
1

Shubham Keshri

INTEGRATING PRODUCT DATA TO
ENTERPRISE DATA WAREHOUSE

Master’s Thesis
Information Technology
Examiner: Kari Systä

June 2020

ABSTRACT
Shubham Keshri: Integrating product data to enterprise data warehouse
Master’s Thesis
Tampere University
Master’s degree in Information Technology
June 2020

Manufacturing industries are gradually moving towards digitalization. This is the demand of
the current market. End-user’s buying behavior is strongly influenced by digital services offered
along with nearly any product. These digital services are mostly driven by data. Data that is gath-
ered during different phase of manufacturing process, sales, customer engagement etc. Data
becomes a fuel in not only end-products but even internal business process optimization. Com-
panies have been collecting and nurturing data from software platforms that support these busi-
ness processes. A common challenge faced by companies is that data from these business pro-
cesses are stored in different applications and their data is decentralized. Therefore, teams are
working in silos.
Data warehousing provides a solution to this challenge. It integrates data from different soft-

ware applications used across organizations and maintains a central repository of data. Thus,
allowing business users to derive meaningful insights from data combined from different applica-
tions.
This thesis focuses on one of many business processes, product data management. It tries to

study different approaches to integrate product data to enterprise data warehouse. After studying
the approaches, it also discusses initial implementation of the selected solution.

Keywords: Product Data, Enterprise Data Warehouse, Integration

PREFACE

The thesis is submitted for a master's degree in information technology at Tampere Uni-

versity of Technology. Research and studies are performed under supervision of univer-

sity lecturer Timo Aaltonen from the department of software systems. Practical experi-

ments and development for this thesis was conducted for Wärtsilä, Finland. Implemen-

tation part of the thesis was supervised by Harri Piili (solution architect, Wärtsilä Finland).

Theoretical part of the thesis was guided by Inka Vilpola (former director of digitalization,

Wärtsilä Finland).

I would like to take this opportunity to thank each of them for their contribution, faith and

patience in me that made it possible to bring the best work to my knowledge. In the entire

process of writing and implementation, I continuously learned something new and im-

proved my understanding on the subject. Last but not the least, many thanks to my family

for their motivation and support.

Espoo, 16th June 2020

Shubham Keshri

CONTENTS

1. INTRODUCTION ... 1

1.1 Introduction to Product data management at Wärtsilä 1
1.1.1 Product data management using Teamcenter 2
1.1.2 Introduction to Enterprise data warehouse 4
1.1.3 Data extraction and ingestion ... 4

1.2 Research questions ... 5
1.3 Structure of thesis .. 5

2. THEORETICAL BACKGROUND .. 6

2.1 Product data management application (Teamcenter) 6
2.1.1 Teamcenter application .. 7
2.1.2 Teamcenter database ... 9

2.2 Enterprise data warehouse .. 9

2.3 Enterprise application integration (EAI) ... 10
2.3.1 Levels of application integration ... 11
2.3.2 Data processing .. 12
2.3.3 Network topologies followed in integration 12
2.3.4 Technical implementations in EAI ... 14

2.4 Existing solution ... 16

3. RESEARCH METHODOLOGY AND MATERIALS ... 19

3.1 Planning ... 20
3.2 Acting ... 25

3.2.1 Solution - I: Custom Java Application ... 25
3.2.2 Solution – II: Talend ETL tool ... 26
3.2.3 Solution – III: Informatica ETL tool .. 27

3.3 Reflections ... 27

3.3.1 Connectivity .. 27
3.3.2 Performance ... 28
3.3.3 Configurability ... 28
3.3.4 Operability ... 29
3.3.5 Tool development and maintenance cost 29

4. RESULTS AND ANALYSIS ... 31
4.1 Analysis from solutions .. 31

4.1.1 Solution – I: Custom Java application ... 31
4.1.2 Solution – II: Talend ETL tool ... 32
4.1.3 Solution – III: Informatica ETL tool .. 32

4.2 Tool Selection and solution implementation .. 33
4.2.1 Solution implementation ... 34
4.2.2 Solution deployment ... 35
4.2.3 Maintenance ... 35
4.2.4 Risk and Challenges ... 35

5. CONCLUSIONS .. 36
REFERENCES ... 37

LIST OF FIGURES
 Integration (high level) .. 6
 Teamcenter application and database ... 7
 Teamcenter objects and relationship design .. 8
 Teamcenter relation example ... 9
 Star schema [38] .. 10
 Data level integration ... 11
 Object level integration ... 12
 Point to point topology .. 13
 Hub and spoke topology .. 13
 Bus topology .. 14
 Application programming interface ... 15
 ETL process [38] .. 16
 C-Program API based Integration Architecture 16
 Daily Load Status for API based Integration .. 17
 Action research [55] ... 19
 Enterprise application integration ... 20
 EDW data model example ... 23
 Fact and dimension table structure .. 23
 Java application ... 26
 ETL tool Informatica based solution design ... 27
 Solution comparison chart for operability ... 29
 Comparison table- based on evaluation criteria 33
 Example mapping from Informatica power center 34

LIST OF SYMBOLS AND ABBREVIATIONS
CC license Creative Commons license
PLM Product Lifecycle Management
PDM Product Data Management
EDW Enterprise Data Warehouse
ITK Integration Toolkit (Teamcenter)
API Application Programming Interface
UML Unified Modeling Language
SQL Structured Query Language
T4EA Teamcenter for Enterprise Applications
ETL Extract Transform Load
POC Proof of Concept
TC Teamcenter
TUT Tampere University of Technology
URL Uniform Resource Locator.

1

1. INTRODUCTION

Industries are moving towards digitalizing [1] their products and services. Firstly, be-

cause they want to improve their operational process to enhance productivity. Secondly,

they want to increase their revenue by introducing value added services [2] around their

products. And finally, also because they want to have a competitive edge amongst other

players in the market. In practice, for global industries like Wärtsilä [3], it means that their

business processes and data must be supported by IT tools specific to their needs. And

to support the business process, there are software applications that are used by enter-

prise. Business processes are different in nature, for example, finance, sales and cus-

tomer relationships. Therefore, software applications supporting them also are different

and so are their data storage and data structure mechanism. This makes it difficult to get

a holistic view of data across organizations.

Combining data from these business processes allow business users to answer some

key questions related to their business. For example, if someone wants to find out net

sales for a particular customer in the last 5 years. Data has to be combined from software

applications supporting sales and customer relationships. Data warehousing [5] provides

the solution to this problem. It defines a centralized storage of data coming from different

software applications. This allows to build new relationships by combining data from a

variety of applications to get a holistic view of enterprise data. Spanning across enter-

prise, data warehousing solution is called enterprise data warehouse (EDW) [6]. Further,

these relationships are used to create business reports which are used by business

stakeholders. Product data management [7] is one of many business processes at Wärt-

silä. This thesis discusses different approaches to integrate product data [8] with EDW.

Studies and implementation related to this thesis was conducted at Wärtsilä Finland un-

der the supervision of solution architect [9] and enterprise architect [10].

1.1 Introduction to Product data management at Wärtsilä

Product data management is a term used to describe the process of capturing, pro-

cessing, storing and analyzing data for a product (engines and power plants in case of

Wärtsilä). The PDM team at Wärtsilä is responsible for management of the entire product

life cycle [11] process of manufacturing, maintenance and spare part management for

2

engines and power plants. Data is generated, processed, stored and analysed in phases:

gathering requirements, solution design, product manufacturing, assembly of individual

parts, customization, maintenance, and spare part management.

Taking a typical example for manufacturing an engine. Firstly, in requirement gathering

phase information is gathered from customers related to their needs. It usually comprises

interview questions, meeting notes, design files etc. Next, in solution designing phase

architects and design engineers create 3-D models for different parts of the engine, for

example, a crankshaft [12]. In the manufacturing phase, these 3-D models are converted

into real parts of an engine in factories. Assembly line workers and engineers use data

from the holistic 3-D model [13] of the engine to assemble different parts of the engine

together. Engines are not manufactured as one size fits all. Also, engines have to be

tailored based on the local guidelines from the customer’s geographic location. For ex-

ample, the color of an engine has to follow certain standards in different countries. There-

fore, customizations are made and finally, engines are delivered to the customer. After

installation, maintenance is followed for the service period.

In all of the above phases, data is generated, gathered and stored in different forms, for

example, flat files [14], pdf design documents, relationships, 3-D models. Another chal-

lenge is that manufacturing units, engineers and customers in global companies like

Wärtsilä are located in different geographical regions. This requires a centralized appli-

cation to store and process product data. The software application that helps manage

product data at Wärtsilä is discussed in the next section.

1.1.1 Product data management using Teamcenter
Teamcenter [15] a Siemens [15] product is a software platform [16] that enables central-

ized management of product data. It is a commercial software and is sold with a license

to be used in an enterprise. It allows storage and version control of data at each step of

a product life cycle. It stores, for example, process information, design and documents

related to the product or service. The main functionalities provided by Teamcenter under

PDM scope are product data and lifecycle management, product concept and design

management, engineering change management, product configuration and structure

management, product portfolio management, scope of supply management, and manu-

facturing process management.

Again, using the same, example for, manufacturing of an engine. Product data in this

context refers to data that defines the engine, manufacturing process and delivery. En-

3

gine after installation also generates operational data which is collected, stored and an-

alyzed for improvements and repair. Product lifecycle or in this case engine lifecycle

starts from gathering requirements and lasts until the engine has been dismissed from

operation. Product design and concept management deals with design of the conceptual

design of an engine and its components. Change management refers to how well the

application is able to adapt to changes made, for example, in one part of the design.

There are processes defined how a change is captured, implemented and propagated

to different components that are eventually affected by that change. Similar processes

are followed in spare part management. All these features are embedded in different

models of the application that works in harmony. This provides the users visibility and

access to different phases, for example, design, manufacturing and maintenance of the

product.

At Wärtsilä, Teamcenter is one of the main applications used with more than 3000 users

globally [17]. It is widely being used in manufacturing marine solution, energy solution

and service business units in supporting product data management. Although, having

only product manufacturing data is not enough to bring insights and business value.

Product data combined with sales, cost and other business processes allow business

analytics to bring useful insights to grow business. One typical use case is to predict the

quantity of purchase for engine parts in the upcoming year. For accurate prediction, com-

bined data from product sales history and parts lists from product data can help. One

way could be to integrate data from the sales database in Salesforce [4] to Teamcenter

database. This approach is not very practical due to following reasons:

• Teamcenter application is not suitable for handling bulk data access.

• Data storage mechanism of Teamcenter is too complex.

• Teamcenter application contains work in progress data. It might not be accurate

for historical analysis.

• It has data relevant only for PDM processes.

• Teamcenter application database is not meant for complex analytical queries to

support business reporting.

With these limitations it is clear that Teamcenter alone is not sufficient to allow business

users and analysts to build reports to help them make business decisions. This also

helps to understand why having a centralized data storage capable of storing and pro-

cessing large amounts of data is necessary for business reporting. And, eventually help

4

in understanding why integration of product data to enterprise data warehouse is re-

quired.

1.1.2 Introduction to Enterprise data warehouse
Data Warehousing is a solution that provides large data storage and high processing

capabilities. It provides a platform for business reporting and analytics [18]. Data Ware-

house stores data from sources such as enterprise resource planning (ERP) application

[19], customer relationship management (CRM) application [20], IoT devices [21] and

product data management application.

Data comes from a variety of source applications and their structure is different. Software

application which provides storage and processing for data warehousing allows distrib-

uted processing. This enables massive parallel processing of data on large datasets.

There are four stages of data in data warehousing: data extraction from source, data

ingestion to Data Warehouse, data modelling and data consumption.

In the data extraction phase, data is extracted from the source system. In the next phase

of data ingestion, extracted data is loaded to distributed storage [22]. Structure of data

at this stage is still in the source application model. To create relationships between data

coming from multiple source applications, a common model is chosen, and data is mod-

elled accordingly. Each business unit then creates their own data mart [6] suitable for

business reporting to answer business questions. Finally, these reports are consumed

by business users.

A few examples of business reporting solutions consuming data from data marts are

Microsoft business reporting [23], Qlik view [24], Microsoft power BI [25] and IBM Cognos

[26].

1.1.3 Data extraction and ingestion
Data extraction is the phase where data is extracted in different ways from a software

application. Some software applications expose a set of APIs (Application Interfaces)

[27] for external applications to fetch data. Another common way to extract data from a

software application is by creating connections to their back-end database and fire SQL

queries [28] to fetch data. The next step after extraction is ingestion of data into data

warehouse storage. Depending upon type of data storage and frequency of loading data

there are many commercial and open source software platforms specializing in ingestion

of data. This brings the discussion which leads to the research question and purpose of

this thesis.

5

1.2 Research questions

Need for integrating Teamcenter data with enterprise data warehouse arrived when the

legacy reporting application WDMS (Wärtsilä database management system) used by

Wärtsilä for business reporting needed to be phased out. These reports were declared

outdated and needed more information from other applications to support business.

Wärtsilä had already invested in a data warehouse platform running on Oracle Teradata

[29]. The obvious solution was to extract data from Teamcenter and ingest into Oracle

Teradata. This would allow business users to use modern business reporting tools such

as Microsoft SSRS (SQL server reporting services) [30] to create new reports with data

combined with other applications such as Salesforce.

Arriving to the research question: This thesis was organized to find out the best approach

to integrate product data to enterprise data warehouse at Wärtsilä.

1.3 Structure of thesis

This thesis is structured into four chapters. First chapter discusses the introduction. It

starts with describing the scope of thesis and about Wärsilä and its line of business. Later

this chapter discusses two software applications associated with the study. Product data

management tool Teamcenter and Enterprise data warehouse. Later, it briefly discusses

the data extraction and ingestion approaches and opens up the research question.

Next chapter discusses the theoretical background of product data management and

enterprise data warehouse. In this chapter different types of integration strategies are

discussed based on level of application integration, data processing timeline, topologies

and technical implementations. Following which is the research methodology and mate-

rial chapter. This chapter focuses on action research methodology. Research is divided

into three iterations and each of them are evaluated based on some evaluation criteria.

Finally, in the result and analysis chapter pros and cons of each approach is discussed

and the best approach is selected for development and deployment. In the end the thesis

outcome is summarized in the conclusion chapter.

6

2. THEORETICAL BACKGROUND

This chapter discusses the background and technical architecture of Teamcenter [15],

data warehousing and integration. It also discusses application types, data types, data

storage mechanism and other factors that will help determine the possible alternatives.

The study will also influence the selection for the right software tool for extraction of data

from Teamcenter and ingesting it into enterprise data warehouse.

Extraction of data from one application and ingesting it into another application is manual

process. In software development context, this process is also commonly referred to as

integration of applications or EAI (enterprise application integration) [22]. Integration of

two or more applications means automating the process of manual replication of the

same data across multiple applications. Integration increases organizational efficiency,

reduces duplication of procedures and records and provides an agile system with less

redundancy [31].

 Integration (high level)

Figure 1 shows integration in context with two applications: Teamcenter (product data

management system) and Oracle Teradata (enterprise data warehouse). The software

application from which data is extracted is also known as source application, and the

software application to which data is ingested is also known as target application.

2.1 Product data management application (Teamcenter)

Technical architecture behind Teamcenter on a high level has two parts: application and

database (Figure 2). Application part consists of the code which enables the user inter-

face, functionality and features of the application. It is designed using object-oriented

design [32]. Database behind Teamcenter stores data related to the product and tech-

nical metadata related to the Teamcenter application. Teamcenter allows users to select

from a list of commercial databases that it can support. In case of Wärtsilä, the database

behind the Teamcenter application is Microsoft SQL server [30].

7

 Teamcenter application and database

2.1.1 Teamcenter application
Teamcenter application has object-oriented design and is based on classes and objects.

Object-oriented design is used in scenarios where an application wants to persist their

data in a relational database. The process of mapping between object-oriented data

models with relational databases is called object-relational mapping [33] and can be

achieved with already available packages that generate the necessary code. The benefit

of using object-oriented design is that it provides a structured representation of data.

Teamcenter client application consists of a master object called Workspace. Within the

workspace object there are subclasses. The main subclasses within the workspace ob-

ject class are [34]:

• Item: Fundamental physical or conceptual entity to manage information. For ex-
ample: parts, documents and equipment.

• Item revision: The version of an item. Whenever there is a modification in an
item, the change history is maintained as a different item revision of the original

item.

• Form: Form is used to view or modify name/value pairs. These are then stored
in a dataset object.

• Dataset: It is the actual storage class of the object. An example could be linked
to a physical document.

• BOM view: Bill of materials (BOM) is the assembly structure of a product. Exam-
ple can be a BOM of engine assembly.

8

• Relation: It is an object which relates one workspace object to another.

 Teamcenter objects and relationship design

As an example of object-oriented design, Figure 3 shows the Teamcenter out of the box

[15] entity relationship diagram. Out of the box here means that this is the default design

provided by Teamcenter application. The design is often customized to meet the busi-

ness needs of the customer (Wärtsilä in this case).

9

2.1.2 Teamcenter database
The relational database used by Teamcenter at Wärtsilä is Microsoft SQL server which

is a relational database management system [35]. The object-oriented design of the ap-

plication is mapped with the relational database using object-relational mapping [33]. An

example of a relationship between item revision table and item table is shown in figure

4.

 Teamcenter relation example

Teamcenter application takes care of the object relational mapping. Apart from tables

which contains business data, there are tables that contain Teamcenter system data.

Teamcenter database consists of tables corresponding to the object, class and relation-

ships. The mapping is not always one-to-one. Teamcenter does not provide documen-

tation of the object-relational mapping. There is, however, an XML file called “model.xml”

in the TC_DATA folder of the Teamcenter installation folder. This file helps in decoding

the actual table names in the database corresponding to Teamcenter application objects.

“model.xml” becomes an important document for extraction of data from Teamcenter.

2.2 Enterprise data warehouse

Enterprise data warehouse is an enterprise wide centralized repository of business data.

Data is first loaded into the staging area of the underlying storage. It is then modelled

and finally, this data is primarily consumed to create business reports and perform busi-

ness analysis. The underlying storage for an enterprise data warehouse can be a rela-

tional database, a no-SQL database [36], files or combination of these. The selection

usually depends on the data type and structure of the majority of data in an organization.

10

Typically, for global companies having large volumes of data, a no-SQL distributed da-

tabase, for example, Oracle Teradata is a good option.

Only having the correct storage for data warehousing is not enough. Having a good and

common data modelling technique in a data warehouse is really important. Common

examples of data modeling techniques are entity relationship modeling [37] and dimen-

sional modeling [38]. Dimensional modeling is more suitable for data warehousing solu-

tions. Dimensional data modeling is used for decision support applications that are highly

optimized for reporting and analytics purposes and efficient handling of data. In data-

bases, it is often represented as star schemas [39]. The name comes from the fact that

it resembles a star structure. The star schema comprises two kinds of tables, fact and

dimension tables [39]. Fact tables are designed to store performance measurements for

organization’s business process events. Dimensional tables on the other hand are used

to store textual context associated with fact tables.

 Star schema [38]

The data model is flexible and highly scalable. Figure 5 demonstrates an example of star

schema. One fact table can have multiple dimension tables related to it, which makes it

organized. Another benefit of dimensional model is that it supports ad-hoc queries which

enable self-service. This allows business users to take advantage of self-service report-

ing applications to create their own reports.

2.3 Enterprise application integration (EAI)

Enterprise application integration (EAI) [22] makes enterprise applications share busi-

ness data and functions with each other. Applications can be heterogeneous ranging

from software platforms like Teamcenter to in house-built solutions. The problem of ex-

tracting data from Teamcenter and ingesting it into enterprise data warehouse can be

11

solved by integration. EAI is implemented based on the business and structure of the

organization and vary from enterprise to enterprise. EAI can categorized based on: levels

of application integration [40], data processing timeline in integration, topologies followed

in integration [22] and finally, technical solutions for integration.

2.3.1 Levels of application integration
EAI can be performed at different levels and is broadly classified into three levels: data

level integration, object level integration and process level integration.

Integration of applications may fall under one or combination of the above-mentioned

level of application integration based on factors such as size of data and complexity of

the design of the source and target application. Teamcenter allows data and object level

integration. Enterprise data warehouse only allows data level integration. For this reason,

process level integration is kept out of scope for this thesis.

2.3.1.1 Data	level	Integration	

In Data level integration [41], the databases or storage files are integrated directly. One

of the very basic ways to implement it is using FTP (file transfer protocol) [42]. In FTP,

files are copied from source location (storage) to the destination location (storage). An-

other common way is to connect the databases of the source and target application.

 Data level integration

In Figure 6, application 1 and 2 are having database 1 and 2 running behind them which

stores their data. In this type of integration, the application itself does not have any infor-

mation about the integration. Benefits of performing data level integration is that it pro-

vides high speed data transfer due to a smaller number of proxies in between them.

2.3.1.2 Object	level	Integration	

An object in an application refers to an entity [37]. In object level integration, the target

application object talks with the source application object. It provides an additional ab-

stract layer by giving accessibility to the objects of the source application that is visible

in the user interface of the application.

12

 Object level integration

In performing object level integration, one application provides an interface to allow an-

other application (application interface) to talk with the internal objects shown in Figure

7. These interfaces abstract the complexity and internal architecture of the application.

In this kind of integration, the target system has the information of the integration. How-

ever, the source application has no information about the integration and the target ap-

plication.

2.3.2 Data processing
There are two possibilities of how data can be processed while data is loaded to target

application from source. Either the data can be processed right away when it is created

in the source application or, it can be processed in batches [43]. The first case is called

real time processing of data and latter is called batch processing. What time is consid-

ered real time is relative to business needs.

2.3.3 Network topologies followed in integration
EDW can have many software applications as a source for data. When more than two

application comes into picture of integration, common network topologies enabling con-

nectivity are followed. Three network topologies followed in integration are point-to-point

topology [44], hub and spoke topology [22] and bus topology [22].

2.3.3.1 Point-to-point	topology	

Point-to-point topology connects one application to another individually with a link be-

tween them. It is trivial when there are only two applications to be integrated. More than

two applications mean each application has to be integrated with each other shown in

Figure 8. It is a tightly bound integration topology, cost effective but less scalable.

13

 Point to point topology

The bottleneck of such topology is the number of applications participating in the inte-

gration. As soon as the number grows, these links in between applications start growing

resulting in a mesh of links hard to manage.

2.3.3.2 Hub	and	Spoke	topology	

Visually hub and spoke topology [22] resembles the tire of a bicycle shown in Figure 9.

Hub represents the central axis of the tire with software applications connected at each

end of the spoke. This topology reduces the number of links between applications. Hub

acts as the centralized source and destination for data. This is comparatively more ex-

pensive to build than point-to-point because it requires to maintain a centralized hub.

 Hub and spoke topology

Hub in technical implantation and can represent a relational database, a data warehouse

or an application depending on the use case. As hub acts as the centralized storage of

data, it also means it becomes a single point of failure. Therefore, often the hub is kept

behind a load balancer with a failover hub to provide high availability [45].

2.3.3.3 BUS	topology	

Bus topology, similar to hub and spoke has a centralized application for communication

among different applications. However, the bus only acts as a channel for communication

14

and not storage. Bus provides an interface to more than one application. If information

changes in one application, the change travels through the bus to communicate the

change in all other applications as shown in Figure 10. Implementation of bus topology

requires high initial investment but is cost effective when adding one more application to

the hub. It is also flexible and requires no change to existing connections. The bottleneck

of this topology is the failure of the centralized bus.

 Bus topology

2.3.4 Technical implementations in EAI
Common ways of implementing EAI in an enterprise are by using application program-

ming interfaces (APIs) [27], enterprise service bus (ESB) [46] and extract transform load

(ETL) [47]. Teamcenter provides a set of TKI APIs which can be used for extracting data

from Teamcenter. Teamcenter and EDW both have databases and hence ETL is a valid

alternative. ESB is not applicable in this case and kept out of scope and discussed in

brief.

2.3.4.1 Application	programming	interface	(API)	

Application programming interface defines how an application can open doors to other

applications for communication. It defines the protocol of how the services or data offered

by the application can be accessed. Some APIs can be pre-build coming from commer-

cial applications. Sometimes it is also possible to create custom APIs tailored to business

needs.

15

 Application programming interface

APIs can have multiple uses. It can provide an interface for application integration and

also can be used by reports to access data as shown in Figure 11. APIs operate at

application level, meaning they hide the internal architecture behind the application.

Teamcenter provides a set of pre-built APIs called information toolkit (ITK) [15].

2.3.4.2 Enterprise	Service	Bus	(ESB)	

Enterprise service bus can be seen as a technical implementation of bus topology. The

centralized bus (Figure 11) acts like a message server. The message, usually in XML,

travels in the bus to reach the destined application. This decouples [48] applications with

each other. Some commercially available ESB software platforms include IBM Web-

Sphere [49] and open ESB [50].

2.3.4.3 Extract	Transform	Load	(ETL)	

ETL is the process of extracting data from a source application, transforming data and

loading it to the target application. Transformation phase in ETL includes processes such

as data validation [51], data cleaning [52], and data aggregation [53] (Figure 12). Trans-

formation of data requires processing of data. Processing requires a processing engine.

There are two ways in which data can be processed. One way is to utilize processing

capabilities of the underlying storage. For example, if data is stored in a database then

data can be transformed by writing SQL queries that perform functions like data valida-

tion, data cleaning and aggregation. Another way of processing data is to load data to

an external processing engine and then load it back to the storage. The orchestration of

data transformation and loading can happen either by using functions provided by a da-

tabase or an external software.

16

 ETL process [38]

There are a variety of ETL tools available in the market. Some are commercial and some

are open source. Some organizations also invest in building their own in-house ETL tool.

Commercial tools supporting ETL not only provides an easy way implementing ETL pro-

cesses, but also provide additional features that help in maintenance and continuous

service of data integrations such as [54] monitoring of the ETL workflow, scheduling of

the workflow, data profiling, built-in transformation functions, code versioning and data

lineage.

2.4 Existing solution

Re-visiting the research question again, an approach to integrate product data to EDW

already existed. Existing solution utilizes Teamcenter API to extract data from

Teamcenter. This solution was developed by an external vendor for Wärtsilä. Mainte-

nance and enhancements were also taken care of by the same vendor. Solution design

is shown in figure 13.

 C-Program API based Integration Architecture

Solution includes a custom C-program which uses Teamcenter ITK (Integration Toolkit)

API to query Teamcenter to fetch objects and populates a list of CSV files. These files

are categorized based on Teamcenter item type. Another 3rd party tool M-control picked

17

these CSV files [14] from the server and loaded data into the enterprise data warehouse.

This setup included multiple steps and it was expensive to maintain and required re-

sources which were not easily available. It was complicated to configure the extraction

as it was configured using flat files and command line parameters. The load setup was

based on windows scripts. Code was running on the same server where Teamcenter

was hosted which was causing performance issues. Another challenge with this solution

was data reloading. Interview with stakeholders for the tool clearly indicated their day to

day struggle with managing the tool. And they needed a better solution which was auto-

mated and more stable.

W
eek
Num-
ber

Days of Week
Load-

ing Time
(in Hours)

Reason De-
lay

Ex-
pected
Time for
Comple-
tion (in
Hours)

16 Monday Failure in Extraction 10,00
16 Tuesday Failure in Extraction 10,00
16 Wednesday 11,50 Success with Delay 1,5 10,00
16 Thursday 9,00 Success with Delay -1,0 10,00
16 Friday 8,00 Successful in Time 10,00
17 Monday 4,42 Successful in Time 10,00
17 Tuesday Failure in Extraction 10,00
17 Wednesday Failure in Extraction 10,00
17 Thursday 11,50 Success with Delay 1,5 10,00
17 Friday Failure in Extraction 10,00
18 Monday 4,17 Successful in Time 10,00
18 Tuesday 4,42 Successful in Time 10,00
18 Wednesday Failure in Extraction 10,00
18 Thursday Failure in Extraction 10,00
18 Friday Failure in Extraction 10,00
19 Monday 3,21 Successful in Time 10,00
19 Tuesday 4,17 Successful in Time 10,00
19 Wednesday 4,42 Successful in Time 10,00
19 Thursday Failure in Extraction 10,00
19 Friday Failure in Extraction 10,00
 Avg. Load Time= 6,48

 Daily Load Status for API based Integration

Daily loads with existing tool was monitored to analyse stability. Figure 14 shows daily

status of the tool for 4 weeks. In about 50% of the days during the monitoring period

loads were failing. Also, average load time for loading data from Teamcenter to enter-

prise data warehouse was 6,48 hours which sometimes extended up to 11.50 hours. It

resulted in problems with performance of Teamcenter server by throttling CPU of the

sever hosting Teamcenter during normal working hours .

18

This chapter discussed the theoretical background of Teamcenter, data warehousing

and enterprise application integration. The next chapter research methodology and ma-

terials discusses in detail about how research was carried out at Wärtsilä for the selection

for an appropriate data extraction and ingestion tool for integrating product data to en-

terprise data warehouse.

19

3. RESEARCH METHODOLOGY AND MATERI-
ALS

The research or practice for this thesis was carried out by applying action research [55]

methodology. Action research is also sometimes referred to as action science [55]. Ac-

tion research is driven by four core principles shown in Figure 15. Implementation of

action research is carried by iterating between planning, acting, observing and reflecting.

 Action research [55]

Initially, in the planning phase the practitioner identifies the focus of the research. The

research questions are set at this phase. What change the practitioner is planning to

make, and how that change will get measured is defined in the planning phase. In the

next phase, as the name suggests, action or acting is the most important aspect of action

research. Acting which starts with gathering data, finding out the background of the prob-

lem and solutions that are already available. Acting requires the involvement of the prac-

titioner to implement the change. Moving forward, in the observation phase the imple-

mented change is observed. It is compared based on the defined measurements and

the previous iteration of the research. Based on the observations, the practitioner makes

a reflection of the solution. The learnings from the iteration are analyzed. Feedback is

gathered from stakeholders who are affected by the change. Decision is then made

whether the practitioner wants to make improvement in the same solution or should look

into another approach. Based on the reflection, either the iteration repeats or settles.

Selection of the correct research methodology for this thesis itself was also one key

study. Most common research methodologies that study suggests are empirical research

 Planning

 Acting

 Observing

 Reflecting

20

[56] and quantitative research [57]. The reason why Action research was selected to

carry out the research for this thesis was because of the following reasons:

• The author of the thesis is not only an observer but is also influencing the events

of research

• action research requires total involvement of the practitioner and they become

the change agents

• action research also involves informal and in-depth interviews, ethnographic

methods of observation and participation [55]

• Action research is usually carried out by academic practitioners who are employ-

ees or an external consultant of an organization

Above mentioned criteria satisfied the needs of the current problem author was looking

into. Hence, thesis work proceeded with applying action research.

3.1 Planning

To ramp up, the planning phase started with identifying the focus for the thesis. Wärtsilä

decided to phase out their legacy reporting application WDMS (Wärtsilä Database Man-

agement System). This decision naturally created the need to look for an alternative so-

lution for business reporting with Teamcenter data and also combining data from other

applications. Because Wärtsilä had already invested in a data warehouse, it became the

default option to integrate Teamcenter data to data warehouse (Figure 16). Also, inte-

gration was a broad topic. It had to be narrowed down to smaller steps to individually

focus on solutions. With the information gathered from theoretical studies, it was evident

that there are multiple approaches to achieve integration. It needed some strategy and

evaluation criteria to select the best approach.

 Enterprise application integration

At Wärtsilä, tied to this integration there are several teams under the business unit ‘in-

formation management’. Firstly, the PDM team is responsible for managing the product

data lifecycle. Secondly, the analytics team responsible for managing and maintaining

21

data warehouse and business analytics solutions. And finally, the enterprise architecture

team responsible for maintaining the enterprise architecture of software applications at

Wärtsilä. Individual informal interviews [58] were carried out with at least one stakeholder

from each team to get a better understanding of how this integration would affect in terms

of data ownership, vision for enterprise integration and also to learn from past experi-

ences with each team. This would allow the work to be carried out in harmony with other

applications. Stakeholders that were closely related to the applications involved in enter-

prise application integration included: solution architect [9] and solution manager [59]

from product data management team at Wärtsilä, solution architect from analytics team

at Wärtsilä and enterprise architect [10] from enterprise architecture team at Wärtsilä.

Purpose of the interview was to find out the current situation of the integration, how is

the current situation affecting the stakeholder, what are the problems faced by stake-

holders and expectations of stakeholders from the future solution. Response from the

stakeholders helped in understanding the current situation. It was found out that a vendor

had built a custom-made application for extracting data from Teamcenter. This applica-

tion was dumping files to a server. Then these files had to be manually copied to another

server from where another application picked up data and loaded into the data ware-

house. However, stakeholders were not satisfied with the existing solution. Everyday

business was getting affected due to missing files, manual errors etc. Following were

some concerns and feedback gathered about the existing solution:

the solution was hard to maintain
adding changes to existing solution was difficult
there was frequent failure in loads
team lacked skills to maintain the solution
data load took long time
reloading of data involved lengthy manual work
And solution in general was unstable and unreliable.

Along with the interviews, study of the technical nature of the two applications

Teamcenter and enterprise data warehouse was important. Interview also revealed that

there was already a custom application made to satisfy the need. Study of the existing

solution was also necessary to understand the gaps. This information also was gathered

based on meetings with different stakeholders.

First phase started in parallel with the interviews by studying Teamcenter architecture.

Teamcenter on a very high level consists of two main components: an application han-

dling different functions and database for storage Figure 3. Data generated and manip-

ulated in the application is persistently stored in the database. Teamcenter also stores

application metadata also in the database along with user data. Meaning the relational

22

tables in the database consists both application metadata tables and business data ta-

bles. To extract business data from Teamcenter, either the application can be queried or

the database. Teamcenter provides out of the box application querying interface using

ITK (integration toolkit) API.

Second phase was carried out by studying the Enterprise data warehouse (EDW). At

Wärtsilä Oracle Terada is used for data warehouse storage and processing. It is a com-

mercial tool with a license. Data modelled methodology used in data warehousing is

dimensional modelling. In dimensional modelling [60], tables that are created are cate-

gorized basically in two types fact and dimensions. Fact tables by definition should rep-

resent metrics, measurements or facts of a business process. In the modelling diagram,

it can be found in the center surrounded by corresponding dimension tables (figure 15).

Dimension table by definitions should represent descriptive or textual attributes which

are related to its corresponding fact table.

Figure 17 shows the snapshot of Wärtsilä EDW dimensional model. Table name with TF

prefix is a fact table and tables with TD prefix are dimensional tables. Data coming from

all applications are combined and models are created for specific business needs.

23

 EDW data model example

 Fact and dimension table structure

Data modelling after ingesting data to data warehouse is carried out in these steps:

• Data when loaded to the data warehouse lands in the staging area. Here data is

in raw state. Meaning there are no transformations applied to data which is cap-

tured from the source application.

• Data is then modelled using dimensional modelling. Transformations and func-

tions related to dimensional modelling are applied.

• Finally, views are created on top of dimensional models from where applications

consume data. This layer is also known as data marts.

In the third phase, the existing solution for data extraction and ingestion was observed.

Existing data extraction tool was an in-house build solution using C-language [61]. This

application was querying Teamcenter using TKI API. Data queried was then written into

flat files to a local machine. Triggering the extraction of data was manual and needed

manual changes in the configuration files. Another tool called M-control [62] then fetched

files from the server and loaded them into data warehouse tables. Data loaded to the

data warehouse was also not modelled. This solution was developed by a 3rd party ven-

dor [63] and the internal IT team at Wärtsilä lacked skills to develop it to make it stable.

Loads were failing very often due to large numbers of flat files. It was getting inconvenient

in handling files and maintaining data quality.

Based on evaluation from the result of interviews and observation of the existing solution,

it was evident that a more robust and automated solution was needed to integrate data

from Teamcenter to data warehouse. To improve the overall situation, there were couple

24

of alternative solutions for this problem. First by improving the existing solution. Second

by building another custom-made solution. Third by looking for open-source solutions for

ETL. Finally, by looking into commercial ETL tools.

Also, based on common opinion from all stakeholders a set of evaluation criteria were

established to evaluate the future integration solution. Criteria included connectivity, per-

formance, configurability, operability, tool development cost and maintenance cost

First evaluation criterion is connectivity [64]. In the context of EAI it means the ability of
the integration application to be able to connect with different source or target applica-

tions. Applications can be connected via API, ODBC/JDBC drivers [68] or native drivers

for certain applications. Connectivity also determines protocols [64] used, size of data

transfer and security. It is important that connectivity is easy to establish, reliable and

maintainable. Next, performance [65] can have more than one context. In EAI context, it
is the key matrix that defines the time elapsed for loading data from one application to

another. In object level, performance can be measured as the time elapsed in transfer-

ring the data from one object in one application to the same object in another application.

The unit of measure here is a variable of time. So, less time in data transfer rate indicates

better performance.

Another criterion is configurability [66]. It can also be defined as the ease of reusability
of functions in the application. Configuration allows you to specify parameters based on

which the application invokes the same function for a slightly different input. For example,

based on input parameters, the application can either connect to a development data-

base or a production database. So, a low configurable solution means it is not flexible

enough to take parameters and the functionalities are limited. Next is operability [67].

Operability is the measure of the quality of an application. In other words, measuring
stability and reliability. Ability of an application to perform functions without failures, and

ease of recovery in case of failure. An application is also considered better in operability

if it provides enough functionalities for collaborative development, testing and mainte-

nance. This ensures that the development team is able to deliver quality results.

Development tool cost is another important criterion for evaluation. It is the estimated
cost for developing or purchasing a license for the tool. In this case, the integration ap-

plication. Another cost associated with this is the cost of building pipelines for integrating

data. Development cost also includes cost for resources and infrastructure. Infrastructure

here refers to server, database and network application. Generally, the cost of develop-

ing a custom tool is lower but more often consumes more effort in maintenance of the

25

application. And finally, maintenance cost is the estimated cost for maintaining the serv-

ers, monitoring the data pipeline workflow, fixing the defects and upgrading the system.

This includes the estimated cost of resources to maintain the solution.

3.2 Acting

Based on the interview and discussion with the stakeholders, it was found out that there

are two methods for extracting data out of Teamcenter. First by using TKI API provided

by Teamcenter. And second, by direct querying the database of Teamcenter.

The existing solution was using TKI API to fetch data from Teamcenter. The main prob-

lem in this approach was data volume. Volume of product data required for creating busi-

ness reports was high. This resulted in delay in extraction of data which eventually meant

obsolete values in reports. Business users were heavily affected and needed up-to-date

information. Another challenge with this approach was that Teamcenter API was using

server resources to cater the queries for extraction. This led to slowing down of

Teamcenter application during normal working hours.

To resolve these two problems, there were two alternatives. First alternative was to im-

prove the existing solution to reduce the time of extraction, in such a way that it can finish

extracting data in non-working hours. Challenge with this solution was competence. The

existing extractor was developed using C programming language. It is a powerful yet old

programming language. Second alternative was to try another approach where data can

be queried directly from the Teamcenter database. To proceed further, there were three

alternative solutions planned. The idea was to create MVP (minimum viable product) [69]

with different approaches. And finally study them based on the defined evaluation crite-

ria. The first solution included improvement in the existing solution. To overcome

knowledge of C programming language, Java was selected as the programming lan-

guage for development of a custom tool which will be extracting data from Teamcenter

and loading it to data warehouse. Second solution was planned to utilize an open source

ETL tool from Talend [70]. And the third solution included utilizing a commercial ETL tool

called Informatica Power Center from Informatica [71].

3.2.1 Solution - I: Custom Java Application
First solution started by developing a custom standalone Java application (Figure 19).

Scope of this tool was to extract one entity from Teamcenter and ingest it to a data ware-

house. In this case data was extracted from item revision [72] entity and loaded to item

revision table in EDW. Scope also covered the ability of Java applications to trigger this

26

extraction, create dynamic queries based on the configuration parameters and finally, it

should be possible to schedule workflows.

 Java application

Teamcenter database was used as a source to extract data from Teamcenter in this

approach to examine data extraction time. There was no official documentation available

with instructions to query the Teamcenter database. However, Teamcenter server in-

cluded a file called ‘model.xml’ in the installation directory, which described the model of

table relationships in the database of Teamcenter. Stored procedures were created to

extract data from these tables and dumped it into a canonical model [77]. There was a

reason why the canonical model was placed in between Teamcenter tables and enter-

prise data warehouse. Querying data directly from Teamcenter tables would slow down

Teamcenter application during normal working hours. Therefore, stored procedures were

created to run during non-working hours to populate canonical models. These stored

procedures were triggered using a custom Java application which was also connected

to EDW using ODBC drivers. Java application [73] can also load data from canonical

models to EDW during normal working hours without affecting Teamcenter performance.

3.2.2 Solution – II: Talend ETL tool
Talend open studio is an open source integration platform for data integration. The rea-

son for selecting this ETL tool in this solution was the fact that it was open source and

also one of the popular integration tools in the market. Idea was to utilize Talend for

orchestrating loads by triggering stored procedures created in solution – I. However,

soon it was found out that the open source version of Talend was not having enough

functionalities to support this integration. To proceed, Wärtsilä must buy a commercial

license from Talend. After discussions with enterprise architect and solution architect for

analytics at Wärtsilä, it was found out that they had already invested in an enterprise

license for Informatica power center. Soon after getting approval, a user was created in

Informatica power center tool for development of the integration of product data to enter-

prise data warehouse.

27

3.2.3 Solution – III: Informatica ETL tool
Informatica power center is a data integration platform and market leader in providing

solutions for ETL. This commercial tool is sold with a license. Another reason behind

selecting this tool for solution was that it was already being used in other projects. And

no additional license fee was needed. This also came as a cost-effective solution. Solu-

tion design after adding Informatica power center in the picture is shown in figure 20.

Again, without any re-engineering Informatica would utilize existing stored procedures to

load canonical models. And eventually, transfer data from the canonical model to EDW.

 ETL tool Informatica based solution design

Informatica power center tool comes with four user interfaces for different operations:

repository manager, designer, workflow manager and workflow monitor [71]. Repository

manager allows managing of folder structures for collaboration in development and de-

ployment, providing access control and other admin level properties to manage the

server. Designer allows developers to create mappings for data pipelines. These map-

pings are then exported to the workflow manager. Workflow manager is the configuration

manager for Informatica power center loads. It allows the user to set parameters for

creating connections to different data applications, create dependency between work-

flows and also scheduling. Finally, a workflow monitor is used for maintenance of data

pipelines.

3.3 Reflections

Based on these three alternative solutions, reflections were studied. Individually each

evaluation criteria that were established in the beginning were revisited to compare the

results:

3.3.1 Connectivity
In both Talend and Informatica power center, it was equally easy to create connections

to Teamcenter and Oracle Teradata. Both Informatica power center and Talend also

28

provides a wide range of connectivity drivers to source and target such as flat file, Mi-

crosoft SQL server, Oracle, Excel and cloud databases [74]. However, in the case of

custom Java application connectivity was not straightforward. Also, database credentials

were stored in json files and were visible to anyone who has access to code. Informatica

and Talend have more secure ways of storing credentials and are only visible to admin-

istrative users.

3.3.2 Performance
In the first solution, with Java application, data transfer rate drastically improved com-

pared to data transfer rate in existing solutions. Existing solution was using TKI API for

data extraction. The Java application was querying the Teamcenter database. This

proved that extracting data directly from the Teamcenter database in batch mode is much

faster compared to extracting data using Teamcenter API. In the second solution, using

Talend the transfer rate was slow because the open source version of the Talend has a

threshold on CPU usage and needed a license to remove that threshold. Finally, the

Informatica power center data transfer rate was equally fast like in the Java application

case. Although, informatica power center workflows added a delay of a few seconds in

data transfer.

3.3.3 Configurability
Custom Java application was configured using a Json file [75]. It accepts parameters for

database connection, for example, connection string and credentials. Development of

functionality was limited due to the scope of application development. Talend and Infor-

matica power center provide user interface to configure connections. These tools take

configurability to a next level. It is also possible to control advanced functionalities like

truncating table before loading and table lookup.

29

3.3.4 Operability
Test for operability was conducted by studying robustness, monitoring features, trouble-

shooting features, availability, recoverability and deployment [67]. Results are summa-

rized in the following table:

 Existing solu-
tion

Java applica-
tion

Talend Inte-
gration

Informatica
power center

Robustness Frequent load
failures

Few load fail-
ures No load failure No load failure

Monitoring
features Not available Not available

Limited moni-
toring features
in open source

Advanced
monitoring fea-

tures

Trouble-
shooting Not available Not available Debugging

Debugging,
enterprise

technical sup-
port

Availability
Availability de-
pendent on
hosting server
– single cluster

Availability de-
pendent on
hosting server
- single cluster

Single cluster
in open source

version

High availabil-
ity with multi-
cluster

Recoverabil-
ity Manual Manual Manual Automated

Deployment Manual Manual Automated Automated

 Solution comparison chart for operability

Timeline for development was a key factor that influenced these results. It is always

possible to develop advanced functionalities in a custom developed tool. Although, that

requires time and resources. This opens up discussion about tool development and

maintenance cost.

3.3.5 Tool development and maintenance cost
Scope for each solution was limited to bring one entity from Teamcenter to data ware-

house. Development cost for Java application can be calculated based on resource al-

location. It was estimated that cost for development includes price for 2 developers work-

ing for 15-man days. This wasn’t too much. But since the tool will have limited function-

ality for monitoring and maintenance eventually, this may end up in higher maintenance

cost. Talend and Informatica both are commercial software products.

Software is sold usually in two models. Perpetual license where customer buys the li-

cense on time and pays for technical support yearly. Another model is subscription model

where customer pays monthly or yearly license fee which generally includes technical

support. Subscription license cost ranges from around 30k euros per year for Talend to

30

80k euros per year for Informatica power center. Benefits of investing in a commercial

tool includes getting latest updates without manual patching, technical support from an

expert team, plugins to connect with popular tool and faster development and focus on

business rather than tool development.

Enterprises tend to invest in commercial tools because they are not a software develop-

ment company. They continue to focus on development of their business instead of trying

to be a software development company. The Wärtsilä analytics team had already in-

vested in purchasing license for informatica power center and was being used in other

projects. This became an advantage in continuing development using informatica power

center for integrating product data to enterprise data warehouse.

All in all, to summarise on tool development and maintenance cost, commercial tools for

ETL have high license but low maintenance cost. And vice versa for custom developed

tool.

31

4. RESULTS AND ANALYSIS

This thesis discussed different approaches for integrating product data with enterprise

data warehouse at Wärtsilä. Keeping action research in mind there were three alternative

solutions panned. First solution included custom Java application development which

extracted data from the Teamcenter database and ingested into the data warehouse.

Second solution utilized Talend integration tool for orchestrating data extraction from

Teamcenter and ingestion into data warehouse. And finally, the third solution utilized

Informatica power center integration tool for the same. This chapter first discusses the

shortcomings of the existing solution. Next it compares results from three solutions and

finally, analyses the result and how Wärtsilä proceeded with implementing a solution for

integrating product data to enterprise data warehouse.

4.1 Analysis from solutions

To evaluate different approaches to integrate product data to enterprise data warehouse,

common evaluation criteria were established. These later became acceptance criteria

for selecting the best out of studied approach: connectivity, performance, configurability,

operability, tool development cost and maintenance cost.

4.1.1 Solution – I: Custom Java application
In the first solution a custom Java application was developed to execute stored proce-

dures in the Teamcenter database for extracting data. It was observed that the extraction

process took remarkably less time, compared to the approach of extracting data using

Teamcenter API. Stored procedures were created using Teamcenter table information

stored in ‘model.xml’ file. This file was stored in the installation directory of the server

where Teamcenter was installed. Stored procedures were stored in the Teamcenter da-

tabase. The Java application connects with the Teamcenter database to execute these

stored procedures. In the first stage stored procedures populated a canonical model

which simplified the extraction process. This canonical model was then used as a source

to copy data from Teamcenter to enterprise data warehouse using the same Java appli-

cation.

Custom Java tool lacked features such as monitoring, code debugging and scheduling.

Tool development cost was estimated to be medium and the internal team at Wärtsilä

lacked skills to maintain the solution. This would mean a high cost of maintenance.

32

Pros:

fast connectivity
fast loading of data
no license cost
medium development cost

Cons:

un-secure connectivity
complex configuration
no scheduling of the workflows
no load monitoring capability
high maintenance cost
less operability

4.1.2 Solution – II: Talend ETL tool
In the second solution Talend ETL tool was selected. Talend provides both commercial

and open source ETL tools. For the purpose of evaluation, a free version of the tool was

downloaded. In this case, Talend tool connected to the Teamcenter database and trig-

gered existing stored procedures created in the previous solution. This populated the

canonical model. Talend then copied data from the canonical model in the Teamcenter

database to the enterprise data warehouse.

Pros:

fast and secure connectivity
fast loading of data

Cons:

high license cost
low maintenance cost
low operational cost
low development cost

4.1.3 Solution – III: Informatica ETL tool
Informatica power center was already being used in other projects at Wärtsilä. This al-

ready brought confidence with this tool. Wärtsilä has commercial licenses for Informatica

power center. After approval, access for development was granted to practitioners for

this solution. Informatica power center is a similar tool as compared with Talend. How-

ever, the licensed version of Informatica power center had additional features like version

control and multi-cluster setup. This made it more available and robust.

Pros:

fast and secure connectivity
fast loading of data
built-in workflow scheduling
easy configurability
high availability
no additional licensing cost (license already purchased for other projects)

33

low maintenance cost
low operational cost

Cons:

internal team lacked Informatica skills

4.2 Tool Selection and solution implementation

Implementation for all solutions went successful and reflections from each solution were

ready. A good sign was that all three approaches were able to serve the purpose of

integrating product data with enterprise data warehouse. Another key finding was data

extraction performance:

Faster rate of data extraction using Teamcenter database
Comparatively slower rate of data extraction using Teamcenter ITK APIs.

Results from each solution are summarized in the table below. For simplicity and con-

venience in comparison, results for each of these evaluation criteria are indicated with

low, medium and high values. Where low indicating poor result and high indicating best

result. In case of costs, high indicates higher cost.

It was easily evident that Informatica power center with enterprise license outperformed

most of the evaluation criteria that were established in the beginning.

Evaluation Criteria /
solution

Existing solu-
tion

Custom
Java appli-
cation

Talend ETL
tool

Informatica
power center

Connectivity to
Teamcenter

Teamcenter
ITK API JDBC Talend con-

nector
Informatica
connector

Connectivity to EDW M-control ODBC Talend con-
nector

Informatica
connector

Performance criteria last 7 days
data

last 7
days data

last 7 days
data

last 7 days
data

Performance 5-7 hours 12-18
minutes

40-60
minutes 14-20 minutes

Scheduling bash script Windows
scheduler

internal
scheduler

internal sched-
uler

Configurability INI files Json files visual tool visual tool
Operability low low high high

Development Cost high medium low low

License Cost M-control li-
cense cost - low

no - li-
cense high

no additional
license cost for

Wärtsilä
Maintenance Cost high high low low

 Comparison table- based on evaluation criteria

Finally, based on results from these solutions and with common agreement with stake-

holders, Informatica power center was selected as an ETL tool for integrating product

data to enterprise data warehouse. Final solution design selected for deployment [4] is

34

shown in figure 22. Next steps followed after selection of ETL tool included implementa-

tion of solution design, deployment and maintenance of the solution for continuous ser-

vice.

4.2.1 Solution implementation
During the implementation of alternative solutions, scope of development was limited to

one entity of Teamcenter: Item Revision. For the final implementation of the solution,

development of all remaining entities had to be carried out. Teamcenter domain

knowledge was within the product data management team at Wärtsilä. Therefore, devel-

opment for extracting data from the Teamcenter database into a canonical model by

creating stored procedures was undertaken by the author.

 Example mapping from Informatica power center

Another tool provided by Teamcenter (Teamcenter Walker) [15] which allowed browsing

through Teamcenter entities also played an important role in understanding Teamcenter

structure of storing data. It provided information about the table and attribute names for

each entity in Teamcenter. Figure 23 shows an example of mapping using Informatica

power center. Source table refers to Teamcenter database tables. Target tables are part

of the canonical model created in the Teamcenter database. However, development of

data transfer from canonical model in Teamcenter to enterprise data warehouse was not

covered during this development.

35

4.2.2 Solution deployment
To carry out development for the overall data pipeline for integrating product data to

enterprise data warehouse needed more developers. Wärtsilä has their IT competence

center [76] in China. To finalize the deployment author-initiated knowledge transfer to a

team of 5 developers located in Wärtsilä competence center at China. Knowledge trans-

fer sessions were carried out remotely and finally they took over the remaining develop-

ment for the solution. Analytics team at Wärtsilä also took part in these sessions to pro-

vide knowledge for data modelling using dimensional modelling methodology in the data

warehouse. This ensures common ways of modelling data and allows business users to

combine data coming from multiple applications to enterprise data warehouse. Addition-

ally, deployment also had to be replicated across three different environments of

Teamcenter for development, testing and production use cases.

4.2.3 Maintenance
Maintenance activities such as monitoring daily data loads, reloading failed loads and

adding new changes to data pipelines was also outsourced to the same team in China.

They took responsibility for maintaining data quality and server maintenance for server

hosting Informatica power center.

4.2.4 Risk and Challenges
Investing in a commercial tool like Informatica power center reduces common risks and

challenges. One reason for it is having a large customer base for these commercial play-

ers. They constantly gather bug reports from their customers and roll out updates to their

tools. This ensures resolving common bugs without any interruption in operations. How-

ever, a common challenge with data level integration is that they are tightly coupled.

Changes in database tables are rare. But still any change will require manual modifica-

tions in the data pipeline. Also, the maintenance team has to take care of any possible

updates coming to Teamcenter and its impact on Teamcenter databases. Overall while

performing implementation for alternative solutions, load performance was optimal and

stable.

36

5. CONCLUSIONS

Results from solutions showed that performance of integration improved drastically. Data

loading time with existing extractor took on an average 6.5 hours for daily loads. It was

reduced to 14-20 minutes using Informatica power center. This improved performance

for data integration by almost 95%. Applying this solution also reduced data load failures

up to 99%. This had a great impact on business users who initially were struggling be-

cause of obsolete data in their reports.

While making a choice between development of a custom software tool and investing in

a commercial tool, key parameters are cost and timeline. Usually, the cost of internal

development of a tool is cost effective compared to paying for licenses. However, it re-

quires the right set of skills developers and development time. On the other hand, com-

mercial tools allow businesses to focus on building solutions quicker. This helps with

faster time to market their product and services. Another advantage of investing in an

enterprise level tool is to maintain a common approach to similar problems within a com-

pany. Having an enterprise tool also enables visibility data lineage. In companies like

Wärtsilä where core business is not software development it makes sense to invest in a

commercial tool instead of reinventing the wheel. This takes away also the overhead of

support and maintenance of the tool. And employees can focus on developing their core

business and accelerate their growth.

37

REFERENCES

[1] Digitalization, in: The International Encyclopedia of Communication Theory and
Philosophy, 2016, pp. 1-11.

[2] Value-added services — problems of definition and data, in: Telecommunica-
tions Policy, 1992, pp. 388-400.

[3] J. Babicz, Encyclopedia of Ship Technology, WÄRTSILÄ Corporation, 2015.

[4] S. Wirts, G. Albelli, E. Lazarus, Software application development methods and
framework, 2006.

[5] D. Linstedt, Method and system of data warehousing and building business in-
telligence using a data storage model, 2002.

[6] D.L. Moody, M.A. Kortink, From enterprise models to dimensional models: a
methodology for data warehouse and data mart design. pp. 5.

[7] I. Crnkovic, U. Asklund, A.P. Dahlqvist, Implementing and integrating product
data management and software configuration management, Artech House,
2003.

[8] J. Kääriäinen, Product data management (PDM): design, exchange and integra-
tion viewpoints, Technical Research Centre of Finland, Espoo, 2000.

[9] B. Berenbach, The other skills of the software architect, pp. 7-12.

[10] G. Sparks, Enterprise architect user guide, 2009.

[11] Product life cycle, in: A Dictionary of Economics, 5th ed., Oxford University
Press, 2017.

[12] J. Antchak, J.W. Dell, B. Mevissen, Crankshaft torque modulator, 2009.

[13] G. Damiand, Topological model for 3d image representation: Definition and in-
cremental extraction algorithm, Computer Vision and Image Understanding, Vol.
109, Iss. 3, 2008, pp. 260-289.

[14] G.R. Klaus, Flat file, 1982.

[15] Siemens PLM Software's Teamcenter, Aircraft Engineering and Aerospace
Technology, Vol. 81, Iss. 2, 2009.

[16] A. Sangiovanni-Vincentelli, G. Martin, Platform-based design and software de-
sign methodology for embedded systems, IEEE Design & Test of Computers,
Vol. 18, Iss. 6, 2001, pp. 23-33.

[17] Wärtsilä Oyj Abp, Mergent, Fort Mill, 2017.

[18] R. Sharda, D. Delen, E. Turban, Business intelligence: a managerial perspective
on analytics, Prentice Hall Press, 2013.

38

[19] E.J. Umble, R.R. Haft, M.M. Umble, Enterprise resource planning: Implementa-
tion procedures and critical success factors, European Journal of Operational
Research, Vol. 146, Iss. 2, 2003, pp. 241-257.

[20] T. Matsumoto, T. Saito, Y. Yamashita, Customer relationship management sys-
tem, 2003.

[21] S. Nastic, S. Sehic, D. Le, H. Truong, S. Dustdar, Provisioning software defined
IoT cloud systems, IEEE, pp. 288-295.

[22] R. Dejan, An integration strategy for large enterprises, Yugoslav Journal of Op-
erations Research, Vol. 17, Iss. 2, 2007, pp. 209-222.

[23] J. Mundy, W. Thornthwaite, The Microsoft data warehouse toolkit: with SQL
Server 2008 R2 and the Microsoft Business Intelligence toolset, John Wiley &
Sons, 2011.

[24] M. García, B. Harmsen, Qlikview 11 for developers, Packt Publishing Ltd, 2012.

[25] T. Lachev, E. Price, Applied Microsoft Power BI: Bring your data to life!
Prologika Press, 2018.

[26] S. Gautam, I. Books24x7, IBM Cognos Business Intelligence v10: The Com-
plete Guide, First ed. IBM Press, Upper Saddle River, N.J, 2013.

[27] M. Masse, REST API Design Rulebook: Designing Consistent RESTful Web
Service Interfaces, " O'Reilly Media, Inc.", 2011.

[28] C. Supaartagorn, PHP Framework for Database Management Based on MVC
Pattern, International Journal of Computer Science & Information Technology,
Vol. 3, Iss. 2, 2011, pp. 251-258.

[29] K. Loney, Oracle database 10g: the complete reference, Osborne, New York,
NY, 2004.

[30] P. Turley, R.M. Bruckner, Microsoft SQL Server reporting services recipes: for
designing expert reports, Wrox Press Ltd., 2010.

[31] M. Bernardo, A. Simon, J.J. Tarí, J.F. Molina-Azorín, Benefits of management
systems integration: a literature review, Journal of Cleaner Production, Vol. 94,
2015, pp. 260-267.

[32] A. Savinov, Concept-Oriented Model: Extending Objects with Identity, Hierar-
chies and Semantics, Computer Science Journal of Moldova, Vol. 19, Iss. 3,
2012, pp. 254-287.

[33] Object-relational mapping, in: A Dictionary of Computer Science, 7th ed., Oxford
University Press, 2016.

[34] V. Gecevska, T. Stojanova, B. Jovanovski, PRODUCT LIFECYCLE MANAGE-
MENT TOOLS, Annals of the Faculty of Engineering Hunedoara, Vol. 11, Iss. 1,
2013, pp. 219.

[35] Relational Database, in: Dictionary of Information Science and Technology,
2013.

39

[36] Z. Parker, S. Poe, S.V. Vrbsky, Comparing nosql mongodb to a sql db, pp. 1-6.

[37] M. Golfarelli, D. Maio, S. Rizzi, Conceptual design of data warehouses from E/R
schemes, Proceedings of the Thirty-First Hawaii International Conference on
System Sciences, pp. 334-343 vol.7.

[38] R. Kimball, M. Ross, The Data Warehouse Toolkit: The Definitive Guide to Di-
mensional Modeling, Third; 3; 3rd ed. John Wiley & Sons Ltd, US, 2013.

[39] R. Kimball, M. Ross, The Data Warehouse Toolkit: The Complete Guide to Di-
mensional Modeling, 2. Aufl.; 2; 2nd ed. Wiley, Hoboken, 2002.

[40] K. Chari, S. Seshadri, Demystifying integration, Communications of the ACM,
Vol. 47, Iss. 7, 2004, pp. 58-63.

[41] M. Vujasinovic, Z. Marjanovic, Data Level Enterprise Applications Integration, in:
Anonymous (ed.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 390-
395.

[42] J. ZHAN, F. LIU, Implementation and Design of Material Transfer Server Based
on FTP [J], Computer Technology and Development, Vol. 3, 2008.

[43] G. Wilson, D.L. Deitz, W.G. Irwin, G.R. Sherriff, Distributed batch processing
system and methods, 2001.

[44] F.A. Ware, E.K. Tsern, I.P. Shaeffer, Point-to-point connection topology for
stacked devices, 2010.

[45] O.M. Gadir, K. Subbanna, A.R. Vayyala, H. Shanmugam, A.P. Bodas, T.K. Trip-
athy, R.S. Indurkar, K.H. Rao, High-availability cluster virtual server system,
2005.

[46] B.A. Christudas, I. Books24x7, Service Oriented Java Business Integration: En-
terprise Service Bus Integration Solutions for Java Developers, 1st ed. Packt
Publishing, Olton, 2008.

[47] P. Dhanda, N. Sharma, Extract Transform Load Data with ETL Tools, Interna-
tional Journal of Advanced Research in Computer Science, Vol. 7, Iss. 3, 2016.

[48] L. Aldred, W. van der Aalst, M. Dumas, A. ter Hofstede, Understanding the chal-
lenges in getting together: The semantics of decoupling in middleware, BPM
Center Report BPM-06-19, BPMcenter.org, 2006.

[49] K. Yusuf, Enterprise messaging using JMS and IBM websphere, Prentice Hall
Professional, 2004.

[50] T. Rademakers, J. Dirksen, Open-source ESBs in action, Manning Publications
Co., 2008.

[51] I.M.T. Sandford, T.G. Handel, Data validation, 2000.

[52] E. Rahm, H.H. Do, Data cleaning: Problems and current approaches, IEEE Data
Eng.Bull., Vol. 23, Iss. 4, 2000, pp. 3-13.

40

[53] P. Jesus, C. Baquero, P.S. Almeida, A survey of distributed data aggregation al-
gorithms, IEEE Communications Surveys & Tutorials, Vol. 17, Iss. 1, 2014, pp.
381-404.

[54] J. Schiefer, J. Jeng, R.M. Bruckner, Real-time workflow audit data integration
into data warehouse systems. pp. 1697-1706.

[55] J. McNiff, Action research: Principles and practice, Routledge, 2013.

[56] C. Wohlin, M. Höst, K. Henningsson, Empirical research methods in software
engineering, in: Anonymous (ed.), Empirical methods and studies in software
engineering, Springer, 2003, pp. 7-23.

[57] S. Sukamolson, Fundamentals of quantitative research, Language Institute
Chulalongkorn University, Vol. 1, 2007, pp. 2-3.

[58] J.H. Frey, A. Fontana, The group interview in social research, The Social Sci-
ence Journal, Vol. 28, Iss. 2, 1991, pp. 175-187.

[59] M.O. Schafer, M. Melich, SAP solution manager, SAP PRESS, 2007.

[60] Introducing Dimensional Data Modeling, in: Anonymous (ed.), Second ed.,
Apress, Berkeley, CA, 2005, pp. 377-420.

[61] D.M. Ritchie, B.W. Kernighan, M.E. Lesk, The C programming language, Pren-
tice Hall Englewood Cliffs, 1988.

[62] Q. Ding, BMC Control-M 7: A Journey from Traditional Batch Scheduling to
Workload Automation, Packt Publishing Ltd, 2012.

[63] V. Wadhwa, A.R. Ravindran, Vendor selection in outsourcing, Computers & Op-
erations Research, Vol. 34, Iss. 12, 2007, pp. 3725-3737.

[64] D. Duda, J.T. Pascoe, W. Matyjewicz, K. Maziarz, Method and apparatus for an-
alyzing and migrating data integration applications, 2012.

[65] V. Ranjan, A comparative study between ETL (Extract, Transform, Load) and
ELT (Extract, Load and Transform) approach for loading data into data ware-
house, 2009.

[66] M. Mcsi, Configurability in SaaS (software as a service) applications, pp. 19-26.

[67] C. Ford, I. Gileadi, S. Purba, M. Moerman, Patterns for performance and opera-
bility: building and testing enterprise software, CRC Press, 2007.

[68] T. Heninger, R. Rasmussen, Server-side scripting language and programming
tool, 2002.

[69] E. Ries, Minimum viable product: a guide, Startup lessons learned, 2009.

[70] R. Katragadda, S.S. Tirumala, D. Nandigam, ETL tools for data warehousing: an
empirical study of open source Talend Studio versus Microsoft SSIS, 2015.

[71] J. Levin, ETL Tools Comparison, 2008.

41

[72] Z. Xianghui, L. Xiaoda, Methods of Mapping Model Data to Teamcenter, IEEE,
pp. 783-786.

[73] V. Kodaganallur, Incorporating language processing into java applications: A ja-
vacc tutorial, IEEE Software, Vol. 21, Iss. 4, 2004, pp. 70-77.

[74] W. Al Shehri, Cloud database database as a service, International Journal of
Database Management Systems, Vol. 5, Iss. 2, 2013, pp. 1.

[75] K. Maeda, Performance evaluation of object serialization libraries in XML, JSON
and binary formats, IEEE, pp. 177-182.

[76] E. Müller, H. Hopf, Competence center for the digital transformation in small and
medium-sized enterprises, Procedia Manufacturing, Vol. 11, 2017, pp. 1495-
1500.

[77] M. Dietrich, J. Lemcke, A Refined Canonical Data Model for Multi-schema Inte-
gration and Mapping, 2011 IEEE 8th International Conference on e-Business
Engineering, pp. 105-110.

