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ABSTRACT 

Henri Moilanen: Cold spray coating and repair of propellers: surface treatment, overhaul, and 
repair 
Master of Science Thesis 
Tampere University 
Master’s Degree Programme in Mechanical Engineering 
September 2020 
 

The thesis work studies the use of cold spray thermal spray method for coating and repairing 
marine propellers. The main areas of interest are protecting the propeller from corrosion by utiliz-
ing a cold sprayed barrier coating and the repair of cavitation damage on the propeller blade using 
cold spray. The use of cold spray is evaluated by a literature review on the coating materials, by 
analysing the cost of cold sprayed coatings and by comparing cold spray to alternative methods. 

Theory part of the thesis discusses propellers, materials used for propeller manufacturing and 
the cold spray method. Main types of propellers, propeller repair and maintenance procedures 
and a typical propeller manufacturing process are discussed in Chapter 2. Operating conditions 
affecting propeller design and material selection such as corrosion, cavitation and impact loading 
and biological fouling are discussed in Chapter 3. Currently used propeller materials, possible 
alternative propeller materials and interesting coating and repair materials are discussed in Chap-
ter 4. Chapter 5 discusses the operating principle of cold spray method, commercially available 
cold spray equipment, the spraying process from manufacturing standpoint and the economics of 
cold spray. 

The case study on the propeller coating and repair is discussed in Chapter 6. The case study 
consists of analysing propeller coating costs, predicting the financial saving potential and net pre-
sent value of the propeller as a function of propeller size by using a MATLAB script. The feasibility 
of using cold spray for propeller repair is also discussed based on a qualitative comparison of the 
cold spray method against the alternative repair methods. 

Last chapters discuss the uncertainties and risks associated with coated propellers and cold 
sprayed repairs as well as future research topics.  
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TIIVISTELMÄ 

Henri Moilanen: Potkurien pinnoittaminen ja korjaaminen kylmäruiskutusmenetelmän avulla 
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Konetekniikan DI-tutkinto-ohjelma 
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Diplomityössä tutkitaan kylmäruiskutusmenetelmän käyttömahdollisuuksia potkureiden pin-
noittamisessa ja korjauksessa. Tärkeimmät tutkimuskohteet ovat potkurin korroosiosuojapinnoit-
taminen sekä kavitaatiovaurioiden korjaus. Työssä tutkimuskysymyksiin vastataan vertailemalla 
pinnoitemateriaalien ominaisuuksia aiempiin tutkimuksiin pohjaten, analysoimalla pinnoittamisen 
kustannuksia sekä vertailemalla kylmäruiskutusmenetelmää nykyisin käytettyihin ratkaisuihin. 

Työn teoriaosuudessa tutustutaan potkureihin, potkurimateriaaleihin sekä kylmäruiskutusme-
netelmään. Potkureista esitellään yleisimmin käytetyt potkurityypit, potkureiden korjaus- ja kun-
nossapitomenetelmiä, sekä tyypillisen potkurivalmistusprosessin vaiheet. Potkurimateriaaleihin 
liittyen työssä käsitellään materiaalivalintaan vaikuttavia tekijöitä kuten korroosiota, kavitaatiota, 
eroosiota ja iskukuormitusta, sekä kasvuston kertymistä. Työssä tutustutaan myös yleisimmin 
käytettyihin potkurimateriaaleihin ja niiden ominaisuuksiin sekä mahdollisiin vaihtoehtoisiin pot-
kurimateriaaleihin ja niiden valintaperusteisiin. Kylmäruiskutusmenetelmästä esitetään menetel-
män toimintaperiaate, kaupallisesti saatavia kylmäruiskutusjärjestelmiä sekä pinnoittamiseen liit-
tyvät työvaiheet. 

Kylmäruiskutusmenetelmän käyttöä potkureiden pinnoituksessa ja korjauksessa arvioidaan 
materiaaliominaisuuksien, kustannusanalyysin sekä kvalitatiivisen tarkastelun kautta. Eri pinnoi-
temateriaalien käyttökelpoisuutta arvioidaan aiempien tutkimusten kautta, huomioiden eri materi-
aalien ruiskutettavuuden, pinnoitteen laadun ja mekaaniset ominaisuudet sekä yleisen soveltu-
vuuden esitettyihin käyttökohteisiin. Kustannusanalyysillä arvioidaan MATLAB skriptin avulla pot-
kurin pinnoittamisen kustannuksia ja kustannukseen vaikuttavia tekijöitä potkurin koon mukaan. 
Pinnoitteen käytön potentiaalisia rahallisia hyötyjä pyritään arvioimaan ennustamalla aluksen 
polttoainekustannuksia aluksen käyttöprofiilin ja moottoritehon perusteella. Kylmäruiskutusmene-
telmän käyttöä potkurin vaurioiden korjaamiseen arvioidaan vertailemalla sen ominaisuuksia 
vaihtoehtoisiin korjausmenetelmiin. 

Työn tulosten perusteella pyritään arvioimaan kylmäruiskutusmenetelmän käytön kannatta-
vuutta sekä menetelmän käyttöön liittyviä riskejä sekä pinnoitus että korjauskäytössä. Työn vii-
meisessä kappaleessa esitetään tuntemattomiin tekijöihin pohjaten jatkotutkimuskohteita. 
 
Avainsanat: potkuri, kylmäruiskutus, terminen pinnoittaminen, korroosio, pinnoite 

 
Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla. 
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1. INTRODUCTION 

Marine propellers operate in a hostile environment where the propeller and its material 

are subjected to erosion, corrosion, biological fouling, and impact loading. This environ-

ment both severely restricts the available materials for propeller fabrication and causes 

damages to the existing propellers, which necessitates their repair. If corrosion of pro-

pellers could be mitigated by using a corrosion resistant coating, they could be manufac-

tured from a more cost-effective material. Alternatively, stronger propeller material would 

allow hydrodynamically more efficient propellers to be manufactured, which would re-

duce the cost and environmental impact of operating the vessel. 

Cold spray is a relatively new thermal spray process which can produce dense and oxide 

free deposits from many metallic materials. In many fields cold spray shows promise for 

use in corrosion protection and repair applications. This study evaluates the use of cold 

spray for repair and coating of marine propellers based on experiences found in litera-

ture, financial analysis and by qualitive comparison against competing coating and repair 

methods. 

Theory part of the thesis discusses propellers and their operating conditions, materials, 

and cold spray process. Main propeller types, propeller manufacturing and maintenance 

are discussed in Chapter 2. Chapter 3 introduces the main environmental factors that 

affect the propeller design and material selection. Chapter 4 discusses the currently used 

materials for propeller fabrication, alternative propeller materials and possible coating 

materials. The coating materials are discussed based on a literature review, which fo-

cuses on the properties of cold sprayed materials. Chapter 5 discusses the operating 

principle of cold spray, commercially available spray systems, thermal spray as part of 

manufacturing process and the cost estimation of a cold spray process using a MATLAB 

script.  

Chapter 6 evaluates the use of cold spray for coating and repair of propeller based on a 

financial and qualitative analysis. Conclusion of this study, recommendations, and future 

research paths are discussed in the final chapters. 
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2. PROPELLER 

Propellers used in marine applications can be divided to two subcategories: fixed pitch 

and controllable pitch propellers. Fixed pitch propellers consist of either a single piece 

propeller or of a separate propeller hub and blades that are fixed to the hub (Kongsberg 

Maritime, 2020). Controllable pitch propellers feature a hub and separate blades whose 

pitch can be adjusted to vary the loading of the propeller and change the direction of the 

thrust as needed (Kongsberg Maritime, 2020; Carlton, 2012). Illustration of fixed pitch 

and controllable pitch propellers is presented in Figure 1. 

 

Figure 1. Changing pitch and fixed pitch monobloc propeller. (Kongsberg Mar-
itime, 2020) 

Fixed pitch propellers are the most used propeller type with Carlton, noting that their 

market share was around 65 percent in 2012 of all propellers. Changing pitch propellers 

have been gradually gaining popularity and as of 2012 they accounted for approximately 

35 percent of propeller market. Changing pitch propellers are typically used in applica-

tions which require better manoeuvrability and more precise control of thrust. Examples 

of such applications are tugboats, vessels with dynamic position capability and ferries 

operating on short routes, which are often berthed. (Carlton, 2012, p. 19) 
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Propellers can be manufactured from many different materials based on their use case, 

with nickel aluminium bronze being the most popular material for general purpose pro-

pellers. Stainless steel alloys are commonly used in applications, where better mechan-

ical properties are required over cost and corrosion properties. Propellers used in arctic 

conditions and most prominently ice breakers are made from martensitic stainless-steels 

and feature more conservative geometry to handle the additional loading caused by ice 

to propeller interaction. Traditionally arctic shipping has been restricted to arctic area 

supply and ice breaking operations, where efficiency and noise have been a lesser con-

cern when compared to open water shipping. However, in recent years the growing in-

terest on merchant shipping in arctic waters has created the need for propellers that are 

efficient in open water conditions while being capable of operating in arctic conditions.  

(Pustoshny, et al., 2017; Scröder, et al., 2017) 

2.1 Propeller manufacturing 

This chapter describes the basic manufacturing process for a fixed pitch marine propel-

ler. Marine propellers are practically always designed and manufactured for a specific 

vessel, where the propeller design is optimized based on the vessel’s powerline, operat-

ing profile and hull shape. The structural design and material selection of the propeller 

are based on rules dictated by the governing classification society, while the propeller 

design is optimized by using both computer fluid dynamics (CFD) software and experi-

mental methods such as cavitation tunnels. (DNV-GL, 2015, p. 432; Carlton, 2012)  

Propellers are traditionally manufactured by sand casting as it is the most cost-effective 

way of manufacturing large parts in small volumes (Carlton, 2012, p. 418).  The manu-

facturing process begins by fabricating the pattern which is used to make the mould for 

the casting. The pattern is manufactured from materials such as expanded polystyrene 

foam and wood by using a CNC router to shape the material. For large propellers, the 

pattern usually includes the shape of single propeller blade and hub. The pattern is then 

rotated to form the impression of each blades while making the mould. Typical propeller 

pattern is presented in Figure 2. (Carlton, 2012, p. 417; Wärtsilä, 2016) 
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Figure 2. Pattern used for making casting mold. (Wärtsilä, 2016) 

The mould for sand casting is produced in two halves which represent the pressure and 

suction sides of the propeller. Typical mould arrangement and runner system are pre-

sented in Figure 3. 

 

Figure 3. Typical mold arrangement and runner system. (Carlton, 2012, p. 418) 

The runner system in the mould is designed in such a way that the material flow rate is 

maximized while maintaining low turbulence within the flow. Minimizing turbulence is im-

portant as turbulence can cause oxides to be trapped inside the casting, which can com-

promise the structural integrity of the part. After the casting, the part is left to cool for a 

few days depending on the size of the part. Classification societies can require test spec-
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imens to be cast on various parts of the propeller casting. Mechanical tests are con-

ducted for the specimen to determine the material properties of the casting. 

(Germanischer Lloyd Aktiengesellschaft, 2019) 

After the part has cooled the mould is destroyed to reveal the casting. The part is then 

fettled to remove all unnecessary material such as risers, flash, and venting systems. 

After fettling, the propeller shaft bore is machined using a vertical lathe. Subsequently 

the blades are cut to their correct profile by a CNC milling machine. The machining stage 

is presented in Figure 4. (Carlton, 2012, p. 419; Wärtsilä, 2016) 

 

Figure 4. Propeller blade machining. (Yuanhang propellers manufacturing Co  
Ltd, 2020) 

After the machining, the propeller is inspected for casting defects. Classification societies 

have rules regarding where and how large defects of different types can be at different 

areas of the propeller. Found defects are documented and reported to the classification 

society. The defects are then repaired either by adding or removing material as required. 

(Germanischer Lloyd Aktiengesellschaft, 2019) Ultrasonic testing of a propeller blade is 

presented in Figure 5. 



6 
 

 

Figure 5. Ultrasonic testing of a propeller. (Fraunhofer-Gesellschaft, 2012) 

Finally, the propeller is polished, balanced and marked before shipping it to a customer. 

It is worth noting that while extra polishing increases the efficiency of the propeller, pol-

ishing to fine grit is not beneficial as biological fouling will quickly increase the effective 

surface roughness of the propeller. (Germanischer Lloyd Aktiengesellschaft, 2019, p. 

419; Wärtsilä, 2016; Carlton, 2012)  

2.2 Propeller modification, repair, and maintenance 

Propellers operate in a hostile environment which can damage the propeller through cor-

rosion, cavitation, fouling, and by mechanical loading. Additionally, propeller modification 

may be necessary if the operating profile of the vessel is altered or the propeller proves 

to be wrongly dimensioned. This chapter presents some of the ways how propellers are 

modified, maintained, and repaired. 

Propeller polishing is a routine maintenance operation which aims to minimize propeller 

surface roughness by removing fouling and smoothing the surface by grinding. The op-

eration consists of removal of fouling and scaling layer from the propeller using a coarse 

abrasive sanding pad. The resulting clean surface is then further polished to finer surface 

roughness using a finer grit sanding pad. (Odfjell, 2019) Figure 6 presents a diver pol-

ishing of a propeller. A clear visual difference can be seen between the polished and 

untouched surface. 



7 
 

 

Figure 6. Diver polishing a propeller. (Odfjell, 2019) 

Propeller blade can bend from an impact with a large object or the ocean floor. Bent 

propeller tips can be repaired by cold or hot straightening depending on the propeller 

material and severity of the damage. Hot straightening consists of heating the damaged 

area and straightening the damage by applying a static force to the propeller. Cold 

straightening can be used in cases where the blade deformation is small, and the sof-

tening of the material is not necessary. (Man Diesel And Turbo, 2020; Germanischer 

Lloyd Aktiengesellschaft, 2019; Wärtsilä, 2017) Hot straightening of a propeller is pre-

sented in Figure 7. 

 

Figure 7. Hot straightening of propeller. (AEGIR-Marine, 2020) 
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Surface damage or localized damage on blade edges caused by cavitation and erosion 

can be repaired by welding and reshaping or by applying polymer coatings to the dam-

aged area. (Stone Marine Propulsion Ltd, 2019; Belzona International Limited, 2011) The 

root cause for cavitation damage can be tried to control by altering the leading edge of 

the propeller. (Carlton, 2012, p. 461) This study evaluates the use of cold spray for cav-

itation wear repair in Chapter 6.2.  

Reduction of the propeller diameter or effective pitch is often called cropping. Cropping 

consists of reducing the propeller diameter by cutting away and reprofiling the propeller 

tip. Cropping can be done when the propeller absorbs too much power, or the tip area is 

severely damaged and cannot be repaired on the spot using other methods. (Carlton, 

2012, pp. 459,460) A badly damaged propeller can be repaired by cutting away a section 

of the propeller, casting a replacement section and welding it to original propeller. (Man 

Diesel And Turbo, 2020; Wärtsilä, 2017) 

Repitching is the modification of the propellers effective pitch in order to alter the power 

absorption characteristics of the propeller. Repitching can be done by bending the whole 

propeller blade to change the pitch angle or by modifying the trailing edge of the blade. 

(Man Diesel And Turbo, 2020; Carlton, 2012; Wärtsilä, 2009) 
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3. OPERATING CONDITIONS 

Successful material selection necessitates good understanding of the operating environ-

ment and the associated phenomena. For propellers, the most important environmental 

factor is the sea water which is a highly corrosive media for many metals. This requires 

the used materials to be naturally resistant to corrosion or to be protected from corrosion. 

Other prominent issues are cavitation and erosion, impact damage and biological fouling.  

3.1 Corrosion 

Degradation of materials due to corrosion is the main environmental problem associated 

with maritime equipment (Masi, et al., 2019). Main forms of corrosion in seawater, their 

progression mechanisms and prevention are presented on the following chapters.  

3.1.1 Galvanic Corrosion 
 

Galvanic corrosion occurs in electrolytic solution between two contacting metals with dif-

ferent surface potentials (Cicek & Al-Numan, 2011, p. 10). The difference in the material 

surface potentials creates electron flow, from the more reactive or less noble material to 

the less reactive material. This galvanic reaction accelerates the corrosion of the less 

noble material while protecting the more noble material from corrosion. ( Cramer & 

Covino, 2003, p. 210)  

The rate of the galvanic reaction is affected by the surface potential difference between 

the materials, environment, geometries of the components in galvanic assembly and the 

polarization behaviour of the materials ( Cramer & Covino, 2003, p. 210). 

Increased difference in surface potentials between the materials increases the rate of 

the galvanic reaction. A general prediction of the rate of the reaction can be made by 

comparing material pairs using galvanic series table. In practise however the surface 

potential of a material and its behaviour can be greatly affected by the existing environ-

mental conditions (Cicek & Al-Numan, 2011, p. 210). Generic galvanic series is pre-

sented in Figure 8. 
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Figure 8. Galvanic Series table (engineeringclicks, 2017) 

Many other factors such as surface area, distance between the parts and geometric 

shape of the parts affect the rate of the galvanic reaction. The basic guidelines are that 

the reaction is increased when the surface area of the more noble metal is large in com-

parison to the area of the more reactive anode metal, as this increases the current flow 

per area of the anode. Increasing the distance between the cathode and anode reduces 

the galvanic reaction as the resistance of the current flow through the electrolyte in-

creases with distance. ( Cramer & Covino, 2003, p. 211) 

Galvanic corrosion can be controlled by material selection, barrier coatings, environmen-

tal control and design. Materials in the galvanic assembly should be selected so that they 

are not widely separated in galvanic series unless the more noble material is easily po-

larized. Galvanic corrosion can be prevented by design by employing electrical insulation 

between the components, using transition metals, using cathodic protection and design-

ing the assembly, in a way that the surface area ratio between the cathode and anode 

remains small, and also by avoiding dissimilar metal crevices, such as threaded or riv-

eted joints. ( Cramer & Covino, 2003, p. 213) 

Current flow between the materials cause shifts in the material potentials towards the 

potential of the other material. These shifts alter the potential difference between the 

materials, thus altering the rate of the galvanic reaction ( Cramer & Covino, 2003, p. 

210). Polarization can also shift the material pair’s surface potentials so that the cathode 
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becomes more active than the anode. This will reverse the current flow and cause the 

more noble material to corrode. ( Cramer & Covino, 2003, p. 211) 

Passive materials such as stainless steel and titanium form a dense and well adhering 

passive oxide layer, that protects the material from corrosion. The oxide layer can be 

damaged which can lead to localized corrosion, e.g. pitting corrosion, if the passive layer 

is unable to reform due to lack of oxygen around the damaged area. (Ahmad, 2006) 

Noble metal barrier coatings are usually unfavoured as damage or pores in the barrier 

coating can lead to galvanic corrosion between the coating and the substrate (Ahmad, 

2006, p. 131). This problem can be overcome by using cathodic protection. 

3.1.2 Crevice Corrosion 
 

Crevice corrosion is localised corrosion in gaps, cracks, crevices and between two join-

ing surfaces. The crevice can be from metal to metal contact or from contact with non-

metal material or organism such as biological fouling. Stainless steel alloys are prone to 

crevice corrosion in sea water environment which restricts their use.  

Crevice corrosion is suggested to be a four-stage process. In the first stage, the passive 

material is placed to chloride solution, which begins the formation of a passive layer on 

the material. Due to this the area within the crevice becomes depleted of oxygen. On 

second stage, the deoxygenation proceeds outside the crevice, while slow dissolution of 

the metal happens within the crevice. This causes hydrolysis to happen within the crevice 

which increases the acidity and thus the aggressiveness of the solution is increased. In 

third stage the passive film breaks down due to the highly aggressive solution within the 

crevice. This leads to the final stage where the crevice propagates further. (Ahmad, 

2006, pp. 146-147) As deoxygenation is necessary for the process, crevice corrosion is 

not usually problem in fast moving sea water. 

Crevice corrosion can be prevented by minimizing crevice inducing joints in the design, 

preventing fouling, using cathodic protection, selecting materials that are resistant to 

crevice corrosion such as titanium and nickel alloys and also by maintaining high water 

velocity so that local deoxygenation of the solution is not possible. (Ahmad, 2006, p. 149) 
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3.1.3 Pitting Corrosion 
 

Pitting corrosion is the localised corrosion of a metal surface. It forms distinctive pits to 

the metal surface. Pitting is a major corrosion form in the marine environment as chlorine 

ions present in sea water cause pitting of steels. (Ahmad, 2006, p. 150) 

Pitting corrosion occurs when the oxide layer protecting the metal is damaged locally, 

exposing the metal. This mechanism of corrosion can be particularly damaging as the 

areas exposed by the pitting can become anodic sites, which have very small surface 

area. This creates high current density on the affected area which quickly damages the 

material further. ( Flemming, et al., 2009) Mechanism of pitting corrosion is very similar 

to that of crevice corrosion with main difference being the location where the corrosion 

occurs and the way the passive film is damaged.  

3.1.4 Stress Corrosion Cracking 
 

Stress corrosion cracking is the failure of a metal resulting from the combined action of 

tensile stress and corrosion. Many different mechanisms for stress corrosion cracking in 

four main categories have been suggested. (Ahmad, 2006, p. 194) 

1. Film rupture model suggests that passive material’s stresses cause the rupture 

of the passive film. New passive film is grown to the ruptured area which alters 

the mechanical properties of the material near the crack. This process of rupture 

and reformation of the passive film is repeated which accelerates the crack prop-

agation. On other theories it has been suggested that a lack of passive film at the 

tip of the crack causes localised corrosion which helps propagate the crack fur-

ther. (Ahmad, 2006, p. 195) 

2. Mechano-electrochemical model suggests that the material contains paths which 

are naturally suspectable to corrosion. Localised corrosion propagates through 

these paths which induces cracks to the material. The model suggests that the 

use of cathodic protection prevents stress corrosion cracking. (Ahmad, 2006, p. 

194) 

3. Embrittlement model suggests that electrochemical process embrittles the mate-

rial near the surface or crack tip. This loss of ductility amplifies the crack propa-

gation which leads to premature failure of the part. (Ahmad, 2006, p. 195) 
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4. Absorption model claims that the absorption of damaging species weakens the 

cohesive bonds between the surface metal atoms, which degreases the energy 

needed for crack formation. (Ahmad, 2006, p. 195) 

In case of the propeller application stress corrosion cracking can be prevented mainly by 

material selection and lowering the loading of the material, as the environmental condi-

tions cannot be affected. Proper coating material selection can prevent the crack for-

mation and propagation to the base metal, which allows the base material to be more 

highly loaded. 

3.2 Cavitation wear 

Cavitation in a propeller happens, when the local pressure falls below the vapour pres-

sure of the water at the current water temperature. This causes a bubble to form on the 

surface of the propeller blade. As the propeller is turning, the bubble is being moved to 

location where the local pressure is again higher than the current vapour pressure of 

water, which causes the bubble to collapse. This process is being reproduced in quick 

succession as the propeller rotates (Pemberton & Stokoe, 2012, p. 145). Cavitation 

erodes the propeller surface and creates deep pits and holes to the propeller material. 

Usually cavitation damage progresses to a severe state during months or years, although 

in some cases severe damage has occurred in just few hours of operation (Carlton, 2012, 

p. 235). Example of cavitation damage on propeller blade is presented in Figure 9. 

 

Figure 9. Cavitation damage on a propeller blade. (Stone Marine Propulsion 
Ltd, 2019) 

In addition to the structural damage, cavitation reduces the efficiency and thrust of the 

propeller while causing excessive noise and vibration. Cavitation is usually mitigated by 
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reducing the rotational speed of the propeller and reducing the pressure differential or 

loading of the propeller. Both actions are detrimental for the efficiency of the propulsion 

system, as a larger propeller is required for an equal thrust rating. (Pemberton & Stokoe, 

2012, p. 146) Cavitation bubble formation on propeller is presented in Figure 10. 

 

Figure 10. Sketch of typical cavitation on a propeller. (Carlton, 2012, p. 244) 

According to Carlton, cavitation damage in blade surface progresses in three distinctive 

stages. On the first stage, cavitation erodes the blade surface to orange peel texture. In 

many cases the cavitation damage ceases to progress further during the operating life 

of the vessel. On other cases the damage further progresses to light erosion and possibly 

further to severe erosion, in which deep cavities or through holes are formed to the pro-

peller surface (Carlton, 2012, p. 235).  

It is believed that the most damaging mechanism of cavitation is the bubble collapse and 

micro jet formation close to the surface, which then impinges the material. According to 

studies, these microjets can develop impact pressure of over 100 MPa for duration of 

over 10 μs. This subsequently work hardens and embrittles the material, which through 

cracking leads to erosion of the material. (Carlton, 2012, p. 237) 

Figure 11 presents microhardness measurement results taken from nickel aluminium 

bronze propeller sample. The measurements for “Traverse 1” were taken from an area 

at propeller suction surface that had suffered from severe cavitation damage. “Traverse 

2” contains measurements from a suction surface area that had suffered from less se-
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vere cavitation damage. Measurements for “Traverse 3” were taken from pressure sur-

faces which should not be subjected to cavitation. The measurements show that the 

hardening of the material was more severe in the areas of more severe cavitation dam-

age and that the pressure surface was not hardened as it does not suffer from cavitation. 

Measurements also show that the work hardening from cavitation affects the material to 

depths of up to 3 mm from the surface.  (Carlton, 2012, p. 237) 

 

Figure 11. Micro-hardness measurements taken from nickel-aluminium bronze 
propeller blade sample. (Carlton, 2012, p. 238) 

 

According to studies review by Sreedhar, materials resistance to cavitation has been 

estimated to depend on the ultimate tensile strength, fatigue strength, hardness, and 

fracture toughness coefficient of the material. Sreedhar also states that the modelling of 

cavitation erosion is difficult as mechanical properties of a bulk material are tested under 

near static loading conditions, while cavitation loads the material under very high strain 

rates. (Sreedhar, et al., 2017) Thus, mechanical properties of the bulk material have a 

limited use for predicting the materials resistance to cavitation erosion. 

To conclude, while cavitation can be reduced by a good propeller design, the propeller 

is expected to encounter cavitation during its operating life. Protective properties of noble 

metal barrier coatings relay on the integrity of the coating. Therefore, the coating must 

have good resistance to erosion by cavitation. Areas of expected cavitation should also 

have enough thickness to sustain some amount of erosion. 
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3.3 Impact loading and Abrasion 

Impact loading of the propeller describes the contact with other objects in the ocean. 

Impact loading is an especially prominent design factor in arctic and ice-breaking vessels 

as they frequently encounter blocks of ice. Ice contact loading describes the mechanical 

loading of the ice by cutting, milling, crushing, and bending by the propeller. Additional 

hydrodynamic loads are caused by the suction due to restricted water inflow by the ice 

blocks, and by the squeezing of ice and water between the propeller blade and the ice 

block. Figure 12 illustrates the cause of both loading methods.  

 

Figure 12. Ice loading of the propeller. (Kinnunen, et al., 2015) 

Ice loading of the propeller has been studied using both analytical methods and practical 

measurements. Measurements have been conducted using strain gauges located either 

in propeller blade or in propeller shafts. On later case the ice loading has been implicitly 

calculated using lumped mass model of the propulsion system (Ikonen, et al., 2015). 

In practice, dimensioning of the propulsion system is done according to the classification 

society rules regulating the design of the vessel, such as DNV GL. Modelling of the ice 

of the propeller blade behaviour on ice impact loading is a complex topic itself, and it is 

thus left out of the scope of this study. According to the class rules, materials used to 

fabricate propellers for arctic use need to have elongation of 15% or more, and an aver-

age impact energy of 20 J or more from three Charpy V test at -10 ºC. (DNV-GL, 2015) 

In addition to ice loading abrasive media such as sand particles are floating in the water, 

especially near coasts. These floating particles can erode the propeller blade so their 

effect on the propeller surface must be taken in consideration. (Carlton, 2012). 

3.4 Marine Biological Fouling 

Marine biological fouling is the accumulation of micro-organisms, plants and animals on 

the artificial surface immersed in sea water. Fouling is a well know problem for mariners 
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with the phenomenon being described already by Greek philosopher Plutarch, who de-

scribed the impact of fouling and its prevention in his essays: “it is probable that it (ship) 

lightly glides, and as long as it is clean, easily cuts the waves; but when it is thoroughly 

soaked, when weeds, ooze, and filth stick upon its sides, the stroke of the ship is more 

obtuse and weak; and the water, coming upon this clammy matter, doth not so easily 

part from it; and this is the reason why they usually calk their ships.” (Plutarch, 2009) 

Fouling causes multitude of problems for the vessel and environment: 

• Fouling increases the surface roughness of the ship’s surfaces, which leads to 

increase in fluid friction losses. The increase in friction reduces the fuel efficiency 

of the vessel and leads to loss of manoeuvrability. Accumulated fouling necessi-

tates the removal of the accumulation by dry-docking the vessel, which wastes 

time and resources. (Yebra, et al., 2004) 

• Fouling can damage the protective coatings of the ship and render the surfaces 

prone to corrosion. 

• Fouling transports non-native species to new locations with the ship, which can 

have negative impact on the local environment and wildlife. 

Many measures have been developed to prevent fouling in ships structures. These meth-

ods are widely employed, and they are more effective than what can be archived with 

material selections only (Yebra, et al., 2004). Still it is important to consider fouling while 

selecting the coating material as the fouling can have adverse behaviour on the corrosion 

resistance of the material ( Flemming, et al., 2009). 

According to Flemming et al. two mechanisms have been suggested, by which microbial 

interaction from marine biological fouling can accelerate the corrosion of passive mate-

rials. It is suggested that the biomineralized manganese oxides deposited by the mi-

crobes can raise the potential of the passive metal above the pitting potential. Alterna-

tively, the fouling has been suggested to cause localized damage to the passive oxide 

layer resulting in decrease in the pitting potential of the material. ( Flemming, et al., 2009) 
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4. MATERIALS 

This chapter discusses currently used propeller materials, alternative materials for 

coated propeller and properties of cold sprayed coating materials. Ship propellers have 

been manufactured from various materials from once popular cast iron to now commonly 

used bronze and stainless-steel alloys. (Carlton, 2012, p. 385)  More exotic materials 

like fibre reinforced plastics have also been used in specialised use cases, such as in 

military submarines, where the high damping property of carbon fibre has allowed the 

manufacturing of propellers with lower noise emission. (Carlton, 2012, p. 385; 

Nakashima Propeller Co., Ltd, 2015)  Figure 13 categorises the used propeller materials.  

 

Figure 13. Propeller materials. (Carlton, 2012, p. 386) 

Modern propellers are dominantly manufactured from bronze alloys with nickel alumin-

ium bronze being the most popular propeller material. According to Carlton nickel alu-

minium bronze propellers account to over 80 percent of propellers. Second notable pro-

peller material is stainless steel, which is commonly used in ice class propellers that 

require higher strength than attainable with bronze materials. (Carlton, 2012, p. 385)  

With the nickel aluminium bronze and stainless-steel alloys being the most common pro-

peller materials currently in use in propellers, their properties are discussed further in the 

following chapters to give a benchmark to which alternative propeller materials can be 

compared. 
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4.1 Current Propeller Materials 

This chapter discusses the basic properties of the most used propeller materials: nickel 

aluminium bronze and martensitic stainless steel. Table 1 presents standard propeller 

materials and their minimum properties according to Lloyd’s Registers. 

Table 1. Materials for propeller manufacturing. (Lloyd’s Register, 2013) 

 

It is worth noting that while cast iron and steel materials are recognised and once used 

materials for propeller fabrication, their poor corrosion resistance heavily restricts the 

allowable design stresses. (Lloyd’s Register, 2013; Carlton, 2012) 

4.1.1 Nickel Aluminium Bronze 
 

Nickel aluminium bronze is the most used material for propeller fabrication as it has over-

all good corrosion resistance, good mechanical properties and fabricability while being 

relatively cost efficient when compared to other corrosion resistant materials (Carlton, 

2012; Strang, 2010). Other notable properties of nickel aluminium bronze are its good 

resistance to cavitation erosion and its well-known resistance to biological fouling. Both 

cavitation erosion and biological fouling can ruin the long-term propulsive efficiency of 

the propeller. (Stone Marine Propulsion Ltd, 2019; Krebs, 2016; Strang, 2010; Flemming, 

et al., 2009) 

Classification societies dictate the composition and mechanical properties which the pro-

peller alloys must meet. Minimum mechanical properties for standard bronze alloys used 
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in propeller manufacturing according to Germanischer Lloyd Aktiengesellschaft as meas-

ured from separately cast test specimen are presented in Table 2. 

Table 2. Mechanical properties of cast bronze propeller alloys. (Germanischer 
Lloyd Aktiengesellschaft, 2019) 

 

Nickel aluminium bronzes are somewhat simpler materials to repair as they do not al-

ways require stress relieve heat treating to be done after welding repair. (DNV GL, 2019)  

4.1.2 Stainless Steels 
 

Stainless steels and especially their martensitic alloys are commonly used propeller ma-

terials, when higher resistance to impact damage is required, which is the case with 

propellers used in arctic vessels and ice breakers. (Carlton, 2012, p. 391). Stainless steel 

propellers are significantly more expensive than bronze propellers, with the material also 

being less resistant to corrosion and cavitation, with pitting, stress corrosion cracking, 

crevice corrosion and intergranular corrosion being prominent problems with the mate-

rial. (Carlton, 2012; Strang, 2010; Ahmad, 2006) 

Martensitic stainless steels are usually used in propeller manufacturing as they feature 

good strength when compared to austenitic steels, with the yield strength of the marten-

sitic steels being around 500 MPa, and ultimate tensile strength being in 760-960 MPa 

(Germanischer Lloyd Aktiengesellschaft, 2019). Martensitic stainless steels are however 

more prone to corrosion than austenitic stainless steels (Féron, 2001, p. 58).  

Standard stainless-steel propeller alloys require a heat treatment to archive the required 

mechanical properties. Heat treatment is also necessary after repairing stainless steel 

propeller by welding as the high heat input alters the microstructure of the heat affected 

zone. Table 3 presents the heat-treating temperatures and resulting microstructure for 

the standard stainless-steel alloys used for propeller fabrication. (Germanischer Lloyd 

Aktiengesellschaft, 2019) 
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Table 3. Tempering of stainless-steel alloys used in propeller fabrication (Ger-
manischer Lloyd Aktiengesellschaft, 2019) 

 

Mechanical properties of the resulting tempered stainless-steel alloys are presented in 

Table 4. Martensitic stainless-steel materials have a proof strength around 200 MPa 

higher than that of nickel aluminium bronze materials.  

Table 4. Mechanical properties of stainless-steel alloys used in propeller fabri-
cation (Germanischer Lloyd Aktiengesellschaft, 2019) 

 

Elongation of the martensitic stainless steels is less when compared to bronze. Class 

rules require the elongation of martensitic stainless steels to be tested. (Germanischer 

Lloyd Aktiengesellschaft, 2019) 

4.2 Alternative Propeller Materials 

To be successful, the alternative propeller material must bring financial benefit to the end 

user over using a conventional propeller material. This benefit can be archived by either 

by reducing the purchase price of the propeller or by fabricating the propeller from 

stronger material thus making it possible to increase the efficiency of the propeller and 

then lessen the operating costs of the vessel. Rate of return of investment capital for 

given increase in propeller efficiency and increase in propeller price is calculated in 

Chapter 6. From this analysis it can be concluded that the increase in justifiable propeller 
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cost for given efficiency gain is rather small. This practically restricts the materials to 

ones with cost less or equal to the current propeller materials as costs must also be 

reserved for the coating. Due to this reason the propeller cannot be manufactured from 

otherwise interesting materials such as nickel alloys or titanium as is presented in relative 

cast cost index in figure 14.  

 

Figure 14. Relative cast cost index. (Strang, 2010) 

Aside price, the mechanical properties of the material are an important consideration as 

they dictate the geometry to which the propeller can be designed for. Stronger material 

allows more efficient geometries to be archived, so the strength of the material should 

match or exceed those of current propeller materials so that efficiency losses and thus 

financial losses can be prevented. Figure 15 presents the yield and tensile strength of 

competing materials in as cast state. Steels, nickel alloys and titanium alloys can match 

the yield strength of nickel aluminium bronze in cast state. (Strang, 2010) For many ma-

terials much higher strength levels can be archived by heat treating. (Blair, 1990) 
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Figure 15. Yield and tensile strength comparison. (Strang, 2010) 

By assessing the comparative costs and mechanical properties of the materials, mild 

steels and steel alloys are concluded to be the most promising candidates as an alter-

native propeller material for a coated propeller. It is worth mentioning, while from cost 

standpoint cast iron would be an interesting option, the material tends to crack from im-

pact while being difficult to repair, so it is not ideal for propeller use. (Carlton, 2012, p. 

392; Stone Marine Propulsion Ltd, 2020) 
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4.3 Coating Materials 

This chapter discusses cold sprayable materials which could be useful for coating, man-

ufacturing, and repairing of the thruster parts. The materials are evaluated by their suit-

ability for the given application, coating material properties and for the sprayability of the 

material using currently available commercial equipment. Table 5 presents sprayability 

of various materials. 

Table 5. Sprayability of various materials by the Cold Spray Process.  
 (Assadi, et al., 2016) 

 

The coating can provide protection by acting as a barrier between the electrolyte and the 

substrate material and in case of sacrificial coatings, provide galvanic protection for the 

substrate. Noble coating materials such as titanium, stainless steel and nickel alloys pro-

vide protection for the substrate if the coating is intact. Defects such as pores, pits and 

cracks will lead to a development of galvanic cell in which the substrate will act as anode. 

This will lead to rapid corrosion of the substrate material. (Tucker, 2013) Figure 16 pre-

sents HVOF sprayed nickel coatings which has suffered from corrosive attack permitted 

by through pores on otherwise dense appearing coating.  
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Figure 16. Steel substrate coated with nickel using HVOF process after 3-
month submersion to sea water. (Kuroda & Sturgeon, 2005) 

Sacrificial coatings made from zinc and aluminium protect the substrate even if the coat-

ing does not fully cover the substrate (Tucker, 2013). Thermally sprayed sacrificial coat-

ings have been used with good success on marine environment for decades. These ma-

terials are however less resistant to cavitation, erosion, and impact damage which limits 

their use in fast flow velocities encountered in moving vessels. Zinc is also consumed in 

seawater by uniform corrosion which limits the lifetime of submerged zinc coatings. For 

these reasons sacrificial coatings are not discussed in depth. Comparison of the corro-

sion resistance of materials used in marine applications is provided in Table 6.  

Table 6. Comparison of the corrosion resistance of materials. (Strang, 2010) 

 

As can be expected from a current propeller material, the nickel aluminium bronze has 

overall good resistance against all forms of corrosion and erosion present in sea water. 

In addition, nickel aluminium bronze has good resistance to biological fouling due to the 
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high copper content of the material ( Flemming, et al., 2009; Strang, 2010). Nickel alloys 

and titanium also have an excellent overall resistance to all forms of corrosion in sea-

water. (Crook, 2005; Totten & MacKenzie, 2016) These materials are further discussed 

for their potential use for noble barrier coating of components. Stainless steel is dis-

cussed for its use in noble coatings and in repair of arctic propellers. 

4.3.1 Titanium 
 

Titanium is a commonly used material in aerospace applications as it exhibits good me-

chanical properties while having low density. Titanium is also well known to form a very 

stable oxide film which protects the material from corrosion even in highly corrosive en-

vironments. For this reason, titanium is also commonly used in process industry. (Totten 

& MacKenzie, 2016) Titanium has excellent resistance against corrosion including pitting 

and crevice corrosion in sea water. Titanium is also noted to have good resistance to 

erosion from cavitation and high velocity particles in sea water. (Totten & MacKenzie, 

2016; Strang, 2010) Titanium is a difficult material to manufacture. Heat treating and 

casting of titanium must be done in vacuum or inert atmosphere. Machining of titanium 

is also difficult, as the material has low thermal conductivity, which results in heat build-

up at the machined area. Titanium is also very suspectable to work hardening by the 

cutting action. (Chandler, 1989) 

Both free standing structures and coatings have been done using cold spray method. 

(Huang, et al., 2015; Titomic, 2020) Study conducted on the mechanical properties of as 

sprayed and heat-treated titanium materials by Plasma Giken showed that archiving 

dense coating with good mechanical properties is difficult with titanium by using cold-

spray method. Titanium particles showed little deformation which caused the sprayed 

material to be porous even after recrystallization in high temperatures. Microstructure of 

the titanium deposits are presented in Figure 17. (Huang, et al., 2015) 
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Figure 17. Microstructure of cold sprayed titanium coating. As sprayed (a), 
heat treated at 600 (b) and 1000 °C (c). (Huang, et al., 2015) 

Lupoi, et al. have formed titanium coatings on steel substrate using supersonic laser 

deposition (SLD) process where the sprayed material and substrate surface are heated 

using laser while spraying the coating. The study claims that the method can archive 

dense coatings with improved mechanical properties when compared to cold spray. 

(Lupoi, et al., 2011) As SLD process does not rely entirely on the high particle velocity, 

nitrogen carrier can be used for titanium coatings, which offsets the costs incurred by the 

more complex process. Microstructure of SLD process can be found in Figure 18. 
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Figure 18. Microstructure of titanium coating deposited using laser assisted 
cold spray process. (Bray, et al., 2009) 

Titanium coating deposited using the SLD process is visibly denser to that done using 

normal cold spray process, even after the material has been heat treated. This suggests 

that in case of titanium, the use of SLD process would be favourable. 

While titanium would be an excellent material for propeller coating judging by its material 

properties, the material is difficult to deposit using cold spray. Protective properties of 

barrier coatings rely on the defect free nature of the coating, so porosity in the coating 

cannot be permitted. Other spray processes such as SLD process have been developed, 

which could aid archiving dense coatings from titanium, but such processes are yet to 

be commercialized. 
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4.3.2 Nickel Alloys 
 

Common characterises of nickel alloys are their excellent corrosion resistance, good 

strength and toughness and the ability to withstand high temperatures. Nickel is also an 

important plating material in many industries. Nickel alloys are a good choice for marine 

use as they are resistant to corrosion and cavitation errosion, altough crevice corrosion 

and pitting can occur in stagnant flow conditions. Nickel alloys are also less suspectable 

to stress cracking corrosion than stainless steels in marine environment. (Rebak, 2011; 

Crook, 2005) For use in sea water environment nickel is commonly alloyed with copper 

to increase its resistance to corrosion in sea water. These alloys are commonly referred 

by their trademark Monel, which is owned by Special Metals Corp. In addition to their 

corrosion resistance nickel-copper alloys are also noted to have good resistant to cavi-

tation erosion. (Strang, 2010; Haynes International Inc, 2007) 

Many studies have been conducted about cold spraying nickel alloys such as Ni-Cu and 

Inconel 625 have demonstrated that dense nickel alloy coatings can be deposited using 

cold spray. Koivuluoto, et al. studied corrosion resistant properties of Ni and NiCu 

coatings, which were deposited using high pressure cold spray. On certain samples the 

powder was blended by volume to 50/50 mixture of NiCu and Al2O3 grit to provide shot 

peening effect to the deposit in order to compact the coating. According to the 

electrochemical tests, the corrosion resitance of the Ni and NiCu coatings was very close 

to that of bulk material, which indicated that good quality barrier coatings can be archived 

using high pressure cold spray. The use of Al2O3
 grit was found to improve the coating 

quality by increasing the density of the coating both by hammering the coating and by 

allowing higher gas temperatures to be used without clogging the nozzle of the spray 

gun. (Koivuluoto, et al., 2014) On a further study a 80h Corrodkote accelerated corrosion 

test was conduced to evaluate the impermeability of the coatings. The results found that 

heat treatment in 600 °C for two hours, and the mixing of powder with Al2O3 had a positive 

impact on the coating quality. Test specimens after the corrodkote tests are presented 

in Figure 19.  
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Figure 19. As sprayed and heat-treated Ni based coatings after 80h Corrod-
kote test. (Koivuluoto, et al., 2015) 

Pontarollo et al. studied the corrosion resistance of cold sprayed Inconel 625 coatings 

and compared the properties to those produced by HVOF process. Three samples were 

prepared using different settings and powder sizes. The best results were archived with 

sample C1 which featured coarse powder and thickest 480 µm thick coating. The 

corrosion current and interpolated corroion rate of the samples can be seen in Table 7. 

The corrosion rate of the best cold sprayed coating is half ot the coating produced with 

HVOF process. (Pontarollo, et al., 2011) 

Table 7. Corrosion current and interpolated corrosion rate of bulk and sprayed 
Inconel 625. (Pontarollo, et al., 2011) 

 

Wei et al. studied the corrosion resistance of cold sprayed nickel coatings which were 

produced using high pressure cold spray to magnesium substrate. The powder used was 

blended with large AISI 410 stainless steels particles to provied shot peening effect to 

the coating. The study found that the produced coatings were very dense and had no 

visible pores or inter-particle cracks. The coatings had avarage bonding strenght of 65.4 

MPa, which is noted to be around 5 times higher than what is optainable using electroless 

nickel plating in magnesium substrate. A long term corrosion test was done by 
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submerging the coated sample to 3.5wt.% NaCl solution for 1000 h. The results of the 

long term corrosion test suggested that the nickel coating was able to effectively isolate 

the magnesium substrate from the solution. (Wei, et al., 2018) The combined spraying 

parameters from the reviewed studies are listed in Table 8. 

Table 8. Spraying parameters used for cold sprayed nickel coatings. 

 

Judging by the results found in litertature, cold spray can be used to form good quality 

barrier coatings using nickel alloys which can provide long term corrosion protection for 

component. This could allow cold spray to be used to both coat components and to repair 

damaged nickel plated components. As demonstrated by the Corrodkote test, either heat 

treating or blended powder should be used to archive the best corrosion protection. For 

new components with large coated areas it is probably beneficial to try to do without 

peening particles as their use increases the cost of the coating. For onsite repair use 

however the use of peening particles is probalby advisable to ensure good quality coating 

when possible lower gas pressures and gas temperatures are used, and heat treatment 

cannot be done. 

4.3.3 Stainless Steel 
 

This chapter reviews studies conducted on cold spraying stainless steels. The basic 

properties of stainless steels and their use in propeller fabrication are discussed in Chap-

ter 4.1.2. 

Adachi and Ueda studied the use of nitrogen carrier gas for cold spraying of stainless 

steel 316L using various gas temperatures and gas pressures. Not surprisingly a clear 

correlation with increasing coating quality can be seen, when either gas temperature or 

pressure is increased, with the maximum tested 35 bar gas pressure and 800 °C gas 

temperature providing the best results. Porosity of the resulting coating was 1.9 %. 

Adachi and Ueda also tested the hardness of each coating, which showed that either 

gas pressure or temperature had little effect on resulting hardness. (Adachi & Ueda , 

2017) Figure 20 presents the microstructures of the coatings deposited using various 

gas temperatures and pressures. 
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Figure 20. Microstructure and porosity of cold sprayed AISI 316L coatings us-
ing various gas pressures and temperatures. (Adachi & Ueda , 2017) 

A study conducted by AL-Mangour et. al. on improving the strength and corrosion re-

sistance of cold sprayed 316L stainless steel deposits. AL-Mangour et. al. coated mild 

steel substrates using different blends of 316L and cobalt alloy L605 powders and stud-

ied the microstructure, mechanical properties, and corrosion resistance in as sprayed 

and heat-treated condition. (AL-Mangour, et al., 2013) Figure 21 presents the microstruc-

ture of the blends heat treated at different temperatures. Both the 25 % and 33.3 % 

blends feature some porosity which could be removed with the heat treatment. 50 % 

percent Co alloy blend shows notable porosity even after heat treatment. 
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Figure 21. Microstructure of the coating with different AISI 316L and Co alloy 
blends and annealing temperatures. (AL-Mangour, et al., 2013) 

Tensile strength and elongation of the coatings are presented in Figure 22. As expected, 

the as-sprayed coating presents little strength and elongation. Heat treatment at 800 °C 

already significantly increase the strength of the coating. Higher temperatures further 

increase the strength while also increasing the elongation, with heat treatment at 1100 

°C giving excellent mechanical properties for the coating. It is worth mentioning that heat 

treating temperature of 1100 °C is very high and thus may be unpractical for production 

components. 
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Figure 22. Effect of heat treatment on the strength of the cold sprayed coat-
ings. (a) 25% Co; (b) 33.3% Co deposited coating. (AL-Mangour, et al., 2013) 

The corrosion resistance of the deposits was analysed using potentio-dynamic polariza-

tion tests. The corrosion resistance of the as-sprayed coatings was found to be less than 

that of bulk material. Annealing increases the corrosion resistance to levels comparable 

to the bulk material, with the 25 % and 33.3 % Co blends showing better than bulk stain-

less-steel corrosion resistance. The corrosion rate of as sprayed stainless steel was 0.02 

mm/year with the rate reducing to less than 0.005 mm/year with annealing. 

 

Figure 23. Corrosion rate of the coating before and after annealing. (AL-
Mangour, et al., 2013) 
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Faccoli et al. studied the use of cold spray to demonstrate the repair of hydro turbine 

components made from martensitic stainless steels. The study compared two repair 

methods for the same damage: TIG welding and cold spray. Austenitic stainless steel 

AISI 316 was used for the cold sprayed repair as the material was deemed to be easier 

to spray than martensitic materials, while still providing the necessary material properties 

for the repair.  

The study found that the hardness of the cold sprayed repair was higher than that of bulk 

material, which can improve the erosion resistance of the material. According to Faccoli 

et al. the method could be useful for repairing cavitation damage on hydroturbines, which 

operate in many ways in same conditions as marine propellers. The most important 

benefit of the cold sprayed repair over the welded repair is the lack of need for post 

welding heat treatment. (Faccoli, et al., 2014; Germanischer Lloyd Aktiengesellschaft, 

2019) Figure 24 presents the cross section and microstructure of the simulated repair. 

Areas close to the cut cavity show high levels of porosity. The porosity decreases further 

away from the cut and on the areas which have been perpedicular to the spray nozzle. 

 

Figure 24. Microstructure of repair on stainless steel sample done using cold 
spraying. (Faccoli, et al., 2014) 

Spray parameters from the presented studies are combined to Table 9. When comparing 

the parameters to the findings of the studies, it is clear that high gas pressures and tem-

peratures are necessary for good quality deposits. 

Table 9. Parameters used to deposit stainless steel AISI 316L. 
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Stainless steel is known to be a difficult material to deposit due to its tendency to work 

harden (or strain harden; note: use the term you want), with studies showing that some 

porosity remains in the coating even after using high process temperatures and pres-

sures. Given the difficulty of depositing the material and the less than optimal corrosion 

resistance of the material, stainless steel is not an interesting material for corrosion pro-

tection of marine components. The studies suggest that adequate deposit properties can 

be archived to conduct non-structural repair on stainless steel components. 

4.3.4 Nickel aluminium bronze 
 

As discussed in previous chapters, nickel aluminium bronze is the most often used ma-

terial for propeller manufacturing due to its good resistance to corrosion and cavitation 

while being relatively cost effective (Carlton, 2012). For the same reasons, the material 

is an interesting candidate for barrier coating and repair applications. 

Bronze materials are both dense and ductile which causes them to be often simple ma-

terials to deposit using cold spray with both low- and high-pressure systems. (Koivuluoto, 

et al., 2012) Bronze materials with higher strength such as nickel aluminium bronze can 

be an exception to this as Krebs at al. have reported CuAl10Fe5Ni5 to be a challenging 

material to deposit due to the hard martensitic phases in the powder. Annealing of the 

powder removed the martensitic phase and improved the deformability of the powder 

which resulted in higher quality deposits. (Feng, et al., 2018; Krebs, 2016) 

The use of different thermal sprayed bronze deposit for the repair of cavitation damage 

has been extensively studied by Krebs et al. The study shows that cold spray deposited 

nickel aluminium and manganese aluminium bronzes can have cavitation rates close to 

bulk nickel aluminium bronze if energy of the deposited particle is high enough. In the 

study η-value describes the thermal and kinetic energy of the sprayed particle, where η-

value of 1 is the expected minimum value for bonding to substrate. Higher η-values de-

scribe increased particle energy, which is expected to increase the coating quality. 

Therefore, the η-value can be thought as a coating quality index. Figure 25 presents the 

microstructure and spraying parameters for various η-values. 
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Figure 25. Microstructure and spray parameters of cold sprayed deposit of an-
nealed NAB powder on GL-A ship building steel. (Krebs, 2016) 

Figure 26 presents the cavitation rate of different bronze deposits with varying η-values 

or coating qualities. As can be expected, the coating quality has a great effect on the 

cavitation resistance of the coating. 

 

Figure 26. Cavitation rate of different cold spray deposited bronze materials. 
(Krebs, 2016) 
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Krebs reported that the coatings deposited using nitrogen carrier gas showed low cavi-

tation rates, but the amount of loose non-bonded particles remained high. Cavitation 

quickly removed these particles which roughens the surface. (Krebs, et al., 2017) This 

may not be an issue in propeller repairs, as the surface is first filled with the deposit and 

then ground down to the wanted shape, as the deposit is often denser further from the 

surface. (Koivuluoto, et al., 2012) Krebs also studied the effects of post spray heat treat-

ment on the cavitation rates. Annealed powder was found to have better cavitation re-

sistance even before post spray heat treatment when compared to the non-annealed 

powder. Figure 27 presents the cavitation erosion rate of the coating after heat treatment. 

 
Figure 27. Effect of heat treatment on the cavitation rate of CS deposited NAB. 

(Krebs, 2016) 

Ultimate tensile strengths of the NAB deposits after different heat treatments can be seen 

in Figure 28. As can be seen, a one-hour heat treatment significantly improves the 

strength of the deposit. Longer heat treatment does not have much effect on the strength 

but as with other materials the elongation most likely is improved. Again, better perfor-

mance is attained by using the annealed powder. 
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Figure 28. Ultimate tensile strength of NAB coating in respect to post spray 
heat treatment. (Krebs, 2016) 

According to Krebs cold spray, warm spray and HVOF can be used to successfully de-

posit dense coatings with good mechanical properties and cavitation resistance if spray 

parameters are selected so that high particle velocities and temperatures are attained. 

Otherwise post spray heat treatment can be used to improve the coating quality if optimal 

spray parameters cannot be used, but this increases the overall cost and complexity of 

the manufacturing process. (Krebs, 2016) Table 10 presents satisfactory spray parame-

ters for nickel aluminium bronze based on the results from Krebs.  

Table 10. Satisfactory parameters for NAB repair using cold spray. 

 
 

Nickel aluminium bronze can be deposited using cold spray and other thermal spray 

methods to form cavitation resistant deposit with good mechanical properties, which al-

lows the material and process to be used for non-structural repairs and cavitation re-

sistant coatings. These properties can be further improved by heat treating. Study con-

ducted by Krebs shows that nickel aluminium bronze powder should be in annealed con-

dition to archive good results. Annealing removes hard martensitic phases from the pow-

der which improves the adhesion of the deposit material. 
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4.4 Conclusion: coating materials 

Titanium has excellent corrosion resistance and mechanical properties, but due to its low 

density and high strength, archiving dense coatings is difficult even when using high 

pressure cold spray systems. Through pores compromise the barrier function of the coat-

ing which can lead to failure of the coating and the part. Laser assisted cold spray pro-

cesses have been used to successfully form dense coatings in titanium, but such tech-

nology is not yet commercially available. 

Nickel alloys have excellent corrosion resistance and good mechanical properties. These 

materials are dense and ductile which allows them to be sprayed with ease using high 

pressure cold spray systems. Nickel alloys are also sprayable by low pressure systems 

which is important characteristic for repairability of the coatings. Literature shows many 

examples of successful deposition of dense coatings using nickel alloys, which combined 

with the good corrosion resistance makes it a good candidate for corrosion resistant bar-

rier coating. Even still the real-world performance of cold sprayed nickel barrier coatings 

on large parts is unknown and needs to be tested before any practical use. 

Many examples of successful stainless-steel coatings were found in literature. The ma-

terial has worse corrosion and cavitation resistant properties than the other discussed 

materials. The material is also difficult to deposit using cold spray, so the material is not 

ideal for protective coatings. The material could however be used to do non-structural 

spot repairs on stainless steel components. In these cases, the cold spray process would 

provide benefit over competing welding repair as no post repair heat treatment is re-

quired. 

Bronze has good resistance to corrosion and cavitation erosion. It is dense and ductile 

and can be deposited by both high- and low-pressure systems. This allows bronze to be 

used to repair damage on propellers manufactured from nickel aluminium bronze. 

Bronze materials are effective in preventing accumulation of biological fouling which pro-

motes long term efficiency of the propeller. 
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5. COLD SPRAYING 

Cold spray process was accidentally invented in former Soviet Union in 1980’s, while 

studying material abrasion using high velocity particle spray. It was found that if abrasive 

media was accelerated to high enough velocity, it deposited to the surface of the sub-

strate instead of cutting it (Papyrin, et al., 2006). Nowadays cold spray process is being 

used apply coatings, repair parts, and produce near net shape for manufacturing. 

(Titomic, 2020; Fauchais, et al., 2014) 

5.1 Operating Principle 

Cold spray is a process in which material particles are accelerated to supersonic veloci-

ties using compressed gas. The process is termed cold spray as the particles are 

sprayed at or near-room temperature, which distinct it from other thermal spray methods 

that relay on heat in addition to the particle velocity. ( Fauchais, et al., 2014, p. 33) Sche-

matics of basic cold spray system can be seen in Figure 29. 

 

Figure 29. Schematics of cold spray system. (Titomic, 2020) 

Cold spray process is divided to high- and low-pressure processes. The difference be-

tween them is in the pressure of the carrier gas, and thus in the velocity of the sprayed 

particles. In high pressure process the carrier gas accelerates the particles to sufficiently 

high velocity to form a bond between the particle and the substrate material. Particle 

velocities attained by the low pressure process are not high enough to deposit a coating 

by itself, so the process relays on the use of powder mix which is blended with harder 

particles, the purpose of which is to shot peen the actual coating material to the substrate. 

( Fauchais, et al., 2014, pp. 33-34) 
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Thermal sprayed coatings are often evaluated by their adhesion strength, density, and 

level of oxidation. (Villafuerte, 2015, p. 8). Cold spray process often has better adhesion 

and density of coating when compared to other thermal spraying methods as a result of 

the lower particle temperature, which is not sufficiently high to promote oxidation off the 

particles, thus promoting metal to metal bonding. High particle velocity results in high 

deformation of the particles which together with the shot peening effect of the spray re-

sults in denser coatings than those archived with other thermal spray methods. Compar-

ison of coating material microstructure with different spray methods is presented in Fig-

ure 30.  

 

Figure 30. Comparison of material microstructure between thermal spray 
methods. (Villafuerte, 2015) 

When compared to other thermal spray processes, HVOF process is the closes compet-

ing process for cold spray, as it can also produce deposits with low porosity and good 

mechanical properties. When compared to HVOF the main advantage of cold spray is 

its better energy efficiency, deposits have lower oxidation and no requirement to use and 

handle explosive gases. ( Fauchais, et al., 2014) 

Main drawbacks of cold spray process are its high consumption of carrier gas and the 

brittle nature of the coatings due to the high plastic deformation caused by the coating 

process. Post spraying heat treatment is often employed to remove tensile stresses and 

to improve ductility and strength of the deposits. (Villafuerte, 2015)  
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5.2 Cold Spray Equipment 

Cold spray systems are available in many different forms each of them having their dis-

tinctive advantages and limitations. ( Fauchais, et al., 2014, pp. 33-34)  Low pressures 

systems often use compressed air as the carrier gas which limits the deposit materials 

to ones with low critical velocity, such as zinc, tin, nickel, copper, and aluminium. To aid 

deposition the powder is often mixed with a percentage of harder ceramic particles which 

hammer the surface and help form the deposit ( Fauchais, et al., 2014, pp. 33-34). Low 

pressure is often portable and thus a good solution for onsite applications and repair 

uses when only soft materials are being deposited. The low-pressure equipment is also 

a magnitude cheaper to acquire than a high-pressure system due to the reduced size 

and complexity of the system  (Assadi, et al., 2016). Deposition efficiency and rate of 

low-pressure systems is small when compared to high pressure systems. Dymet 423 is 

an example of portable low-pressure cold spray system. It features deposition efficiency 

of 20-30% with the deposition rate is 3-10 g/min depending on the material. Dymet 423 

is presented in Figure 31. (Dycomet Europe, 2020; Villafuerte, 2015; Fauchais, et al., 

2014) 

Figure 31. Portable high-pressure cold spray system (left) and a portable low 
pressure cs system (right). (VRC Metal Systems, 2020) (Dycomet Europe, 2020) 

High pressure systems are used when better mechanical properties, higher deposition 

rates or harder deposit materials such as steels or titanium are deposited. High pressure 

systems use nitrogen or helium as the carrier gas and operate at higher pressure levels 

to archive higher particle velocity than low pressure systems. (Villafuerte, 2015; 

Fauchais, et al., 2014) High pressure systems are available in both portable and fixed 

installation forms, although it must be noted that the portable high-pressure system is 

significantly larger and more complex than portable low-pressure system as can be de-

termined by comparing a portable high-pressure cold spray system from VRC metal sys-

tems to a Dymet 423 low pressure system in Figure 31. 
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Both low- and high-pressure systems can be handled manually to deposit material locally 

but for more sophisticated applications either the spray gun or the substrate can be 

mounted to computer-controlled manipulator such as robotic arm. Such setups are nec-

essary for archiving coatings with tight tolerances, for coatings of large areas and for 

additive manufacturing uses. (Villafuerte, 2015, pp. 263-264) While many designs for 

complete spray systems are available from different manufactures, often a completely 

custom spray setup needs to be constructed for the required application. Such cases 

may occur when the spray system in integrated as part of a production process or the 

part has characteristics that necessitate a custom system to be build. (Villafuerte, 2015, 

pp. 270-273) Figure 32 features a robotic manipulated high-pressure spray system by 

Titomic. The setup is quite representative of which a setup to coat individual propeller 

blades might look like. 

 

Figure 32. Titomic cold spray system coating a blade like component. 
(Titomic, 2020) 

Table 11 contains basic information about some of the commercially available cold spray 

systems. The publicly available specifications of the systems have been converted to 

common units for easier comparison. For volume-based deposit rates, the density of 

nickel 8.91 kg/l has been used to attain comparable grams per minute deposit rates. 
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Table 11. Commercially available cold spray systems. 

 

Efficient coating of large propellers requires special coating system to be build and the 

process optimized for reliable results. To archive this, it is important to discuss the project 

with cold spray equipment manufacturers and powder suppliers to find the appropriate 

equipment, process parameters and materials. It is also worth noting that due to the large 

coating volume, large coated area and thin coating thickness, fast travel speeds are 

required. The fast travel speeds and high accelerations combined with the weight of the 

spray gun can have a detrimental effect on the accuracy of the spray gun manipulator. 

5.3  Coating Adhesion Strength 

In cold spray the material bonding mechanism is a mixture of mechanical trapping and 

metal to metal bonding depending on the material combination and spray parameters. 

Metal to metal bonding is attributed to adiabatic shear instabilities similarly to in explosion 

welding. Quick deformation of the particle breaks the oxide layers between the particle 

and the substrate thus allowing metal to metal contact to occur. High pressure and ma-

terial flow velocity from the impact force the materials to intimate contact and forms metal 

to metal bond. (Walker, 2018; Villafuerte, 2015) Figure 33 demonstrates the effects of 

particle to substrate impact between different material pairs. The material flow increases 

further from the centre of the contact point. Thus, it is estimated that the metal to metal 

only occurs on the outer edges of the splat. Soft materials with low melting point have 

presented inter-facial melting and generation of intermetallic phases at the interface. 

(Walker, 2018; Villafuerte, 2015) Generally, the adhesion strength of the coating im-

proves with increased particle velocity and higher preheating temperatures. 
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Figure 33. Deformation and temperature on four cases: a) Al on Al at 775 m/s, 
b) Ti on Ti at 865 m/s, c) Al on mild steel at 356 m/s, d) Ti on Al at 655 m/s. 

(Walker, 2018) 

Adhesion strength values for various cold sprayed coatings are presented in Table 12. 

Post spray heat treatment can in some cases be used to improve the adhesion strength 

of the coating. 

Table 12 Adhesion strength of various substrate and deposit material combi-
nations. 

 

Spraying can form either tensile or compressive residual stresses to the coating. Tensile 

stresses are formed by difference in temperature and the thermal expansion between 

the materials. Alternatively, compressive residual stresses can be formed if the shot 

peening effect of the coating process is dominant. Residual tensile stress can lead to 

problems with low bonding and cracked coating. (Villafuerte, 2015, pp. 225-253) 



47 
 

5.4 Cold Spray in Manufacturing 

As with any manufacturing method, the successful application of cold spray requires both 

the part and the process to be designed and conducted appropriately. This chapter gives 

basic guidelines to the part design, spray preparation and post processing for thermal 

spray and cold spray applications.  

5.4.1 Part Design 
 

Part should be designed so that it does not promote the damage and delamination of the 

coating. To prevent cracking and delamination the part should be designed so that the 

coating does not end abruptly but instead the thickness of the coating is gradually de-

creased to be level with the substrate. Alternatively, a recess can be machined for the 

coating. Sharp edges on the coating can lead to development of cracks, from which the 

coating will start to peel off and separate from the substrate. ( Fauchais, et al., 2014, p. 

756) Figure 34 illustrated some best practices that apply to designing parts for thermal 

spray coatings. 

 

Figure 34. Correct shaping of the coating and the base part. 

Machining can also be used to create grooves to the base material prior to roughening 

the material surface. The machined grooves are used to transfer the shear stresses from 

the base material to the sprayed material, thus the direction of the grooves must be cho-

sen correctly in relation to the stresses acting on the sprayed part. The grooves are used 

mainly when spraying thick coatings. The representation of the grooved and smooth sub-

strates are presented in Figure 35. ( Fauchais, et al., 2014, p. 757) 



48 
 

 

Figure 35. Shear stress transfer between the deposit and substrate for 
grooved and smooth substrate. ( Fauchais, et al., 2014, p. 757) 

Many applications feature mechanical and thermal loading of the part. In these cases, it 

is important to consider the behaviour of the substrate and deposit under these varying 

conditions. Loading of the part leads to deformations in the part. As the deposit material 

often has differing Young’s modulus or thermal expansion coefficient to the substrate 

material, shear stresses occur at the interface of the materials when the part is deformed 

which can lead to cracking or delamination of the coating. 

5.4.2 Cleaning and Roughening 
 

Cleaning and roughening are the first steps of preparing the substrate for spraying. 

Cleaning is done to remove contaminants such as grease, oil and paint and mill scale 

which can prevent the deposit from properly adhering to the substrate. ( Fauchais, et al., 

2014, p. 757) The cleaning can be done using solvents and abrasive medium to remove 

the contamination. Prior to cleaning sand cast parts should be oven baked at tempera-

ture of 315 °C for four hours to remove all oil from the pores of the part. ( Fauchais, et 

al., 2014, p. 758) 

After cleaning, the surface of the part must be roughened to create good bonding surface 

for the sprayed material. Dry abrasive grit blasting such as sand blasting is commonly 

used for roughing ( Fauchais, et al., 2014, p. 758). The used grit size must be chosen 

according to the sprayed material and other spraying parameters as the surface rough-

ness left by the grit influences how the sprayed material deforms over the surface peaks 

of the substrate, and thus affecting how well the sprayed material can adhere to the 

substrate. Further cleaning of the part is necessary after grit blasting to remove any loose 

particles and embedded grit material which could compromise the coating adhesion. ( 

Fauchais, et al., 2014, p. 779) 

In cold spray process the high velocity particles blast the surface which roughens the 

surface and activates the substrate surface. For this reason, grit blasting is not necessary 
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for cold spray process. It has been observed that with cold spray polished surface often 

results in better bonding between the coating and the substrate. (Villafuerte, 2015, p. 53) 

5.4.3 Masking 
 

Masking is done to prevent the spray depositing on unwanted surfaces of the part. Ac-

cording to Fauchais et al. the masking process is chosen based on the quantity of the 

sprayed parts. For small production runs the masking process can be done using mask-

ing tape, while for larger production runs the masking can be done using permanent 

masking which can be used for multiple parts. In addition, the masking process using 

permanent masks can be automated as part of the automatic spraying process. ( 

Fauchais, et al., 2014, p. 760)  As per the guidelines stated in Chapter 5.4.1 the masking 

must be done so that sharp edges are not created. 

5.4.4 Post spray heat treatment 
 

Due to the nature of the cold spray process the sprayed deposit undergoes a large de-

gree of plastic deformation. This causes the deposit to be hard and brittle. A post spray 

heat treatment can be employed improve the improve the properties of the coating. The 

heat treatment promotes diffusion, recrystallization, and grain growth in the material, 

which closes the interparticle interfaces and reduces the porosity of the coating. (Sun, et 

al., 2020) The practical benefits from heat treating include improved mechanical proper-

ties and bonding, increased coating quality and increased corrosion resistance. (Sun, et 

al., 2020) The true archived effect of the heat treatment is obviously dependant on the 

deposit material, part design and on the used spray parameters but with all else being 

equal: increase in the heat treating temperature and time increases the elongation and 

to a degree the strength of the material while reducing porosity within the deposit.  

The required heat treating temperature is related to the melting point of the material with 

higher melting point requiring higher heat treating temperature. The heat treating can be 

done using a furnace, laser, or eddy current heating. Vacuum or inert gas atmosphere is 

utilized when the heat-treating temperature is high and there is a need to limit the oxidi-

zation of the material. Table 13 presents various heat treatments and their effects on 

selected materials. The table is adapted from work done by Sun, et al. 
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Table 13. Various heat treatments and their effect on the material. Adapted 
from (Sun, et al., 2020) 

 

While heat treatment certainly can improve the coating quality, it is an extra step which 

increases the cost, and complexity of the propeller coating process. For this reason, it is 

likely beneficial to try and optimize the spraying parameters to limit the need for post 

spray heat treatment. 

5.4.5 Machining 
 

Machining, sanding, or grinding of the cold sprayed deposit is often necessary to archive 

the wanted shape and surface finish on the part. This chapter discusses the machining 

characteristics of cold sprayed deposits. (Moog Aircraft Group, 2018; Yin, et al., 2018; 

Honeywell, 2017; Champagne & Helfritch, 2014) Depending on the material, spray pa-

rameters and post processing the machinability of the material is described to be like 

machining the material in either bulk or sintered form. In the bulk form the material is 

removed by the shearing action of the cutting tool, while in the sintered form the material 

is removed by the dislodging of particles instead of cutting. The differences between the 

two cutting actions are described in Figure 36. (Aldwell, et al., 2017)  

 

Figure 36. Material removal of fully dense and a material with weak particle 
bonds. 
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According to Aldwell et al. materials with poor bonds between particles tend to produce 

poor surface finish as the material is removed by dislodging and then smearing across 

the cut surface. Machining characteristics of deposit with good interparticle bonding and 

low porosity is reported to be similar to the bulk material. (Aldwell, et al., 2017) Overall 

few studies about machining of cold sprayed deposits were found. Machining is men-

tioned as a common part of a process in multiple studies indicating that, in general ma-

chining of the deposit is not an issue. 

5.5 Economics of Cold Spray  

This chapter discusses the estimation of costs associated with cold spray process. Ac-

curate estimation of the costs associated with the cold spray process is important for 

assessing the methods potential in production use. The manufacturing costs can be di-

vided in direct and indirect costs. Direct costs include all costs that are directly related to 

the production steps such as material consumption and labour. Indirect costs or over-

head costs mainly consist of investment related costs, plant maintenance, rents and 

other costs which remain constant regardless of the production rate. under three cate-

gories: material cost, labour costs, and overhead costs. ( Fauchais, et al., 2014, p. 1514) 

In cold spray process the material costs are carrier gas and the deposit powder. The 

preparation, setup and finishing of the spraying process and the sprayed part require 

manual labour, which is the direct labour cost of the process, while machine mainte-

nance, depreciation, and other utilities costs of the spraying equipment represent the 

overhead costs. (Villafuerte, 2015; Fauchais, et al., 2014) 

5.5.1 Material costs 
 

Material costs are based on the deposited mass and material price. The deposited vol-

ume can be easily calculated from the physical size of the sprayed area, thickness of the 

coating and the deposition efficiency of the spraying setup. Thus, the powder usage can 

be estimated by dividing the mass of the coating and overspray with the deposit effi-

ciency of the spraying equipment. (Villafuerte, 2015, p. 378) The mass of used carrier 

gas can be calculated by employing a known mass to gas ratio which is often around 

0.05, so approximate mass of used gas is 20 times higher than that of used powder. 

(Villafuerte, 2015, p. 378) 
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5.5.2 Labour 
 

Calculation of labour costs depends on if the worker is paid only for the time spent on 

given activity or if he is paid regardless of his activity. Prior case is used in subcontracting 

where a given labour rate is billed from the customer based on the used labour time, 

while in the latter case the labour costs are part of fixed overhead costs which are applied 

to a project accordingly. (Villafuerte, 2015, p. 379) For this analysis, a constant hourly 

rate for labour is assumed for simplicity.  

Labour costs can be attained by multiplying the known before, during and after spray 

labour times with appliable labour rates. The before spray labour may consist of planning, 

fixture manufacturing, robot programming, testing, and part loading. During spray, the 

machine may need to be observed and operated depending on the process. After the 

spray, the part needs to be unloaded from the spray system, fettled, and transported. 

(Villafuerte, 2015, p. 379) Time required for the said procedures is highly dependent on 

the project and on the skill and experience of the workers, so estimating the time con-

sumption beforehand can be difficult. 

5.5.3 Overhead 
 

Overhead costs can be categorized on two categories: variable and fixed overhead cost. 

Variable overhead consists of costs that come from the production process and thus vary 

in relation to the production volume. Fixed overhead describes costs that are constant in 

relation to the production volume. Examples of such cost are rent of the production facil-

ities and depreciation of equipment. Main variable overhead cost associated with the 

cold spray process is electricity. Electricity is used to heat the carrier gas, provide motion 

for the spraying robot and power other equipment such as the control computer, lighting, 

and ventilation.  (Villafuerte, 2015, p. 379) The energy needed to heat the gas can easily 

calculated when the mass of the used gas and the temperature difference before and 

after the heating is known. Little electricity is used by the other systems when compare 

to the heating of the gas. Thus, the other systems can be safely excluded from the costs 

analysis. The overhead costs are used to calculate an appropriate hourly rate for a given 

production machine. The time required to spray a single part can be estimated with ad-

equate accuracy when the deposition rate of the spraying equipment is compared to 

material needed to spray the part (Villafuerte, 2015, p. 379). 
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5.5.4 Total Cost 
 

This chapter discusses the estimation of total coating costs using a MATLAB script, 

which calculates the total cost as a function of propeller size. Example propeller used in 

this analysis is one of ARC 1.2 thruster. The original propeller has a diameter of 4.8 m 

and a weight of approximately 27 tons. The total surface area of single ARC 1.2 propeller 

blade is 10.63 m2. The proposed coating is a 0.3mm thick layer of Monel 400. Density of 

Monel 400 is 8800 kg/m3. Weight of one square meter of coating with thickness of 0.3 

mm is calculated to be 2.64 kg. From this information the total weight of the coating for 

all blades is determined to be around 112 kg, while the total coating volume is 0.0128 

m3. Illustration of ARC 1.2 propeller can be seen in Figure 37. The used coating thickness 

value of 0.3mm is based on the thickness of barrier coatings found in literature. As pro-

pellers are expected to operate for a long time in a hostile marine environment the prac-

tical coating thickness may vary significantly. 

 

Figure 37. ARC 1.2 Propeller and single blade. 

To analyse the costs and the costs structure of the coating process a MATLAB script 

was done. The example propeller was scaled to multiple different sizes ranging from 1 

meter to up to 10 meters in diameter. Surface area for single propeller blade was calcu-

lated for each propeller size using a CAD software. The surface area data was imported 

to MATLAB and a function describing the blade area as a function of propeller diameter 

was formed. The blade area function can accurately describe the coated area of a four-
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blade propeller with a similar shape to the ARC 1.2 propeller blade. For this early stage 

feasibility analysis, the same area function is used to describe all analysed use cases. 

For more accurate analysis it would be beneficial to form individual area function for other 

propeller types, with different blade counts and geometries, to eliminate any errors in 

required coating volume. 

As discussed in Chapter 5.5, the total cost can be calculated when material costs, labour 

costs and overhead costs are known. Material consumption was estimated from the sur-

face area, coating thickness, deposit efficiency and overspray coefficient as described 

by Villafuerte. Gas consumption was then calculated from the gas to powder ratio of 20:1 

Electricity costs are calculated from the energy needed to heat the used gas mass to 

required temperature. (Villafuerte, 2015) 

Overhead costs and machine time were estimated from the now known deposit mass 

and from estimated deposition efficiency and deposit rate. European vendor for Plasma 

Giken: Dycomet Europe B.V estimated the maximum appropriate deposit rate to be 400 

grams per minute for nickel alloys when using the PCS 1000 system. By using an esti-

mated deposition efficiency of 0.9 the deposited mass per hour can be calculated to be 

21.6 kg/h. Using this information, the time spraying can be estimated to be around 5.2 

hours for 4.2 m propeller if the spray system can operate without stoppages. 

Total labour times were estimated by estimating the programming, setup, and parts han-

dling times. Set up time per part consists of loading the part to the fixture, preparing the 

spraying equipment, and again removing the part after spraying. Larger parts are natu-

rally more difficult to handle, but the actual sensitivity to propeller size might be small as 

both small and large propellers require the same heavy equipment for handling. Before 

spraying preparations consists of fabricating the needed fixtures and tooling and from 

programming the spray path. Time required for both actions can be assumed to be rela-

tively constant regardless of the size or type of the propeller. Without any empirical data 

the times used for labour cost estimates are subjected to significant uncertainty. All pa-

rameters used in the analysis can be found in Table 14. 
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Table 14. Calculation parameters. 

 

The total cost and the cost components were calculated for all propeller sizes using 

MATLAB script. The plot created by the script allows the cost structure and sensitivity of 

the costs to propeller size to be analysed. This plot can is presented in Figure 38. 
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Figure 38. Cost structure and the sensitivity to propeller size. 

The calculation of the results show that the labour costs are the most significant costs 

for small propeller sizes. For larger propellers, the material costs and more importantly 

powder cost becomes the most significant cost. The values used for the analysis are 

estimations, which can differ from real world values.  For more accurate analysis, it would 

be important to discuss the project with individual suppliers to gain understanding of the 

true resource costs, especially for the most important cost factors such as powder and 

overhead costs. Other important factor is the used coating thickness, which directly af-

fects the required coating material volume. It must be noted that the analysis does not 

include the possible logistic costs, profit margins and other costs associated with coating 

the propeller in practice. The logistics costs can be significant for large propellers, even 

to such extent that for very large propellers it may be better to transport the propeller 

spraying equipment to the shipyard to spray the propeller instead of transporting the 

propeller. The complete MATLAB script used for the cost analysis can be found in ap-

pendix B. 
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6. CASE STUDY 

This chapter discusses in depth the financial feasibility and qualitative properties of the 

propeller coatings and repairs conducted using cold spray. 

6.1 Coated Propeller 

The aim with coated propellers is to gain benefit both by lowering the manufacturing 

costs of the propeller and by increasing hydrodynamic efficiency of the propeller. In this 

chapter the costs of coating a propeller are compared to the cost reduction and efficiency 

benefits. 

6.1.1 Savings from increased efficiency 
 

Estimating the overall performance of propeller is a complex problem that is well beyond 

the scope of this study. For this reason, the financial potential of the coating is ap-

proached with an assumption that the coating can improve the efficiency of the propeller. 

In practice this may be archived by fabricating the propeller from stronger base material, 

reducing fouling by applying anti fouling coating or by improving efficiency by reducing 

cavitation by using cavitation resistant coating.  With this assumption made, the financial 

potential of the coating can be calculated and compared to the costs and risks, before 

committing on conducting a study on stronger propellers. 

To efficiently analyse this problem, a MATLAB script was constructed to estimate engine 

power of a vessel as a function of propellers size. This function was used to estimate the 

yearly fuel consumption for a vessel with given propeller size. The yearly fuel consump-

tion was compared to selected increases in efficiency to analyse the net present value 

of assumed efficiency gains.  

Formula for connecting main engine power and propeller diameter is given in Equation 

1, where 𝑛𝑀 is propeller rotations per minute (r/min), 𝐷𝑝𝑟𝑜𝑝 is propeller diameter in me-

ters, 𝑃𝑀 is main engine power (kW) and 𝐶 is a constant which reflects average values for 

ships with certain type of FP propeller. (MAN Diesel & Turbo , 2012) 

𝑛𝑀 = 𝐶 ∗ √
𝑃𝑀

(𝐷𝑝𝑟𝑜𝑝)5
3

          (1) 

For deriving power requirement as a function of propeller size, the propeller rotations per 

minute is replaced with constant propeller blade tip speed 𝑣𝑡𝑖𝑝 as seen in Equation 2. 
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This is done to change the propeller rotations per minute which is a variable changing 

based on the propeller size to tip speed, which is a design value that can be constant 

regardless of propeller size. 

𝑛𝑀 =
60∗𝑣𝑡𝑖𝑝

𝐷𝑝𝑟𝑜𝑝∗𝜋
           (2) 

60∗𝑣𝑡𝑖𝑝

𝐷𝑝𝑟𝑜𝑝∗𝜋
= 𝐶 ∗ √

𝑃𝑀

(𝐷𝑝𝑟𝑜𝑝)5
3

         (3) 

Required main engine power for given propeller diameter and tip speed can be calcu-

lated using equation 4. 

𝑃𝑀 =
𝐷𝑝𝑟𝑜𝑝
2 ∗603∗𝑣𝑡𝑖𝑝

3

𝐶3∗𝜋3
          (4) 

Fuel consumption of the vessel can be estimated from the main engines brake specific 

fuel consumption (BSFC), yearly engine running hours and from the operating profile or 

the average running power of the vessel. The brake specific fuel consumption is of 

course a variable depending on the engine loading and rotational speed, so an average 

value for the selected operation profile must be selected. BSFC value of 0.182 kg/kWh 

was selected based on available consumption data on marine engines.  Ships with con-

ventional shaft line are designed so that the peak efficiency of the propulsive system is 

at the most used operating point. For vessels operating in non-ice conditions this design 

point is often 85 % of the maximum engine power, so a 15 % sea margin is left for rough 

seas and other adverse conditions. (MAN Diesel & Turbo , 2012) As a ship spends some 

time manoeuvring, the average load was assumed to be 80%. Due to maintenance and 

port stays the ship is assumed to sail around 260 days a year, which translates to 6240 

h of main engine usage per year. To translate the fuel consumption to financial cost an 

average fuel price must be assumed for the analysed price period. Fuel prices are very 

volatile by nature so estimating the future prices is difficult. For this analysis fuel prices 

are 300 $/mton for high sulphur oil fuel (HSOF) and 550 $/mton for very low sulphur oil 

fuel (VLSOF) were selected. The calculated main engine power and yearly fuel costs 

based on the selected assumptions is presented in Figure 39. 
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Figure 39. Main engine power and yearly fuel costs as a function of propeller 
size. 

Based on the calculated fuel consumption and assumed 1% reduction in fuel consump-

tion of the vessel a net present value can be calculate for the efficiency improvement. 

Figure 40 presents the net present value of 1 % efficiency improvement for multiple pro-

peller sizes as a function of the propellers operating life, when a 10 % discount interest 

rate is used. 
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Figure 40. Net present value of 1% efficiency improvement for multiple  
 propeller sizes. 

If the propeller’s operating life and so the length of investment is assumed to be 20 years, 

a single net present value can be calculated for any propeller size. The net present value 

of the 1% efficiency improvement over 20-year length of investment and propeller coating 

costs as a function of propeller size are presented in Figure 41. 
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Figure 41. Net present value of 1% efficiency gain compared to estimated 
coating costs. 

As can be seen, the net present value of the 1% savings greatly exceed the coating 

costs, even if the costs are assumed to double from profit margins and logistical costs. 

Still it is worth noting that the net present value is small compared to the total fuel costs 

during the 20-year period. The developed fuel cost estimation model is based on the 

assumed operating profile, engine power and gained efficiency. The described approach 

can be used to estimate the scale of the possible financial savings. More accurate values 

based on simulations and numbers of the individual use case should be used to deter-

mine the real-world saving potential for given vessel.  

6.1.2 Savings potential from propeller material 
 

Total costs caused by the material selection are not restricted to the cost of the bulk 

material. In propeller fabrication the material selection affects the cast ability, required 

melting temperature and therefore energy consumption, machining costs etc. 

When comparing the most commonly used propeller materials, austenitic stainless steel 

propeller costs around twice as much as nickel aluminium bronze propeller of the equal 

size and shape, while martensitic propellers are reported to be by a factor more expen-

sive than comparable austenitic stainless steel propellers. The cost effectiveness of the 
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bronze materials is likely due to the easier cast ability of the material, lower energy con-

sumption and lesser equipment needs, and due to the fact that bronze propeller fabrica-

tion is more common, so the competition in the field is stricter. With this being said, 

coated low-alloy steel propeller more likely has cost advantage against stainless steel 

than bronze propellers, as material cost of unalloyed and alloyed steels are significantly 

less than that of stainless steels (Masi, et al., 2019).   

Also judging by its overall properties coated propeller is more likely competitive against 

stainless steel propeller as such propellers are more often used in ice-applications where 

the propellers are conservatively shaped due to extra ice loads. In these cases, extra 

strength of the propeller material can convert to more optimized propeller shape and thus 

better hydrodynamic efficiency. Additionally, as stainless-steel material does not pos-

sess any anti fouling properties, the long-term efficiency of the propeller is not compro-

mised by coating material selection, when compared to bronze propeller. 

6.1.3 Conclusion: coated propeller 
 

Judging by the preliminary cost estimation, the coating of the propeller can be financially 

viable if the coating can provide efficiency gains through some means and if the coating 

can technically work in the intended application. The coated propeller can most likely 

bring benefits when compared to stainless steel propellers, as then largest cost saving 

can be made in material price, efficiency can most likely be improved, while no anti foul-

ing properties are removed by the material selection. 

Literature review of the coating materials suggests that from protection and sprayability 

standpoint the best compromise is to use nickel based alloy for the coating, as nickel has 

good corrosion and cavitation resistance while being able to be sprayed to form dense 

barrier coatings. Coating with anti-fouling paint system can be beneficial, as it improves 

the long-term efficiency of the propeller by reducing fouling while protecting the propeller 

from erosion and mishandling. 

Practical test should be conducted to determine the true world performance of the cor-

rosion protection coating. Additionally, the cold spray method should be compared to 

other coating and cladding methods such as laser metal deposition and weld cladding. 

Also, other thermal spray methods such as electric arc spraying or HVAF could be of 

evaluated. 
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Design studies should be done based on the assumed propeller material and coating 

properties to determine if performance gains and cost savings can be found for selected 

applications. 

Due to the nature of the thin coating, the coated propeller is prone to erosion and damage 

from both marine environment and maintenance activities such as propeller polishing.  

Additionally, defects in the coating can compromise the protection and integrity of the 

coating. For these reasons it may be beneficial to further seal and protect the coating 

using an additional polymer coating. In addition to the increased protection, the suitable 

polymer coating can have anti-fouling properties which can improve the long-term effi-

ciency of the propeller. It is also advisable to protect the propeller by cathodic protection 

to prevent corrosion in case of defects at the coating.  

Efficient coating of large propellers requires special coating system to be build and the 

process optimized for reliable results. To archive this, it is important to discuss the project 

with cold spray equipment manufacturers and powder suppliers to find the appropriate 

equipment, process parameters and materials. 

6.2 Propeller repair and cavitation protection 

This chapter discusses the uses of cold spray for repairs in marine thrusters. When con-

sidering repairing a component, the repair must provide some benefit such as reduced 

cost or reduced lead time when compared to using a new replacement part. Then again 

when comparing repair methods, it is important to consider which repair method can 

archive the wanted performance in the most cost-effective manner. 

Cold spray has been used to repair corrosion and erosion damage on aerospace appli-

cations. The documented repair applications include corrosion, erosion, fretting damage 

repair and restoration of bearing bores on aluminium and magnesium components such 

as gearbox casings. In these applications the cost of replacing the part is very high, the 

repair is difficult to do using competing methods and a lead time for new part is long. 

(Moog Aircraft Group, 2018; Honeywell, 2017; Champagne, 2008) In these applications 

the most prominent benefit of cold spray is the low heat input to the part when compared 

to the traditional welded repair. High heat input from welding alters the heat treatment of 

the welded area and induces residual to the part. These stresses often warp the part 

while also causing reduction in the fatigue life of the part. Due to the distortion areas with 

accurate fits and tolerances would need to be machined again, which is often impossible 

without filling the originally machined features. (Honeywell, 2017) 
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6.2.1 Alternate methods 
 

In order to find applications where the cold spray would be effective over conventional 

repair methods, the strengths and weaknesses of the methods need to be assessed. 

Cold spray is a material adding method, so it is natural to compare it to alternative ma-

terial fill methods, which are welding, polymer fillers and other thermal spray methods. 

Welding repair consists of removing material affected by cavitation and corrosion, filling 

the repair area with filler material, and then grinding the area back to its original from. 

Welding is currently most commonly used and the most successful method of repairing 

cavitation damage as it essentially replaces the material loss with new material which 

has similar properties to the original. Main drawbacks of welding are related to its high 

heat input. Post welding heat treatment of the heat affected zone is often needed even 

for non-structural spot repairs to restore the original mechanical properties and corrosion 

resistance of the material. For these reasons welding repair can be time consuming even 

if the actual material loss is small, as the area affected by the cavitation can be large. 

(Germanischer Lloyd Aktiengesellschaft, 2019; Duncan, 2000; Ruzga, et al., 1993) 

Non-fused materials such as epoxy putties have been used to fill cavitation and erosion 

damage. According to Duncan a major difficulty with non-fused materials has been poor 

adhesion to the substrate material, which leads to rapid deterioration of the repair. Such 

repairs are often considered temporary, so a follow up repair using welding is often done 

later. In this case the repair material needs to be removed before the long-term repair 

can be performed. (Duncan, 2000) Epoxy filler materials are cheap to acquire, and they 

can be applied quickly. For this reason, they can be an effective solution as onsite tem-

porary repair when a long-term repair can be performed in a near future. (Ruzga, et al., 

1993). According to Ruzga et al. the service life of epoxy coatings in hydroelectric tur-

bines has been short, ranging from 6 months to one year. Repair using epoxy fillers 

consists of preparation where the surface is cleaned and roughened, application of the 

filler, and shaping of the filler after it has dried. (Duncan, 2000; Ruzga, et al., 1993) 

6.2.2 Cold spray repair 
 

Judging by the advantages and limitations of the cold spray process, repair of cavitation 

damage with no structural requirements is a clear application for the process. Cold spray 

can be used to deposit material similar to the original propeller material to a large area 

quickly without inputting heat to the component. The use of different thermal spray meth-

ods for providing cavitation protection for marine applications have been studied. Krebs 
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studied the use of various thermal spay processes to deposit nickel aluminium bronze 

and other bronze alloys to repair cavitation damage on ships rudders. The study con-

cluded that that HVOF, cold spray, warm spray process could produce deposits with 

satisfactory properties, with the cavitation resistance of cold and warm sprayed deposits 

being close to that of bulk material. (Krebs, 2016) Figure 42 presents the cavitation rate 

comparison between the different spray processes. Other properties of cold sprayed 

bronze are discussed in chapter 4.3.4 

 

Figure 42. Best cavitation rates attained from NAB samples deposited by dif-
ferent spray processes. (Krebs, 2016) 

The use of HVOF and cold spray process has been evaluated for repair of stainless-steel 

components used in hydropower applications. Jiang et al. studied the use of cold spray 

to repair cavitation damage on hydropower applications. The study found that cold 

sprayed AISI 316 stainless steel exhibited better cavitation erosion resistance than bulk 

material. The cavitation resistance of sprayed Inconel 625 was by a magnitude better 

than that of other tested materials. Galvanic potential of Inconel 625 is quite similar to 

that of stainless steels, so it may also be a usable material for repair of stainless-steel 

propellers. (Jiang, et al., 2020) Figure 43 presents the relative cavitation resistance of 

materials tested by Jiang et al. 
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Figure 43. Relative cavitation erosion resistance of tested materials. 
 (Jiang, et al., 2020) 

Jiang et al. mentions that US Army Research Lab, VRC metal systems and Moog who 

are developing together with Pacific Northwest National Laboratory an onsite cold spray 

system for hydropower components. (Jiang, et al., 2020) 

6.2.3 Conclusion: propeller repair 
 

Main benefits of using cold spray over welding is its ability to deposit materials without 

inputting heat to the substrate. Cold spray can be used to fill large surface area of cavi-

tation damage in shorter time when compared to welding method, without the need of 

pre or post heating the component when high structural properties are not required from 

the material. The bonding strength and cavitation resistance of the cold sprayed material 

is most likely better than that of polymer fillers. 

Surface preparation need can be less than that of welding or polymer coating as cold 

spray equipment can be used to blast the substrate before spraying. Cold spray process 

is by nature largely self-cleaning, as non-adhering particles effectively blast the substrate 

surface. It is also probable that cold spray repair can be conducted by less experienced 

worker when compared to welding. Additional study should be conducted on which ther-

mal spray method is the most practical for onsite repair for propeller of given material, 

given the limitations of portable thermal spray equipment. 
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7. CONCLUSION 

The financial feasibility of the coated propeller was analysed using the MATLAB script. 

The net present value of the assumed efficiency gains compared to the estimated coating 

costs indicate that the coating of the propeller can be financially viable if the coated pro-

peller can provide long term efficiency gains through improved propeller design, reduced 

surface erosion or reduced fouling. The coated propeller can most likely bring benefits 

when a stainless steel propeller is replaced by a coated propeller, as then the largest 

cost saving can be made in material price, most efficiency improvements can be made, 

while no anti fouling properties are removed by the material selection. Literature review 

of the coating materials suggests that from protection and sprayability standpoint the 

best compromise is to use nickel-based alloy for the coating, as nickel has good corro-

sion and cavitation resistance while being able to be sprayed to form dense barrier coat-

ings. The thin coating is more prone to erosion and damage from both marine and 

maintenance activities such as propeller polishing, so the use additional anti-fouling coat-

ing system could be advisable, to further protect the coating and to improve the long term  

efficiency of the propeller. 

Literature review of the coating materials, their properties and parameters used for their 

spraying suggest that cold spray can be a good alternative to be evaluated for repair of 

non-structural spot damage and for repair of low-level cavitation damage spread over 

large area. In these cases, cold spray can likely reduce cost of the repair by reducing the 

repair time when compared to welding repair. While cold spray might be usable for struc-

tural repairs when a heat treatment is employed, the benefits over traditional repair meth-

ods are lost. 
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8. FUTURE RESEARCH 

Design studies should be done based on the assumed propeller material and coating 

properties to determine if performance gains and cost savings can be found for selected 

applications. Given the results of such studies, practical test should be conducted to 

determine the true world performance of the corrosion protection coating. Additionally, 

the cold spray method should be compared to other coating and cladding methods such 

as other thermal spray, laser metal deposition and cladding by WAAM/CMT methods. 

Coated propellers are not yet recognized by classification societies, which currently pre-

vents them from being used in practice. To receive the recognition of classification soci-

eties, practical tests must be conducted.  

Coating thickness requirement and the overall performance could be estimated by coat-

ing areas of normal propellers of various vessels operating in different conditions. This 

would provide valuable information about the performance of different coatings in true 

operating conditions in cost effective manner. 

Propeller repair using cold spray can be evaluated in practice by conducting test repairs 

on selected propellers, with different levels and types of cavitation damage. The repair 

procedure can be documented so the experience and information can be used to com-

pare the method to currently used welding repairs. 
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APPENDIX A – NET PRESENT VALUE SCRIPT 

% Net present value of coated propeller  
 

fuelPrice = 300 % 300 $/mton for HSFO, 550 $/mton for HSFO  
saving = 12 % mton/year, Fuel savings per voyage. 
tripCount = 10 % Yearly voyages 
yearlySaving = (fuelPrice*saving*tripCount)/1000 % Convert to x1000$ 
  
%% Present value of single data point 
  
cf = yearlySaving 
t = 15 
r = 0.1 
npv = 0 
for l=1:t 
    npv = npv + cf/((1+r)^t) 
end  
npv = npv % Net presen value 1000 € 
  
%% Plotting loop 
  
% Initial data 
cf = yearlySaving 
R = [0.15,0.10,0.08,0.06,0.04,0.02] % Studied interest rates 
T = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20] 
  
% Initialize 
resultM = zeros(length(R),length(T)) 
x = linspace(1,length(T),length(T)) 
  
  
for n=1:length(R) % For all interest rates r 
    r = R(n) % Get current interest rate 
    for m=1:length(T) % For all investment period lenghts t  
        t = T(m) 
        npv = 0; % Zero npv for calculation 
        for i=1:t 
            npv = npv + cf/((1+r)^i); % Calculate npv for current parameters. 
        end 
        resultM(n,m) = npv; % Save results. 
    end 
end  
  
% Create figure 
FigH = figure 
hold on 
set(FigH,'Name', 'This is the figure title') 
set(FigH,'Color','white') 
  
% Plot results  
for i=1:size(resultM,1) 
plot(x,resultM,'DisplayName','r='+string(R(i))) 
end 
  
% Figure visuals 
% title('Net Present Value for different interest rates and investment periods') 
xlabel('Length of Investment (years)') 
ylabel('Net Present Value ($x1000)') 
grid on 
hold off 
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APPENDIX B – COST ANALYSIS SCRIPT 

 
%% Spray cost estimator  
% MATERIAL PROPERTIES 
coating_density = 8800 % kg/m^3. 8800 for Monel 400 
material_price = 100 % kg/m^3. 100 for Monel 400 
carrier_gas_price = 0.14 % €/kg 0.14 for nitrogen, 30 for helium 
electricity_price = 0.15 % €/kWh 
cp_nitrogen = 1.05 % kJ/(kg*K) 
labour_price = 75 % €/h 
% SYSTEM PROPERTIES 
deposit_rate = 0.4 % kg/min. 0.4 for Monel 400 
deposit_efficiency = 0.9 % 
powder_gas_ratio = 0.05 % percentage of powder mass per unit of gas  
ambient_temperature = 20 % room temperature 
heated_temperature = 500 % gas temperature 
hourly_rate = 500 % Price per machine hour 
% JOB PROPERTIES 
pre_spray_preparation = 20 % Total time of pre spray preparation. Program-
ming, tooling etc. 
part_setup = 2 % Setup time per part 
number_of_parts = 4 % Number of individual parts / blades 
coating_thickness_mm = 0.3 % Coating thickness in millimetres 
overspray = 0.05 % Overspray coefficient = overspray percentage. 
% CALC PROPERTIES  
max_dia = 10 % meters, maximum propeller size for analysis 
min_dia = 1 % metres, minimum propeller size for analysis  
steps = 100 % Number of different sizes 
% CALCULATION 
syms d  
% blade area equation in relation to diameter for ice propeller (SINGLE 
BLADE). 
% From fit from cad data  
% Checked for accuracy. 
egn = 0.47*d^2 - 0.054*d + 0.11 %  
% Initialize matrices  
m_dias = linspace(min_dia,max_dia,steps) 
m_areas = zeros(1,steps) 
calc_num = length(m_dias) 
% Form propeller area matrix 
for i=1:calc_num 
    m_areas(i) = subs(egn,d,m_dias(i))  
end  
% Initialize matrices for data saving 
m_time = zeros(1,calc_num) 
m_cost_powder = zeros(1,calc_num) 
m_cost_gas = zeros(1,calc_num) 
m_cost_electricity = zeros(1,calc_num) 
m_cost_equipment = zeros(1,calc_num) 
 
m_cost_work = zeros(1,calc_num) 
m_cost_per_part = zeros(1,calc_num) 
m_cost_total = zeros(1,calc_num) 
for i=1:calc_num % For all areas 
    % Calculation 
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    coating_thickness = coating_thickness_mm / 1000 % used for calculations 
    coating_volume = m_areas(i) * coating_thickness * number_of_parts % To-

tal volume of coating on part % Checked 
    mass_of_powder = ((coating_volume * coating_density)/deposit_effi-

ciency) + overspray * coating_volume % Checked 
    mass_of_gas = mass_of_powder / powder_gas_ratio  
    Q_gas = mass_of_gas*cp_nitrogen*(heated_temperature-ambient_tempera-

ture) % Checked 
    time_coating = mass_of_powder/(deposit_rate*60) % Time in hours. 
    % Costs 
    cost_powder = material_price * mass_of_powder 
    cost_gas = carrier_gas_price * mass_of_gas 
    cost_electricity = electricity_price * Q_gas/3600  
    cost_equipment = 0 + (time_coating * hourly_rate)% Depreciation is not 

yet accounted for. 
    cost_work = (pre_spray_preparation + part_setup * number_of_parts ) * 

labour_price % Total hours * labour rate 
    cost_total = (cost_powder + cost_gas + cost_electricity + cost_equipment 

+ cost_work) 
    cost_per_part = cost_total / number_of_parts 
    m_time(i) = time_coating 
    m_cost_powder(i) = cost_powder 
    m_cost_gas(i) = cost_gas 
    m_cost_electricity(i) = cost_electricity 
    m_cost_equipment(i) = cost_equipment 
    m_cost_work(i) = cost_work 
    m_cost_per_part(i) = cost_per_part 
    m_cost_total(i) = cost_total 
end  
% PLOTTING 
f1 = figure 
set(f1,'Color','white') 
xlabel('Propeller diameter (m)') 
ylabel('Cost (€x1000)') 
hold on 
plot(m_dias,m_cost_total/1000,'DisplayName','Cost total') 
plot(m_dias,m_cost_per_part/1000,'--','DisplayName','Cost per blade') 
plot(m_dias,m_cost_powder/1000,':','DisplayName','Powder cost') 
plot(m_dias,m_cost_gas/1000,'DisplayName','Gas cost') 
% plot(m_dias,m_cost_electricity/1000,'DisplayName','Electricity cost') 
plot(m_dias,m_cost_equipment/1000,'DisplayName','Overhead costs') 
plot(m_dias,m_cost_work/1000,'DisplayName','Labour costs') 
grid on 
hold off 
 
% PLOTTING 
f2 = figure 
set(f1,'Color','white') 
xlabel('Propeller diameter (m)') 
ylabel('Time (h)') 
hold on  
plot(m_dias,m_time,'DisplayName','Machine time') 
hold off 


