate
stimulations.4
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An important element in the wireless optogenetics is the light stimulation process between the device and the target neu-
rons. New constraints will need to be considered compared to previous approaches, and in particular due to the nanoscale
components of the light source as well as energy produced by the device. Since the light component is miniaturized, this
means that its location within the neuron population and distance from the target cell are important factors to understand
the required intensity for stimulating the neuron. The location within the neural population, as well as its density and con-
nectivity is an important factor, since the light reflection and scattering from the neighboring cells will affect the intensity
at the target cell.5, 6 This also varies within the cell population, since certain regions will have sparse density of somas
that are largely filled with axons and dendrites, while in other regions dense somas will be found. Each of these cases will
affect the light intensity that arrives at the target cell. Indirectly, this will also be impacted by the distance between the light
source to the target cell.

In this paper, we develop a channel model for wireless optogenetic nano communication. The nano spacing considered
for the channel model is between the light source and the target neuron. We develop geometric analysis to consider the light
propagation, reflection, refraction, as well as scattering from the neighboring cells and how this impacts on the intensity
at the target cells. Our channel model also considers the variation that is due to the density of neighboring somas and
dendrites, as well as the shapes and structures of the cells. In a nutshell, by understanding the behavior of light in the
brain tissues, efficient design for BMI can be achieved and the implants are feasible for long term operation and wirelessly
interact with neurons forming the reliable optogenetic nanonetworks.

The remainder of the paper is organized as follows. In Section 2 we will define a system model including architecture
for wireless optogenetic nanonetworking and the fundamental of light propagation in biological tissues. Section 3 contains
a complete light propagation channel model for a single cell as well as the numerical analysis and results.In Section 4, we
consider the multipath scenario due to the heterogeneous neuron population. Finally, we conclude the paper in Section 5.

2. SYSTEM MODEL
2.1 Wireless Optogenetic Nanonetwork Architecture
The entire network of the Wireless Optogenetic Nanonetworking architecture is composed of three layers (Figure 1).
The lowest layer is the cerebral cortex where WiOptNDs are deployed and interfaced to individual neurons that require
stimulation (Figure 2). The cerebral cortex is the gray matter of the brain and is responsible for sensory, motor, and
associated functions. Horizontally, the cerebral cortex is categorized based on its functional areas, namely, the molecular
layer, the external granular layer, the external pyramidal layer, the internal granular layer, the internal pyramidal layer,
and the multiform layer. Those layers contain various types of cells, including pyramidal cells, spiny stellate cells, basket
cells, chandelier cells, and smooth stellate cells,7 each of which can have an interfaced WiOptND. The next layer up is the
sub-dura transceiver, which is located on the dura and below the skull, and communicates with the WiOptNDs. The role
of the sub-dura transceiver is to emit ultrasound waves, which are used to charge the WiOptND. The sub-dura transceiver
contains the algorithm that determines both the charging and stimulation sequence of the WiOptND, and this in turn emits
the sequence of ultrasound signals. Above the sub-dura transceiver is the external transceiver, which communicates with
the sub-dura transceiver. While the communication between the external transceiver and the sub dura transceiver is a very
relevant aspect of the system, our focus is on the interfacing of the individual WiOptNDs with neurons through light.

Cortex

Sub-dura
transceiver

External
transceiver

Ultrasound
beam

Nanowires

Wi-opt neural dust

Figure 1: Illustration of the overall architecture of the Wireless Optogenetic Nanonetwork. The WiOptND are scattered in
the various layers of the cortex, and is charged by the ultrasound signals emitted from the sub-dura transceiver, which in
turn is communicated from the external transceiver.



Figure 2: Illustration of a WiOptND that interfaces to an engineered neuron that is sensitive to light at a specific wavelength.

2.2 Fundamentals of Light Propagation in Biological Tissues
When the light propagates in the biological tissue, there are four main phenomena that might occur (Figure 3).

• Scattering, which can be perceived as deflection of the ray of light from a straight path due to heterogeneous medium
or the interface between two media. As the light experiences scattering, it might be transmitted or back scattered.
Light scattering in biological tissues is well defined by the Henyey-Greenstein phase function introducing the coef-
ficient anisotropy factor, g.8 For biological tissues, typically this parameter is in the range of 0.5≤ g ≤ 0.95, which
indicates that forward scattering is dominant.8 For a more accurate model of light propagation in biological tissues,
the reduced scattering parameter, µ′s = (1−g)µs, is used since the light undergoes multiple scattering effect.8

• Absorption, where the light energy is absorbed and converted to heat as the result of atoms and molecule vibration.
The atoms and molecules have the selective natural behavior of certain light frequency absorption. For wavelength
used in optogenetics, which is less than 625 nm, the absorption parameters are in the range of 0.5−5 cm−1.8

Figure 3: Model of refraction, reflection, absorption, and scattering of light on a neuron’s soma.

• Reflection is the phenomenon where the the direction of the light propagation is reflected back to the same medium
as it is originated. For biological tissues, diffuse reflection is most likely to occur. The common simplification for
biological environment is by assuming that the surface is Lambertian.9

• Refraction occurs due to the light traversing via two media with different density. This causes the change in propa-
gation direction. This phenomenon is described by Snell’s law where ratio of the angle of incident θi and refraction
θr is proportional to the phase velocities (v1/v2), or equivalently, inversely proportional to refraction indices of the
two media (n2/n1):

sinθi
sinθr

= vi
vr

= nr
ni
. (1)

3. SINGLE CELL CHANNEL MODEL
3.1 Analytical Model
The light transportation through biological tissue can be modeled using the modified Beer-Lambert law as:

I(λ) = I0(λ)e−µa(λ)dDPF (λ)+G(λ), (2)



where I(λ) is the measured λ wavelength light intensity on distance d, Io(λ) is the light intensity on the source, µa is
the absorption coefficient of the biological tissue, DPF (λ) is the differential path length, which indicates the mean light
propagation distance in the tissue, and G(λ) is a wavelength, medium, and geometry dependent constant. The value of the
DPF depends on the medium characteristics including absorption (µa) and reduced scattering (µ′s) as follows:10

DPF (λ) = 1
2

(
3µ′s(λ)
µa(λ)

)1/2[
1− 1

1 +d(3µa(λ)µ′s(λ))1/2

]
. (3)

The distance parameter d is less significant when d > 2.5 cm and d
√

3µaµ′s � 1. Given the very small separation
between the WiOptNDs and neurons, this parameter is crucial for DPF calculation.

As mentioned in Section 2.2, the traversing light rays undergo refraction phenomenon. Part of the rays, which are
transmitted through the cells, experience the propagation through two different media with different refractive indices. This
has been further analyzed in Johari et al.11 that the transmitted light is focused to certain points on the other side of the
illuminated part of the cell. Understanding this phenomenon is important in optogenetics considering the heterogeneous
population of neurons in the cortex. The light might penetrate beyond neurons and excite a neuron in a dense neuron
population. The most important aspects for optogenetics experiencing this situation is how far the light propagates after
traversing through neuron and what is its intensity as illustrated on Figure 4.

Figure 4: Illustration of light propagation with a light source, a blocking neuron, and a target neuron.

In this first model, for mathematical tractability, we model neurons as spherical cells due to its shape of roughly
spherical.1213 The distance between the center of a spherical cell and focus point is rnf(α), where α is the ratio of rl

rn
.

The lower and upper bounds, fl(α→ 0) and fu(α→ 1) of the focal points are dictated by the real part of refractive indices
of the media that the light traverse through as:11

fl(α) = n2
n

2nb
√
n2
n−n2

b

, when α→ 0;

fu(α) = nn
2(nn−nb)

, when α→ 1,
(4)

where nb and nn are the refractive indices of brain tissue and neuron respectively. The distance of focus points from the
center of the neuron is defined as rfl/u(α).

The light propagation decreases the intensity due to scattering and absorption while the focusing effect of the cell
aggregates the light rays, which increases the intensity. This focusing effect aggregates the light power with respect to
the ratio of spherical caps of both blocking, Ab and target neurons, At. The values of Ab and At can be obtained by
geometrically analyzing the solid angles, βb and βt, from the focus point angle ψ as shown in Figure 5. Assuming that
the half surface of total spherical cell of blocking neuron is illuminated by the light source, the effective arc, 2βb, is π rad,
while the effective arc of the target neuron depends on the focus point and it can be formulated as:

2βt = 2ψrnf(α)−dss− rn
rn

. (5)



(a) One blocking neuron and a target neuron. (b) Two blocking neurons and a target neuron.

Figure 5: Refraction and focusing effect due to blocking neuron(s).

Note that the maximum value of the intensity is achieved when rfu(α) = rn+dss, which means the light rays focus
at a single point on the target neuron surface. The solid angles and spherical cap of both blocking and target neurons can
be obtained by:

ωb/t = 2π(1− cosβb/t), (6)

Ab/t = ωb/tr
2
n, (7)

where subscript b/t indicates either blocking or target neuron.

The final intensity after the blocking neuron penetration depends on the light-exposed spherical cap area ratio γ between
the blocking neuron Ab and the target neuron At. Thus, the final intensity can be formulated as:

It = Ab
At
Ioe
−µi

a(λ)diDPFi+G(λ)

= γ Ioe
−µi

a(λ)diDPFi+G(λ).

(8)

For multiple blocking neurons between light source and target neuron, the focus distance should be calculated based
on the output of the previous blocking neuron. Therefore, the distance of focus point can be obtained by:11

rnf(α) = rn
sin(π−θi)
sin(θi−θr)

. (9)

3.2 Numerical Results
Table. 1 lists the parameters used in the MATLAB simulation. Figure 6 shows the output intensity, path loss, and time delay
characteristics comparison among three difference cases. For the output intensity, no-blocking case shows no significant
changes, while cases with blocking neuron, intensity tends to rise and followed by decrements due to focusing effect of
the light rays. Maximum intensity reaches when the rays focus to approximately infinitesimal point. This effect can be
explained theoretically by ratio γ in (8) with the target neuron spherical area At as the denominator. Not only γ, the focus
point rf(α) determines at which distance the maximum intensity occurs. Without blocking neuron(s), the propagation path
loss tends to decrease faster since the energy propagate to all directions, unlike in the presence of blocking neurons where
the light energy aggregates due to the effect of the blocking cell. Regarding the light ray arrival to the target neuron, the
blocking neurons causes more propagation delay. This mainly depends on the light speed on the medium, which depends
on refractive index. In this simulation, the speed of light propagating via neuron is 2.05×108 m/s, while via brain tissue, the
speed is 2.15×108 m/s. Therefore, the more blocking neurons between light source and target neuron, the delay increases.
However, the delay is considered small and the whole transmission process is only within pico second unit (one blocking
neuron introduces additional delay of approximately 0.02 pico seconds).

To further validate the light focusing effect in the neurons, we have run extensive simulations by using COMSOL
Multiphysics.18 Photon diffusion by solving Helmholtz Equations has been considered to simulate the light propagation
through the soma of neurons as shown in Figure 7. This figure shows the propagation of light through the nervous tissues
when (a) there is no neuron and (b) there are three neurons in a row. The pattern intensity depicted on Figure. 7 shows the



Table 1: Simulation Parameters
Parameter Value [Unit] Description
rn 50 [µm] Spherical radius of neuron
ρ̄ 0.5 [%] Reflectance index of neuron14

vvacuum 3×108 [m/s] Speed of light in vacuum
λ 456 [nm] Wavelength of light
nb 1.35 Refractive index of brain tissue15

nn 1.36 Refractive index of neuron
φ1/2

55
180 [rad] Half power point angle

µaneuron 0.9 [/mm] Absorption coefficient of neuron16

µ′sneuron
3.43 [/mm] Reduced scattering coefficient of neuron16

µatissue 20 [/mm] Absorption coefficient of brain tissue17

µ′stissue
1.34 [/mm] Reduced scattering coefficient of brain tissue17
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Figure 6: Light measurements on the surface of the target neurons. The distance between blocking and target neuron (dss)
is varied for (a) and (b), while it is kept constant on (c).

possibility of farther extension where neurons are positioned along the propagation path. The color map indicates the soma
has positive effect in increasing the light propagation distance due to focusing effect phenomenon. Therefore, the blocking
neuron scenario can be exploited in the dense neuron population environment.

Figure 8 shows the photon counts in a logarithmic scale to compare the with- and without-neuron scenarios. Measuring
the perpendicular path from the source, the with-neuron scenario is able to maintain the light intensity longer. At around
the distance of 400µm from the light source, the intensity difference between two scenarios is approximately 18 dB.
Each neuron along the propagation path contributes in maintaining the higher intensity longer with respect to distance.
Considering the neuron diameter of 100µm, the intensity is approximately 6 dB higher after the light traverses the neuron.

4. MULTIPATH PROPAGATION MODEL
Considering the heterogeneous neuron population in the brain tissue, the light propagation in the tissue might include three
components, namely, a line of sight (LoS) component, time delayed components, and reflected components.

4.1 Analytical Model
In this case, the power delay profile (PDP) can be used to analyze the light intensity with regards to multipath channel as a
function of time delay. The PDP for LoS component is given by:19

h(0)(t;Φ0) = L0P0δ

(
t− d0

c

)
, (10)

where
L0 = e−µa(λ)d0DPF (λ)+G(λ). (11)



(a) (b)

Figure 7: COMSOL simulations for light propagation in nervous tissue a) without neurons b) with three neurons.

Measurement line
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Figure 8: COMSOL simulations for light propagation in nervous tissues a) without neurons b) with three neurons.

For the reflected component (after k bounces), the PDP is given by:

hk(t;Φ) =
∫

S

[
L1L2...Lk+1Γ(k)× δ

(
t− d1 +d2 + ...dk+1

c

)]
dAref ,k ≥ 1, (12)

where each path-loss term for each paths is represented by:

L1 =
A1
ref

2πd2
1
e−µa(λ)d1DPF (λ)+G(λ)

∫∫
(m+ 1)cosmφ1 cosθ1 dφ1 dθ1,

L2 =
A2
ref

2πd2
2
e−µa(λ)d2DPF (λ)+G(λ)

∫∫
cosφ2 cosθ2 dφ2 dθ2, ...,

L(k+1) =
Atargeteff

2πd2
(k+1)

e
−µa(λ)d2

(k+1)DPF (λ)+G(λ)
∫∫

cosφ(k+1) cosθ(k+1) dφ(k+1) dθ(k+1).

The PDP is integrated with respect to all neighboring neuron S and Aref is the effective area on which the light is
reflected.The directivity of the light source can be represented as m=−1/log2(cosφ1/2), where 2φ1/2 indicates the angle



(a) One blocking neuron and a target neuron.

Time [ps]
0.8 0.9 1 1.1 1.2 1.3

T
ra

ns
m

itt
an

ce
 [

%
]

#10-6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

(b) Two blocking neurons and a target neuron.

Figure 9: One hop reflection model.

of the light half power point. The angles of irradiance and incidence are represented by φk and θk respectively. The speed
of light in the brain tissue is represented by c. The parameter dk is the distance between light source and target neuron.

The reflected power after k bounces is represented by:

Γ(k) = P0ρ̄1ρ̄2...ρ̄k = k ρ̄ P0 = k

[
nb−nn
nb+nn

]2

P0, (13)

where ρ̄ is the reflectance index.

Finally the total PDP can be obtained by:

h(t) =
Nadj∑

k=0
hk(t;Φn). (14)

Figure 9(a) illustrates two dimensional projection of one hop light reflection. The LoS component is not illustrated and
the light rays are propagated on the x-axis and polarized on the y-axis. The Aref is obtained by intersecting the projected
area of the LED and the target neuron to the reflecting neuron. When ∠ω represents the angle connecting the center of
the LED, reflecting neuron, and target neuron, the effective reflection arc angle is ∠(180o−ω) = (π−ω) rad. Let the
azimuthal and polar angle of the cone formed between the center and the surface of the neuron be ω′ and β respectively,
the solid angle Ω can be calculated by:

Ω =
∫∫

S

sinω′ dα′ dβ =
∫ 2π

0

∫ 1
2 (π−ω)

0
sinω′ dω′ dβ = 2π(1− sin 1

2ω). (15)

Thus, the spherical cap of the cone, which represents the reflecting area Aref , can be obtained by:

Aref = Ωr2
neuron. (16)

4.2 Numerical Results
The time delay caused by the path of the light propagation hitting the Lambertian surface is shown in Figure 9(b). The
power transmittance of reflection components is very low since the reflectance index of neuron cell is very low (≈ 0.5%14)
and the multipath time is approximately 0.5 pico seconds for one reflecting neuron.



The in-vivo neuron population structure is randomly scattered, therefore, the reflection interference might occur due
to this reason. Figure 10(a) depicts one case where Light source 2 unintentionally illuminates cell Target 1 with the light
reflected by cell Target 2. The simulation is conducted by varying both the angle ω and the distance dss. The output
shows that the pathloss is so high (more than 80 dB) that the light interference does not cause any significant effect to the
undesired target (Figure 10(b)).

(a) Reflection interference caused by unde-
sired light source from neighboring neuron.
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Figure 10: Reflection intereference model.

5. CONCLUSION
Considering the brain morphology where diverse population of neurons in the neocortex can effect the light propagation
for optogenetics at the nanoscale, deeper analysis on the phenomenon is required to observe its behavior at such scale.
The interaction of the light wave on the biological tissue includes a combination of scattering, absorption, reflection,
and refraction, where all this depends on the optical and geometry properties of the light wave on the medium and the
neurons. Taking into consideration the optical properties while assuming spherical geometry of neuron for simplification,
the focusing effect occurs as the light wave propagates in the brain tissue. This phenomenon results in an intensity increase
(≈ 6 dB/neuron for 100 µm diameter neuron) once the light wave leaves the soma. The analysis is based on the one
axis polarized light propagation on the soma that is perfectly aligned to the propagation path. The COMSOL simulation
confirms the focusing effect resulting in farther light propagation when the blocking neurons exist between the light source
and the target neuron. With respect to the delay, blocking neurons cause insignificant delay (at the pico second level).

At the same time, the effect of reflection is extremely small compared to the LoS component so the interference from
adjacent neurons can be ignored. The reason for this is because, for each hop of reflected light rays, the reflected light
power is multiplied by a very small value of reflectance coefficient. The reflection analysis has considered the angle of the
neurons for various possible position in the brain. Based on the blocking and multipath propagation models, we found that
highly dense neuron population can benefit from having a blocking neuron in between a light source and the target neuron,
to assist in directing and increasing the light intensity required for successful stimulation.
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Analysis of Light Propagation on Physiological
Properties of Neurons for Nanoscale Optogenetics
Stefanus Wirdatmadja, Pedram Johari, Student Member, IEEE, Aesha Desai, Yongho Bae, Ewa Stachowiak,
Michal Stachowiak, Josep M. Jornet, Member, IEEE, Sasitharan Balasubramaniam, Senior Member, IEEE

Abstract—Miniaturization of implantable devices is an impor-
tant challenge for future Brain-Computer Interface applications,
and in particular for achieving precise neuron stimulation.
For stimulation that utilizes light, i.e., optogenetics, the light
propagation behavior and interaction at the nanoscale with
elements within the neuron is an important factor that needs to
be considered when designing the device. This paper analyses
the effect of light behavior for a single neuron stimulation,
and focuses on the impact from different cell shapes. Based on
the Mie Scattering theory, the paper analyzes how the shape
of the soma and the nucleus contributes to the focusing effect
resulting in an intensity increase, which ensures that neurons
can assist in transferring light through the tissue towards the
target cells. At the same time, this intensity increase can in turn
also stimulate neighboring cells leading to interference within
the neural circuits. The paper also analyzes the ideal placements
of the device with respect to the angle and position within the
cortex that can enable axonal biophoton communications, which
can contain light within the cell to avoid interference.

Index Terms—Nano Communications, Optogenetics, Geomet-
rical Optics Analysis, Mie scattering.

I. INTRODUCTION

Increased attention in Brain-Machine Interfaces (BMI) as
well as Brain-Computer Interfaces (BCI) has driven re-
searchers to pursue new developments that will merge brain
and machines into a seamless manner [1–3]. This grand vision
will witness the connection of the Brain to Computing Systems
in a less invasive and more pervasive manner than existing ap-
proaches. In order to realize this paradigm, the tools provided
by nanotechnology need to be leveraged to produce micro-
scale devices that can be seamlessly embedded into the brain,
enabling monitoring as well as stimulation at a single-neuron
level. Recent developments have started to realize this vision
which has led to several new types of materials and devices
as well as new paradigms such as molecular communications
aimed at modeling communication between neurons [4–7].
An example of new materials and devices is the electronic
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mesh that can be injected into the brain and will unfurl within
the cortex, providing new forms of long-term monitoring of
neurons [8]. The vision of the neural dust [9] is to also enable
wireless monitoring of neurons, where devices can be charged
through ultrasound signals, and the back-scattering effect can
provide feedback to an external device. A preliminary step
towards this vision has already been realized with experiments
conducted on the neural dust that can monitor action potential
along the nervous system of a mouse [10].

Fig. 1. Device architecture of the Wireless Optogenetic Nanonetwork Device
(WiOptND), placed close to the target cell and able to convert ultrasounds to
optical signals, which then stimulate the light-sensitive neurons. The figure
also illustrates three neurons within the cortical column, each interfaced by a
WiOptND device for stimulation, creating an embedded nanonetwork.

Our current research in Wireless Optogenetic Nanonetwork
Devices (WiOptND) (Fig. 1, adapted from [11]), aims to
utilize the concepts of nano communication and networks [12]
(Fig. 1) to enable a new generation of BCI/BMI. The device
consists of three main components, piezoelectric nanowires as
an energy harvester, a capacitor as an energy reservoir, and
a LED as a light source. This entails developing miniature
devices that can be placed as a network into the brain, and
stimulate neurons using visible light [13]. While the miniatur-
ization brings along numerous advantages such as the ability
to embed the devices into the brain for long-term deployment,
as well as stimulation for small groups of cells, there are also a
number of challenges. In [11], we investigated the performance
of different WiOptND charging and firing strategies to ensure
proper operation of the platform. In relation to this, one
particular challenge is the effect of light propagation and its
effectiveness in stimulating the cell, specially when compared
to electrical stimulation [14]. This challenge is compounded
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due to the miniature aperture of the light source and intensity,
given that the components are constructed from nanoscale
materials. This means that the light intensity may not reach
the target cells, and this could be an issue due to cell growth
and movements. The light propagation in biological tissues,
including the brain, has been extensively studied in [15–18].
For example, Monte Carlo [19] and Finite Difference Time
Domain (FDTD) [20] simulations can be used to simulate
the light propagation in biological tissue. In [21], the light
propagation based on Monte Carlo method for both regular and
irregular medium propagation shape in organ level has been
developed, however, not at a single-cell level. Analytically,
light propagation in brain tissue can be analysed with the
revised Kubelka-Munk model or the modified Beer-Lambert
law. Nevertheless, none of the existing works, including our
previous work [15], model the propagation of light with (sub)
cellular precision.

In this paper, we investigate the propagation of light at
the nano and micro scales, and the unique properties that
will result with the propagation through different shapes of
a neuron. A particular focus is in the nature of refraction and
natural focusing effects that can occur due to refraction of light
as it passes through the internal cell structure. This focusing
effect is different depending on the shape of the neuron, which
will have an impact on the accurate placements of the devices
within the cortex. In particular, the focusing effect can result
in light intensity stimulating neighboring cells that results
in interference. The effect will be further investigated and
validated based on the Mie Scattering theory simulation using
MATLAB. The simulations will analyze the geometrical soma
shape effect based on the combination of geometry optics
theory and modified Beer-Lambert law.

In a separate trend, a recent study has also found that
light propagation along the axon, especially within the myelin
sheaths, has an internal reflection process for bio-photons that
resembles an optical waveguide [22]. Therefore, integrating
this phenomenon can lead to an ideal case of internal light
reflection within a neuron that contains the photons and
minimizes stimulation of neighboring cells. Based on these
results, in this paper , we investigate how certain intensity
and angle of the light source on the soma of the neuron, can
result in an ideal location for stimulating the neuron that will
minimize interference to the surrounding neurons. Following
is a list of contributions of the current paper:

1) Combining geometrical theory and Mie scattering anal-
ysis in a single cell for three soma shapes (Pyramidal,
Spherical, and Fusiform),

2) Analysing the feasibility of light containment within the
axonal (biophoton communications), that is dependent
on the angle and position of the light source.

3) Validation through MATLAB simulation to analyze the
focusing effects in the near region of the cells.

The remaining sections of the paper are organized as fol-
lows: Sec. II elaborates about the biological properties of brain
tissue and cerebral cortex. In addition to that, it also discusses
about the interaction of light and neuron, particularly with
the nucleus. The light interaction with respect to geometry of

each soma shape is discussed profoundly in Sec. III. Sec. IV
explains about the feasibility analysis for axonal biophoton
communication and external light source considering the soma
shapes and the neuron density. Finally, Sec. V concludes the
paper based on the simulation results and analysis.

II. NEURONS AND LIGHT INTERACTION

A. Biological Structure of Cerebral Cortex
Morphologically, biological tissues can be categorized under

four different types, namely, epithelium, connective tissues,
muscle tissues, and nervous tissues [23]. Nervous tissues com-
prise the neurons and neuroglia forming the central nervous
system and the peripheral nervous system. The structure of
the nervous tissue is soft and possesses a certain level of
elasticity which specifies the interaction with the optical wave
(light). The brain, which is a part of the central nervous
system, comprises gray and white matters. The gray matter
is composed of various types of somata, axons, dendrites,
synapses, blood vessels, and glial cells. It has an important
role in the coordination of the entire body. The white matter
consists of myelinated nerve fibers, blood vessels, and glial
cells. On the outermost layer of the brain, the inflexible-two-
layered dura mater acts as a protective coating. The outer
layer is arachnoid mater and the inner layer is pia mater
with cerebrospinal fluid (CSF) in between them. The space
between the skull and the dura mater is filled with adipose
tissues containing blood vessels.

B. Morphology of the Cerebral Cortex Neurons
The six-layered-cerebral cortex is populated by cholinergic

neurons where neurotransmitter acetylcholine (ACh) is mainly
utilized for the chemical communications. The cholinergic
neurons can be categorized into four size groups: very large
motor neuron (25-45 µm), large forebrain neuron (18-25 µm),
medium neuron (14-20 µm), and small neuron (8-16 µm) [24].
The neurons in the cerebral cortex are categorized under the
small neuron group, together with the hippocampus neurons,
anterior olfactory cortex neurons, olfactory bulb (smell recep-
tor) neurons, and dorsal horn (sensory) neurons. Based on the
shape of the soma, cholinergic neurons in the cerebral cortex
can be further categorized into three main groups: pyramidal
cells, granule cells, and fusiform/spindle-shaped cells [25].
Brief description and location of each shape is explained in
the following list:

1) Pyramidal cells: In the cerebral cortex, pyramidal cells
can be found particularly in layers III and V. This multipolar
cell can easily be distinguished by its pyramidal shape. This
cell is further categorized into four sub-groups based on its
size (height × width): small (Schankleit) (12 µm× 10 µm),
medium (25 µm× 15 µm), large (45 µm× 15-20 µm), and
giant (50-100 µm× 25-60 µm) [25].

2) Granule cells: Layer II and IV are mostly populated
by granule cells. The granule cells in layer IV receive input
from the thalamus and project the information to both the
supragranular layers (layers II and III) and the infragranular
layers (layers V and VI). The soma shape of a granule cell is
spherical/polygonal/oval, and its size is around 15-30 µm ×
10-15 µm [25].
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3) Fusiform/spindle-shaped cell: These fusiform cells are
located in layer VI. This layer contains efferent fibers which
connect the cortex to the thalamus bringing impulses that
originate from the cortex. These cells are characterized as
flattened spindled-shaped somata with long apical dendrites
elongated up to layer I while the basal dendrites spread into
layer VI. The size of its soma is around 15-30 µm × 10-15 µm
[25].

C. Light Interaction in Cerebral Cortex

When a light wave propagates in the biological tissue, both
its intensity and propagation direction might change. They are
caused by several light-medium interactions [26], namely:
• Reflection and Refraction. As light propagates from one

medium to another with different refractive indices, the
light can be partially reflected and partially transmitted.
Furthermore, the transmitted light will experience refrac-
tion (change in the angle of propagation) due to the
different refractive indices of the media [27].

• Absorption. The light energy decreases as it is absorbed
and converted to heat due to the vibration of atoms and
molecules in the biological tissues. The absorption behav-
ior of the tissue relies heavily on the light wavelength.

• Scattering. The heterogeneous biological medium causes
the deflection of light wave to one or more paths deviated
from its straight trajectory. This situation occurs when the
wave passes through two different media with different
optical properties [28].

D. Light Scattering by Nucleus

The soma of a neuron contains many organelles including
nucleus which is the largest amongst all the others. The
size of the nucleus, along with other properties such as the
refractive index of the medium and the light wavelength,
determine the scattering pattern of the light when encounters
the nucleus [29]. The size parameter χ defines the ratio
between a particle’s radius (in this case, nucleus), r, and the
light wavelength, λ. It can be formulated as

χ =
2πnor

λ
= kr (1)

where no is the refractive index of the cytoplasm, and k is the
wave vector by definition.

For the 456 nm (blue light) scattered by a nucleus with
diameter of 3-18 µm and refractive index of nucleus, nnuc,
of 1.39 [30], and cytoplasm, ncyto, of 1.36-1.39 [31], the
size parameter is between 28.32 - 169.89. This value lies
between 0.2 and 2000 which is categorized as Mie Scattering.
It also means that such particle size is comparable to the corre-
sponding light wavelength. By employing the Mie theory, the
scattering pattern of the transmitted light can be determined,
which defines the intensity of the light in all directions relative
to the nucleus. This calculation can be visualized using the
polar plot when the dominant scattering direction is concerned
(as can be seen later in Fig. 2(a)).

Mie theory gives the solution of vector wave equations for
spherical object scatterer presented in spherical coordinate sys-
tem (r, θ, φ) [32]. The matrix of scattered far field component

in the scattering plane Eθs and its orthogonal Eφs components
can be obtained from the scattering amplitudes and the incident
fields, which is represented as follows [33],[

Eθs
Eφs

]
=
eik(r−z)

−ikr

[
S2 0
0 S1

] [
Eθi
Eφi

]
, (2)

where S1 and S2 are the scattering amplitudes, Eθi and Eφi
are the incident vectors, eikz is the incident plane wave, and
eikr

ikr is the outgoing scattered wave. The scattering amplitudes
S1 and S2 are further derived as

S1(cosθ) =

∞∑

n=1

2n+ 1

n(n+ 1)
(anπn + bnτn), (3)

S2(cosθ) =
∞∑

n=1

2n+ 1

n(n+ 1)
(anτn + bnπn). (4)

From those scattering amplitudes, the intensity can be obtained
by

I =
1

2
(|S1(θ)|2 + |S2(θ)|2). (5)

The Mie coefficients an and bn are obtained by

an =
m2jn(mx)[xjn(x)]

′ − jn(x)[mxjn(mx)]′

m2jn(mx)[xh
(1)
n (x)]′ − h(1)n (x)[mxjn(mx)]′

, (6)

bn =
jn(mx)[xjn(x)]

′ − jn(x)[mxjn(mx)]′

jn(mx)[xh
(1)
n (x)]′ − h(1)n (x)[mxjn(mx)]′

, (7)

where prime sign indicates the first derivative, m is the relative
refractive index of nucleus with respect to cytoplasm, jn(z)
and h

(1)
n (z) = jn(z) + iyn(z) are the spherical Bessel and

Hankel functions of order n respectively, yn(z) is the spherical
Neumann function of order n, and n = 1 to ∞. However,
for mathematical tractability, this infinite series is truncated at
nmax [32], where nmax = x + 4x

1
3 + 2. The derivatives for

the spherical functions are

[αjn(α)]
′ = αjn−1(α), (8)

[αh(1)n (α)]′ = αh
(1)
n−1 − nh(1)n (α), (9)

where α can be substituted by either mx or x. The Mie angular
functions πn and τn are

πn =
2n− 1

n− 1
cos θ · πn−1 −

n

n− 1
πn−2, (10)

τn = n cos θ · πn − (n+ 1)πn−1, (11)

where the first three orders of those functions are [34]

π0 = 0; π1 = 1 ;π2 = 3 cos θ; (12)
τ0 = 0; τ1 = cos θ; τ2 = 3 cos 2θ. (13)

Based on the Mie theory, the scattering intensity pattern is
depicted in Fig. 2 in logarithmic scale. From the polar plot
(Fig. 2(a)), it can be observed that light scattering by the nu-
cleus exhibits dominant forward scattering (on scattering angle
0o - 5o) and from Cartesian plot (Fig. 2(b)), the intensity has
a decreasing tendency towards the backward direction. This
scattering pattern resembles the directional antenna radiation
pattern. It also exhibits the higher intensity value compared
to the incident field. From optics geometry perspective, this
higher forward lobe intensity phenomenon shows that the
nucleus has the similar behavior as a convex lens [35].
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Fig. 2. The scattering intensity pattern when the light is scattered by the nucleus.

E. Experimental Setup to Observe the Forward Scattering
Effect of Nucleus on the Incident Light

To further investigate the propagation pattern of the light
inside neurons (and more specifically around the nucleus), we
have set up a laboratory experiment as depicted in Fig. 3(a).
Neural progenitor cells (NPCs) differentiated from human
embryonic stem cells were cultured as described in [36], [37]1.
It is important to note that the cells used in the experiment
have a fusiform shape (See Sec. III-B). Later in Sec. III, we
thoroughly analyze the effect of different shapes of cells on the
light forward scattering pattern. To monitor light propagation
behavior through NPCs, an inverted microscope with a halogen
lamp as the light source that shines through the specimen
(NPCs) is used (Fig. 3(a))2. Images of the cells and the
cumulated light were taken by moving the focal plane of the
microscope in z-direction. Fig. 3(b) shows the microscopic
image of a neuron with the nucleus highlighted in an orange
circle and three distinguishable nucleoli (dark spots). Fig. 3(c)
is obtained by shifting the focal plane by 5 µm in the z-
direction below the cell, i.e., on the opposite side of the light
source. It can be seen from this figure that the nucleus and
the nucleoli can not be observed clearly since they are out
of focus by 5 µm. Finally, in Fig. 3(d), the focal plane has
been moved further to 10 µm away from the cell surface.
The light spots in this figure show the cumulated light at a
vertical distance from all three nucleoli. This happens due to
the forward scattering effect of the nucleoli on the incident
light. This phenomenon has been further investigated with
detailed analysis in the following section.

III. GEOMETRICAL-BASED LIGHT PROPAGATION
ANALYSIS

The geometrical optics analysis for homogeneous spherical
soma has been conducted in details in [15]. In this paper, we

1For performing this experiment, 20,000 cells were plated on a glass bottom
35mm cell culture dish (MatTek, USA) for 24 hours.

2An inverted Zeiss AxioObserver Imager wide-field fluorescence micro-
scope has been used for this experiment

extend the analysis by including the nucleus in the soma with
three different shapes, namely, pyramidal, fusiform, spherical,
and its impact on the light propagation behavior. The blue-
shadowed area in the figures of following subsections indicates
the area in which the light propagates through the cytoplasm
but not the nucleus.

A. Pyramidal shape

The neurons with pyramidal-shaped soma can be found in
several areas of the brain including the cerebral cortex, the
hippocampus, and the amyglada. A pyramidal neuron is a
multipolar neuron, i.e., it generally possesses many dendrites
and a single axon. Due to its relatively large size, this neuron
type has been studied more intensively by neurophysiologists.
Particularly, these neurons in layer V neocortex are considered
as the semi-autonomous processing units [38].

The pyramidal cell is modeled as triangular shape on a
2D-plane. As a result, Fig. 4 illustrates the propagation of a
collimated light traversing though a pyramidal-shaped soma.

Based on its geometrical analysis of the soma and nucleus,
the transmitted light is focused in certain locations. In this
paper, the focus point is measured from the soma surface with
length hsm in Fig. 4 and the center of the nucleus is located in
the middle of the soma. The lower bound (fl) and the upper
bound (fu) of the focus point outside the soma excluding light
traversing through the nucleus is represented as

fl = wsm +
rnc

tanαp
− rnc

arctan
[
hsm

2wsm

] , (14)

fu =
hsm

2 tanαp
, (15)

and,

θpr = arcsin

(
ncyto
ntis

sin
(
90o − arctan

[ hsm
2wsm

]))
, (16)

αp = θpr − 90o + arctan
[ hsm
2wsm

]
, (17)
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(a) The lateral view of the experiment

nucleoli

nucleus
(b)

20 µm

(b) On the cell surface

(c)

20 µm

(c) 5 µm below the cell surface

light spots

(d)

20 µm

(d) 10 µm below the cell surface

Fig. 3. Neural progenitor cells (NPCs) differentiated from human embryonic stem cells were plated on a tissue culture dish. Phase contrast images of NPCs
were acquired by changing the focal plane distance using a Zeiss AxioObserver inverted wide-field fluorescence microscope. The lateral view of the experiment
is illustrated in (a). The focused light were observed in three distances; (b) on the cell surface, (c) 5 µm, and (d) 10 µm below the cell surface. Orange circles
in the figures are region of interest (nucleus). Arrows indicate nucleoli in (b) and light spots of cumulated light in (d).

Fig. 4. The illustration of light propagation in the pyramidal shaped soma.

where rnc is the radius of the nucleus, ncyto is the refractive
index of the cytoplasm and ntis is the refractive index of the
brain tissue.

For the pyramidal cell size of 30 µm × 48 µm and taking
into account the refractive index of brain tissue (ntis = 1.35)
and neuron (ncyto = 1.36), the lower and upper bounds for
focus point are 200 and 254 µm, respectively.

B. Fusiform shape

Geometrically, the fusiform soma model resembles the bi-
convex lens as shown in Fig. 5. Therefore, when this 2D-model
is exposed to the collimated light source or plane wave, it can
be analysed using a lensmaker’s equation yielding the distance
of the focus as

1

f
=

(ncyto − ntis)
ntis

[
1

R1
− 1

R2
+
wsm(ncyto − ntis)

ncytoR1R2

]
, (18)

where R1 and R2 denotes the curvatures of each surface of
the lens, respectively, f represents the distance of the focus
point measured from the center point, and d is the distance
between two opposite surfaces of the neuron along the center
axis.

Ideally, the soma cannot be considered as the perfect lens
due to its heterogeneous content; therefore, spherical aberra-
tion is more likely to occur. Spherical aberration causes the
light to be blurred, converged in the vicinity of the measured
focus point. However, the distance focus approximation is still
valid to determine where the light converges.

Fig. 5. Illustration of ellipse/spindle-shape neuron acting as an equiconvex
lens.

According to the available data of the soma size and
the equiconvex soma shape, the approximate radius of each
surface can be formulated as

R1 = R2 = R1/2 =
w2
sm + h2sm
4wsm

, (19)

where R1/2 is the radius of the surface curvature, hsm and
wsm are the height and width of the soma, respectively.

Matrix operation analysis can also explain the refraction
due to each surface of the soma. The refraction model can be
represented in three matrix operations [39]:

[
1 0

− (ntis−ncyto)
(R2ntis)

ncyto

ntis

]

︸ ︷︷ ︸
refration on the second surface

principal plane︷ ︸︸ ︷[
1 wsm
0 1

] [
1 0

− (ncyto−ntis)
(R1ncyto)

ntis

ncyto

]

︸ ︷︷ ︸
refration on the first surface

⇔
[
1 + wsmP12 wsm

ntis

ncyto

P wsm( ntis

ncyto
)P23 + 1

]
, (20)

where the refracting power for each surface is denoted by P12

and P23, and the total power is represented by P . The power
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parameters are given as

P12 = −ncyto − ntis
R1ncyto

, (21)

P23 = −ntis − ncyto
R2ntis

, (22)

P = − 1

f
= P23 + wsmP12P23 +

ncyto
ntis

P12. (23)

Based on the size of the fusiform cell in Sec. II-B, the
radius can be approximated by Eq. (19) resulting in 18.75 µm
curvature, for the size of 30µm × 15µm. Then, the focus
can be obtained by applying lensmaker’s equation. The focus
is positioned at 0.63 mm from the center point of the soma
when the curvature radius of soma is 18.75 µm. The same
calculation can also be applied for the smaller soma. The
15µm × 10µm soma has 8.13 µm curvature radius and
0.27 mm focus measured from the soma center point. This
confirms the forward scattering and focusing effect of the
nucleoli that we observed in our experiment explained in
Sec. II-E. During this experiment, the size of nucleoli is
2.5 µm (Fig. 3), resulting the light to focus at approximately
10.4 µm away. This is the lower bound of focus area which
is discussed with more details in Sec. III-D.

C. Spherical shape

The cross-sectional area of the spherical cell can be rep-
resented as the circular 2-D model. The 2D-model analysis
is conducted by positioning the nucleus at the center of the
soma. Fig. 6 depicts the cross sectional spherical soma model
illuminated by collimated light.

Fig. 6. Light propagation through spherical soma with nucleus located at the
center point.

The border between the two areas of nucleus intersection
can be obtained by calculating the parameter h which is
measured from the center axis (Fig. 6(b)). The equation can
be derived by the following formulas of snell’s law and planar
geometry [15]:

sin θi =
h

rsm
, (24)

θr = arcsin

(
ntis
ncyto

h

rsm

)
, (25)

θr = arcsin

(
rnc
rsm

)
, (26)

h =
ncyto
ntis

rnc, 0 ≤ h ≤ rsm, (27)

where rsm and rnc are the radius of soma and nucleus
respectively, and θi and θr are the angle between the incoming
and refracted light with respect to the center axis.

Based on the illuminated area, the light intensity which
follows the geometric optics theory is

Ig = Ioe
−µa(λ)dDPF (λ)cos θi, (28)

and the light intensity which is scattered by the nucleus is

Is = Ioe
−µa(λ)diDPF (λ)(1− cos θi), (29)

where Io, Ig and Is are the light intensity at the light source,
the light intensity which does not intersect the nucleus, and the
light intensity which is scattered by the nucleus respectively;
µa is the absorption coefficient; DPF is the differential path-
length factor [40]; and di is the distance of light propagation.

D. Light Wave Superposition for different Soma Geometry

In all the aforementioned geometry scenarios, the shape
of the nucleus (which plays the main role in the forward
scattering and the focusing effect), is fixed and considered
to be spherical. As explained earlier in Sec. II-D, and by
following the Mie scattering theory, a closed form solution
can be found for the light propagation around a spherical
shape obstacle (in this case the nucleus). The intensity thermal
plot for spherical nucleus is depicted in Fig. 7 in the close
proximity of the nucleus, and in Fig. 8 for longer distances.

The nucleus placement at the center of the spherical soma
model affects the lower and upper bounds of the focus points
fl and fu. The focus points which are measured from the
center for the soma can be obtained by [41]

fl = rsm
n2cyto

2ntis

√
n2cyto − n2tis

. (30)

fu = rsm
sin(π − θi)

sin(2(θi − θr))
. (31)

Fig. 7. The light intensity as a function of distance where coordinate (0,0)
indicates the center point of the soma/nucleus.
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The three previously mentioned geometries represent the
shapes of the neuron soma. However, the discussion is limited
to the collimated light wave and ideal shapes. In-vivo environ-
ment contributes to a more complicated situation especially
in term of geometrical variation. Furthermore, the shape of
the soma itself cause some changes in the direction of the
collimated light as it penetrates inside the soma. This situation
causes the change of light propagation behavior before and
after the nucleus. In this case, the behavior can be analyzed by
the superposition of multiple plane waves,

∑N
n=1 U

r(z,ρ,φ)
n |t,

where Un is the complex wave form at position r(z, ρ, φ) and
time t.

Fig. 9 depicts different behaviors of light scattering prop-
agation for the three soma shapes. The difference is mainly
due to the size of the soma which is related to the geometry
of the soma itself. The size ratio of the soma and the nucleus
contributes in determining the maximum order of the Hankel
function, h(1)n , calculation (as defined and explained earlier in
Sec. II-D). As a result, the scattered field component changes
according to the distance between the nucleus and the surface
of the soma as formulated on Eq. (2). Furthermore, when
the distance is extended to the far field region, the intensity
increases to its maximum value (approximately 24 times per
unit compared to the incoming intensity). This phenomenon
can be seen in Fig. 8.

(a)
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Fig. 8. The light intensity as a function of distance going further from the
nucleus. The coordinate x=0 indicates the surface of the nucleus.
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Fig. 9. The light intensity for three different shapes of soma that each has
12µm nucleus.

IV. AXONAL BIOPHOTON PROPAGATION

In [22], a new theory has been proposed on the manner
of biophoton propagation along the axon, and is inspired
from the properties of optical communications. In the light-
based optical communication, there are three major elements
required, namely, source, detector, and directed light propa-
gation medium/waveguide. Inside the living organism, in this
case human brain, a biophoton is dubbed as the natural light
excited during the internal biological process of mitochondrial
respiration or lipid oxidation. Meanwhile, mitochondrial cen-
trosomes or chromophores serve as the biophoton detectors.
In general, the requirements for biological waveguides include
homogeneity and transmission capability. Myelin is a promis-
ing waveguide candidate due to its homogeneous structure and
size [22]. Due to strong absorption by the proteins in the axons
for certain wavelength (300 nm), the wavelength considered
during the simulation conducted in [22] is between 400 nm
and 1300 nm. This also means that keeping the wavelength
within that range, for example visible light, is important in
order to ensure the model is applicable.

Even though the myelin sheath has feasible properties as
the waveguide, it has several imperfections which reduce
the transmission effectiveness. These include the bending
structure, cross-section variation, non-circularity of the shapes,
cross-talk, and inhomogeneity of myelin sheath. The work in
[22] addressed these imperfections along with nodal/paranodal
regions and Nodes of Ranvier using the FDTD simulations.
According to [22], the attainable biophoton transmission
through 1-cm axon, depending on certain controlled parameter
variation, is approximately 3-30%. While 2-mm axon gives
attainable transmission of 46-96%.

Based on these results, our hypothesis in this section is to
ensure that maximum light propagates down the axon based on
the focusing effect. By enabling the light to propagate down
the axon, this will lead to containment that will also ensure
that focused light will not stimulate the neighboring neurons
which can potentially avoid interference. Therefore, our aim
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is to integrate the soma geometrical light intensity analysis
with the axonal biophoton communication, and to determine
the feasibility of this combined system.

A. External light propagation angle

The direction of incident relative to the axonal waveguide
determines the effectiveness of the external light stimulation.
Fig. 10 illustrates the feasibility to incorporate the external
light source into the biophoton communication model in [22].
The Mie scattering focusing pattern elaborated in Sec. II-D
determines the amount of transmitted light that will propagate
into the axon if the focused point is within the cytoplasm.
Therefore, the angle of incident relative to the axon line
position is crucial to attain the maximum light transmission.
When the size ratio of soma and nucleus is 2, the illuminated
spherical cap of soma surface area has the base circle radius
of 75% of the radius of the nucleus. For the soma radius of
12 µm with 6 µm-nucleus located on its center, the circle
base radius of illuminated spherical surface soma cap, rsc
is approximately 4.5 µm. This size of cap radius can cover
transitional path into the 3 µm-axon (rax), but only part of
the 5 µm-myelin (rmye). Whereas, for pyramidal and fusiform
cells, the base circle radius of the illuminated soma surface is
55% and 68% of the radius of the nucleus, respectively. This
lower percentage contributes towards a more tolerant angle (β
in Fig. 10) of light projection from the light source on the
neuron. It is also worthy of note that the distance between
the nucleus and the axon also decreases the tolerance of the
incident angle deviation.

Therefore, the percentage of the scattered external light
being transmitted into the axonal waveguide depends on the
illuminated axonal path area which is affected also by the
distance between the nucleus and axonal waveguide entrance.
In this case the effective transmission area can be obtained by

Atr = r2scarccos

(
d2β + r2sc − r2mye

2dβrsc

)
+

r2myearccos

(
d2β + r2mye − r2sc

2dβrmye

)
−

1

2

√
(−dβ + rsc + rmye)(dβ + rsc − rmye)×

√
(dβ − rsc + rmye)(dβ + rsc + rmye),

where
dβ = Re

{
2 rsm sin

(β
2

)}
(32)

Fig. 11 shows the relationship between the percentage of
external focused light component (which can be contained by
the axonal biophoton communication) and the amount of light
which is focused outside the soma.

B. Photo-thermal Effects of Light Propagation in Nervous
Tissues

The tissue damage due to thermal increment is an important
factor to consider whenever electromagnetic radiations inside
the biological tissues is being studied [42]. However, based

(a) Spherical.

(b) Pyramidal.

(c) Fusiform.

Fig. 10. An illustration of the variation of incident angles (β) to the focused
light scattering due to the nucleus in the soma.
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Fig. 11. The light percentage which is transmitted through axonal commu-
nications with incident light angle (β) variation.

on the experimental evaluation in [43], the light intensity
safety limit is so high that the light intensity discussed in
this paper is far from creating any harm on the brain tissue.
The experiment observed 5-ms red and blue light pulses with
intensity of 100-600 mW/mm2 and frequency of 20, 40, and
60 Hz for the duration of 90 seconds. Furthermore, there
is no phototoxic effect observed. Regarding the heat effect
due to light absorption by the tissue, blue light causes higher
temperature increase than red light. However, the increase is
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Fig. 12. The light percentage probability, which stimulates undesired neuron instead of being transmitted through axonal waveguide with respect to the
incident light angle (β) and the neuron density variation.

Fig. 13. The light percentage probability, which stimulates undesired neuron
instead of being transmitted through axonal waveguide with respect to the
incident light angle (β) for constant neuron density of 26,000/mm3.

still within acceptable range with a maximum increase of
1.5oC inside the tissue. The intensity requirement of most
optogenetic opsins is only around 1 to 5 mW/mm2 which is
significantly less than the intensity on the experiments in [43].

C. Interference Analysis of Undesired Light Propagation

As seen in the analysis and simulations, the focusing
light traverses further beyond the target neuron which may
result in undesired stimulation of surrounding optogenetic
constructs (Fig. 10(a)). The probability of undesired illumi-
nation can therefore be estimated by considering the neu-
ron density in the neocortex. The neuron density varies
based on genders and individuals. On average, the density in
men’s neocortex is 25,924(±15,110) /mm3 and women’s is
27,589(±16,854) /mm3 [44]. Based on this information, the
probability of undesired neuron stimulation by a light wave
that is supposed to be transmitted through axonal waveguide
is obtained and it is presented in Fig. 12 and Fig. 13. These
figures show the relation between the collimated light incident
angle to the stimulation effectiveness and efficiency. They are
derived by first calculating the portion of light that is focused
by the soma, and then combining (multiplying) it with the
result from Fig. 11 and the neuron density parameter in the

neocortex. In detail, by assuming that the neurons are equally
distributed in the brain tissue, the undesired stimulation can be
estimated. The average distance (d) between neuron can also
be obtained, for example, for 26,000 /mm3, d is approximately
34 µm. The result can be analysed from Fig. 13 that the
spherical soma is more tolerant to the incident angle deviation
due to the short distance factor between the nucleus and the
soma surface compared to other shapes. In addition to that,
the probability of the external light hitting undesired neuron
is lower. This finding concludes that neurons with spherical
soma will ideally be selected for stimulation, and in particular
for enabling the axonal biophoton communication to ensure
containment.

V. CONCLUSIONS

The separate analysis based on geometrical optics or Mie
scattering for the soma and nucleus is solely due to the size
parameter. The spherical nucleus shape leads to focusing effect
which is important for light communication in the brain. This
is demonstrated using MATLAB simulation to show the light
propagation behavior. Unlike the nucleus, the soma exhibits
different behavior depending on its shape. The increase of
the light intensity on the region after the nucleus has both
advantage and disadvantage in its application. It may result
in less input intensity requirement, but at the same time, it
may cause undesired stimulation to other neurons. Relating
this finding for axonal biophoton communication, the angle
and the direction of the incoming incident light with respect
to the location of the axon has to be properly considered.
Furthermore, spherical shape soma is more tolerant to angle
deviation due to its relatively smaller size ratio between its
nucleus and soma. However, undesired stimulation is unlikely
to cause phototoxic effect. Additionally, the density of the
surrounding neurons defines the probability of undesired stim-
ulation.

When the precision of single neuron stimulation for BCI
is required, the understanding of the light behavior at the
nanoscale is needed. This includes the shape imperfections,
the optical properties gradients, the heterogeneity of the cell,
and other minor deviations. This contribution will help in
designing the more efficient and effective BCI system.
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Recent Brain-Machine Interfaces have moved towards miniature devices that can be seamlessly

integrated into the cortex. In this paper, we propose communication between miniature devices using

light. A number of challenges exist using nanoscale light-based communication and this includes

diffraction, scattering, and absorption, where these properties result from the tissue medium as well as the

cell’s geometry. Under these effects, the paper analyses the propagation path loss and geometrical gain,
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Simulations were conducted for cells that are lined horizontally up to a distance of 450 µm using light

wavelength of 456 nm and different neuron densities (men’s neocortex (25,924(±15,110) /mm3) and

women’s (27,589(±16,854) /mm3)). Based on the simulations, we found that spherical cells attenuate

approximately 20% of the transmitted power compared to the fusiform and pyramidal cells (35% and

65%, respectively).

Index Terms

Nano communications, Optogenetics, Light Propagation Modelling, Neural Systems.

I. INTRODUCTION

Implantable medical devices in recent years have witnessed an exponential growth due largely

to numerous supporting fields, including nanotechnology, computer science, and electrical en-

gineering. The advancements in such fields are leading to miniature devices, constructed from

biocompatible materials and powered by means of energy-harvesting systems, which can be

permanently implanted. In this context, the emerging field of nano-communications is aimed at

enabling the exchange of information and coordination between nano-devices. Two approaches

for nano-communications have been developed in parallel, namely, nano-electromagnetic (EM)

communications [1] and molecular communications [2]. A number of works have looked at

molecular communications for neural systems. For example, [3] conducts and analyzes in-

vivo information transfer on the nervous system of an earthworm, [4] proposes the complete

synaptic communication channel model, and [5] investigates the upper bound for neural synaptic

communication. Acoustic signals have been proposed to allow devices to communicate [6], but

the unit circuitry may be larger than the envisioned micron-scale size devices that needs to be

placed deep in the tissue. This challenge is further exacerbated when we consider implanting the

devices in the cortex of the brain. In the case of nano-EM communications, a major challenge

is the selection of an appropriate frequency for signaling that is relative to the size of the

antenna components. This is because the reduction in size of an antenna means that the operating
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frequency also increases [1], and THz waves are unable to penetrate through biological tissues.

This is due to the high energy photons interacting with living cells at the molecular scale through

the process of absorption [7] [8]. This means that other modes of communication are required

in order to enable devices to communicate and network in biological tissues.

In our previous work [9] a miniature device known as Wireless Optogenetic Nano Devices

(WiOptND) for neural stimulation was proposed. The device utilizes ultrasound signals for energy

harvesting to produce power for a light source that is used for stimulating small population of

neurons, and this process is known as optogenetics. Some constraints in optogenetics stimulation

are investigated in [10] in terms of distortion from the spike generation delay due to the stochastic

behaviour of the surface receptors, which results in random time response delays from the time

a neuron is externally stimulated. In other works, light has been used to communicate between

devices through red blood cells [7]. While both THz waves and optical signals are very high

frequency EM waves, one key difference is that the latter does not suffer from strong absorption

compared to the former due to tissue water content. In recent years, extensive modelling has

been established for behaviour of light that is used for stimulating neurons, but there have not

been any proposal towards using nanoscale light communication between devices implanted

into the brain. While optical signals suffers from scattering phenomenon, this does not directly

translate into undesired effects since it also supports the light focusing phenomenon during the

propagation process through neurons, which we found in our previous study [11]. In this paper,

we propose communication between the WiOptND devices using light. As illustrated in Fig. 1,

this could lead to miniature nanonetworks that are implanted into the brain cortex, and the

communication and cooperation between the WiOptNDs can enable neural circuit stimulation of

different micro-columns within the cortical cortex that have impaired connections.

A major challenge with light communication through neural tissue, and in particular at micron-

scale, is that the propagation of the light is largely determined by the physiological shape as

well as the organelles within the cell. This is due to the size of the source that produces light
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Light source Capacitor 

Nanowires 

Tx 

Tx 

Rx 

Rx 

Fig. 1: Illustration of the Wireless Optogenetic Nanodevice (WiOptND) network that are placed

within the cortex. The communication between the devices is established using light that

penetrates through the cells.

waves that are comparable to the size of the neuron. Therefore, the propagation behaviour of the

light is largely dictated by the composition of the tissue. Neural tissue is composed of cells with

different physiological properties, each of which contributes differently towards the propagation

pattern. In this paper, we focus on the power delay profile, femto-pulse signal analysis in both

time and frequency domains, and the channel impulse response of light propagation for physical

communication analysis in neural tissue. We employ a ray tracing approach to analyze the light

propagation along the path of cells in the neural tissue, due to the scale of the light source being

comparable to the size of the soma of the neurons, which allows us to model the propagation of

individual rays spatially to understand how the shapes of the cell will influence their propagation.

Additionally, when the ray tracing is combined with the modified Beer-Lambert accounting for

absorption and scattering, the intensity attenuation can be computed accurately. While a Finite

Difference Time Domain (FDTD) solver can increase the accuracy of the result with all available

parameters, solving Maxwell’s equations is much more computationally demanding that utilizing

DRAFT July 22, 2020



SUBMITTED PAPER 5

ray tracing methods. Our aim is to determine the channel impulse response of the light signal as

it propagates through different shapes as well as density of neurons. We extend the discussion

in [11] and [12] in terms of fundamental propagation medium characterisation and its effect

on a single line array of cells, which can affect the communication performance between two

WiOptNDs devices that are communicating with each other using light. Moreover, we derived

the impulse responses based on the cell’s morphology, which is an analysis that is beneficial for

determining the light propagation behaviour that can impact on the communication performance.

The contributions of this paper are as follows:

• Geometric Analysis of Light Propagation and Path Loss Analysis: We derive the

total path loss formula for three different neuron geometries, namely fusiform, spherical,

and pyramidal based on optical properties of the brain tissue and neurons. We analyze

the focusing gain for multiple-(radial-based)-cell light propagation that results from the

converging and diverging light phenomena through the array of cells.

• Numerical Analysis of Channel Impulse Response for Light Propagation: We define a

channel impulse response model based on the physiological shapes of the aforementioned

neurons. This includes numerical analysis to determine the impact of light propagation

through a line of neurons to determine how this impacts on the impulse response. The

approach taken is through multiple ray tracings that simulates individual rays as they

propagate through the array of cells.

This paper is organized as follows: In Sec. I, we present the background and motivation of this

paper. In Sec. II, we elaborate the light absorption and scattering phenomena in biological tissue.

In Sec. III, we derive the total path loss for three geometric neuron models. In both Sec. IV

and V, we analyze the simulated system in both time and frequency domains. In Sec. VI, we

elaborate the results based on the simulated light propagation system and relate them with the

geometrical and optical properties of the system. Finally, we present the conclusion in Sec. VII.
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II. ABSORPTION AND SCATTERING IN BIOLOGICAL TISSUE

In general, for all cell geometries, the path loss is determined by the medium in which the

light traverses. In our case, the medium consists of biological tissues that contains neural cells.

Each propagation medium has three significant parameters that play a role in the behaviour of

light transmission, namely absorption coefficient (µa), reduced scattering coefficient (µ′s) which

indicates random photon path exists due to scattering, and distance (d) between the transmitter

and the receiver [13] [14]. The last parameter is heavily dependent on the refraction of light as

it propagates through the medium, which is governed by the cell’s geometry and the refractive

index of different internal components (n) of the organelles.

The propagation medium investigated in this paper consists of two biological mediums with

different optical parameters. The two mediums are the brain tissue and each individual neuron.

The brain tissue comprises many components including neuroglia and astrocytes, while neuron

consists of cytoplasm, mitochondria, nucleus, and many other organelles. In this work, we con-

sider that the absorption coefficients remain constant for each medium throughout the propagation

path. Additionally, these mediums are modeled as homogeneous materials for computational

tractability. Moreover, since the distance is very short between the homogeneous cells, the effect

of other components is negligible on the scattering. However, the scattering between the cells

is still considered by representing the tissue scattering coefficient as the average value of those

scatterers. Therefore, the path loss analysis is based on the propagation distance, where the

distance determines how the medium changes impact on the light path. The light intensity along

the propagation path for each medium is analyzed using the modified Beer-Lambert law and is

represented as [15] [16] [17] ,

I(λ, d) = I0(λ)e
−µa(λ)dDPF (λ,d), (1)

where I(λ) is light intensity at λ wavelength on distance d, Io(λ) is the light intensity at

the source, and DPF (λ, d) is the Differential Path Length Factor, which is a scaling factor
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indicating the distance traveled by the light wave that is impacted by the shifted direction due

to the interaction with the neuron (please note that our light source is at nanoscale and will,

therefore, be highly impacted by the cell shape).

The DPF is the element which is included in the modified Beer-Lambert law and is affected

by the optical medium properties, namely the absorption (µa) and the reduced scattering (µ′s)

coefficients [18], and is represented as follows

DPF (k)(λ, d) =
1

2

(
3µ′s(λ)

µa(λ)

)1/2[
1− 1

1 + d(3µa(λ)µ′s(λ))
1/2

]
. (2)

The propagation channel elaborated in this paper consists of two mediums (cell and brain tissue)

which are categorized as intra and inter-cell propagation mediums. Therefore, the DPF equation

(2) should be applied to all paths with respect to its medium.

Based on (1) and (2), the medium light transmittance T (λ, d) can be represented as

T (λ, d) =
I(λ, d)

I0(λ)
= e−µa(λ)dDPF (λ,d). (3)

III. GEOMETRIC MODEL OF MULTIPLE CELL PATH LOSS

Along with other aspects such as cell organelles and the size ratio between a cell and a light

wavelength, the geometry of the cell has a significant effect on the light propagation behaviour

as discussed in Sec. I, and this is largely due to the size and aperture of the light source, and

attenuation of the intensity. The geometrical analysis for the physiological shapes of the neurons

is based on the models in [11], and the three different neurons that is analyzed in this paper are

Fusiform, Spherical, and Pyramidal cells. In addition to the shape and size of each individual

neuron, the light wave traverses a dense neural population. In this section, we elaborate the effect

by the cell’s geometry on the light propagation as it traverses a line of neurons that are of the

same type.

Neurons that are densely packed can be structured in a straight line and examples of this is

illustrated in Fig. 2. The figure shows an induced Pluripotent Stem Cell (iPSC) brain organoid
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Fig. 2: Image of a 5-week old induced Pluripotent Stem Cells (iPSC) cerebral organoid with

differentiated neurons [19]. The white box illustrates examples of dense cells that are arranged

in a straight line.

with differentiated neurons, where the white boxes illustrates examples of spherical neurons that

are in a straight line (this is based on experiments we have conducted in our past work [19]).

Each cortical layer of the neocortex is populated by various types and ratio of neurons. For

example, pyramidal cells are usually found in layers III and V, while fusiform cells are located

in layer VI [20]. Additionally, the average neuron density in men’s neocortex is 25,924(±15,110)

/mm3 and women’s is 27,589(±16,854) /mm3 [21]. Therefore, by considering that our device

will only communicate through a line of homogeneous cells within the layers of the neocortex,

the general formula for the total path loss in dB for N number of any given shape of neurons

is represented as

PLtotal =4.343
[
Nµ(c)

a (λ)daDPF (λ, da)

+ (N − 1)µ(u)
a (λ)deDPF (λ, de)

+ µ(u)
a (λ)(dE + dR)DPF (λ, (dE + dR))

]
, (4)

where da and de are the average propagation distances in a cell and between two cells based on

its shape, respectively, dE and dR are the distances of the light source from the first cell and
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Fig. 3: Geometrical analysis of light propagation using ray tracing as it propagates through a

one-dimensional array of neurons, and this includes (a) fusiform, (b) spherical, (c) pyramidal

cells.

the location of the receiver from the last cell, respectively. The superscript (c) or (u) indicates

whether the parameter belongs to the cell or brain tissue.

In the following subsections, we present the derivation for both da and de for the three different

types of neurons, where they are cholinergic neurons that are found in the cerebral cortex [20].

The shapes for each of the cells, as well as the geometric analysis of light propagation through

the tissue is illustrated in Fig. 3.
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A. Fusiform cell

A fusiform cell can be projected onto a 2D-plane as an oval or convex lens, as illustrated

in Fig. 3(a). The dimensions of the cell are represented with a height hc, width wc, a surface

curvature radius of rc, and their relationship is represented as

rc =
hc

2 + wc
2

4wc
. (5)

A single neuron of this shape has a focusing behaviour when collimated light propagates through

the cell. To investigate the light propagation behavior for multiple neurons organized in a one-

dimensional array, several fusiform cells are positioned in a sequence so that the collimated light

propagates in a non-line-of-sight manner from the second cell. Applying this model to observe

the focusing phenomena leads to another light behaviour which is the divergence effect. The

divergence effect occurs when the focus point becomes shorter as the light propagates through

consecutive fusiform cells. Due to the cell geometry, the focusing/converging and diverging

phenomena occurs alternately, and this phenomena is illustrated in Fig. 3(a). Using geometrical

analysis, the average propagation distances inside the fusiform cell da and between the cells de

are formulated as

da =
4

hc

∫ rc
2

rc−hc
2

√
rc2 − x2 − (rc −

wc
2
)dx =

1

6hc

[
6hcwc − 12rc

2 arcsin

(
rc − h
2rc

)

+ 3(hc − rc)
√
3rc2 + 2hcrc − hc2

+
(
2π +

√
27
)
rc

2 − 12hcrc

]
, (6)

de = dl +
2

hc

∫ rc
2

rc−hc
2

wc
2
−
√
rc2 − x2dx = dl +

1

12hc

[
− 6hcwc + 12rc

2 arcsin

(
rc − hc
2rc

)

+ (3rc − 3hc)
√
3rc2 + 2hcrc − hc2

+
(
−2π −

√
27
)
rc

2 + 24hcrc

]
. (7)
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B. Spherical cell

Fig. 3(b) illustrates a spherical shaped neuron with radius rc projected onto a 2D space. The

behaviour of the spherical shaped cell is similar to the fusiform cell, and this is from the focusing

effects. However, depending on the density of the neurons, the distance between the cells dl has

a significant role in leaking light rays which does not occur in multiple fusiform neural tissue.

Leaking rays are the rays that do not propagate to the next adjacent cell. Therefore, they are not

further transmitted along the propagation path. However, the alternating converging and diverging

phenomena are similar for both spherical and fusiform cells. The light propagation for multiple

spherical neurons in a 1-dimensional array is illustrated in Fig. 3(b). For the spherical cell the

average propagation distance da inside a cell and between cells de is given by

da =
2

rc

∫ rc

0

√
r2c − x2dx =

1

2
πrc, (8)

de = dl +
1

rc

∫ rc

0

rc −
√
rc2 − x2dx = dl −

1

4
(π − 4)rc

2. (9)

Similar to the fusiform cell analysis, da and de of the spherical cells considers all the light rays

along the propagation axis. However, the difference lies in the distance between the incoming

and outgoing surfaces for the rays.

C. Pyramidal cell

The propagation behaviour for pyramidal cells is significantly different when compared to the

two aforementioned neurons in terms of light ray traces, and this is illustrated in Fig. 3(c). A

pyramidal cell tends to deviate the light path due to the refraction of two different medium, and

takes on a behaviour that is very similar to a prism. In this case, the light traversing through

multiple pyramidal cells deviates from its initial axis before it completely propagates from the

line path of the arrays of cells. The light deviation behaviour with respect to the cell’s geometry

is illustrated in Fig. 3(c). The average propagation distance da inside a cell and between cells
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de is represented as

da =
2

hc

∫ hc

0

[
wc
hc

(x− hc) +
wc
2

]
dx =

1

2
wc, (10)

de = dl +
1

hc

∫ hc

0

[
wc
hc

(x− hc) +
wc
2

]
dx = dl +

1

4
wc. (11)

The 2-D projection of the pyramidal cell can be perceived as an isosceles triangle, which is

similar to a prism. Therefore, the light ray deviation angle is governed by the medium refraction

indices. Both (10) and (11) include ray traces from inside a cell and between two neighbouring

cells.

IV. MULTI-NEURON LIGHT PROPAGATION CHANNEL IMPULSE RESPONSE

The cell geometry and the tissue optical properties have a significant effect on the impulse

response of the propagation channel. In this section, we derive how the geometrical analysis of

the previous section plays a role on the channel impulse response, and how this differs between

the three different types of neurons. The combination of both the cell’s geometry and the optical

properties results in attenuation as well as delay of the light propagation to the detector. This is

largely due to the collimation as well as divergence due to the geometric shape and results in

multiple propagation paths of the light rays.

The general expression of multipath impulse response considering N number of neurons that

are placed in a 1-dimensional array can be formulated as [22]

h(t; dtotal, λ) =
N~
n=1

h(n)a (t; d, λ)~
N+1~
n=1

h(n)e (t; d, λ), (12)

where h(n)(t; d, λ) represents the impulse response of the light ray corresponding to the nth

cell, λ is the wavelength, t is the time, and the corresponding subscript a or e indicates if it is

an intra-cell or inter-cell propagation. Furthermore, the intercell impulse response, h(n)e in (12),

consists of three elements, h(n)c , hE , and hR, and is represented as follows

N+1~
n=1

h(n)e (t; d, λ) =
N−1~
n=1

h(n)c (t; d(n), λ)~ hE(t; dE, λ)~ hR(t; dR, λ) (13)
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where subscripts c, E, and R indicates the propagation paths between the cells, light source, and

the receiver (detector), respectively, dE is the distance between the light source and the first cell,

and dR is the distance between the last cell and the receiver. As shown in (12), the impulse

response is based on the convolution as the light propagates through each individual cell along

the path, and the brain tissue between the cells.

The light source applied in this system is considered as a collimated light where the generated

rays has equal intensity following the uniform distribution U(0, 1). In order to use the ray tracing

model, the infinite rays should be discretized to K rays. Since the intensity parameter is used,

the discretization process has no impact on the intensity value. To further elaborate on this,

each intra and inter-cell propagation impulse response can be divided into two parts, namely,

the attenuation component and the delay component. The attenuation follows the modified Beer-

Lambert equation, while the delay can be expressed as a delta dirac function. Thus, the impulse

response for kth-path is represented as

h(k)a (t; d(k), λ) = IET
(k)
a (λ)δ(t− t(k)a )~ IET

(k)
e (λ)δ(t− t(k)e ), (14)

where IE is the intensity emitted by the light source, T (k) = e−µ
(k)
a (λ)d(k)DPF (k)(λ,d(k)) = eη

(k)

is the transmittance of the kth-path, t(k) = ||d(k)||1
v

represents the time delay introduced by the

propagation medium and the corresponding subscript a or e indicates if it is intracell or intercell

propagation.

Furthermore, when the rays from the light source are discretized into K individual paths,

they will traverse through N cells which are aligned between the transmitter and the receiver.

Intuitively, all the corresponding impulse responses contributing to the received signal can be

obtained by (14). Furthermore, (14) can be expressed in detailed by substituting the transmittance
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by the exponential equation as follows


h
(1)
a

h
(1)
e

h
(2)
a

h
(2)
e

...

h
(K)
a

h
(K)
e




= IE · eη
T




δ(t− ||d
(1)
a ||1
va

)

δ(t− ||d
(1)
e ||1
ve

)

δ(t− ||d
(2)
a ||1
va

)

δ(t− ||d
(2)
e ||1
ve

)

...

δ(t− ||d
(K)
a ||1
va

)

δ(t− ||d
(K)
e ||1
ve

)




,

where η represents the matrix product of the absorption coefficient, the distance and the DPF, v

is the light velocity in the medium, and subscript a or e indicates if the path is intra or intercell

propagation, respectively. The velocity value can be obtained by v = c
n

, where c is the light

speed in vacuum and n is the refractive index of the medium. Therefore, the matrix product η

is further substituted by the multiplication of the absorption coefficient, distance, and DPF and

represented as

η =




η
(1)
a

η
(1)
e

η
(2)
a

η
(2)
e

...

η
(K)
a

η
(K)
e




=




−µ(c)
a

∑N
n=1 d

(1,n)
a

−µ(u)
a

∑N+1
n=1 d

(1,n)
e

−µ(c)
a

∑N
n=1 d

(2,n)
a

−µ(u)
a

∑N+1
n=1 d

(2,n)
e

. . .

−µ(c)
a

∑N
n=1 d

(K,n)
a

−µ(u)
a

∑N+1
n=1 d

(K,n)
e




T 


DPF
(1)
a

DPF
(1)
e

DPF
(2)
a

DPF
(2)
e

...

DPF
(K)
a

DPF
(K)
e




.

where µa is the absorption coefficient and the superscript (c) or (u) indicates either the neuron

or the brain tissue, respectively.

V. FREQUENCY DOMAIN ANALYSIS

In optogenetics, the wavelength that is used for the neuron stimulation is based on the visible

450-480 nm blue light, and this is the same wavelength that is used for the light communication
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between the WiOptND devices in our proposed model. The communication is established through

light propagation that is represented as a short Gaussian shaped pulse. The Gaussian shaped

pulse is the product of a cosine function and a Gaussian envelope function. For a light wave,

the Gaussian pulse can be expressed as [23]

Et = Re{E0e
−4ln(2)

(
t
τ

)2
+iω0t} (15)

where Et and E0 are the electric field with respect to time t = 0, respectively, ω0 is the angular

frequency of the light wave, and τ is the Full-Width at Half-Maximum (FWHM) pulse duration.

On the receiver side, the time delay is added to the pulse waveform and it is formulated as

Er = Re{γE0e
−4ln(2)

(
t−td
τ

)2
+iω0(t−td)}, (16)

where td denotes the time delay caused by the propagation path and γ =
(
rE
rD

)2 is the area

(proportional to the square of radius) ratio due to the focusing effect, rE is the radius of the

light source and rD is at the detector [12]. The result from the convolution series of the channel

impulse response presented in (12) can also be obtained by analysing the Fourier transforms of

the transmitted signal, F(Et), and the received signal F(Er). The channel impulse response can

be obtained by applying the inverse Fourier transform of the division, and is represented as

h(t; d, λ) = F−1(H(f ; d, λ) = F−1
(
F(Er(t; d, λ)
F(Et(t; d, λ)

)
. (17)

Based on (15) and (16), we can observe that the input and output relationship is heavily

dependent on the delay caused by the propagation medium characteristics. To obtain this impulse

channel characterisation, which correlates with the delay and focusing factors, we further process

the transmitted and received time domain signals in the frequency domain.

VI. NUMERICAL ANALYSIS

In this paper, the light propagation is simulated using MATLAB, where the simulator generates

geometrical rays that propagate through both the brain tissue as well as the three different
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shapes of neurons. Our approach used for the light propagation modeling is based on a ray

tracing algorithm. Algorithm 1 presents an example for the fusiform cell ray tracing process,

and similar algorithms are also developed for the spherical and pyramidal cells based on their

geometrical properties. This function is iteratively executed and combined with the ray tracing by

applying the focusing parameter γ from (16), which is determined by the illuminated detection

area. Table I lists all the parameters that was used in the MATLAB simulation.

TABLE I: Simulation Parameters

Parameter Value [Unit] Description

λ 456 [nm] Visible blue light wavelength

nc 1.36 Refractive index of the cell [24]

nt 1.35 Refractive index of the tissue

µ
(c)
a 0.9 [/mm] Cell absorption coefficient [25]

µ
′(c)
s 3.43 [/mm] Cell reduced scattering coefficient

µ
(u)
a 20 [/mm] Tissue absorption coefficient [26]

µ
′(u)
s 1.43 [/mm] Tissue reduced scattering coefficient

τ 1 [fs] FWHM pulse duration

A. Path Loss and Geometrical Gain

The light wave traversing in the biological tissue experiences attenuation as discussed in

Sec. II. The attenuation is mainly due to the optical properties of all the biological components

in the cell medium. However, the fusiform and the spherical cells focuses the light rays as it

enters into the cytoplasm, and this is due to the changes in the refractive index. This focusing

effect is further increased when the light propagates into the nucleus, and once again this is due

to the differences in the refractive indexes of the medium [11]. Fig. 4 shows the effect of the

focusing ratio and illumination radius which contribute to the overall gain of the light intensity.
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Fig. 4: Illumination radius (h2/h3/h4) and

focusing ratio γ for eighteen fusiform

neurons.

Fig. 5: Illumination height (h2/h3/h4) and

effective illumination area for seven

pyramidal neurons.

This can be observed in the rise of the illumination as the light propagates through certain cells

and then divergence occurs leading to reduction in the illumination.

The focusing behaviour is not found in the pyramidal shaped cell. Fig. 5 presents the illumi-

nation and shows that it gradually reduces due to the divergence of the light path away from the

line of cells. This is solely due to the geometrical structure of the cell, as illustrated in Fig. 6.

Fig. 7 shows the path loss within the brain tissue for the three different neurons, where the

transmitter and receiver is separated by 450 µm. In case of the pyramidal cells, the ray deviation

due to the geometrical refraction causes the gradient change (marked by yellow shade). The

deviation indicates that the light does not penetrate through the remaining neurons along its

path, and this is because for the fusiform cells there are eighteen neurons along the propagation

path, while the pyramidal cells has seven neurons due to the light path divergence.
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Fig. 6: Light path deviation along an array of pyramidal cells due to the geometric shape.

Fig. 7: Light propagation path loss for the distance of 450 µm between the transmitter and

receiver with 18 cells in between.

B. Time and frequency analysis

We compare the delay and channel impulse response for the light propagation and determine

how it gets impacted from the geometrics of the three neuron cells. The simulation of the light
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Fig. 8: Time and frequency analysis of light propagation along fusiform, spherical, and pyramidal

cells. (a) The normalized intensity of the transmitted and the received signals in the time domain,

(b) Absolute value of the transmitted and the received signal in the frequency domain, (c) Channel

impulse response, and (d) Power delay profile.

path was for one dimension of 18 neurons that are linearly positioned along the wave propagation

direction. In all cases, the receiver is located at a distance of 450 µm from the transmitter.

Fig. 8 shows both the time and frequency domain analysis. In our simulation, one femtosecond

Gaussian light pulse is transmitted from a source which is located at 5 µm from the first cell

on the path. The signal is analyzed at the receiver, and the peak frequency of the transmitted

signal is approximately 500 THz. From the ray tracing analysis, the delay can be characterized

by integrating all the incident rays at 450 µm distance from the transmitter.
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Fig. 8 shows the channel impulse response of the one-dimensional neuron cells and is obtained

by FFT and IFFT as explained in Sec. V. As shown in Fig. 8, the channel impulse response

exhibits correlation with the power delay profile in terms of its peak magnitude of the received

signal in the time domain. The light propagating through the fusiform cells experiences higher

delay compared to the other two cell types since the light propagates mostly though the one

dimensional array of neural tissue. In general, the speed of light in the brain tissue is faster than

in the neuron because of the smaller refractive index. On the other hand, the light is absorbed

less by the neurons due to its lower absorption coefficient, resulting in lower signal attenuation

magnitude. The segmented time delays found in the pyramidal cells is caused by the ray leakages

that occurs intermittently along the tissue. This phenomenon does not occur in two other type

of cells since most of the ray propagation in two other cells are maintained along the straight

path, even though there will be minor divergences and leakages along the path.

Fig. 9 depicts the channel impulse response for the three cell shapes with respect to the number

of cells along the propagation path. It is obvious that the number of cells has a significant effect

on the time of arrival of the signals since the refractive index of the cell is higher, resulting

in slower light propagation velocity. The magnitude of the signal is dictated by the attenuation

medium properties for all cell types and focusing parameters for both fusiform and spherical

cells, which is determined in (16). The difference between the three cells is solely due to the

geometry which affects the distance of the focus point foc(θF , xF ), focusing parameter γ, and

the ratio of the total light propagation distance in the cell da and the brain tissue de. The impulse

response for the pyramidal cells increases gradually as the number of cell goes higher due to

less traveled distance, before the light is diverged leading to no focusing effect.

C. Power characteristics on the receiver

On the receiver, the total received signal is the result of the superposition of the light rays

that arrive at the receiver surface. Fig. 10 shows the peak transmitted and received pulse shapes

DRAFT July 22, 2020



SUBMITTED PAPER 21

no of cells

15
10

5
00

2t [ps]
4

-0.1

-0.05

0.05

0.1

0h(
t)

(a) Fusiform.

15

no of cells
10

5
00

2t [ps]
4

0

0.05

0.1

-0.1

-0.05

h(
t)

(b) Spherical.

7

no of cells

6
5

4
30

2t [ps]
4

2

0

-2

-4

4

#10-3

h(
t)

(c) Pyramidal.

Fig. 9: Channel impulse response h(t) for three shapes of cells with variable number of cells

along the propagation path.

of different cell types as a result of superposition which is based on the time domain analysis

elaborated in Sec. IV. Furthermore, the received signal power difference for those cells is mainly

caused by the propagation distance ratio of the brain tissue for each path and the neurons, as

well as the geometrical gain for each cell shape.

The previous results have shown that there are different propagation paths depending on the

cell types, and this has an impact on how the detector on the receiver is designed. All the cells
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Fig. 10: The highest magnitude pulse shapes of the transmitted signal (gaussian short pulse) and

the received signals after 450 µm propagation through one dimensional array of cells.

along the one-dimensional neural tissue contributes to the delay and attenuation of the light

signal. Consequently, the geometry and the amount of the traversed cells also has an impact

on the received power characteristics. Fig. 11 shows the received power characteristics on the

detector of the receiver for both the fusiform and pyramidal cells. In the case of the fusiform cell’s

receiver detector, the width is 40 µm, while in the case of the pyramidal it is 30 µm. In the case

(a) Fusiform. (b) Pyramidal.

Fig. 11: Normalized power of light ray with respect to the transmission delay when it arrives at

a certain coordinate of a detector for (a) Fusiform cells, and (b) Pyramidal cells.
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of the fusiform cells (Fig. 11 (a)), the power concentration is located in the middle of the detector

and this is in-line to the propagation direction where the cells are aligned. This is directly linked

to the focusing phenomenon that occurs in both fusiform and spherical cells. In order to detect

all the transmitted rays, the detector height should be equal to the height of the cell, hc, which

is 30 µm used in our simulation. On the other hand, different characteristics is observed for the

pyramidal cells where gradual power change occurs in stages and it is also segmented (Fig. 11

(b)). While the height configuration of the detector used is 30 µm, this parameter is dependent

on the cell configuration (the number of traversed cells). The segmented phenomenon occurs due

to leaking rays effect discussed in the earlier section. Unlike the fusiform and spherical cells,

which causes power concentration at the centre of the detector, in the case of the pyramidal cells,

the light rays that traverses through more cells experiences less attenuation as well as deviations

from the original propagation line. Therefore, for both fusiform as well as spherical cells, the

detector should be positioned at the center of the propagation line. In the case of the pyramidal

cells, there are two ways for positioning the detector. As illustrated in Fig. 6, there are both

horizontal and vertical orientations. The horizontal orientation provides better benefit since the

propagation distance can be minimized, but the detected intensity is higher than in the vertical

orientation.

VII. CONCLUSION

While light has been investigated for neural stimulation based on the concept of optogenetics,

this paper addresses the light propagation from a nano-scale light source that can be used for

communication between the WiOptND devices. The analysis presented in this paper discussed

the important factors that affect the light propagation through neurons and brain tissue, namely

the medium optical properties (µa and µs) and the geometric structures of the cells. The cells

investigated in this paper are fusiform, spherical, and pyramidal neurons. An interesting effect

is the distance and the number of the cells along the propagation axis, which affects the path
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loss as well as the geometrical gain.

The channel impulse response of the light propagating along the neurons have an interesting

behaviour. In the time domain, the delay of the simulated system can be observed when the light

pulse is sufficiently short (femto second) since the delay is in the pico second level. This means

that for longer pulses, the delay is insignificant. The time delays for the fusiform, spherical,

and pyramidal are approximately 3.4, 2.5 and 2.7 ps, respectively. Additionally, radial-based

geometries (fusiform and spherical) exhibit alternating high and low amplitude, while pyramidal

tends to exhibit increasing amplitude signal level as the distance increases due to the path

traversing through neurons more than the brain tissue. However, all shapes experience increasing

delay as the distance increases. In terms of the frequency domain, the propagated signal does not

experience any change in its frequency range. Both the time and frequency analysis exhibit 35%,

20%, and 65% attenuation in the signal power for the fusiform, spherical, and pyramidal cells,

respectively. Moreover, the shape of the received signal is governed mainly by the geometrical

shape of the cell where the diffraction causes the change in light directions for the pyramidal cell.

The radial-based-geometry cell exhibited radial pattern in the power gradient at the receiver. In

the case of the pyramidal cells, the position of the receiver is very important to obtain maximum

light intensity for accurate detection. Our analysis found that the light intensity at the detector

greatly varies across the area of the detector.

Analysis in this paper has shown that light propagation as a mode for communication between

WiOptND implantable devices in the brain is a viable solution. The impulse response shows how

the light propagation behaviour varies with the number of cells and how this can impact on the

area design of the detector. This can lead to WiOptND devices that can be placed in various

layers of the cortical column of the cortex, and coordinate their stimulation sequences of the

neurons. The result of this research is a new form of Brain-Machine Interface that allows control

and stimulation at single-neuron level, leading to new forms of treatments for neurodegenerative

diseases.
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APPENDIX A

RAY TRACING ALGORITHM FOR FUSIFORM CELL

This algorithm processes the optical properties of the medium (nc, nt), physical properties of

the cell (rc, dc), and coordinates/direction of the incoming ray (x2, h2, θi). It generates the focus

angle/coordinates (foc(θF , xF )) and propagation direction/coordinates inside the cell (li(x′3, h3),

lo(x4, h4), θ
(2)
i ). For a series of cells, the iterative execution of this algorithm is required.

Algorithm 1 Ray tracing for fusiform cell
Require:

nc, nt (refractive indices of cell and tissue)

rc (the radius of the cell)

x2 (the ray x-coordinate of the previous cell)

h2 (the radius of incoming illumination)

dc (the distance between cells)

θi (the angle of the incoming ray)

Ensure:

foc(θF , xF ) (the distance and angle of focus point)

li(x
′
3, h3) (the coordinate of the incoming ray),

lo(x4, h4) (the coordinate of the outgoing ray)

θ
(2)
i (the ray propagation angle in the cell)

1: CALCULATE(x′2) . x′2 = x2 measured from the 1st surface,

x′2 = (dc + 2rc)− x2
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2: CALCULATE(x3, h3) . x3, h3 = the coordinate where the ray hits the 1st surface,

m2 = tan(180o − θi)

h3 =




m2
2 + 1

2m2(h2 +m2x
′
2)

(h2 +m2x
′
2)

2 − r2c




T 


x23

x3

1




3: CALCULATE(θ(1)i ) . the incoming angle with respect to normal line of the 1nd surface

θ
′(1)
i = arctan

( h3
|x3|

)
− θ(1)i

4: CALCULATE(θ(1)o ) . the refracted angle due to 1st surface

θ(1)o = arcsin
(ntsin(θ′(1)i )

nc

)

5: CALCULATE(x3, θ
(1)
o ) . with respect to 2nd surface

x′3 = 2rc − (dc + |x3|)

θ
(2)
i = θ

(1)
i + (θ

′(
i 1) + θ(1)o )

6: CALCULATE(x4, h4) . the coordinate where the ray hits the 2nd surface

m3 = tan(−θ(2)i )

h4 =




m2
3 + 1

2m3(h3 +m3x
′
3)

(h3 +m3x
′
3)

2 − r2c




T 


x24

x4

1




7: CALCULATE(θ(2)o ) . the refracted angle due to 2nd surface

θ(2)o = arcsin

(
nc
nt
sin
(
arctan

(h4
x4

)
+ θ

(2)
i

))
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8: CALCULATE(xF ) . the focus distance

θF = θ(2)o − arctan
(h4
x4

)

m4 = tan(θF )

xF =
m4x4 − h4

m4
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