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ABSTRACT 

Niloufar Valinejad: Prediction of cumulative maintenance costs for load handling equipment 
Tampere University 
Degree Programme 
Sep 2020 

 

 
Virtually all heavy-duty machines need maintenance, and the maintenance cost can be signif-

icant for providers of cargo and load handling solutions. Professionals in such industries must be 
able to forecast this cost accurately as minimizing this cost helps assure reasonable profits for 
companies and improving their economy. 

 
The cost for maintenance varies for different machines based on the payloads they carry, 

working environment, operator skills, among others. That makes the cost difficult to predict since 
we usually do not have access to such sources of information. The current practice of using sta-
tistical regression methods cannot suitably capture the relationship between the repair cost of 
heavy equipment and its influencing factors.   

 
In this thesis, the potential of Machine Learning (ML) models was evaluated as an alternative 

method for the prediction of maintenance cost of load handling machines. The distinctive differ-
ence is discovering the possibility of predicting this cost based on telemetry data merged with 
machine details, also analyzing parameters affects this cost the most.  

 
This study was conducted based on data received from 483 Kalmar’s reachstacker’s since 

2014 during their service contract or warranty contract. First, a detailed analysis of the historical 
data allows identifying the distributions of maintenance expenses and their fluctuated patterns 
during different RS’ life periods. Then the research continued by the implementation of a tree-
based ML model to predict two different predictive variables; 1) Cumulative maintenance cost per 
engine working hour (CMCPH) and 2) Cumulative maintenance cost per lift (CMCPL).   

 
The results of the ML approach show better interpretability and adequate accuracy by consid-

ering CMCPL as the output variable with Meter per lift, fuel used per lift, and tons per lift as the 
most influential predictors of Maintenance Cost. One surprising observation was having the length 
of the service work order as one of the topmost important features affecting the result of the 
experiment. An accurate prediction of future equipment maintenance costs can promote decision-
making tasks related to equipment budget and resource planning by injecting more observations 
to the model to decrease the variance. 

 
 
Keywords: Gradient boosting regression, Maintenance cost, Heavy-duty machines, Data 

analysis, machine learning. 
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1. INTRODUCTION 

Load handling equipment provides the functions of transporting all types of cargoes in 

different ports and container terminals worldwide. From the moment a fleet starts run-

ning, it is usually under massive workloads which causes the necessity of lifelong repair 

and maintenance. It is the same as other types of vehicles to stay in reasonable running 

conditions since equipment unavailability causes huge expenses for equipment owners.  

On the other hand, the cost of maintenance is one of the most considerable expenses 

of the machine's Total Cost of Ownership (TCO). It makes customers cautious not only 

about the purchase price but also about all the future costs that equipment will cause 

them, such as labor, spare parts, repair, fuel consumption, tires. Therefore, load handling 

equipment providers stay competitive in the market based on the type of offered after-

sales services. 

An accurate prediction of equipment maintenance costs (EMC) paves the way for budget 

planning for equipment repair and spare parts. Better predictability of maintenance costs 

would benefit maintenance providers to stay cost-effective and determine suitable 

maintenance strategies on different occasions and give them the ability to offer more 

reliable service contracts, which increase customer satisfaction. 

Predicting EMC remains challenging since it can significantly change depending on the 

type of payloads they carry, working environment, operator skills, equipment’ age, relia-

bility level, and other influencing factors in machines. We could have had an accurate 

estimation if we had access to all these attributes for machines with similar working con-

ditions. However, not all the relevant information like the operator skills or working envi-

ronment is available. As digitalization gains ground, the vast quantities of data from mul-

tiple sources are accessible: telemetry data received from machines, service work details 

with labor cost, spare part cost. The massive flow of data will offer new ways to predict 

the future of a fleet maintenance cost. Taking advantage of gathered data from various 

equipment and resources and implementing data mining models provides a more relia-

ble approach to predict EMC and generating more significant cost-efficient maintenance 

systems by identifying potential high-cost equipment. 
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1.1 Concepts and definitions 

In terms of having a better understanding of the terminology of the research, some of 

the definitions and concepts are explained below. 

1.1.1 Cargotec 

Cargotec Oyj is a Finnish company founded in 2005. It produces cargo-handling machin-

ery for ports, terminals, ships, roads, and local distributions. It has three different busi-

ness units: Kone Corporation’s container handling (Kalmar Global), load handling 

(HIAB), and marine cargo handling (MacGregor). The equipment we analyze in this re-

search is manufactured by Kalmar business unit which is a provider of cargo handling 

equipment and automated terminal solutions, software, and support services (Kalmar - 

Cargotec, 2019). 

1.1.2 Reachstacker (RS) 

A reachstacker is a versatile piece of Cargo Handling Equipment (CHE) used for han-

dling intermodal cargo containers in terminals or ports. Reachstackers (RS) are popular 

in container terminals and ports because of their flexibility and great stacking capacity. 

They are available in different types to transport all sorts of containers, flat racks, and 

sling loads up to 45 tonnes (Josse, 2017) and piles them quickly and efficiently in various 

rows depending on its access. The capacity and technology of different RS’s classes are 

shown in Figure 1.  

 

Figure 1. Kalmar product portfolio development (Kalmar, 2019) 



3 
 

Figure 2 is a model of RS named Super Gloria. In this research, we gathered data from 

RS’s equipped with telemetry devices (see section 1.1.5) regardless of their models or 

capacity.  

 

Figure 2. Super Gloria Reachstacker (Kalmar, 2019) 

1.1.3 Service work order (SWO) 

A Maintenance or Service Work Order (SWO) is a lifecycle of a demanded maintenance 

task in four main phases: identification, creation, completion, and recording as it is shown 

in Figure 3. 

These phases can be broken into smaller tasks and bring about a smooth maintenance 

process that ensures tasks do not get stuck in one state and turn into the backlog (Cousi-

neau 2019). In this research, SWO data provides information about changed spare parts, 

duration of maintenance, start date, and finish date, whether the equipment was under 

a service contract or warranty contract. The cost of the maintenance, which contains 

labor price summed with spare parts price and some description about how the mainte-

nance task progressed. 
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Figure 3. Service work order lifecycle 

1.1.4 Operating cost 

Operating cost is the sum of expenses that a machine cost for the owner while working 

on projects. These expenses are 1) Fuel, 2) Lubricants, filters, and grease, 3) Repairs, 

4) Tires, 5) Replacement of high-wear items (Robert et al. 2018). A Kalmar machine is 

under warranty contract in its first two years of the working life, and it mostly covers the 

expenses of lubricants, filters, grease, and some part of repairs. However, various ser-

vice contracts offer different types of service and maintenance opportunities to custom-

ers during and/or after the warranty contract.  

The operating costs we will track in this research are the result of the equipment mainte-

nance that Kalmar offers to its customers during warranty and service contracts which 

includes the cost of spare parts and labor. 

1.1.5 Telemetry 

Some remote sources are able to transmit data measured by sensors. This automatic 

measurement and wireless transmission of data are called telemetry. Depends on the 

type of the sensors, data, which might be voltage, temperature, pressure, and such, are 

combined as signals and sent to a remote receiver. Upon reception, the signal is con-

verted to the original elements, and the user processes them as their interest (Rouse, 

2005).  
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Nowadays, heavy machinery such as RS’s is equipped with telematics devices that col-

lect measurable data from sensors within machines and send them remotely. This data 

is called telemetry data and contains engine working hours, different parts of the machine 

temperature, liters of fuel consumed, kilometers that machine moved, the number of lifts, 

the number of tones was lifted, among others. 

1.1.6  Enterprise resource planning (ERP) 

Enterprise resource planning (ERP) is the integrated management of the main working 

areas of an organization's business processes by a centralized system. ERP gives the 

possibility of using a central database for software components available in different 

modules with fundamental business areas, such as HR, production, finance, marketing, 

maintenance, management, supply chain management, and customer relationship man-

agement. Choosing core modules depends on the companies preferences and related 

to their particular business. 

Modules in the organization access to the information which is shared by other modules. 

Therefore, companies that using ERP are saved from data redundancy entries, and it 

will bring about collaboration and accuracy into different departments (Rouse, 2019).  

SAP (Systems, Applications, and Products in Data Processing) is an ERP software that 

is used in Cargotec. This system is made by SAP SE, a multinational software corpora-

tion that is a market leader in the field of ERP solutions (Rouse, 2019). 

1.2 Purpose 

This study aims to explore and analyze how maintenance costs are affected by data 

gathered from RS’s configs and their workload properties. In other words, we want to 

minimize the maintenance cost of the machine by keeping eyes on the maintenance 

costs of the early life stages of the machine. In order to do that, we must detect the most 

significant parameters in potential high-cost cases with the help of machine learning 

techniques.  

1.3 Scope of the study 

The study is limited to evaluating data from Kalmar’s RS telemetry data, maintenance 

details available in the Cargotec SAP system, and vehicle configuration data. The col-

lected data is limited to 483 vehicles equipped with a telemetry device and their service 

work orders recorded from the year 2014 to 2019. It is noticeable that the result of the 
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research is applicable to other types of heavy machinery with telemetry devices such as 

forklifts, terminal trucks, and more of the same. 

The study does not attempt to predict the future maintenance cost of the machines. Ra-

ther it focuses on early warnings of potentially high-cost cases to be able to minimize 

their maintenance cost in the future. This study also tries to find the most influential fac-

tors on the maintenance cost. 

1.4 Thesis organization 

The structure of the thesis is further divided as follows. Chapter 2 presents a literature 

overview of different researches on the prediction of heavy machinery’s maintenance 

costs. Chapter 3 explains the techniques and machine learning methods applied in this 

research. Chapter 4 explains the data and the relation between attributes with visualiza-

tion, training the implemented model, and discussing the results and evaluation of the 

used methods in terms of parameters and performance in this research. This chapter 

also includes other aspects of the project, such as feature extraction. Finally, chapter 5 

presents a summary of the research, conclusions, future perspectives, and further re-

search in EMC prediction. 
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2. LITERATURE REVIEW 

In the load handling machinery industry, the two most well-known issues that managers 

should deal with are costs and customer satisfaction. Moreover, it is noticeable that the 

cost of maintenance is usually the largest single element of machine cost. It makes up 

between 15% and 20% of the total equipment budget. The repair cost constitutes 37% 

of machine cost over its service life (Yip et al. 2014). Therefore, precise maintenance 

planning and estimation of its cost play critical roles as a management activity and pro-

vide companies profitable, stable business and reduce the overall cost of operating for 

their customers. 

2.1 Literature search methodology and results 

This research started by studying the documents and brochures of different pieces of 

equipment produced by Cargotec Oyj and its business areas Kalmar, Hiab, and Mac-

Gregor, to gain a better understanding of the problem, characteristics of machines and 

their use cases. The research continued by finding related papers from TUNI library da-

tabases. In order to find related papers, some keywords are used, such as maintenance 

cost prediction, load handling equipment economy, maintenance management, heavy 

equipment operating costs. Five papers are selected among all the academic literature 

based on their similarity to this research. 

2.2 Cumulative cost model (CCM) 

This model was proposed first by Vorster (1980). The CCM model is used to analyze 

some specific equipment management decisions such as the initial purchase decision, 

production capacity replacement, retire/replace decisions, maintenance strategy analy-

sis, capital rebuild decisions, repair cost analysis. This model uses equipment age as 

the main means to calculate the average cost. The average cost is the sum of the cost 

of the equipment since it starts working to the point of the desired date. All are owning 

and operating expenses that a manager of the machine may consider as influential on 

the economic life of equipment can be under CCM, such as purchase price, fuel, repair, 

spare parts.  

As shown in Figure 4, CCM usually creates a bathtub shape as a result of assigning 

machine age to abscissa and the average cost to the ordinate. We can see that Vorster 
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originated the average cost curve at the cumulative cost that represents the purchase 

price of the machine.  

 

Figure 4. Geometric representation of the equipment’s CCM by Vorster 

Tracking the CCM is depicting the optimum economic life of the equipment. It is shown 

as 𝐿∗ in Figure 4 and is defined by a geometric tangent to the curve, and it is drawn from 

the origin. 𝑇∗, is the lowest average cost for a fleet achieved when the slope of the tan-

gent, 𝐿∗, is reached. In this model, age can take three forms of calendar age, age in 

cumulative hours of use, or age which is based on production units.  

2.3 Life-to-Date repair cost solution 

The life-to-date (LTD) solution is a regression model represented by Mitchell (1998) to 

solve the problem of heavy machines repair cost based on their age in cumulative hours 

of use. Mitchell used field data of 260 construction machines from 4 different companies 

to process the behavior of costs that could be applied throughout the industry. In this 

study, seventeen groups of equipment were made based on their size and type. He 

found that there is a second-order polynomial curve, shown in Equation 1, which is the 
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best fit for his field-collected data, although it did not perform as well for all equipment in 

a company neither within some groups of similar machines.  

𝐶𝐶𝑝&𝑙 =  𝐴 ∗ 𝐻𝑤 +  𝐵 ∗ 𝐻𝑤
2 ,  (1) 

in this equation, 𝐶𝐶𝑝&𝑙 is the cumulative cost of labor and spare parts for machines from 

zero working hours up to 𝐻𝑤 hours. 𝐴 coefficient is a linear portion that shows the growth 

of cumulative cost over time, and coefficient 𝐵 is the inflection of the cumulative cost 

curve. For a given 𝐴 coefficient, a smaller 𝐵 coefficient means a greater economic life 

expectancy of the machine. Each data point must be a pair of meter/hour reading (𝐻𝑤) 

and the cumulative maintenance cost (CMC) at the time. It is suggested to pick one data 

point for each machine in sufficiently large fleets to have better statistical results. In this 

case, it is better to have machines with different age ranges, so that the data points are 

spread equally throughout the expected economic lifespan of that fleet.  

However, if the size of the fleet is not large enough, several data points can be picked 

for each machine to satisfy the economic lifespan by considering the following. Firstly, 

an equal number of data points are needed for each machine to ensure the same level 

of influence of each machine on the experiment. Moreover, picking data points spread 

evenly throughout the life of the equipment would be ideal (Mitchell, 1998). 

By plotting 𝐶𝐶𝑝&𝑙 as ordinate and 𝐻𝑤 as abscissa, Mitchell fit a second-order polynomial 

curve and applied the intercept through the origin to perform a linear regression. Coeffi-

cients 𝐴 and 𝐵 can be obtained by Matrix multiplication or trend line function in Equation 

1. Extraction of repair cost accumulation and totals are possible after building this model.  

Figure 5 is a representation of the LTD methodology, and it shows that CMC’s can be 

found with cumulative working hours 𝐻𝑤 using Equation 1. By drawing a straight line 

from 𝐻0 (new machine) to 𝐻𝑤, the average maintenance costs per working hour can be 

calculated for the whole period using Equation 2: 

𝑎 = 𝐴 + 𝐵 ∗ 𝐻𝑤.  (2) 

The marginal repair cost per working hour can be calculated at any cumulative working 

hours, Hx, by taking the derivative of Equation 1 with respect to 𝐻𝑤, and Equation 3 will 

be the result of it: 

𝑚 = 𝐴 + 2𝐵 ∗ 𝐻𝑥,  (3) 
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Figure 5. Life-to-Date methodology concept by Mitchell, 1998 

where 𝑚 denotes the slope of the line tangent to the curve. Using the LTD model to 

estimate equipment repair costs can be considered as a powerful technique. One of the 

main advantages of LTD is that it picks the various experiences of a single or group of 

machines. A collection of low, high, and average maintenance costs are captured 

throughout the life of the machine. It makes the data reliable and representative of what 

can be expected from similar equipment in its different life's moments. This model can 

be applied to individual machines or different equipment family.  

Equipment managers can plan for the maintenance budget by applying the estimated 

number of working hours of a machine to the model in a given time. The LTD methodol-

ogy can be considered as a data-driven repair forecasting tool that can be applied to a 

various range of machines to predict maintenance costs. However, it is more accurate 

when applied over the course of time for machines with a particular job. In order to find 

the repair cost, the user of the model first needs to declare coefficients 𝐴 and 𝐵 then 

equations are applicable to each equipment depends on their working hours. 

In Mitchel’s research, the average coefficient of determination, 𝑅2, for each equipment 

category was about 0.72, which can be considered too low. The other drawback of this 

model is that the repair data for equipment should be available from its initial purchase 

until the current time. In this model, variability in repair costs was considered more ex-

plicable as a function of hours of use and less affected by the type of use, while the 

impact of operating conditions is undeniable. Although the LTD solution applies to all 
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machine types in a company simultaneously, better predictive models will be the result 

of analyzing machines with almost the same size and type against one another. In case 

of a large sample size breaking down the fleets by equipment manufacturer offered in 

this research to have better accuracy. The LTD methodology may provide an accurate 

prediction of the maintenance cost if data points are evenly spread throughout the ma-

chine’s age spectrum. If a large number of a specific class of machines in a company 

are purchased or replaced at the same time, the age spectrum available for analysis 

could be limited (Mitchell, Hildreth and Vorster, 2011). 

2.4 Period-Cost-Based solution 

The period-cost-based (PCB) solution is another methodology based on the relation be-

tween the cumulative cost of labor and spare parts with the cumulative number of ma-

chine working hours. Knowledge of the cost of repair parts and labor of a machine or 

class of machines for any period of machine lifespan should be available in order to 

implement this model. The period is defined by the amount of machine working hours 

from the start point at 𝐻𝑠 until the end of the period, 𝐻𝑒.  

Considering the curve drawn from the CMC and the number of machine working hours 

is a second-order polynomial, the PCB method is using the mean value theorem to esti-

mate the cost of a machine in a specific timespan (Mitchell, Hildreth and Vorster, 2011).  

Based on the mean value theorem for a function 𝑓(𝑥) that continues between two close, 

bounded endpoints [𝐻𝑠, 𝐻𝑒] and it is differentiable over the open interval (𝐻𝑠, 𝐻𝑒), there 

is at least a point Hm in this interval at which tangent to 𝑓(𝑥) is parallel to the straight 

line passing through defined endpoints (Strang and Herman, 2016) such that: 

𝑓′(𝐻𝑚) = [𝑓(𝐻𝑒) − 𝑓(𝐻𝑠)]/(𝐻𝑒 − 𝐻𝑠)]. (4) 

As shown in Figure 6 for a second-order polynomial, 𝐻𝑚 is almost located in the middle 

of 𝐻𝑠 and He curve. To calculate the average maintenance cost between times 𝐻𝑠 and 

𝐻𝑒, availability of the maintenance cost details of the machine in this period, and the 

length of the period is mandatory. The average cost of repair parts and labor is shown in 

Figure 6 as slope 𝑚. As shown in the picture, 𝑚 is also the slope of the line tangent to 

the curve. This line is the indication of the marginal maintenance cost of the machine at 

the time 𝐻𝑚. As mentioned earlier, Equation 1 is defining this curve. Taking the derivative 

of  Equation 1 with respect to working hours resulted in Equation 3. 
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Figure 6. Period-Cost-Based methodology concept (Mitchell, 2011) 

This differential defines the relation between marginal maintenance cost and machine 

working hours. The fact that the average maintenance cost from 𝐻𝑠 to 𝐻𝑒 is equal to the 

marginal cost at 𝐻𝑚 makes the estimation of 𝐴 and 𝐵 coefficients possible by using the 

PCB solution. Each value of 𝐻𝑚 with its corresponding maintenance cost value (not cu-

mulative cost) can be indicated with linear regression techniques as 𝑦 = 𝐸 + 𝑊𝑥, and 

coefficients 𝐸 and 𝑊 can be calculated as 𝐸 = 𝐴 and 𝑊 = 2𝐵. 

The values calculated for 𝐴 and 𝐵 can be used to complete the equation available be-

tween CMC and machine working hours. The data needed to take advantage of PCB is 

mostly available within companies’ database platforms, which makes PCB solution 

handy. Moreover, data collection for the PCB method can be started at any point in the 

machine lifetime. The possibility of analyzing the maintenance cost based on data gath-

ered from the partial history of the machines increases the opportunity of data availability 

and expands the dataset. Older equipment which is more of the interest when it comes 

to estimation of maintenance cost is vastly available in the dataset, since removing in-

complete data is not a necessity anymore. 

However, the estimated cost between the period of 𝐻𝑠 and 𝐻𝑒 with the PCB method may 

not accurately represent the cost of the machine at that specific time. In this method, 
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fluctuations in the data have a direct effect on the result. For instance, expensive and 

uncommon maintenance costs that machines experience at a point in their lifelong will 

falsely increase estimation, while the performance of machines that experience severe 

maintenance before the period under study is excellent. Therefore, they cause an unu-

sual decrease in cost estimation. As much as possible data should be used when devel-

oping the PCB model to estimate CMC to reduce bias in the result (Mitchell, Hildreth and 

Vorster, 2011). 

2.5 General regression neural network (GRNN) solution 

In this solution, the time-series approach, combined with a general regression neural 

network model, was applied to predict the maintenance cost of construction equipment. 

Time-series approaches take advantage of the fluctuation patterns and recent history of 

cost changes in the prediction models. A comparison of traditional linear and nonlinear 

GRNN models by Yip (2014) reveals that: multivariate time series modeling with fuel 

consumption can give a better description of the association between the current value 

of the maintenance cost and historical observations of both maintenance costs and re-

lated explanatory time series. 

2.5.1 General regression neural network overview 

GRNN’s are memory-based single-pass neural networks proposed by Specht (1991) that 

estimate continuous variables. They use a Gaussian activation function in their hidden 

layer. They are used to suggest a nonlinear relationship between the target variable and 

a set of independent explanatory variables.  

In this model, the output will be estimated based on the average of the output of the 

training data. The value of the target variable is calculated by taking the weighted aver-

age of the values of its neighbor’s points. It makes the impact of close neighbors more 

than the distant ones. A chosen radial basis function (RBF) such as Gaussian distribution 

can be used to evaluate the level of neighbor’s influence (weight) in which the input is 

the distance, and the output will be probability value, Weight = RBF(Distance). The 

standard deviation of this Gaussian distribution determines the influence of neighbor’s 

points on the target variable. It is because of larger standard deviations makes the dis-

tribution curve more spread and the other way around. An optimization method can be 

used to reach an ideal standard deviation value. 

The advantages of using GRNN models include its outlier handling capability and accu-

racy, even though modeling is based on a small dataset. This learning algorithm is used 
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to determine the relationships among data in time series, intervention variables, and rel-

evant time series. 

𝑌𝑡 = 𝑓 (

𝑌𝑡−1 𝑌𝑡−2 … 𝑌𝑡−𝑛

𝑋1(𝑡−1) 𝑋1(𝑡−2) … 𝑋1(𝑡−𝑛1)

𝑋2(𝑡−1) 𝑋2(𝑡−2) … 𝑋2(𝑡−𝑛2)

… … … …

)  ,      (8) 

where 

𝑌𝑡 Current observation 

𝑌𝑡−𝑖 Previous n observation, 𝑖 =  1, 2, 3, … , 𝑛 

𝑋𝑖 Related time series or invention variable 𝑖. 

𝑋𝑖(𝑡−𝑗) Historical observations of explanatory time series or invention variable at (𝑡 − 𝑗). 

𝑛𝑖 Correlated lagged values of related time series or invention variable 𝑖. 

In equation 8, the value of the current observation is based on the value of its n previous 

observations and also the value of n last related historical variables, 𝑋𝑖(𝑡−𝑗). 

2.5.2 Modeling of equipment maintenance cost with GRNN 

Yip (2014) collected a raw dataset of monthly total maintenance cost since 1998 for 

modeling.  Fuel consumption as additional information on equipment operations was 

considered as influential factors on improving the accuracy of maintenance cost predic-

tion. The amount of fuel consumption had a correlation with accumulated equipment 

operational duration and workloads. Changes in equipment fuel consumption usually 

cause changes in an equipment maintenance cost with or without lagged effects (Yip et 

al, 2014).  

GRNN was used for multivariate and univariate models for the maintenance cost of con-

struction equipment. Lag length optimization is determined by using the Akaike infor-

mation criterion (AIC) to take into account the impact of historical observations. The 

maintenance cost series was divided into two parts of the validation dataset and training 

dataset. The twelve out-of-sample values, which represent the maintenance cost of the 

last 12 months, were used as the predictable period (validation dataset), and all earlier 

observations are used for training the model. The mean absolute percentage error 

(MAPE) over the actual and predicted values, was used for model accuracy evaluation: 

𝑀𝐴𝑃𝐸 =
∑ |

𝑋𝑡− 𝑋𝑡−1
𝑋𝑡

|𝑁
𝑡=𝑁−𝑀+1

𝑀
  (9) 

where 
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𝑁 the number of observations in time series 

𝑀 the number of test data 

𝑋𝑡 the observed data at time 𝑡 

𝑋𝑡−1 the predicted value of 𝑋𝑡 based on the period of observation until 𝑋𝑡−1. 

Lower MAPE value indicates smaller deviations between the forecasted and actual val-

ues of the time series. The predicted value of each out-of-sample prediction is used for 

the prediction of the next value in the one-step-ahead approach.  

Overall, univariate and multivariate GRNN’s predict two time series with decent levels of 

accuracy, with average MAPE of 24% and 20.4%, respectively. It is evident that multi-

variate GRNN performs slightly better accuracy with the input of historical maintenance 

cost in alongside the time series of fuel consumption. The reason behind it is that uni-

variate GRNN uses a linear model to describe the serial relationship within a time series. 

In contrast, multivariate modeling used a nonlinear GRNN learning algorithm to depict 

the underlying complex relationship. However, GRNN can be trapped in the local mini-

mum of the error surface and might stop training, although the global minimum of error 

has not yet been reached because of the iteration of searching an optimal smoothing 

parameter. This can be considered as a GRNN’s drawback. Besides, neural networks 

are black-box models, and it reduces the capability of the analysis of the time-series 

dynamics. No consensus of method exists in determining the lag length for GRNN mod-

els in the time series approach. 

2.6 Summary 

Duo to the enormous impact of maintenance repair cost on equipment resource and 

budget planning, research investigation on this matter becomes wide. Surveying the lit-

erature on equipment maintenance costs shows that several approaches have been 

considered to predict the future expenses of the equipment. What these approaches 

have in common is the type of data they are using. The maintenance cost of machines 

in their lifetime to the date was the main attribute to estimate the future cost. Indeed, 

there are vast differences among various types of heavy machinery, their features, and 

the workload they carry, which may affect the expenses. Moreover, it is noticeable that 

they were not considered in the mentioned researches. It can be extracted from this 

chapter that there are still lots of gaps that can be the topic of research in this field of 

study. 
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As our research is based on a real case study in a heavy-load machinery supplier com-

pany, it is even more important to propose a methodology that can be applicable in their 

maintenance management system. All the reviewed papers are based on real case stud-

ies in different industries. However, the data gathered for those are from construction 

heavy machinery. To the best of our knowledge, this is the only research that is based 

on port and terminal load handling equipment. The main difference between logistic 

equipment is their features, the type of load, and the way they carry their cargo. These 

affect the performance and depreciation period of machines, which has a significant im-

pact on the maintenance and expenses caused by that. As a conclusion, we try to pro-

pose a methodology that can forecast the optimum price for the maintenance cost of 

cargo handling machines used explicitly in ports and terminals, considering other re-

search with most compatibility to this work. 
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3. METHODOLOGY 

The process of digging through the data to extract patterns, knowledge discovery, and 

predict future trends can be implemented by three different scientific approaches: statis-

tics, artificial intelligence, and ML (Data mining 2020). 

Statistics based solutions study numerical relationships in data. Artificial intelligence so-

lutions try to solve problems by applying human-like intelligence algorithms on data. Ma-

chine learning solutions are taking advantage of mathematical-based models to learn 

from data and make predictions. 

In this chapter, some of the most popular data mining methods will be explained as pos-

sible solutions to the raised issue in this research. 

3.1 Machine learning (ML) 

Based on the use case, different definitions are applied to machine learning. Tom M. 

Mitchel (1997) defined machine learning as a study of the computer algorithms being 

capable of improving themselves automatically by learning from experience. 

There are two types of techniques available in machine learning, Supervised and unsu-

pervised algorithms. Supervised ML models are trained by some examples of input-

output pairs (labeled data) to learn the mapping function between input variables of X 

and their output variable of Y:  𝑌 = 𝑓(𝑋). In supervised learning, the output value is avail-

able directly for the model (Russell and Norvig, 2009). 

However, not all datasets are labeled by corresponding outputs. In these cases, unsu-

pervised ML models will be offered to recognize probable patterns or structures in the 

data, while no explicit feedback is supplied (Russell and Norvig, 2009). 

In the context of this research, supervised machine learning algorithms are considered 

as a method of data analysis to estimate and predict the future behavior of the mainte-

nance cost of the fleet by learning from historical data.  

3.2 Linear regression (LR) 

Linear regression (LR) is a supervised machine learning technique. It approaches the 

problem by fitting the best linear function of inputs to their outputs. The task of linear 

regression is defined as bellow: 
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By having a training dataset which contains 𝑁 pairs of input-output examples as 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁, 𝑦𝑁), each numerical output of 𝑦𝑗 generated by an unknown func-

tion 𝑦 = 𝑓(𝑥). Linear regression learner is discovering the best function ℎ among all the 

other hypothesis functions that approximate the true function 𝑓. In order to measure the 

accuracy of the hypothesis ℎ, we test it with a set of samples that are distinct from the 

training set. If the function ℎ was able to predict the average value of 𝑦 for each input, 

we assume that hypothesis generalized well (Russell and Norvig, 2009). 

If we have one explanatory variable of 𝑥 in exchange for a dependent variable 𝑦, then 

the linear regression that explains the relationship between them is called univariate 

linear regression.  

A univariate linear function follows a line equation of 𝑦 =  𝑤1𝑥 + 𝑤0. The coefficients of 

this equation are called weights and will be found during the learning process. Finding 

the weights in a way that minimizes the squared loss, 𝐿2, gives the equation of the line 

that fits the data. Line equation is defined as bellow:   

ℎ𝑤(𝑥) =  𝑤1𝑥 +  𝑤0, 

where weights will be defined as the vector [𝑤1, 𝑤0]. The lag between the predicted and 

actual value of the dependent value is calculated as follow:  

𝐿𝑜𝑠𝑠(ℎ𝑤) =  ∑ 𝐿2 (𝑦𝑗, ℎ𝑤(𝑥𝑗)) =  ∑ (𝑦𝑗 − ℎ𝑤(𝑥𝑗))
2

=  ∑ (𝑦𝑗 − (𝑤1𝑥𝑗 +  𝑤0))
2

𝑁

𝑗=1

𝑁

𝑗=1

𝑁

𝑗=1

  

Minimizing the result of the above equation provides the best possible estimation for our 

model. This is possible by calculating the derivatives of the above equation with respect 

to 𝑤1 and 𝑤0 , and equating them to 0. The equations are as follows: 

𝑑ℎ𝑤

𝑑𝑤0
=  −2 ∑(𝑦𝑗 −  𝑤1𝑥𝑗 − 𝑤0)

𝑁

𝑗=1

= 0 

𝑑ℎ𝑤

𝑑𝑤1
=  −2 ∑(𝑦𝑗 −  𝑤1𝑥𝑗 − 𝑤0)

𝑁

𝑗=1

𝑥𝑗 = 0 

Solving the system of above equations provides the values of weights as follows: 

𝑤1 =  
𝐶𝑜𝑣(𝑥, 𝑦)

𝑉𝑎𝑟(𝑥)
=  

∑ (𝑦𝑗 − 𝑦)(𝑥𝑗 − 𝑥)𝑁
𝑗=1

∑ (𝑥𝑗 − 𝑥)
2𝑁

𝑗=1

 

𝑤0 = 𝑦 − 𝑤1𝑥 
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Multivariate linear regression is almost similar to the univariate case. Each sample of 𝑥𝑗 

in the multivariate case is a vector with 𝑛 elements. Instead of a line, a hyperplane should 

be found to fit the output while minimizing the error calculated according to the loss func-

tion. The equations of the hyperplane space and the weight vectors that minimize the 

value of the loss function are as follow: 

ℎ𝑠𝑤(𝑥𝑗) =  𝑤0 + 𝑤1𝑥𝑗
(1)

+  𝑤2𝑥𝑗
(2)

+ ⋯ +  𝑤𝑛𝑥𝑗
(𝑛)

=  𝑤0 + ∑ 𝑤𝑖𝑥𝑗
(𝑛)𝑛

𝑖=1   

𝑤∗ = argmin
𝑤

∑ 𝐿𝑜𝑠𝑠(ℎ𝑠𝑤)𝑖    

𝐿𝑜𝑠𝑠(ℎ𝑠𝑤) =  ∑ 𝐿2 (𝑦𝑗 , ℎ𝑠𝑤(𝑥𝑗))𝑁
𝑗=1    

The minimum value of the loss function can be calculated by either analytical solutions 

or gradient descent (Russell and Norvig, 2009). In order to explore the strength of the 

relationship between each independent variable with CMC’s (dependent variable), dif-

ferent univariate linear regression models are implemented in the next chapter. 

3.3 Regression trees 

Same as a linear regression model, decision trees are a method of supervised learning 

algorithms. A vector of independent attributes is a decision tree function input, and a 

single output value will be returned as the decision. Decision trees work with both dis-

crete or continuous data points. The leaf nodes of the tree represent the outputs or, in 

other work, the decision (Russell and Norvig, 2009). 

The conventional algorithm to construct a decision tree is top-down. A variable with more 

capability on splitting the set of items will be chosen on the upper layers of the tree 

(Rokach and Maimon, 2005). Different metrics are available to measure the homogene-

ity of the target attribute within the subset, such as Gini impurity. Regression trees are a 

type of decision tree and are used when the real number for the predicted value can be 

considered, such as prediction of the cost for the service work orders. 

3.4 Gradient boosting regressor (GBR) 

Gradient boosting is a supervised ML technique and one of the widely used ensemble 

methods. To understand GBR first, we need to know the idea behind boosting. In this 

method, we assume each example of the training set has an associated weight of more 

than zero. Examples with higher weights play a more critical role during the learning 

process of a hypothesis. All examples are given the same weight in the first step of 

boosting and from this dataset the first hypothesis, ℎ1, will be generated. Training data 
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records are classified correctly and incorrectly with this hypothesis. The goal of the next 

hypothesis is improvements in the classification of training examples set in comparison 

with the previous one (Russell and Norvig, 2009).  

GBR makes predictions with a single strong learner, which is built as a combination of 

several fixed-size weak learners. A weak learner is a small tree that its performance is 

slightly better than a random guess. Decision trees have the ability to handle data of the 

mixed type and to model complex functions which make them valuable for gradient 

boosting models. 

The goal of gradient boosting regressors is teaching the predictive model of 𝐹(𝑥) by 

minimizing the Loss function. Loss function or cost function is a function to evaluate the 

accuracy of our model. To improve the model’s accuracy, the value of the chosen Loss 

function should be minimized by an optimization solution. A single additive model of gra-

dient boosting regressors form as follow: 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛾𝑚 ℎ𝑚(x),  (10) 

in which ℎ𝑚(x) is the latest week learner with the ability in the prediction of pseudo re-

siduals, and It forms the following equation: 

ℎ𝑚 = argmin
ℎ

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖 ) + ℎ(𝑥𝑖))𝑖 . 

Attributes that form trees are chosen by the best split points calculated with purity scores 

like the Gini index. The first step toward making a GBR is to initialize a leaf with a con-

stant value by the following equation and next is to expand it incrementally and greedily: 

𝐹0(𝑥) = argmin
𝛾

∑ 𝐿(𝑦𝑖 , 𝛾)𝑖 ,  (11) 

where 𝐿(𝑦𝑖 , 𝛾), is the Loss function, 𝑦𝑖 is the observed value, and 𝛾 is the predicted value 

in the first step. The default choice of the loss function for regression problems is usually 

least squares, and the sum of the derivatives of it initializes a constant value for the 

precited values of the first step equal to the mean of target values.  

To solve the minimization, gradient boosting uses the steepest descent, which is the 

negative gradient of the Loss function, as shown in equation 11. By taking derivatives of 

the Loss function with respect to the previously predicted value and set the sum of the 

derivatives equal to zero, the minimization problem will be solved numerically: 

𝑟𝑖𝑚 = −[ 
𝜕𝐿(𝑦𝑖 ,𝐹(𝑥𝑖 ))

𝜕𝐹(𝑥𝑖 )
 ]𝐹(𝑥)=𝐹𝑚−1(𝑥) ,  (12) 

where 𝑟𝑖𝑚 is the pseudo residual that calculated for the 𝑖𝑡ℎ example for the 𝑚𝑡ℎ tree, and 

𝐹(𝑥) is predicted values of the latest week learner in equation 12. After calculating the 
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residuals for all examples available in the dataset, a weak learner will be built to model 

the pseudo residuals and parameterizing the tree with functional gradient descent to 

create its terminal regions, 𝑅𝑖𝑗. For tree’s regions in the weak learner a separate output 

value of 𝛾𝑗𝑚 calculates as below (Friedman, 1999): 

𝛾𝑗𝑚 = argmin
𝛾

∑ 𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖 ) +  γ)𝑥𝑖∈𝑅𝑖𝑗
, 

where 𝑗 is the leaf index, 𝑚 is the tree’s number and 𝑖 is the index of the samples. To 

improve the overall output of the model, the output of each tree will be added to the 

existing sequence of trees outputs.  

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜈 ∑ 𝛾𝑗𝑚

𝐽𝑚

𝑗=1  

𝐼𝑅𝑗𝑚
(x), 

The summation in the above equation means all regions in which sample 𝑥 can be found 

should be added up. Regularization by shrinkage is an important part of the implemen-

tation of the gradient boosting methods to reduce the overfitting effect. In the above 

equation, parameter 𝜈, is a number between 0 and 1 and called the learning rate. Using 

a small learning rate (𝜈 < 0.1) yields dramatic improvement in the model with the cost of 

increasing its iteration, complexity, and computational time. The contribution of each tree 

to the model is weighted by the learning rate (Friedman, 1999).  

GBR solves the problem by taking small learning steps from the average of output as 

the initial prediction toward the true values. Although they are hight in computational 

time, they are a great fit for the purpose of this research since they can manage mixed 

data types contains numerical and categorical types.  

3.5 Model Validation methods 

The closeness of the model mimicking the actual system definition is one of the biggest 

concerns during the process of building a statistical model. The process that confirms 

the reliability of the model’s result concerning the real system output, is referred to as 

model validation. What we are trying to reach is a high degree of validity and an accurate 

representation of the system. From this viewpoint, validating a model is the task of veri-

fying that the model is adequately accurate for the predetermined application, in the do-

main of its applicability (Schlesinger, 1979). A model that is built on a specific application 

might not be valid for some other applications therefore it can be validated for a specific 

domain only.  
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There are three practical difficulties to reach the validity of a model: 1) Data shortage, 2) 

Lack of control over the real system’s input variables, 3) the ambivalence of the under-

lying correlation and probability distributions for both real system and created model 

(Kotz et al., 2006). The simplest way of model performance estimation is to the resubsti-

tution estimate of risk: 

𝑅𝑟𝑒𝑠𝑢𝑏(∅) =  
1

𝑛
 ∑(𝑦𝑖 −  ∅(𝑥𝑖; 𝜏))2, 

where 𝑅𝑟𝑒𝑠𝑢𝑏(∅) is the average of the squared residuals of the training samples. How-

ever, the underestimation of the risk by a substantial margin is a drawback of this 

method. This behavior is called overfitting since the model was built in a way to fit the 

dataset too well (Stuetzle, 2005).  

A popular approach to calculate the risk is by extracting a test set from the initial dataset. 

In this way, the model is trained by part of the dataset, called the train set, and the aver-

age loss function is calculated when the model makes the prediction for the test set. 

However, depends on the randomness of the samples in these datasets, there is still the 

possibility of overfitting because of the knowledge leaking from the test set into the 

model. Besides, we may not access such a big dataset to be able to split it into training 

and testing datasets (Stuetzle, 2005). 

3.5.1 Cross-validation (CV) 

Cross-validation is considered as the solution for the mentioned problems and it is one 

of the key methods of model performance assessment (Stone, 1974). Cross-validation 

categorizes under the sample reuse models since the training dataset is randomly di-

vided into 𝑘 number of equal size subsets 𝜏1, … , 𝜏𝑘. The computational efficiency of this 

approach differs based on the number of subsets. Bigger K is causing a computationally 

expensive process. However, it cannot be a matter based on available resources in this 

research. Based on empirical evidence, suitable 𝑘 is considered a number between 5 to 

10 subsets (Stuetzle, 2005). Figure 7 is showing a general data division in 5-fold cross-

validation. 
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Figure 7. Illustration of 5-fold cross-validation 

This structure is called k-fold CV and can be described best in an algorithmic manner. 

Following procedure is repeating for each “fold” in 𝜏−𝑖 as training dataset while 𝑖-th sub-

set is removed: 

For 𝑖 = 1 … 𝑘 { 

 Generate a prediction model ∅(𝑥, 𝜏−𝑖) based on the training samples. 

 Compute the Loss 𝐿𝑖 by testing the model with 𝑖-th subset: 

𝐿𝑖 =  ∑ (𝑦𝑗 −  ∅(𝑥𝑗, 𝜏−𝑖))2

𝑗 ∈ 𝜏𝑖

 

} 

The risk estimated by K-fold CV is the average of the Loss values calculated in the loop 

as below: �̅�𝑐𝑣(∅) =  
1

𝑛
∑ 𝐿𝑖𝑘

𝑖=1 . 

3.6 Hyperparameter optimization methods 

In order to achieve the best cross-validation estimator, it is recommended to optimize 

the hyperparameters of the estimator. Hyper-parameters are parameters that cannot be 

learned directly within estimator therefore their values have to be set before starting the 
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learning process (scikit-learn, 2020). Tuning hyperparameters returns a tuple of hyperpa-

rameters with the ability to provide an optimal model which minimizes a predefined loss 

function on given data. Searching for optimal hyperparameters is commonly performed 

manually. A large number of estimator’s hyperparameters make this process impractical. 

Due to such flaws, the idea of automatic approaches in hyperparameter optimization 

received a big amount of attention. However, depends on the available computational 

resources, the nature of the desired estimator, size on ensembles, and the size of the 

dataset each evaluation may take considerable time. Therefore, there is a need for find-

ing an efficient tuning process of hyperparameters that require minimum amount of ob-

jective function evaluation (Claesen and De Moor, 2015). 

The two most general approaches to solve the hyperparameters search problem are 

exhaustive grid search and random search. Grid search is building a model for each 

combination of listed values of hyperparameters exhaustively to evaluate each model 

and pick a learning algorithm with high accuracy. A performance metric solution such as 

cross-validation or held-out validation on the training set is needed to guide the grid 

search algorithm (Hsu, Chang, and Lin, 2003). Picture 8 is showing the visual represen-

tation of the grid search. 

 

Figure 8. Grid search visual representation 

On the other hand, the random search selects hyperparameters randomly instead of 

exhaustive enumeration (Ghawi and Pfeffer, 2019). While grid search is suffering from 

the curse of dimensionality, random search takes less computational time than grid 

search and may perform better when a small number of hyperparameters involve in the 

process (Bergstra and Bengio, 2012). 



25 
 

Despite decades of research into hyperparameter optimization approaches, there are 

several reasons that grid search is preferred in various research:  

 The simplicity of its implementation 

 As it creates a grid of hyperparameters values and enumerates all possible com-

binations of hyperparameters it typically finds more reliable values combination. 

3.7 Coefficient of determination (R Squared) 

Coefficient of determination is a statistic that assesses how well is a linear regression 

model in explaining and prediction the dependent variable based on the input data. More 

specifically, it is the percentage of the dependent variable (𝑦) variation that is explained 

correctly by independent variables (x). This measure can be calculated with the following 

formula:  

𝑟2 = 1 −  
𝑅𝑆𝑆

𝑇𝑆𝑆
 = 1 − 

∑(𝑦𝑖− 𝑓𝑖)2

∑(𝑦𝑖− �̅�)2 ,  

where RSS, the residual sum of squares, is the total squared of errors between the de-

pendent variable (𝑦𝑖) and the predicted values (𝑓𝑖). TSS is the total variation in 𝑦 and it 

is defined as the sum of all squared differences between the observations (𝑦𝑖) and their 

overall mean (�̅�). Generally, the closer value of 𝑟2 is to 1, the better fit of the model to 

the data. Any 𝑟2 value bigger than zero means that the regression analysis predicts the 

target variable better than just using a horizontal line through the mean value (Nerdy, 

2020).   

3.8 Practical implementation 

The aspects of the study that concerns statistical analysis and machine learning methods 

were carried out using python programming and modules of scikit-learn library. The Ju-

pyter notebook provided in Amazon SageMaker was the open-source web application to 

document and share the live code related to this study. Tableau and Minitab are the 

analytical platforms used for some of the data visualization processes. SQL queries are 

created to collect the relevant data from Athena AWS. And the Amazon S3 buckets were 

used as the main storage to read and manipulate the queried data later on. 
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4. EXPERIMENTS 

As it is indicated in previous chapters, a suitable repair cost forecasting model leads to 

achieving a cost-effective system. Finding the influential and optimal parameters on 

maintenance is all the company’s goal since it could help to manage the cost system 

while keeping the customers satisfied. In this chapter, a methodology is proposed to 

forecast the optimal repair cost based on the machine’s usage. Moreover, we are track-

ing the most influential parameters. 

The overall AI/ML architecture, followed by the partner company, can be summarized in 

two main phases. First is data exploration, which data staging and preparation process 

are applied. Secondly, model lifecycle management, which breaks to the implementation 

of feature engineering, model creation, training and inference, and model exposure. Fig-

ure 8 is showing the sequence of this process. 

 

 

Figure 9. Cargotec Conceptual AI/ML Architecture 

The implementation of this research took advantage of the resulted dataset of the first 

stage, data exploration. In feature engineering, the process of quality assessment, pre-

processing, and feature aggregation was implemented in which data was cleaned from 

the apparent anomalies or incomplete records, and meaningful features were created.  In 

model creation, where basic trend analysis was performed to visualize the actual trend 

of the maintenance cost, cumulative cost modeling was conducted. Lastly, the data min-

ing model was created. The next step was training the model with three different data 

approaches. The results are exposed in the last phase, and model evaluation and vali-

dation took place in this last step by comparing the result, and the best algorithm was 

selected. Further, these parts are discussed in the same order. 
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4.1 Preliminary analysis  

Before going through any pre-processing, browsing the distribution of RS’s maintenance 

cost over time can give a better perspective on the cost behavior. Figure 10 is showing 

the frequency of the maintenance cost of all RS’s in five sequential periods. Each period 

contains eight months of the machine lifetime. 

 

Figure 10. SWO cumulative cost distribution for all available RS’s in every 8 months 
of their lifetime. 

As can be seen from the picture, the CMC of almost all RS’s is near zero in the first 

period. The distribution stays steady and right-skewed in the second period and the third 

period. However, the cumulative cost distribution fluctuated after two years of RS’s life, 

and the right-skewed pattern of the diagram disappeared over time.  

The diagrams also show some cases of CMC at the tails of the slopes, which may seem 

like outliers. However, their considerable SWO costs may be caused by the use-case 

environment and workload of the intended RS, which vary from one equipment to an-

other. These make the prediction of the maintenance cost inaccurate by the traditional 

analyzing methods. Therefore, we would like to check if ML models can provide accurate 

answers. 

In order to implement any ML model, data should be transformed, encoded, or processed 

in a way that machine be able to parse it properly. The following steps provide these 

characteristics for our case study dataset.   
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4.1.1 Data quality assessment 

Inconsistency and missing values are common among field datasets due to flaws in the 

data collection process, data entry errors, or limitations of measuring devices. Such var-

iations must be found and solved. In this case study, some similar outliers were encoun-

tered, as illustrated in Figure 9. The records of three different RS’s were picked as an 

example of missing values. Each color represents an RS. As can be seen from the pic-

ture, these three RS’s have increasing engine hours. It means they were under a work-

load, and when a piece of equipment is working, not only the number of engine hours is 

increasing, but also the amount of some other variables expected to increase. However, 

in this specific example, other cumulative attributes like the overall amount of fuel used, 

number of lifts, and kilometers traveled by the equipment resuming from 0 at some ser-

vice work order date.  

 

 

Figure 9. Abnormal drops on cumulative attributes of three RS’s.  

This anomaly was resolved by adding the new values of features with the last valid value 

of that feature before resetting.  

Some features play a crucial role in prediction and the accuracy of the model. The value 

stored in these entities should be reliable, and missing value may cause side effects on 

the results. The elimination of data records with missing values in critical entities was a 

safe and effective strategy to cope with this problem. 
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4.1.2 Feature exploring 

In this section, we try to put the data in a better perspective and offer a high-level view 

of the data in order to come up with an ideal final dataset to feed our machine learning 

model. To achieve that, first, we observe the behavior of CMC in relation to changes in 

some critical attributes. As mentioned in chapter 2, we are expecting a growing CMC by 

increasing the engine working time (See section 2.2). Figure 12 sampled the service 

work order of eight different RS’s with almost the same distribution in their engine hours 

which follows Vorster (1980) pattern. The fitted trend line with 0.50 𝑟2 was the most 

descriptive of the data in comparison with the exponential trend line with a 0.48 𝑟2 and 

logarithmic trend line with 0.42 𝑟2.  

 

Figure 10. CMC per number of engine hours for eight RS’s.  

 

However, the behavior of CMC did not perform the same for all the sample equipment 

as we were expecting. Figure 13 is the cost of the service work order of all RS’s over 

their engine working time to check if it follows the mentioned pattern (See section 2.2). 

Each RS has a unique color and shape. The exponential line stated before by Vorster 

(1980) gives a 0.23 𝑟2 in this dataset, which provides a weak estimation of the CMC for 

our RS’s.   
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Figure 11. Implementation of Vorster model for all RS’s based on engine working 
hours 

 

Figure 14 highlighted some cases that their maintenance costs increased while the num-

ber of working hours did not change for some sequential work orders. It can be caused 

by several reasons such as misdiagnosing of the machine problem by maintenance ex-

perts or the need for replacing various spare parts to make the machine available again. 

In addition, there are machines with massive workloads and small maintenance costs; 

figure 15 highlighted some of the cases. These two figures are showing some examples 

of the equipment that does not follow the Vorster suggested pattern (CCM). 

 



31 
 

 

Figure 12. Grows in maintenance cost of RS’s with shutdown engines 

 

Figure 13. RS’s that have been working for a long time without needs for expensive 
maintenance 

 

The working environment, operator skills, equipment age may seem the only influential 

factors on the variation of the EMC. However, we found that unlike typical machines, the 

number of lifts is the other influential factors on EMC, and engine working hour is not the 

only measure of the workload of load handling equipment.  
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Figure 16 emphasis the fact that the number of cargoes that machine lifts and the num-

ber of its engine working hours are positively correlated with 0.89 strength. Each circle 

represented a machine, and the size of the circle represents the amount of its overall 

maintenance cost.  

 

Figure 14. Correlation between the number of lifts and engine working hours 

 

Figure 17 is showing the behavior of the CMC in comparison with the number of cargo 

that machines lifted. As can be seen from the scatter plot, CMC follows almost the same 

pattern as it did with engine hours. If we consider the number of the lifts as the measure 

of the equipment’s age then the best fitted exponential line which is the implementation 

of Vorster method (CCM) gives a poor estimation of CMC with 0.19 𝑟2 for the available 

data.  
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Figure 15. CMC per number of lifts for all RS’s 

 

Based on field expert’s statements (Josse, 2017) and what we browse through the data, 

the following variables are the most influential attributes on the cost of a maintenance 

work order, and they are detailed in Table 1. 

Table 1. Influential variables on CMC 

Variable name Description 

Engine working hours The number of hours that machine engine worked 

Lifts Number of freight containers handled also called ”Number 

of lifts” 

Kilometer Number of Kilometre distance the machine traveled 

Tons Total weight handled in tons 

Fuel The amount of fuel in litters that machine consumed 

Engine The type of machine’s engine 

Transmission  The type of machine’s transmission 
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Based on researches mentioned in Chapter 2, commonly used performance indicators 

derived from given attributes calculated based on engine working hours. It is detailed in 

Table 2. 

Table 2. Variables of interest retrieved from Table 1 based on engine working 
hours. 

Variable name Calculation Description 

Meter per engine hour Kilometer*1000/Engine 

hour 

The distance that equipment trav-

eled per engine hour. 

Ton per engine hour Ton/hour The weight handled in each hour 

of the engine working. 

Fuel per engine hour  Litter/hour The amount of fuel machine uses 

per engine working hour. 

 

It is straightforward to assume that other numerical attributes (fuel used, distance, and 

cargos weight) will be positively correlated with the engine working hour, the same as 

the number of lift.  

 

Figure 16. Correlation of Engine working hours with cumulative attributes (Kilome-
tre, Tons, fuel consumption) 

 

Figure 18 is showing the behavior of these attributes toward engine hours. It can be seen 

from the picture that a linear relationship between cumulative attributes and engine work-

ing hours is available. For example, it is technically assumed that two hours of engine 

working consume a double amount of fuel than one hour of engine working (Josse, 
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2017), and it can explain the strong positive correlation between fuel consumption and 

engine working hours. 

However, we already found that the number of lifts that a machine has done is another 

measurement for its workload (see Figure 17). Therefore, the following attributes can be 

derived, as shown in Table 3. 

Table 3. Variables of interest calculated based on the number of lifts 

Variable name Calculation Description 

Meter per lift Kilometer*1000/lift The distance that equipment traveled per 

lift. 

Ton per lift Ton/lift The weight is handled by machine in each 

lift. 

Fuel per lift  Litter/lift The amount of fuel machine uses per lift. 

 

After going through preprocessing phases and filtering out unusable data the resulted 

dataset shrunk from 5000 observations to 3000. The remained samples are coming from 

machines with accurate details in all relevant attributes. To discover rather the engine 

hours factor or the number of lifts factor is more correlated to the amount of maintenance 

cost two final datasets were created based on the raw data. The attributes of each da-

taset are shown in Tables 4 and 5. Attributes that form Table 4 are called cumulative 

maintenance cost per lifts (CMCPL) dataset and attributes that form Table 5 are called 

cumulative maintenance cost per engine hour (CMCPHR) dataset. 

Table 4. Attributes in final dataset derived based on the number of lifts 

Variable name Description 

Meter per lift The distance that equipment traveled per lift. 

Ton per lift The weight is handled by machine in each lift. 

Fuel used per lift  The amount of fuel machine uses per lift. 

Engine hours The hours of the machine’s engine working. 

Cost per lift  Maintenance cost per lift. (dependent variable) 
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RS Model The model of the RS machine which differs based on the 

machine’s usage, strength, and ecosystem. 

SWO day duration The length of the service work order in days 

 

Table 5. Attributes in final dataset derived based on engine working hours 

Variable name Description 

Meter per engine hours The distance that equipment traveled per engine hours. 

Ton per engine hours The weight is handled by machine in each engine hours. 

Fuel per engine hours The amount of fuel machine uses per engine hours. 

Lifts The number of lifts the machine has carried. 

Cost per engine hours Maintenance cost per engine working hours. (dependent 

variable) 

RS Model The model of the RS machine which differs based on the 

machine’s usage, strength, and ecosystem. 

SWO day duration The length of the service work order in days 

 

Figure 19 is showing the gaussian estimate of the probability density function (PDF) of 

the maintenance cost for the two final data sets. The red dashed line represents the 

median values of cost per lift distribution and the blue line showing the median for cost 

per engine hour distribution. The diagram shows that medians for both distributions are 

very close to each other. However, the cost per engine hour distribution has a larger 

variance. 



37 
 

 

Figure 19. The probability distribution function of 2 datasets 

4.2 Data Division 

Dividing the data is the first task before model creation. The datasets are dividing into 

training, validation, and test sets. The training dataset is used to train the model, the 

validation sets are used for evaluation and verification of the model during iterative train-

ing to choose the best meta parameters. Once the hyperparameters have been selected 

and the final model was built and trained, we can evaluate the performance of this ulti-

mate model with the test set. 

Since the size of the dataset was too small, only 0.1 part of it separated randomly as the 

test set. By random sampling of the rest of the data into three equal-size partitions, one 

partition is assigned to the validation set and two others as a training set in each round 

of the cross-validation process. 

4.3 Linear regression 

To investigate the distribution properties, an LR model (see section 3.2) was applied to 

all the observations in the data. Furthermore, we were interested to see how well the 

datasets could be fitted by a linear model. Plots in Figures 17 are describing the residuals 

(the difference between predicted values with true values of CMCPHR) versus predicted 

CMCPHR goodness of the linear regression fit on the CMCPHR dataset as well as actual 

values of CMCPHR versus their predicted values. As shown in the left plot in Figure 17 

linear model can not successfully express the underlying relations in the data with -0.09 

𝑟2. In the plot on the right, each point is a prediction of CMCPHR made by the LR model 

on the x-axis and the accuracy of the prediction is on the y-axis.  The distance from the 
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line at 0 is showing how bad the prediction is for the actual CMCPHR value since 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 –  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑. 

 

 

Figure 17. Predicted values versus the observed values for CMCPHR by the LR 
model on the left and residuals vs predicted values of CMCPHR on the right  

 

Figure 18 is showing the same plots for CMCPL datasets. As can be seen from the 

left plot LR model was more accurate in predicting CMCPL with -0.1 𝑟2, however, it is 

still a very poor estimation since the value of 𝑟2 is negative and it simply means that using 

the mean value of the actual values for predicting the future CMCPL will give better ac-

curacy than the LR model.  

 

 
Figure 18. Predicted values versus the observed values for CMCPL by the LR 
model on the left and residuals vs predicted values of CMCPL on the right  

 

4.4 Gradient boosting regression 

For fitting a gradient boosting regressor to the training dataset we used the Sklearn en-

semble module in Python (sklearn.ensemble.GradientBoostingRegressor documenta-

tion, 2020). We used the data as described in the data division section (see 4.2). To 
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choose the best combination of hyperparameters for the final model, the Sklearn Grid-

SerachCV module is used to implement an exhaustive search over specified parameter 

values. The use of grid search may seem too straightforward and naïve, however, to 

experience all the possible combinations of data this method is preferred over other 

types of hyperparameters tuning methods. Furthermore, the required computational time 

for this approach was not long based on the provided computing resources provided for 

this research. The sets of hyperparameters and the range of probable values for each 

one is shown in the following table. 

Table 6. List of tunned hyperparameters and the range of values 

Parameters to optimize Range of values 

Learning_rate [0.01,0.015,0.025,0.05,0.1] 

max_depth [4,6,8,9,10] 

max_features [0.1, 0.3, 0.5, 1.0] 

min_samples_leaf [1,2,5,10] 

n_estimators [100,120,300,500,800] 

 

The n-estimator parameter is the number of weak learners to fit in the model and it is 

strongly interactive with the learning rate parameter. As mentioned in the previous chap-

ter, the lower amount for learning rate reduces the effect of the problem of overfitting, 

however, the increase of the number of weak learners might be needed to maintain a 

constant training error. In this way, we can obtain better test error (Hastie, Tibshirani, 

and Friedman, 2009). Max depth parameter is the depth of each weak learner and a split 

point at any depth will be considered if at least the minimum number of samples is 

reached in each branch. This minimum is applied by the “min_samples _leaf” parameter 

and may have a smoothing impact on the regression model. The fraction of the features 

at each split is indicated by the “max_feature” parameter.  

After training the model with each dataset we achieved the best estimator with the small-

est loss which is chosen by the grid search. The best hyperparameter values for the 

models trained for each dataset are detailed in the following table. 
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Table 7. Best values for hyperparameters in each trained model 

Dataset Learning 

rate 

Max 

feature 

n-estimator Max depth Min 

samples 

leaf 

Data calculated based on 

Lift (CMCPL) 

0.015 0.3 120 8 1 

Data calculated based on 

engine hours (CMCPHR) 

0.05 0.1 120 10 5 

 

Coefficient of determination of regression function, 𝑟2, was the metric used to calculate 

the accuracy of each model for training and test set. The best value of this metric is 1.0 

while the worst case can be negative and the score of the model that always predicts 

the expected output value disregards the input features is equal to 0. As shown in Table 

8 the accuracy of the model trained by the dataset calculated per number of lifts is more 

accurate on both training and testing sets and it shows the maintenance cost of each 

machine depends more on how many lifts they have done rather than the number of 

hours of their engine working. 

Table 8. Summary of 𝒓𝟐 scores resulted from the GBR model 

Dataset Training set 𝑹𝟐 score Test set 𝑹𝟐 score 

Data calculated based on Lift (CMCPL) 0.94 0.83 

Data calculated based on engine hours 

(CMCPHR) 

0.77 0.30 

 

To visualize the accuracy of the models on each test set scatter plots of the predicted 

values vs actual values are shown for estimators of each test sets in Figures 19 and 20. 
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Figure 19. Predicted values vs actual values in CMCPL test set 

 

 
Figure 19. Predicted values vs actual values in CMCPHR test set 

From the above scatter plots it is clear that prediction of maintenance cost based on the 

number of lifts is more accurate as the points are closer to the regressed diagonal line 

in comparison with Figure 19.  

The final gradient boosting regressor was used to evaluate the relative importance of 

different features. The results of this rating are described in Figure 21. 
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Figure 20. The relative importance of features 

This chart is showing that the most important features for predicting maintenance costs 

are: meter per lift, fuel per lift, tons per lift, engine hours, and duration of SWO in days. 

This chart is showing that RS’s models which emphasize the capacity of the machines 

do not come close in importance to features from the telemetry data.  
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5. CONCLUSION 

5.1 Recommendations 

To show changes in the learning performance of the GBR model for the CMCPL data 

set over time in terms of experience, following the learning curve on the train and valida-

tion datasets is plotted in Figure 22.  

 

Figure 21. Learning curve on training set calculated based on lifts 

The big gap between the cross-validation sets line and training scoreline shows that our 

model is suffering from overfitting due to the high variance in samples. An action we 

have identified that may solve this problem and improve the quality of the maintenance 

cost prediction is the increasing of samples. However, the possibility of improving the 
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model with the small size of the provided dataset is not achievable as this data is just a 

short glance of the whole lifetime of the equipment. 

Another possible development would be to add attributes engine type and transmission 

to the data. The quality of data in these attributes was poor as there were a lot of ma-

chines available with no information about their engine and transmission types. Since 

we could not afford to lose more observations, the mentioned attributes omitted from the 

datasets as the result. 

5.2 Final conclusions 

Nowadays the engine hours of the machine are considered as the main indicator of ma-

chine maintenance cost in manufacturers. However, a comparison between the reviewed 

solutions in the second chapter with the result of this study indicates that the calculation 

of raw data based on the number of lifts that machine moves provide a better under-

standing of the cost of RS’s service work order. This result makes sense since the lifts 

as an attribute have done a better measurement of the work than the hours taken to do 

the same work. Furthermore, the linear regression model is not a good representative of 

the data behavior while the gradient boosting regressor achieved good accuracy of 𝑟2 

score. The cross-validation method is used to partition the data for train and validation 

sets, however, the high variance in the small size dataset caused a bit of overfitting in 

the model. The most influential features for prediction are extracted from the data and 

the effects of duration of the service work order in the prediction appeared relevantly 

important and noticeable. 
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