
Md Shohidur Rahman

SECURE LIFECYCLE MANAGEMENT OF
BLE NODES

Information Technology
Master of Science Thesis

August 2020

i

ABSTRACT

Md Shohidur Rahman: Secure Lifecycle Management of BLE Nodes
Master of Science Thesis
Tampere University
Information Technology, Communication Systems and Networks
August 2020

Aiming the novel applications in the healthcare, fitness, beacons, security, and home enter-
tainment industries Bluetooth Special Interest Group (Bluetooth SIG) has designed and marketed
a low power personal area network, which is known as Bluetooth Low Energy (BLE). Billions
of BLE devices are shipped every year across the world, and these devices have become very
common in different types of deployments. The key consideration of this research is to find a
suitable way of managing bulk Bluetooth Low Energy(BLE) nodes in any low powered wireless
networks, remotely and in a secure manner. Some research in the low powered BLE networks
and device management were required to materialize this objective. A literature review was done
for that required research. After having a good understanding, which came from the literature
review, a study was done to explore a few available device management solutions that existed
until today. This study helped to understand the application domains, solutions, and their lacking
if there were any. There were some shortcomings in the remote secure management of the vast
number of BLE nodes, which become more prevalent in many wireless applications of today. Due
to the resource constraints in those devices, it’s not possible to try trusted and tested solutions
from other domains here. A couple of different management strategies were proposed to address
these issues. The base of the proposed device management solution is the limitations that were
found in earlier studies. The theoretical solutions seemed very promising and has been imple-
mented in the lab. The proposed theoretical solutions were implemented and tried in the testbed
as a proof of concept. The proposed solutions have eased the secure device management of bulk
BLE nodes remotely in any BLE low powered networks. One of the proposed solutions has also
opened the possibility to try our trusted and tested IP protocol to manage BLE nodes. The work
of enhancing device management in low powered network will continue beyond this thesis.

Keywords: M.Sc. thesis, IoT, 6LoWPAN, BLE, Zigbee, SIG

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

This thesis has been written as a partial fulfillment of Tampere University, Finland’s pre-
requisite for a Master of Science in Information Technology. In collaboration with the
Pervasive Computing Laboratory, Tampere, University, Finland, and Helvar Oy Ab, Es-
poo, Finland, all the research and practical tasks covered under this thesis were carried
out. The work was supervised by the University of Tampere’s research scientist Bilhanan
Silverajan and Prof. Mikko Valkama.

I am starting with the name of God, the Most Gracious, the Most Merciful. Without his
mercy and favor, It wouldn’t be possible for me to continue my studies here, which differs
significantly in different aspects compared to my home country.
After that, I would like to thank Bilhanan Silverajan most sincerely for believing in my
abilities and taking me to his research team. I wouldn’t end up finding an exciting and
motivating research topic like this without his help. I would like to extend my profound
gratitude to Antti Kolehmainen, who assisted me a lot throughout my thesis. He was my
go-to guy for any Linux related help. It was, indeed, an immense pleasure to work with
everyone at the team. I would like to take this opportunity to thank everyone in the team.

I would like to devote this study to my family, my parents, brothers, sisters, and my lovely
wife. I couldn’t get that far without their sincere help. Every little effort they made has laid
the stairs for me that helped me pursue my dreams.

Finland, 18th August 2020

Md Shohidur Rahman

iii

CONTENTS

1 Introduction . 1

1.1 Research Questions . 1

1.2 Scope . 2

1.3 Methodology . 2

1.4 Structure . 3

2 LOW POWERED COMMUNICATION PROTOCOLS 4

2.1 IEEE 802.15.4 . 4

2.2 ZigBee . 5

2.3 6LoWPAN . 6

2.4 BLE . 6
2.4.1 BLE Network Topology . 7
2.4.2 BLE Addressing . 7
2.4.3 BLE Throughput and Range . 8

2.5 6LoWPAN over BLE . 8
2.5.1 Network topology . 9

2.6 BLE Mesh . 10
2.6.1 Bluetooth Mesh: Layers and Functionalities 10
2.6.2 Important BLE mesh terminologies 11
2.6.3 Provisioning . 15
2.6.4 BLE Mesh Security . 17
2.6.5 BLE Mesh Networks: Standardization 18
2.6.6 BLE Mesh Flooding vs. Routing . 18

3 Device Management . 20

3.1 Device Management Goals . 20

3.2 Device Management Functions . 21

3.3 Device Management lifecycle . 21
3.3.1 Provisioning: . 22
3.3.2 Configuration . 23
3.3.3 Monitoring . 23
3.3.4 Update . 23
3.3.5 Decommissioning . 24

3.4 OMA Lightweight M2M(LWM2M) . 24

3.5 OMA Lightweight M2M Implementations . 29
3.5.1 Eclipse Wakaama . 29
3.5.2 Eclipse Leshan . 29
3.5.3 Anjay . 30

iv

4 Firmware Update . 31

4.1 Challenges in Firmware Update . 31

4.2 Open Standards for Secure Constrained IoT Firmware Updates 33
4.2.1 Cryptographic Algorithms . 33
4.2.2 Firmware Metadata . 33
4.2.3 Standards for Firmware Transport 34

5 Architecture and Design . 35

5.1 Architecture for Managing BLE mesh nodes manually 35

5.2 Architecture for Managing BLE mesh nodes through LWM2M Client 36

5.3 Architecture for Managing 6LoWPAN BLE nodes 37

6 Implementation and Testing . 38

6.1 Managing BLE nodes in BLE mesh network manually 38
6.1.1 Implementation of the different components 38
6.1.2 Firmware Update in Nordic Boards 40
6.1.3 Firmware Update in the Mesh Network: 43
6.1.4 Performing Firmware Update Manually 44
6.1.5 Performing Firmware Update using LWM2M Client 44

6.2 Management of BLE nodes in 6LoWPAN network 47
6.2.1 Implementation of the different components 48
6.2.2 Firmware Update . 50

7 Result and Discussion . 51

7.1 Reflections of the research questions . 51

7.2 Limitations . 52

7.3 Future Study . 52

8 Conclusion . 53

References . 54

v

LIST OF FIGURES

2.8 Relay Node . 12
2.9 Proxy Node . 13
2.10 Friend nodes and low power nodes . 13
2.11 Publish-subscribe in Bluetooth mesh lighting control system [28]. 15
2.12 Provisioning Invite . 16
2.13 Public Key Exchange . 16

3.2 Diagrams should be edited before publication. 25

vi

LIST OF TABLES

6.1 Technical specifications of the BLE development boards used in the forma-
tion of the BLE mesh . 40

vii

LIST OF SYMBOLS AND ABBREVIATIONS

AFH adaptive frequency hopping

ATT Attribute Protocol

BLE Bluetooth Low Energy

DFU Device Firmware Upgrade

ECDH Elliptic Curve Diffie Hellman

GAP Generic Access Profile

GATT Generic Attribute Profile

HCI Host Controller Interface

IoT Internet of Things

IRK Identity Resolving Key

L2CAP Logical Link Control and Adaptation Protocol

LTK Long Term Key

MITM Man in the middle

OOB Out of Band

OUI Organization Unique Identifier

RDM Remote Device Management

SIG Bluetooth Special Interest Group

SM Security Manager

STK Short Term Key

TK Temporary Key

URL Uniform Resource Locator

URN Uniform Resource Name

UUID Universally Unique ID

WHAN Wireless Home Automation Network

WPAN wireless personal area network

1

1 INTRODUCTION

As the Internet of Things (IoT) continues to grow, more and more devices constrained
by processing power, memory, and battery are getting connected to gather and share
data. One of the biggest challenges of this kind of deployment is finding a communica-
tion protocol that can fulfill all the requirements by letting those smart objects to talk with
the expense of the lowest possible energy. Bluetooth Low Energy (BLE) has been devel-
oped by the Bluetooth Special Interest Group (SIG), focusing on low power communica-
tion. Despite having the Bluetooth brand, BLE is a different technology from Bluetooth,
addressing different design goals and targets different market segments. This technol-
ogy was adopted in more than one billion devices within the first couple of years since
the smartphone manufacturers made BLE available to their platforms. Now BLE is an
emerging low powered wireless technology powering various applications. It is expected
that there will be billions of BLE devices in the upcoming years since it has gained lots of
research interest in different application [1], [2], [3], [4], [5], [6] domains. Some of these
applications require many to many communications, while some others require one to
one communication. Different networks have been built based on Bluetooth Low Energy
to fulfill such requirements. BLE Mesh [7] is one of the two prevalent types of networks
that have been built based on BLE. BLE mesh has enabled many-to-many communica-
tion over Bluetooth radio. The other common type of BLE based network is known as
IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) [8]. The potential
management challenges BLE devices in such networks will bring have not been studied
much, and the current IoT device landscape has not reached the desired level of maturity.
For BLE devices to thrive, device management capabilities need to be evolved. BLE de-
vice management is the process of authenticating, provisioning, configuring, monitoring,
and maintaining the device firmware and software that provides its functional capabilities.
The execution of these management tasks remotely in a secure fashion would be even
more challenging. This thesis investigates and addresses the challenges in the remote
secure device lifecycle management of BLE nodes in low power networks.

1.1 Research Questions

Following are the research questions of this thesis:

1. What is the current state of low power networks?

2. What is the current state of device lifecycle management in low power networks?

2

3. What is the current state of the firmware update in BLE nodes?

4. What are the ways to perform device management of BLE nodes in BLE mesh
networks?

5. Is it possible to use Lightweight Machine-to-Machine (LwM2M) Client for managing
BLE nodes in 6loWPAN network?

First three questions were explored to have sound background information and to form a
firm foundation to answer the fourth and fifth questions which are the focus of this thesis.

1.2 Scope

The scope of the first research question is to explain what is meant by low power network
and studying different low powered networks existed until today. The second research
question covers the IoT device lifecycle management and challenges in the device life-
cycle. The third question focuses on a specific device management task which is the
firmware update. State and the challenges of this specific management task have been
explored to answer this question. To answer fourth and fifth questions, this work has
implemented three solutions for remote and secure lifecyle management of BLE nodes.

1.3 Methodology

This thesis work has focused on two purposes; the first focus was to give a literature
review of low powered networks and, device lifecycle management in low powered net-
works. The research papers, articles, and news related to the topic were the basis of the
literature review. Access to those resources was gained via Tampere University, while
on campus, Andor and Science Port were used to access resources off-campus. The
Google search engine was used in some cases to find some specific news, articles, or
any other related documentation. In the list below, some of the used search phrases have
been mentioned:

• Low powered networks

• Application domains for low powered networks

• Comparison between different low powered protocols

• Future prospect of low powered networks

• Prospect of BLE in future low powered networks IoT Management

• Device lifecycle management

• Device management challenges

• Device lifecycle management practice in the industries

• Device lifecycle management in the low powered networks

• Challenges in device lifecycle in low powered networks

• Management of BLE Nodes in low powered networks

3

All the documents that appeared using the search phrases mentioned above were scruti-
nized to find the most relevant one to the thesis. Those pertinent papers were used while
writing the literature review and have been mentioned as references. Proposed device
management for BLE Nodes was done by researching existing models and finding the
limitations of these models in the application domains of interest. A suitable device lifecy-
cle management for BLE nodes was developed. The developed solution was tested with
different scenarios in the test lab.

1.4 Structure

The writing of the thesis is organised in eight chapters. It commences with an introductory
chapter. The initial idea behind this opening chapter is to introduce the topic and the
thesis to the readers. Creating interests and preparing for the yet to come information is
also another intent of this chapter. Chapters 2, 3, and 4 cover the theory part. Chapter
2 covers the state of the art of the low powered networks in the perspective of Bluetooth
Low Energy (BLE). Chapter 3 focuses on the device lifecycle of IoT devices in general.
Chapter 4 focuses on firmware update. Chapter 5 gives the insights of the architecture
and design of the implemented device management. In chapter 6, the implementation
and testing of the implemented solutions have been covered. Chapter 7 discusses the
result and the future work that could be done. The conclusion has been done in the
chapter 8.

4

2 LOW POWERED COMMUNICATION PROTOCOLS

In the past, conventional communication protocols evolved to meet the needs of bandwidth-
hungry applications like video streaming or large file downloads. In today’s booming IoT
industry, there have been myriad applications to address different challenges of modern
life. In many of these applications, the senders and receivers of data are not human, but
thousands of tiny, constrained devices. Those tiny devices don’t require high up-link or
down-link speeds for communication to happen since they communicate sparingly and
transmit only a few kilobytes. As high data rates is proportionate to high power con-
sumption, the traditional bandwidth-hungry communication protocols are not suited for
these kind of IoT applications. Such applications requires a different sorts of communi-
cation protocol which will fulfill the applications requirements and will be very thrifty in
case of energy consumption. The type of communication protocols that are suitable for
such application domains are known as low powered communication protocols. In other
words, low powered communication network is a type of wireless telecommunication that
has been designed focusing on communication at a low bit rate, with low power, among
things, also known as objects. Such objects or things operate on battery. The low pow-
ered networks have been classified based on their area of coverage [9]. In this section,
related short-range communication protocols will be discussed briefly.

2.1 IEEE 802.15.4

To develop and maintain wireless and wired communications standards, the Institute
of Electrical and Electronics Engineers (IEEE) supports many working groups. The
802.15.4 is arguably the most substantial standard for low data rate wireless personal
area networks (WPANs). The intention was to offer the underlying lower network lay-
ers of a type of wireless personal area network, which focuses on low-cost, low-speed
ubiquitous communication between devices. The initial target was low-data-rate mon-
itoring and controlling applications to extend life through low-power-consumption. The
IEEE STD 802.15.4 [10] specifies the Radio Frequency (RF), Physical Layer (PHY) and
Medium Access Control (MAC) layers. There has been a variety of custom and industry-
standards based networking protocols that can sit atop this IEEE stack. This has added
the capability to create self-healing mesh rapidly. The frequency, power, modulation, and
other wireless conditions of the link are defined in the PHY layer. The MAC layer is
responsible for defining the format of the data handling. The other layers define other
measures for handling the data and related protocol enhancements, including the appli-

5

cation itself. The 802.15.4 standard defines the star and peer-to-peer common network
topologies.

2.2 ZigBee

The Zigbee [11] specification created by ZigBee Alliance is the most deployed enhance-
ment to the 802.15.4 standard. The organization maintains, supports, and develops more
sophisticated protocols for advanced applications. It has been developed based on low-
power wireless IEEE802.15.4 networks standard and designed to connect personal low
powered wireless devices within a small area. It uses layers one and two from 802.15.4

Figure 2.1. ZigBee protocol stack

as base and uses layer three above to define the ZigBee protocol. The additional com-
munications features are defined using layer 3 and 4 (Fig 2.1). These features include
encryption for security, authentication with valid nodes, and a data routing and forwarding
capability that enables mesh networking. The most common use of ZigBee is wireless
sensor networks using the mesh topology. The ZigBee supports mesh, star and tree
network topology [12], [13]. The main benefit the mesh protocol brings is that it allows
any node to communicate with any other node directly if within the range. If not directly
within the range, still communication can happen through multiple additional nodes. The
network then can encompass a large area. In the case of a disabled node, it still can
function, thus increase the network reliability. Zigbee also has a version that supports en-
ergy harvesting [14] for which it does not have battery or ac mains power available. With
a maximum 250 kilobytes data rate, this low powered wireless technologies best fits with
the applications, which are delay tolerant. ZigBee can accommodate up to 255 devices
within a maximum of 100 m [15], [11]. It has been widely used in different applications like
home and commercial building automation, industrial plant monitoring, fitness, wellness,
and intensively in health and aging population care [16]. In agriculture and environmen-

6

tal monitoring [17] Zigbee has been identified as a suitable solution. ZigBee has been
around for more than 20 years now and is widely used. It is a great option for many
applications.

2.3 6LoWPAN

IPv6 over Low Power Wireless Personal Area Networks (6LoWPAN) [18] allows con-
strained devices with limited power and processing capabilities to participate in the IoT
natively using IPv6.

Figure 2.2. ZigBee and 6LowPAN protocol stack

To allow IPv6 packets to be sent and received over IEEE 802.15.4 based networks, the
6LoWPAN defined an encapsulation and header compression mechanism. The primary
function of 6LoWPAN is to transmit and receive IPv6 packets over 802.15.4 links. To
achieve this, it has to accommodate the 802.15.4 maximum frame size over the air. A
packet with the size of the IPv6 Maximum Transmission Unit (MTU) (1280 bytes) can be
easily sent as one Ethernet frame, but in the case of 802.15.4, it needs an adaptation
layer. To solve the issue of transmitting an IPv6 MTU by fragmenting the IPv6 packet
at the sender and reassembling it at the receiver, 6LoWPAN acts as an adaptation layer
between the IPv6 networking layer and the 802.15.4 link layer. 6LoWPAN supports differ-
ent types of topologies like mesh and star topology. Since it is using the IEEE 802.15.4
protocol at the physical layer [6], [19] like Zigbee, this is the most competitive alternative
of Zigbee. Figure 2.2 [19] shows Zigbee and 6LoWPAN protocol stack side by side.

2.4 BLE

Bluetooth Low Energy (BLE) [20], formerly marketed as Bluetooth Smart, is a variation of
the Bluetooth wireless standard [21]. BLE has been developed by Bluetooth Special In-
terest Group (Bluetooth SIG), aiming at low power consumption noble applications in the
healthcare, fitness, beacons, security, and home entertainment industries in December

7

2009 as part of the Bluetooth 4.0 specification. Devices having BLE are capable of com-
municating without cables while maintaining high levels of security. Due to its low power
consumption and low cost, BLE has played a pivotal role in the evolution of applications
from high-speed automotive devices to sophisticated medical devices. It is one of the
most widely used protocol in today’s world [22], [23]. BLE protocol stack uses popular 2.4
GHz [24] band.

2.4.1 BLE Network Topology

Broadcasting and Observing:
A Bluetooth Low Energy device communicates with the outside world in two ways: broad-
casting or connections. The act of sending data out to all the listening devices is known
as broadcasting. In this connectionless broadcasting, data could be sent out to any scan-
ning device or receiver in the listening range. While talking about broadcasting, two roles
are defined. These are broadcaster and observer. The device in the broadcasting role
sends non-connectable advertising packets periodically to anyone within the range who-
ever willing to accept them. The device in an observer role repeatedly scans for any
advertising data. Once the observer receives the advertising data, it further requests
scan response data. Broadcasting is the only way to send data to more than one pear
simultaneously.
Connections:
The permanent, periodical data exchange of packets between two devices is known as
connection in BLE. This is, therefore, inherently private. The master (central device)
scans the advertising packets that are connectable. In a suitable time, it initiates a con-
nection. In a connected state, the central device manages the timing and initiates the
periodical data exchanges.

The slave (peripheral device), on the other hand, sends connectable advertising packets
periodically and accepts incoming connections. When a successful connection is estab-
lished, the peripheral follows the central’s timing and exchanges data regularly with it.
When connected, the two devices usually define this is as a connection event. In other
words, a connection is the periodical exchange of data at certain specific points in time
(connection events) between the two peer devices involved in it. Though the central de-
vice manages the connection establishment, data can be sent independently by either
device during each connection event, and the roles do not impose restrictions on data
throughput or priority. Two devices involved in the connection event can power up, ex-
change data, and then go to sleep until the next connection event, which is one of the key
benefits for power saving.

2.4.2 BLE Addressing

A device address is used to identify each BLE device. Nevertheless, these addresses
are identical to the MAC addresses used in other communications protocols, BLE de-

8

vice addresses may often be modified at will. Because of this resemblance, BLE device
addresses are commonly referred to as BLE MAC addresses.BLE currently supports fol-
lowing four different address types, each with a length of 48 bits:

• Public IEEE Format- Such addresses were obtained by the IEEE Registration Au-
thority and are unique to the manufacturer. The 24 most significant bits of this
address are the IEEE assigned to the Organization Unique Identifier (OUI). The
company is free to change the 24 least significant bits. Because these addresses
do not alter, they do not offer protection against identity tracking.

• Random Static- During manufacturing, these addresses are either burned into the
silicon of the device or created during the power cycles of the device.

• Random Private Resolvable-This method of addressing can only be used if, during
the bonding process, the Identity Resolving Key (IRK) is shared between the two
devices. A second device which also has the IRK can then convert the random
address back to the real address.

• Random Private Non-Resolvable-The device address is simply a random number
in this addressing system, and at any time, a new device address can be created.
This approach provides significant protection against identity tracking if new ad-
dresses are created relatively frequently.

2.4.3 BLE Throughput and Range

The theoretical data rate for Bluetooth Low Energy (BLE) is 1 Megabits per second
(Mbps) and 2 Mbps for BLE 4.2 and BLE 5, respectively. Nonetheless, a BLE system’s
throughput would be much lower as it needs to compensate for various protocol’s over-
head and interference. There has been an investigation [25] to maximum throughput
achievable in a simple BLE 4.2 network of two nodes. The maximum amount of through-
put was found 221.7 Kilobits per second (kbps) under the condition of the wireless link is
error-free, and the application always has data to transmit.

2.5 6LoWPAN over BLE

The implementation of 6LoWPAN over BLE does not require all of the features defined
in the classical 6LoWPAN specifications, so the Internet Technology Task Force (IETF)
proposed a standard RFC 7668 [26] which specifies the 6LoWPAN layer that enables
IPv6 communication on BLE link layers. Figure 2.3 shows the 6LoWPAN layer which
is on top of the BLE L2CAP layer and below the IPv6 layer. Although other 6LoWPAN
standards define data fragmentation and reassembly functions, those functions are not
included in RFC 7668. Data fragmentation and defragmentation are already being done
in the BLE communication stack’s L2CAP layer.

9

Figure 2.3. IPv6 on the BLE communication stack (Adopted from [26])

2.5.1 Network topology

Figure 2.4 demonstrates the simplest case of a subnet that exchanges data over BLE
links using IPv6. This simple subnet consisting of six BLE nodes, each of which acts as
a peripheral BLE device and one BLE enabled border router which acts as a central BLE
device. Each node device is connected via a single BLE data connection to the border
router.

Figure 2.4. simple IPv6 over BLE subnet with 6 node devices and a single border router;
nodes in the subnet may exchange data but cannot communicate with devices outside of
the subnet (adapted from [26])

An IPv6 convention specifies that IPv6 subnets will span a single link layer [27], yet a
multilink model. In this kind of setup, each node maintains a separate link to the router
which has been a more suitable network topology of IPv6 over BLE for constrained de-
vices. The use of link-local communication in this multilink model has been limited only
to individual BLE connections, link-local communication is not achievable between two

10

nodes. The nodes connected to the same boarder router have to use the shared prefix to
exchange data among them. The border router does not act as a link-layer switch in IPv6
over BLE networks but as an IPv6 router [26]. Figure 2.5 shows a practical setup. In such
a setup, BLE nodes have access to the Internet. All nodes share a 64-bit IPv6 prefix in
the subnet. The border router takes the responsibility to create a BLE connection to the
BLE Nodes for distributing the shared IPv6 prefix to all connected node devices and for
forwarding IPv6 packets from and to the Internet.

Figure 2.5. IPv6 over BLE subnet connected to the Internet; nodes may exchange data
within the subnet or interact with devices on the Internet (adapted from [26])

2.6 BLE Mesh

Even though BLE got widespread adoption in the industries, it lacked one most important
feature, which is a requirement for many of today’s applications in different domains. BLE
does not support many-to-many topology, often referred to as mesh where multiple BLE
devices are able to send messages to each other and forward messages to other devices
in the network. In 2017, Bluetooth SIG released the "mesh specification" standardizing
BLE’s many-to-many potentially unrestricted features. Bluetooth Mesh is a Bluetooth Low
Energy-based mesh networking protocol that enables many to many communication over
Bluetooth radio. Following figure 2.6 taken from Nordic Semiconductor shows Bluetooth
mesh stack (light blue) within the Bluetooth low energy protocol (dark blue).

2.6.1 Bluetooth Mesh: Layers and Functionalities

Bluetooth Mesh has a multi-layered architecture as below:

11

Figure 2.6. BLE Mesh and BLE

• Model Layer: It defines a standard way to exchange application-specific messages.

• Access Layer: Defines a framework for ensuring that data is transmitted and re-
trieved in the appropriate context of the model and its associated application keys.

• Upper Transport Layer: This uses an application (or device specific key) to estab-
lish authenticated encryption of access layer packets. It also defines some control
messages like Heartbeat messages to manage Friendship or to notify the behavior
of nodes.

• Lower Transport Layer: This layer is responsible for segmentation and reassem-
ble. When a complete upper layer packet can’t be carried in a single network-layer
packet, this layer segment this upper layer packet reliably. It does the opposite when
it receives segmented packets from the lower layer.

• Network Layer: This layer is responsible for addressing the transport layer pack-
ets in the network. This layer helps to extend the range by forwarding messages
through a relay node. The network layer authenticated encryption using the network
key, also done in this layer.

• Bearer Layer: It defines how the network packets are exchanged between nodes.

2.6.2 Important BLE mesh terminologies

Different BLE mesh terminologies and their purpose will be addressed briefly in this sec-
tion.

12

Nodes: Any device connected to a BLE mesh is termed as a Node. If a device is not part
of a mesh network or has not joined a BLE mesh network is known as an unprovisioned
device. After going through a provisioning process, a device can join the BLE mesh net-
work, and then this device is called a node of that BLE mesh network. The figure 2.7
depicts these concepts.

Figure 2.7. BLE mesh, Nodes and unprovisioned device

A node could support all, any, or none of the following features in a BLE mesh network,
which could be enabled or disabled at any time.

• Relay nodes- A relay node has the relay feature, which means it can re-transmit
any broadcast messages of other nodes.

Figure 2.8. Relay Node

• Proxy nodes- A proxy node helps communication to happen between a BLE mesh
node and a non-mesh-supported BLE device. The protocol used for such commu-
nication is known as proxy protocol.

13

Figure 2.9. Proxy Node

• Friend nodes and Low power nodes- Friend nodes operate together with a low-
power node(LPN). A low-power node has a very scarce resource, therefore keep its
radio off as much as possible to save energy. If any node wants to communicate with
this low power node while it’s sleeping, its friend node receives any data intended
for the low power node. If any data needs to be sent by a low-power node, it sends
it to its friend node and immediately goes to sleep mode to save energy.

Figure 2.10. Friend nodes and low power nodes

Elements: A node may have multiple components that can be handled independently.
Such individual components are known as Elements.
Let’s consider a luminaire as a node with multiple bulbs. Let’s also think, every bulb of
the luminaire could be turned on/off independently. In this case, different bulbs of the
luminaire are considered as elements.
States: Elements can be in different situations, which are represented by state value.
In the earlier example of the luminaire, the light bulbs can be on or off, which are the
two-state of these elements.
Properties: Properties are additional state value information. Setting a temperature
value, for example, as an outdoor or indoor temperature. There are two property types:

• Manufacturer property: only has read-only access

14

• Admin property: has both read-write access

Models: The whole or some functionality of a specific element is called a model. There
exist the following three types of models:

• Server model: A set of states, state transitions, state binds, and messages that an
entity containing the model may send or receive.

• Client model: The client model consists of GET, SET, and STATUS messages to
be used during communication with the server model.

• Control model: It contains a server and a client model that enables communication
with other server and client models.

Messages:Any data transmitted between BLE mesh nodes is referred to as the message.
Among the nodes of a BLE mesh, there are different types of data transfer happens. To
define these, a special opcode is used. The following are the three types of messages.

• GET message: This sort of message is used to get the status of one or more BLE
mesh nodes.

• SET message: This type of message is used if it is required to change the value of
a given state.

• STATUS message: The status message’s value depends on the perspective. It
may be a response to a GET message or an answer to a SET message that has
been acknowledged.

Addresses: Messages should be sent to and from an address in a Bluetooth mesh
network. There are three kinds of addresses available:

• Unicast Address: This kind of address is used to identify a BLE node uniquely

• Group Address:For identifying a group of BLE nodes, a group address is used.
This grouping resembles physical grouping, such as all nodes within a specific
room. An address for a group will either be:

– Bluetooth SIG defined, also known as a SIG-Fixed Group Address. Defined
address groups are All-proxies, All-friends, All-relays, and All-nodes group.

– User-defined through the configuration of the application.

• Virtual Address: The address allocated to elements instead of nodes is known as a
virtual address. A virtual address could be allocated to more than one element and
spread across more than one node. This form of address is typically pre-configured
by manufacturers during the manufacturing process.

Publish/Subscribe: Publish/Subscribe is another crucial concept in the BLE mesh. This
publish-subscribe pattern is used for exchanging all message in the BLE mesh network.
Publishing is known as the process of sending a message. Subscription is a setting that
causes chosen messages to be sent to specific addresses to be processed. Messages
are usually addressed to group addresses or virtual addresses. Following figure taken
from BLE mesh developer guide explains this in a lucid way.

15

Figure 2.11. Publish-subscribe in Bluetooth mesh lighting control system [28].

This is a BLE mesh network of 9 bulbs and 6 switches to control these bulbs. Every bulb
is a node that can subscribe to more than one group addresses. Group addresses such
as kitchen, dining room, hallway, bedroom, and garden are also available. As shown in
the figure, the third light bulb has subscribed to two group addresses, namely Kitchen and
Dining Room. Similarly, multiple nodes may publish their messages to the same group.
In figure 5th and 6th, switches publish to the Garden address group, where light bulbs
(7, 8 and 9) have subscribed. This kind of grouping makes reconfiguration of the devices
that are subscribing to the same group easy.

2.6.3 Provisioning

Provisioning is the process by which a device becomes a working node in a BLE mesh.
The provisioner is the system that provides the data needed to make other devices a
node in the mesh network. Often the Provisioner is a Smartphone, Tablet, or PC. The
entire provisioning process could be divided into five stages, as follows:

• Stage 1: Beaconing- The provisioning process begins with this stage. In this step,
the unprovisioned device shows its interest to be provisioned. For this reason, the
unprovisioned device sends an advertising known as the mesh beacon. Pressing
the sequence button on the unprovisioned device activates the beaconing process.

• Stage 2: Invitation- When the provisioner senses the existence of an unprovi-
sioned device, a provisioning invitation is sent to the unprovisioned device.

16

Figure 2.12. Provisioning Invite

The unprovisioned device responds with its provisioning capabilities to the invitation
with followings:

– Total number of device-supported elements

– List of supported security algorithms.

– Its supported Out-of-Band (OOB) technology.

– Device’s output capabilities

– Device’s input capabilities

• Stage 3: Public Key Exchange- In ECDH, public keys need to be transferred
between two communication parties.

Figure 2.13. Public Key Exchange

In this step, BLE mesh provisioner and the to be provisioned transfer their public
keys over BLE or via an out-of-band (OOB) procedure supported by both devices.

17

• Stage 4: Authentication-The device to be provisioned is authenticated in this
stage. The user’s interaction is required with the provisioner and the unprovi-
sioned device in this stage. The method of authentication depends on the previ-
ously agreed method in the earlier stage.

• Stage 5: Provision Data Distribution- At this point, a session key is generated by
the provisioner and the device to be provisioned. The session key is created from
its private key and obtained public key from the other side of the device. The gen-
erated session key is used to encrypt provisioning data like network key (NetKey),
a device key, IV index security parameter and, unicast address. After this process,
the unprovisioned device successfully joins the network and becomes a node in the
mesh.

2.6.4 BLE Mesh Security

BLE mesh has made security a mandatory feature, whereas, in BLE, the implementation
of security was optional and up to the developer. Every message in the BLE mesh is
encrypted and authenticated. BLE mesh has an independent security procedure in place
in every layer, such as Network Layer, Application Layer, and device level.Their purposes
are as follows:

• Network Layer Security (NetKay): A NetKey ensures the network layer security.
This is used to extract the network encryption key and the privacy key. The encryp-
tion and authentication of the network layer is done with this key. However, this key
does not decrypt any application data.

• Application Key (AppKey): AppKey is assigned to a node group that works for
the same application. This key does application-level decryption and authentication
and valid only for one mesh network.

• Device Key (DevKey): Device Key (DevKey) is used to secure communication be-
tween the unprovisioned device and the provisioning device during the provisioning
process.

Protection against common attacks: BLE mesh also has protection in place for fre-
quent attacks in mesh networks.

• Trash Can Attack: It’s not uncommon to remove or discard mesh nodes in the life-
time of a mesh network. An attacker can use this discarded node to gain access to
the mesh network. This type of attack is known as trash can attack. BLE mesh has
defined a procedure for removing any node to guard against such attacks. When a
node is removed, its added in the blacklist, and network keys and application keys
get renewed. These new keys are not distributed to the nodes on the blacklist.

• Replay Attacks: Valid messages are captured and stored with a malicious intent
to replay these messages later to attack, which is known as replay attacks.

Privacy: BLE mesh uses a privacy key generated from NetKey to hide the message

18

header. This makes it difficult for some attackers to trace back the source of the mes-
sage.

2.6.5 BLE Mesh Networks: Standardization

To meet the burgeoning interest of the industries in BLE mesh, standardization organiza-
tions like Bluetooth Special Interest Group (SIG) and the Internet Engineering Task Force
(IETF) have come up with different initiatives. In this section status of such initiatives will
be briefly discussed.

• Bluetooth SIG: Bluetooth Smart Mesh- The formation of the Bluetooth Smart
Mesh Working Group in early 2015 focused on developing an architecture to en-
able support for the mesh topology with BLE. Since its inception, this initiative has
received substantial support from 80 participating companies from a wide range of
industries, including automotive, mobile telephony, industrial automation, home au-
tomation, and consumer electronics. Bluetooth SIG announced in their 2017 road
map that mesh support many-to-many (m:m) device communications and is opti-
mized for creating large-scale device networks. Such features are ideally suited
for building automation, sensor networks, and other IoT solutions where tens, hun-
dreds, or thousands of devices need to reliably and securely communicate with one
another.

• IETF: IPv6 over BLE Mesh Networks- In late 2015 the IETF released the ’IPv6
over Bluetooth Low Energy’ specification as RFC 7668 [29] in order to extend the
IoT capillarity and its range of supported technologies. This specification consid-
ered only the star topology [30] and adapted 6LoWPAN [31], to support IPv6 over
BLE networks. For enabling IPv6 over BLE mesh networks, a new draft specifica-
tion has been developed by the IETF which extends the RFC 7668. This draft [29]
was built on the assumption that there exist Link-Layer connections between a node
and its neighbors over which IPv6 packets could be exchanged. The Internet Pro-
tocol Support Profile (IPSP) [32] is used to build such connections. In RFC 7668,
there is a 6LoWPAN-based adaptation layer in between IPv6 and L2CAP. Such an
adaptation layer provides IPv6 and User Datagram Protocol (UDP) header com-
pression, which increases communication efficiency, and optimizes IPv6 neighbor
discovery. These have made network configuration suitable for constrained devices
in any BLE mesh topologies.
Routing in such network is done in the IP layer. However, this specification did not
determine the routing protocol to be used.

2.6.6 BLE Mesh Flooding vs. Routing

Two basic types of multihop model exist in BLE mesh networks, flooding, and routing.
An benefit of flooding is its simplicity, because it does not require neighboring devices
to link or a routing protocol. This is faster and consumes less memory since there is no

19

need to create a route and maintain the routing table. The downside of such a flooding
based technique is the number of messages sent by network nodes for the purpose of
end-to-end communication between two devices. Since data are flooded throughout the
network, this approach may be inefficient. The inefficiency of flooding based technique
is proportional to the network size, which means in a bigger size network routing based
technique will have a benefit over flooding based technique. There have been some
efforts to mitigate the inefficiencies in flooding based techniques. The Trickle [33] and
node-density-aware rebroadcasting [34] are such technique which limits the overhead of
flooding-based solutions.

20

3 DEVICE MANAGEMENT

The volume of connected BLE nodes being part of different IoT solutions is increasing
significantly. The management of these BLE nodes in any IoT deployment a big chal-
lenge. To overcome these management issues, a detailed understanding of the related
device management should be explored. In this chapter, the focus will be given on IoT
device management, which is, in many aspects, very similar to BLE node management.

3.1 Device Management Goals

A well managed connected device might bring enormous benefits to the stakeholders.
The goal of device management in a network could be broadly categorized as follows:

• Optimizing the Cost: Keeping costs low while meeting the goals is a fundamental
requirement of any system; IoT systems are not an exception. Device manage-
ment should be designed in such a way that, deployed IoT systems fulfill the user
requirements, while keeping the cost under control.

• Transparent Usage of the System: Since the IoT system might be massive, there
is a possibility for unforeseen activity, which may lead to unplanned usage of the
system. Device management should be equipped with strategies and actions to
control the impacts of those unforeseeable situations.

• Fault Tolerance: Some failure situations are predictable; the goal of this step is to
detect those predicted failures, to control the effect of these, and finally to fix them.

• Dynamic Adaptability: Mostly, IoT systems deal with very dynamic environments
where user requirements [35] might change in real-time. Dynamic Adaptability will
help to merge those dynamic changes in the existing system without making any
effect on the system. The flexible device management system will be able to ad-
dress those changing requirements of the users. This is applicable in every stage
of the life cycle, e.g., booting, run time, and commissioning.

• To know about devices: The device lifecycle management can help to manage,
monitor, protect, and maintain all devices. A device lifecycle management dash-
board can be accessed remotely to allow devices to be provisioned, controlled, and
dismantled in real-time.

• Enhancing productivity: Network devices support applications that create value
for end-users. However, application developers often have no time or willingness

21

to take responsibility for device management. Management of the device lifecycle
assists in the efficient management of resources, thereby reducing the burden on
developers of applications. It helps the developer to concentrate on the develop-
ment of core value and consequently boost the organization’s production.

• Downtime reduction: Device management assists in identifying flaws and bugs
and amend them in real-time. Through keeping downtime low, it helps to improve
service efficiency.

• Data Feedback: The vast connected devices producing huge amounts of data, a
thorough analysis of each device’s activities, could be achieved through a device
lifecycle management.

3.2 Device Management Functions

Regardless of underlying protocol and devices in any IoT systems following key device
management functionalities are expected to be performed:

• Registration: The primary device management function comprises a device regis-
tering/deregistering itself to a management server to maintain, retrieve, and update
registration data.

• Provisioning: Provisioning is the process by which a device obtains necessary
data to join a network from the management server.

• Management services: Once the device becomes a fully functioning member of
the network, there will be few essential management services to maintain desig-
nated IoT services, and those include parameter configuration, status query, con-
nection diagnose, and remote control.

• Observation: Devices will send data to the server periodically according to config-
ured frequency. The server can also observe the device’s data and make a repre-
sentation.

• Application data transmission: This involves data from any application that could
be obtained and distributed to any IoT clients or any other program for further anal-
ysis or processing.

3.3 Device Management lifecycle

IoT’s future growth depends on how well we can simultaneously conduct remote bulk
operations on many devices. The five fundamental Remote Device Management (RDM)
building blocks of any device’s entire lifecycle will be addressed here. Figure 3.1 sum-
maries the stepwise function of a typical device management lifecycle.

22

Figure 3.1. Device Management Lifecycle

3.3.1 Provisioning:

There should be a mechanism to ensure that only trustworthy and secure devices are
added when it is necessary to add new IoT devices to the network. The system by design
should not allow bad actors to connect the IoT application and run untrusted software or
operate on behalf of any unauthorized users. By definition, the word provisioning refers
to the process of obtaining necessary information to join in the network, which includes
Authentication as well. Authentication is the process by which ensures that devices only
with the proper credentials get registered in the system. In this stage, the following two
tasks are performed:

• Boot-loading: For making a device operational within a security domain, an ap-
propriate firmware image must be located and securely booted. This happens once
the device is installed and commissioned in its new premises. Secure boot loading
a boot-loading variant refers to booting a device only with images that are trusted.
Any additional update to the current firmware version (boot-loader or device image)
must be made from a trusted source. For ensuring secure boot loading, there must
be a way to check the firmware integrity on each boot-up. This check is programmed
during configuration and enabled in the boot-loader.

• Bootstrapping: The term bootstrapping has been defined differently in different
contexts. Bootstrapping is the process by which a new device uses its temporary
credentials to derive subsequent keys and finally becomes a node of the network.
Bootstrapping is a collective name for authentication, authorization, and finally dis-
tributing required keys securely to any smart object that eventually becomes a part
of the network. Two entities participate in the bootstrapping procedure; one is the
smart object that wants to be a network member, and another is the controller that
provides the bootstrapping data. The smart object’s interaction with the controller
depends on the smart object’s input/output capabilities.

23

3.3.2 Configuration

IoT devices are often delivered with a default configuration of some kind. With this ini-
tial configuration, no device is put into operation. Most of the time, devices with attributes
such as its name and location and application-specific settings will need to be further con-
figured by the end-user. If a device is installed to engage in an application that measures
a particular room’s light intensity and sends it back to the server, then specific param-
eters should be configured for this device. Parameters like a device ID, location, and
frequency of sending data to the server should be configured. Parameters such as de-
vice ID, location, and frequency of sending data should be configured in the device. The
end-user may want to remotely reset the device to a known-good state or recover from
errors and apply new settings in order to have some level of control over the deployed
devices. There may also be a situation where the device needs to be decommissioned.
While doing a decommission, the trash can attack stated in the earlier section should be
taken into consideration. Before decommissioning, it is good to reset the device to be
removed to the default factory configuration. It makes it difficult for the attackers to use
the existing configuration of the decommissioned device to attack the network.

3.3.3 Monitoring

The IoT system can be small and simple like home with few devices to big and complex
like industry, even a city where thousands of devices connected to one network. In any
case, the device’s proper and secure operation has an immediate consequence on the
purpose of the deployment. Small issues might lead to a devastating impact on the pur-
pose of the deployment. Continuous monitoring can make any potential issues evident
to the end-users, thus helps reducing potential damage or downtime. Monitoring can
help to identify unusual activity, which could lead to identifying potential issues. If device
resources such as compute, storage, networking, and I / O statistics are monitored, po-
tential problems could be quickly tracked. For example, if the use of CPU in a certain
system goes beyond regular usage, the end-user will focus more on this device for any
potential abuse. This makes troubleshooting faster, and even end-user can take preven-
tive initiative. Monitoring network activities can also help to identify potential breaches of
security.

3.3.4 Update

No software is perfect; that is, the software is released with bugs that will later be ex-
posed at some point in its life. Also, the security is taken as a key component by very few
developers as many of the developers don’t consider security as core value-adding fea-
tures. In the case of startups who are aiming to get to business fast, this is more true. All
these often lead to install insecure devices that are vulnerable to different threats. On the
other hand, the device manufacturers make continuous efforts to improve the programs

24

(firmware) that are responsible for efficiently running the device. In the aforementioned
circumstances, a secure update of the device is required. Maintenance of software has
a lot of potential stages. There might be a situation where the firmware has a new bug
fix available; in that case, all system software, including bootloaders, must be modified
through a process. Fixing a bug in the application or adding a new feature to the run-
ning application is another stage of update. In that case, the firmware is left untouched,
and only the application is updated to save bandwidth of the network. Nonetheless, the
remote system software update is a long-term operation, and the type of connection to
the remote devices plays an important role. Remote devices may not have a reliable link.
The link may not be reliable if its wireless connection and devices are on the move. There
may be only a temporary link in the case of cellular connection to save the cost. The most
critical part of the update is that it must be achieved without hindering the continuity of
the business.

3.3.5 Decommissioning

A device can reach the end of its life or be compromised or even physically damaged; it
must be removed and dismantled in any case. If not, essential bandwidth can be wasted,
and the network might get unnecessarily congested. If the compromised device is not
decommissioned, it opens the door to attack the whole network. Even if a device is not
properly decommissioned, attackers could make an effort to attack the whole network with
the scrapped device’s residual. In those perspectives, decommissioning is considered an
important stage of the device management lifecycle.

3.4 OMA Lightweight M2M(LWM2M)

The Lightweight M2M (LWM2M) protocol [36] has been specified by the OMA SpecWorks
to meet the unique needs of constrained IoT devices. The client-server modeled LwM2M
is a secure, effective, and deployable protocol for the management of the constrained
devices in different networks. It’s a light, fast, and structured protocol, ideal for low-
capacity devices. It was ratified by OMA SpecWorks on February 15, 2017, and has
the potential to accelerate the promise and potential of the Internet of Things (IoT). It has
been built on top of a secured data transfer standardized by the Internet Engineering Task
Force (IETF), which is known as the Constrained Application Protocol (CoAP) [37]. CoAP
is a variant of HTTP [38]. LwM2M uses modern REST-based architecture and has defined
an extensible resource and data model, which could be reused. The following figure 3.2
shows how LWM2M Server interacts with the LWM2M clients resided in any IoT devices.
The LWM2M client houses one or more LWM2M object instances representing the device
being managed. An LWM2M object contains several resources. There might be single
or multiple instances for each object or resource. A network environment implemented
using LwM2M protocol consists of three types of entities:

• LwM2M Clients: The client is implemented on the end devices. They maintain

25

communication with the server(s). Client expose its resources to the server via
data model so that server can manage and monitor end device’s resource. An
LWM2M Client is identified by Endpoint Client Name - a Uniform Resource Name
(URN) uniquely assigned to a device by its manufacturer.

• LwM2M Bootstrap Server: This is the server which is contacted by every client
during its first boot-up or every boot-up. The purpose of this is to provide bootstrap-
ping and security information to LwM2M clients and LwM2M servers.

• LwM2M Servers: This talks with the clients and have the ability to read from and
write to the data model that is exposed by the clients.

Figure 3.2. OMA LWM2M high level architecture (source: OMA)

Data Models: Each LwM2M client has a data model which is a standardized, symbolic
representation of its configuration and state. The server has read/write privilege on this
data model. The data model can be thought of as a combination of a hierarchical configu-
ration file, and a view on statistical information about the device and its environment. The
LwM2M data model is very strict and has been organized as a three-level tree. Numeri-
cal identifiers are used to identify the entity of those level. Those three levels are briefly
discussed below:

• Object: The object represents accessible data within the client. For example, the
firmware object is defined for performing firmware update in the client. Each object
has a unique numerical identifier in the range 0-65535, inclusive. Each object de-
fines a set of resources which has the same meaning throughout all instances of
that object. The LwM2M specification defines the object definition with the following

26

features:

Name -Any descriptive name, which is not used in the on-wire protocol.

Object ID - A number to identify the object.

Instance - Single or Multiple.

Mandatory - Mandatory or Optional

Object URN - Uniform Resource Name is location independent identifier specified
by the authority which is globally unique and persistent over a long period of time.
It can be used to identify resources even if it becomes unavailable.

Resource Definitions - Used to define resources inside an object. For example,
the /0 represent the LwM2M Security object which contains confidential part of in-
formation about connections to the LwM2M servers configured in the client.

• Object Instance: An object might have one or more instances. Device object
which describes the device itself is a single instance object and is identified by 0.
Firmware update is also another example of single instance object. The object
which represents optional software packages installed on the device is an example
of multiple instance object.

• Resource: Each instance of a given object supports the same resources, as it is
defined by the object definition.Within a given Object, each Resource ID (which may
be within the range 0-65535, inclusive) has a well-defined meaning, and represent
the identical concept. The numerical identifiers on each of these levels form a
path which is used in the CoAP URLs. For example a path a path /1/2/3 refers to
followings:

- Refers to resource ID=3

- Object instance ID=2

- Object ID=1

Whole object instance could be referred by /1/2 or whole object by /1 in this format.
The LwM2M specification has specified following fields for any resources:

– ID- A number to identify the object.

– Name- Any descriptive name, which is not used in the on-wire protocol

– Operations- one of:

R- read-only Resource

W- write-only Resource

RW- writable Resource

E- executable Resource

Empty- used only in the LwM2M Security Object; denotes a Resource not
accessible via the Device Management and Service Enablement Interface

27

– Instance- Single or Multiple.

– Mandatory- Mandatory or Optional

– Type- Data type of the resource value.

– Range or Enumeration- Specifies the valid values for the resource

– Units- The units of the numerical values.

– Description- A detailed description of the resources.

Interface: In LWM2M there are four interfaces through which the clients, servers, and
bootstrap servers communicate. These interfaces are as following:

• Bootstrap Interface

• Registration Interface

• Device Management and Service Enablement Interface

• Information Reporting Interface

Bootstrap Interface: The bootstrap server uses a set of commands to provision
the initial configuration onto the client, and the bootstrap interface defines those
commands. In this interface, the LWM2M Client act as a CoAP server, and the
LWM2M server act as a CoAP client. The following message might exchange be-
tween those:

– POST /bs?ep={Endpoint Client Name-} The Bootstrap Request is the re-
quest sent from the client to the bootstrap server. It informs the bootstrap
server that a new client has appeared on the network and requesting boot-
strap information. The bootstrap server can also issue bootstrap commands
without having any bootstrap request.

– PUT- The request coming to the client from the bootstrap server is known as
bootstrap write commands. This command is used for creating and writing to
object instance and resource to initialize data model to the proper state, which
will be used later to communicate with LWM2M server.

– DELETE- For deleting an instance of an existing object, the bootstrap server
sends a bootstrap delete command to the client. This command is represented
as DELETE command.

– GET-The bootstrap server use GET request to information about the data
model supported by and present in the client. This request is interpreted as a
bootstrap discovery. The object instance with some other additional metadata
is accessible by the bootstrap server. However, the bootstrap server cannot
read any resource values.

– POST- In the final stage, the bootstrap server sends a bootstrap finish com-
mand to the client. Once the client receives a finish command, it validates its
data model, and in case of success, it then connects to the regular LWM2M
server as specified by the data model. This command is represented as POST.

28

The bootstrap interface is mostly write-only and hence the bootstrap server can not
do any actual management or monitoring of the client. It only prepare the client
to connect to actual management server. However, the bootstrap server and the
management server can coexist in the same server.

Registration Interface: The protocol the client uses to inform its availability to an LWM2M
server is known as a registration interface. In this interface, the LWM2M client act as a
CoAP client, and the LWM2M server acts as a CoAP server. Following are the commands
used in this interface:

• Register- When the client goes online, it uses this command to register itself to the
LWM2M Server. It informs the server that it’s ready to accept commands from the
server. It resembles CoAP POST /rd?. . . request

• Update- This is a CoAP POST request on a URL which is sent in response to
register. This can be periodical or when ever a register command initiated earlier.

• De-register- This is a CoAP DELETE and sent by a client when a client shutting
down.

Device Management and Service Enablement Interface: This is the interface through
which actual device management is done. In this case, the LWM2M server acts as a
CoAP client and sends the request to the LWM2M client, which acts as a server on the
CoAP layer. Following are the commands defined in the Device Management and Service
Enablement interface.

• Discover (CoAP GET Accept: application/link-format)- The server use this com-
mands to get list of all supported and present object, object instance, resources and
attribute addherent

• Read- Which is a CoAP GET commands and reads data of a single resource, entire
object instance or a whole object at once.

• Write- Using this commands the server modify the data model. This can be of
following two:

– PUT /{Object ID}/{Instance ID}[/{Resource ID}] : This is a replace method
which might be called on either a single resource to replace its value or on a
whole object instance to erase all existing data with the supplied data.

– POST /{Object ID}/{Instance ID}: This format request is used to do partial
update. It’s called only on a whole object instance to replace the resource
which is supplied in the payload and retaining the other data.

• Execute - The execute command is represented as POST /{Object ID}/{Instance
ID}/{Resource ID} request. It’s used to perform an operation like firmware update
or rebooting of the device.

Information Reporting Interface: This is an extension of the Device Management and
Service Enablement Interface. The server uses this interface to receive periodic update

29

of the certain value of interest in the data model. Following are the commands executed
in this interface:

• Read- When a client receives a read request, it returns its current value and also
prepare itself to notify later if an appropriate notification event happens.

• Cancel Observation- This also a read commands with observe option value set to
1.

• Notify- If an event of interest happens, client use this to notify the server.

3.5 OMA Lightweight M2M Implementations

There have been quite a few different implementations of the LWM2M client and server.
The following are the most popular implementations which could be thought of while
planning someone’s customized implementation of any LWM2M client and server.

3.5.1 Eclipse Wakaama

The Eclipse Wakaama project [39], hosted by the Eclipse Foundation is an open-source
implementation of the OMA LWM2M protocol written in C language. This project was
initially created by three experts in embedded systems coming from Intel, David Navarro,
Jacques Bourhis and Hatem Oueslati. The companies supporting the project are In-
tel, Sierra Wireless and IoTerop. It helps the open-source community to easily adopt
a standard-based approach while dealing with Security, Device Management and In-
teroperability requirements in their products and solutions. The commercial version of
Wakaama is IOWA. IOWA is an industrial-grade OMA Lightweight M2M stack for embed-
ded devices, server infrastructures, and gateways. The following features are supported:

• Bootstrap - Client only

• Client Registration - full support

• Information Reporting - Client only

• Data formats

– Plain Text

– TLV

• Security

– External elements could provide the CoAP and DTLS layers.

3.5.2 Eclipse Leshan

Leshan [40] provides libraries written in Java. Leveraging those libraries people can
develop their own Lightweight M2M server and client. The project also provides a client,

30

a server and a bootstrap server demonstration as an example of the Leshan API and for
testing purposes. Following are the details of the project:

• Eclipse project since 2014

• Modular Java libraries

• Based on Californium CoAP implementation

• Based on Scandium DTLS implementation

Leshan supports similar features as Wakaama.

3.5.3 Anjay

Anjay [41] is a Software Development Kit (SDK) that can be used to create an LwM2M
client and helps vendors of Internet of Things equipment implement support for OMA
SpecWorks’ Lightweight M2M. The following features are supported:

• Bootstrap - full support

• Client Registration - full support

• Device Management and Service Enablement - full support

• Information Reporting - full support

• Data formats

– Plain Text

– Opaque

– TLV

– JSON (output only)

• Security

– DTLS with Certificates, if supported by backend TLS library

– DTLS with PSK, if supported by backend TLS library

– NoSec mode

31

4 FIRMWARE UPDATE

This chapter focuses on the current researches and challenges on the firmware update
solutions in sensor networks, which closely resembles the firmware update of BLE nodes,
which is the core of this thesis.

4.1 Challenges in Firmware Update

While talking about updating firmware in IoT environments, it is obvious to face different
kinds of challenges as deployed networks might have heterogeneous devices from differ-
ent manufactures with their own way of performing the firmware update. The hardware
limitations make it even difficult. There have been numerous studies to identify these
challenges. Such challenges and requirements are based on recent attempts, such as
[42], [43], [44], [45] . In this section, these challenges will be highlighted.

• Integrity and confidentiality- The images to be used in the firmware update must
be safeguarded and handled only by authorized and legitimate entities. In addi-
tion, the information about the libraries and configuration provided. Confidentiality
could be ensured by using proper encryption techniques channel protection proto-
cols (e.g., the Datagram Transport Layer Security (DTLS)) in the firmware package
could be used by potential attackers.

• Version control- An intruder could attempt to install a valid (but old) firmware gen-
erated by a legitimate entity. In fact, a single component might be updated several
times in its lifecycle. In such a case, IoT appliances should be aware of the version
of the firmware installed on it. To handle such situations, there should be a mech-
anism to manage version information that can be used by devices, manufacturers,
and software providers.

• Management of dependencies- Updating firmware could affect the performance
of other components in a certain device. Since this device is part of a big system, it
can affect other devices as well. Such dependencies should be tracked to eliminate
any potential damages that might be triggered during the updating process.

• Update time- The time for performing the update is very important since during
the update process there might be some devices performing a critical task, and the
update process might stop this. So there should be a way to find the best time
to perform a firmware update. In [45] author has proposed a performance-aware
mechanism to find the best time to perform a firmware update.

32

• Trust management between manufacturers and software providers- There might
be a situation like that where the firmware update needs to be performed from dif-
ferent entities. There has to be trust between all such entities and manufacturers
to achieve such. A Key management mechanism should tackle this dimension to
embed the necessary cryptographic material in the device, for validation of new
firmware/software images.

• Continuous Security Assessment- The new EU ’Cybersecurity Act’ [46] regula-
tion is intended to define a framework for certifying cybersecurity. The main ob-
jective is to reflect the security level of a certain device or system throughout its
lifespan. In this context, updating/patching a particular device might involve a re-
certification process to keep its safety level up-to-date.

• Integration with monitoring approaches- To detect new vulnerabilities or attacks
deployed devices would require a new updating/patching of the devices. The use
of a monitoring system should be in place throughout the lifecycle of devices to
achieve this.

• Automated update installation- The firmware update of the devices should be
automated or require minimum human interaction. The integration of recent ap-
proaches such as the Manufacturer Usage Description (MUD) [47] can achieve this
level of automation. That promotes the automated deployment of devices by re-
stricting their communications.

• Efficient cryptographic algorithms and security mechanisms- The updating
process needs to provide integrity and confidentiality, and hence the security mech-
anisms must be based on efficient cryptographic primitives to be used even in
resource-constrained deployments. The main objective is to diminish the computa-
tional power required for cryptographic operations at the end devices and to reduce
the overhead of the messages to be sent over the network.

• Lightweight representation- To reduce the size of overhead, the firmware image
and metadata should be based on compact approaches. The Concise Binary Ob-
ject Representation (CBOR) [48] can resolve this issue.

• Digital twins- A virtualized copy of the real device could be used to test the impact
of the new version before deploying it in the real device. The concept behind this is
to determine the effect in terms of performance and security on a certain device.

• Incremental or total updates- The incremental update requires less computational
effort compared to a whole update. However, device heterogeneity and manage-
ment of the version make an incremental update difficult. There has to make a
choice between the cost of replacing the firmware and the effort it takes to manage
its version.

• Failure management- A firmware update might fail due to many reasons(e.g., loss
of connectivity). In such a situation device should revert back to its earlier working
state. Tracking the software version could help to resolve such issues.

33

• Decentralized models for sending updates- Most of the latest firmware image
forwarding proposals are based on a typical client-server centralized architecture
which might not be the best choice for today’s scalable and heterogeneous devices.
The use of fog/edge computing could assist in this process to minimize the overall
network overhead.

4.2 Open Standards for Secure Constrained IoT Firmware
Updates

The technical community has been working on open standards [49] over the last few
years which could be combined to facilitate IoT firmware updates. The outcome of such
efforts could be broadly categorized as follows:

• Cryptographic algorithms;

• Firmware metadata;

• Protocols for transferring updates over the network;

• IoT device management protocols.

4.2.1 Cryptographic Algorithms

To guarantee a secure firmware update, the use of state-of-the-art cryptographic algo-
rithms is a must. It was used to believe that the cryptographic algorithms used on the
Internet could not be used on constrained IoT devices. Later this proved to be wrong.
Elliptic Curve Cryptography (ECC) is typically used because of the smaller key size. The
Elliptic Curve Digital Signature Algorithm (ECDSA) for use with the P256r1 curve [50]
standardized by the National Institute of Standards and Technology (NIST) is very popu-
lar in the industry. The ed25519 [51] is another standardized signature algorithm based
on a different curve.

4.2.2 Firmware Metadata

A format for defining firmware updates has been standardized by IETF SUIT working
group. The SUIT group has defined a manifest that contains information about the
firmware required to update the device and a security wrapper which ensures the end-to-
end protection of the metadata. The SUIT standardization has three components: i) an
architecture documents [52], ii) an information model description [52], and iii) a proposal
for a manifest specification [53]. The SUIT was built on top of a number of other open
standards that provide the generic building blocks. The Concise Binary Object Repre-
sentation (CBOR) [48] is such a standard that was used as a data format for serialization.
For cryptographically secure data serialization the used standard was Object Signing
and Encryption (COSE) [54]. To protect the payload from tampering by an intruder COSE
defines a sign structure that uses a cryptographic signature.

34

4.2.3 Standards for Firmware Transport

There has been a number of specification for transferring a firmware update over the
network. The basic transport scheme includes a way for transferring Device Firmware
Update (DFU) over a specific low-power Media Access Control (MAC) layer technology
(such as Bluetooth). The SUIT protocol specified by IETF has combined Constrained
Application Protocol (CoAP) over UDP [37] and CoAP over TCP/TLS [55] for transferring
firmware through multi hops or over heterogeneous low-power networks. The 6LoWPAN
specification was designed to provide a layer of adaptation for networks that can not use
IPv6 directly. For providing communication layer security DTLS and TLS [56] profiles
were standardized.

35

5 ARCHITECTURE AND DESIGN

By running an appropriate software, a BLE node could either support BLE mesh or 6Low-
PAN networks. BLE nodes in 6LowPAN networks have IP addresses and can commu-
nicate over the Internet through TCP/IP protocols are in one group. On the other hand,
BLE nodes in the BLE mesh network do not have the IP address and can’t communicate
over the Internet. This section discusses the architecture for managing BLE nodes in
both types of networks.

5.1 Architecture for Managing BLE mesh nodes manually

It is assumed that the BLE nodes will form a mesh or any other type of network among
them. By default, nodes of such a system will not have ways to be accessed remotely. An
IP-BLE Gateway will be in place to make them accessible remotely. The IP-BLE Gateway
will hide the BLE network behind it and provide a way to reach the network behind it re-
motely. Any authorized user should be able to perform any management tasks on these
nodes remotely. Proposed architecture for managing BLE mesh nodes in a BLE mesh
network has been shown in the figure 5.1.

Figure 5.1. BLE mesh network connected to IP-BLE Gateway

36

IP-BLE Gateway:The most important part of this architecture is the IP-BLE Gateway.
One interface of this Gateway could be connected to the Internet, while the other interface
maintains a connection with the mesh network. The BLE nodes of the mesh networks
reside behind this Gateway. This Gateway provides a means to remotely manage BLE
mesh nodes that would otherwise not be possible.
Gateway BLE node: Gateway-BLE-node in the BLE mesh network is a special BLE
node. This mesh node maintains a physical connection to the Gateway and, like other
ordinary mesh nodes, performs its regular duties in the mesh network. It acts as an in-
terface between the BLE mesh network and IP-BLE Gateway. Any commands it receives
from the Gateway through its serial connection, it relays this to its neighboring BLE mesh
nodes.
BLE mesh: The BLE mesh is the network of low-powered connected devices whose
nodes are needed to be managed during their lifecycle.

5.2 Architecture for Managing BLE mesh nodes through
LWM2M Client

This architecture shown in the figure 5.2 to some extent is similar to the architecture
described in section 5.1. The only difference with the previous one is that an LwM2M
client resides inside the gateway to facilitate firmware updates. High-level block diagram
of such LwM2M client has been presented in the figure 5.2. The objects inside such
LwM2M client has been shown in figure 5.3.

Figure 5.2. Managing BLE Mesh nodes via LwM2M Client.

37

Figure 5.3. LwM2M Clients with objects.

5.3 Architecture for Managing 6LoWPAN BLE nodes

The figure 5.4 shows the architecture for direct management of IP-based BLE nodes in
low-powered networks (6LoWPAN).

Figure 5.4. Managing 6LoWPAN BLE nodes

LwM2M Client: In this architecture, every BLE node will run an LwM2M client inside
them. The LwM2M will also have the necessary objects implemented as shown in the fig-
ure 4.3. The remote management server could manipulate these objects. When the BLE
node boots up, it runs the LwM2M clients inside it and contacts the configured bootstrap
server. The bootstrap server contains the data needed to join the management server
and provides these data to the BLE node. The BLE node registers itself to the manage-
ment server with the data obtained from the bootstrap server via the BLE enabled router.
The communication with the bootstrap server and BLE enabled router should hapen over
the BLE link.
BLE Enabled Router: This router maintains a wireless connection over the BLE link with
a BLE node, and other interface helps to reach interface.
LwM2M Management Server: This is the main component that will be used to manage
the BLE nodes. Every BLE nodes register itself to this server. This server will provide an
interface that could be used to manage all registered BLE nodes.

38

6 IMPLEMENTATION AND TESTING

This chapter intends to explain how the architectures for managing BLE nodes in low
powered networks has been implemented. The devices and tools that were used during
implementation also have been introduced in this chapter. This chapter also covers the
testing of the implementations.

6.1 Managing BLE nodes in BLE mesh network manually

Under this section, a brief discussion will be held about implementing the various com-
ponents of the proposed architecture to manage BLE nodes in any BLE mesh network
manually. The firmware upgrade process on BLE nodes is conducted as proof of concept.
A failed upgrade case followed by a successful one is documented here.

6.1.1 Implementation of the different components

IP-BLE Gateway: The implemented Gateway is an x86-based Linux laptop, that could be
IP-enabled either using Ethernet or over WiFi. The Gateway was also natively connected
to the BLE mesh by having a serial interface with a BLE-based developer board. The ini-
tially implemented IP-BLE Gateway was a physical laptop with the following specification:

Model : Lenovo ThinkPad W530 2447CP4
Linux kernel version : 4.15.0-43-generic
Hardware : x86_64
Memory : 16 GiB
Disk Size : 465GiB (500GB)
Processor : Intel(R) Core(TM) i7-3720QM CPU @ 2.60GHz

In other device management scenarios where it might need rapid deployment, an ISO
image of the Gateway was created, which could be deployed on the fly as a docker con-
tainer. This dockerized version of the Gateway is more secure since it runs in an isolated
environment. The BLE-LwM2M Gateway is the critical component of this kind of pro-
posed system. The Gateway runs virtual copies of the end BLE nodes, which have been
mapped to different physical BLE end nodes.

BLE mesh Network: The BLE mesh has been formed with the nRF52832 and nRF52840

39

boards from Nordic Semiconductor. The details of the used boards are available in table
6.1, and figures 6.3 and 6.4 show such boards. The mesh network had 16 BLE nodes of
both types of boards; one of them was physically connected to the gateway and also a
member of the mesh network. All other boards are normal mesh nodes. For creating BLE
mesh, nRF5 SDK for Mesh v2.2.0 was used. While creating a BLE mesh network that
is capable of performing Device Firmware Upgrade (DFU), a few essential things should
take into consideration. First of them is the Softdevice, which is a high-performance Blue-
tooth 5 qualified protocol stack for nRF52832. In this project Softdevice, s132_6.0.0 was
used, which is capable of maintaining 20 concurrent links. Next important one is the boot-
loader. Nordic has specific bootloaders for specific tasks. For setting up BLE mesh, two
different kinds of bootloader were considered. The serial_mesh_bootloader was flashed
in the device that is directly connected to the gateway. This bootloader makes a device
capable of accepting firmware over the serial interface and simultaneously forwarding it
to the neighboring BLE mesh nodes over BLE links. All other nodes were flashed with
mesh_bootloader.
The DFU over mesh also requires application-level support. For this reason, an applica-
tion that has DFU support was flashed. The final stage for preparing a device ready for
mesh DFU is the flashing a device page. All DFU-enabled mesh devices require a device
page that contains information about the device and the firmware that is installed on the
device. For the development, programming, and debugging of Nordic Semiconductor’s
nRF52 boards the nRF Command Line Tool [57] was used.
The figure 6.1 shows the list of commands that were used to program the Gateway Mesh
node whereas the figure 6.2 shows the commands used to program any other mesh
nodes in the mesh network.

Figure 6.1. Commands to Prepare Gateway Mesh node

Figure 6.2. Commands to prepare a general Mesh node

Provisioner: Nordic Semiconductor has implemented a proprietary mesh network based
on BLE. A node first needs to complete the provisioning to be a member of the mesh
network. There is a couple of provisioning [58] of options available for BLE mesh nodes.
These are:

• Over the advertising and GATT bearer

• Remote provisioning over relaying nodes

40

Manufacturer Device Radio Board Flash RAM(kB) MCU

Nordic Semiconductor nRF52832 PCA10040 512kB 64

ARM R⃝
Cortex R⃝-M4

32-bit processor

with FPU, 64

MHz

Nordic Semiconductor nRF52840 PCA10056

1MB

Flash

with

cach

256

ARM R⃝
Cortex R⃝-M4

32-bit processor

with FPU, 64

MHz

Table 6.1. Technical specifications of the BLE development boards used in the formation
of the BLE mesh

Figure 6.3. NRF52832 Board by Nordic Semiconductor

The first method is used when the Provisioner and node to be provisioned are in the
direct radio range. The second provisioning option is used to provision a node that is not
in the direct radio range of the Provisioner. In this method, other nodes are used to carry
provisioning data to the end nodes. The provisioner used in this work was an Android
mobile app designed on the basis of the GATT bearer. This type of provisioner requires
the device to be provisioned to be in the direct radio range of the provisioner.

6.1.2 Firmware Update in Nordic Boards

The firmware update is the most frequent device management task in any IoT node. In
this work, the firmware update was considered for demonstrating device management
capability in any BLE nodes. Knowing the device’s memory layout is important for under-

41

Figure 6.4. nRF52840 Board by Nordic Semiconductor

standing the firmware update on that device. Figure 6.5 shows the default memory layout
for nRF52 devices, where nRF52832 has a flash size of 512 Kilobytes and, nRF52840
has a flash size of 1024 Kilobytes.

Figure 6.5. Default memory layout for nRF52 devices[59]

Bootloader: The bootloader module is responsible for:

• booting into an application,

• activating new firmware

• optionally, entering DFU mode where DFU transports are activated and new firmware
can be delivered,

• feeding the watchdog timer.

42

Bootloader Settings page: The information about the bootloader and the Device Firmware
Update (DFU) stored in non-volatile memory is known as a page. The Settings page in-
cludes information on:

• current firmware - size, CRC-32

• pending firmware - size, CRC-32,

• progress of the firmware update,

• progress of the firmware activation,

• current firmware versions (application and bootloader),

• transport-specific data.

Firmware activation: The final step of the firmware update process is the firmware ac-
tivation which is activated based on the information in the settings page. This involves
copying the new firmware in place of the existing one and updating the setting page so
that new firmware could boot properly. The new firmware could be copied in two alter-
native ways which are Single-bank updates and Dual-bank updates. In a single-bank
update, the running application is overwritten with the new firmware image. If an error
occurs during the update, the device will be left without a valid application, the system
will return to DFU mode and from that state a new update could be started again. A
Dual-bank update is possible only if there is enough free space between the end of the
current application and the beginning of the application data to store the new firmware
image. In this process, the new firmware image is not copied to the final location without
validating the new firmware which ensures that only complete and valid images are acti-
vated. During an error, the firmware is not updated and, the old firmware is still available.
In this work, the firmware update was done through a dual-bank update.
DFU mode: In DFU mode, DFU transport is activated by the bootloader and, the device
gets ready to receive new firmware. A device enters into the DFU mode on the following
conditions:

• No valid application is present.

• SoftDevice has been activated and a valid application is present. In that case, the
bootloader expects that an application update may be requested by the host.

• Entering DFU mode is triggered by one of the optional sources:

– Button

– Pin reset

– Special value in register

– Request from the application written to the settings page

In this work, the last option was used.

Starting the application: To run the application, the bootloader must know the location
of the application. The bootloader determines the location of the application based on the
information stored in the setting page. Before starting the application bootloader checks

43

the integrity of the application. If the integrity check fails or if there is no settings page,
the bootloader enters DFU mode.

6.1.3 Firmware Update in the Mesh Network:

Firmware maintenance is the most common task of device lifecycle management. As
proof of the concept, the firmware update was conducted in the mesh network. The pro-
prietary firmware update solution by nordic semiconductor updates the firmware of the
whole mesh simultaneously.
For having better control over the firmware update in the mesh, updating a specific group
of the node while leaving others as it is, in this thesis a couple of alternative possibilities
have been explored. Both of them use the proprietary mesh protocol for distributing the
firmware update package but instead of updating the firmware of the whole mesh net-
work, it only updates targeted nodes in the mesh.

• Application ID based controlled firmware Update: Any firmware update oper-
ation by Nordic’s proprietary protocol is commenced by uploading an init packet
which contains the metadata about the firmware package; in other words, it is called
manifest. The manifest is a JSON file containing different information about the
firmware upgrade package. During the firmware upgrade operation, these fields
are checked strictly. The firmware update process starts only after performing the
required checking of the manifest file. The two crucial information fields in the man-
ifest file are:

– application_id, used to identify any application type uniquely. If the running
application ID matches the application ID of the upgrade, only then firmware
update could be performed on that particular node filling other firmware up-
grade conditions.

– application_version, denotes the version of the firmware. Once the running
application ID is matched with the application ID of the upgrade, it then checks
the application version. If the version of the application in the upgrade super-
sede from the running version of the application on a particular node, upgrade
could be applied on that node. Otherwise, firmware upgrade operations will
fail.

Application_id could be used to perform group-based firmware update. For achiev-
ing this, the devices need to be programmed with different application IDs. Let’s
imagine a big mesh covering multiple floors of the building. It could be programmed
mesh nodes on the first floor with application id = 1 and for second floor application
id = 2 and so on. Now let’s say that in the upgrade package, which is supposed to
replace the running firmware, application id is set to 1. If the firmware upgrade is
performed with this package in the mesh, instead of upgrading the whole mesh, it
will upgrade all nodes on the first floor only. Similarly, the firmware update could be

44

performed only for the second or third floor.

• Controlled firmware update based on Signature Verification The idea behind
this is a Public-Private key pair. This key pair is generated together and has a
strong relationship among them. The private is the secret one in this key pair and
not shared with others, whereas the public key is public and can be shared with
anyone. A firmware package is signed by the private key. Any node having the
corresponding public key can verify this signature. The proprietary mesh protocol
by Nordic Semiconductor has the feature that every node verify the signature of the
firmware before applying the update on that node. This feature could be utilized to
perform the firmware update on a group of mesh nodes instead of the whole mesh
network. This has been depicted in figure 6.6.

Figure 6.6. Signing and verification of the Signature in Mesh Node

6.1.4 Performing Firmware Update Manually

For performing a firmware update manually in the Mesh network, the user will log in to the
IP-BLE Gateway remotely though SSH and perform update commands on the terminal.
The node which is connected to the IP-BLE Gateway through the serial connection will
receive the firmware update package and forward it to other neighboring mesh nodes
over the BLE links. In this implementation, a firmware which blinks the LED of the BLE
mesh nodes has been used to demonstrate the firmware update. Initially, the mesh node
contains an application that keeps the LED on the board always on. This application has
been replaced with the firmware upgrade package. This new firmware blinks the LED
instead of keeping it always on. Transferring of the firmware update package has been
shown in the figure 6.7 and 6.8.

After successful transfer node took a while to apply new firmware and then started blink-
ing the LED on the board, which confirms the successful firmware update.

6.1.5 Performing Firmware Update using LWM2M Client

The second way uses an LWM2M client-server model to perform the firmware update
in the mesh network. In this procedure, instead of performing firmware updates manu-
ally, a firmware update is done through an LwM2M client. Within the firmware object, all

45

Figure 6.7. Firmware Upgrade triggered and it’s on progress

Figure 6.8. Firmware upgrade has been executed successfully.

the firmware update commands have been integrated. The idea behind this is that this
LwM2M client will register itself to the remote LwM2M management server and expose
the resource inside it. Through the interface of the LWM2M server, the user can interact
with any object of the LWM2M client and perform different read/write and execute opera-
tions on its resources. When the user triggers a firmware update request by clicking the
on "Exec" button from the LwM2M client interface, all the integrated firmware update com-
mands get executed. In that case, the LWM2M client has been implemented using the
Anjay Software Development Kit (SDK) listed in section 3.5.3. The firmware object was
implemented with the aid of this SDK. The programming language used for implementing
firmware the object was C. The figure 6.9 shows the different components of the imple-
mented firmware object. The firmware_update.h is the header file and firmware_update.c

Figure 6.9. Components of Firmware Object

contains the detail implementation code for the firmware object. Figure 6.10 shows such
an LWM2M client registered in the LWM2M. If registered client’s name is clicked from the
interface of the LWM2M server, it shows its resources. Figure 6.11 shows the interface of
our implemented firmware object in the LWM2M server.

Through the interface of the LWM2M server, the user can interact with any object of the
LWM2M client and perform different read/write and execute operations on its resources.

46

Figure 6.10. LWM2M Server with one LWM2M client

Figure 6.11. Interface of the LWM2M firmware Object

The picture 6.12 below shows the outcome of a read operation performed on the object.
It’s required to click on the "Exec" button of the object to perform the firmware update. If

Figure 6.12. Read operation performed on firmware object

an end node is connected to the Gateway through the serial connection, it will immedi-
ately trigger a firmware update of that node. In case of failure, it will report the probable
reasons, in the log of the LWM2M server. To demonstrate a failure scenario, the physical
node that was connected to Gateway through a serial connection was removed. After
that, when the "Exec" button is clicked from the LWM2M server, it fails to perform the
firmware update, and it reports the probable reasons for failure. LWM2M server’s logs
and firmware object’s response have been added here from such a demonstration. Fig-
ure 6.13 is the log taken from the LWM2M server, reporting firmware update failure. Now,
a success scenario will be demonstrated. For that, it needs to be sure that the end BLE
device is physically connected to the gateway through a serial connection, and proper
decryption key has been programmed to decrypt the encrypted firmware. Finally, the
firmware upgrade package should have a superseding version number and encrypted

47

Figure 6.13. LWM2M Server logs giving hints for failure

with the respective private key. The following figures 6.14 and 6.15 show successful
firmware upgrade.

Figure 6.14. Firmware Upgrade triggered and it’s on progress

Figure 6.15. Firmware upgrade has been executed successfully.

6.2 Management of BLE nodes in 6LoWPAN network

This section demonstrates the firmware update in 6LoWPAN nodes over the BLE link.

48

6.2.1 Implementation of the different components

• BLE Enabled Router: BLE enabled router is the most important part of such a
management system. It has an IP enabled interface connected to the Internet and
it also maintains a BLE connection with the 6LowPAN nodes which is running an
LwM2M client. In this implementation, a laptop having Ubuntu 18.04.3 LTS was
used as BLE enabled router. Commands used to enable BLE in the ubuntu has
been shown in the figure 6.16.

Figure 6.16. Commands to Enable BLE in Ubuntu

• Leshan Server in Ubuntu: In this work, the LWM2M server has been implemented
in a ubuntu system by the libraries provided by Leshan[40]. Both the Leshan boot-
strap server and the LWM2M server run on the same computer in this design to
keep the setup simple. It is also possible to setup Leshan bootstrap and the LWM2M
server in separate computers which can reside in different physical locations.
Figure 6.17 shows an interface of the Leshan server.

Figure 6.17. Leshan Server waiting for LWM2M Clients to be connected

• Bootstrap Server: The bootstrap server also has been implemented in the same
ubuntu system. Once each LwM2M client boots up, it first comes into contact with
the Boostrap server. The configuration for the respective client should be in the
Boostrap server. The configuration is done through a JSON file. The following figure
6.18 has shown the configuration of the bootstrap server. In this configuration file,
the DTLS security configuration has been added to secure CoAP communication.
The management Server can perform Read/Write and Execute commands on the
client’s resources exposed to the management server.

• LwM2M Client: In this implementation the LwM2M clients have been implemented

49

Figure 6.18. Bootstrap Server Configuration for a Client

Figure 6.19. Server Client Interaction

using the nRF5 SDK v15.0.0 provided by the Nordic Semiconductor. It provides
drivers, libraries, examples, and APIs for starting with the Internet of Things (IoT). It
also has the LwM2M client with basic objects as. In this thesis, for the management
purpose of the BLE nodes, a firmware object has been added with earlier existed
basic objects. In addition, the configuration of the LwM2M clients has been cus-
tomized so that it can contact and authenticate successfully to the bootstrap server
and the management server.The nordic boards shown in figure 6.3 and 6.4 were
flashed with such an implemented LWM2M client. The interaction between such
LwM2M clients and Leshan Server has been shown in figure 6.19.

50

6.2.2 Firmware Update

Performing the firmware update is done from the LwM2M management server. Once
the LwM2M client registers itself to the management server, it exposes its resources.
The management server could manipulate these resources. The figure 6.20 shows the
resources of the implemented firmware object of the LwM2M client. The end-user should
click in the "Execute" as shown in the figure to perform firmware updates in the BLE
node. Once the "Execute" button is clicked, the firmware update should initiate. Once
the "Execute" button is clicked, the firmware update should initiate. Nonetheless, a real
firmware update has not been checked in this work; instead, a firmware update mock-up
has been performed. In this mock-up firmware update has been repressed by lighting the
LED in the BLE node.

Figure 6.20. Resources of the firmware object.

51

7 RESULT AND DISCUSSION

The overall research work has been discussed in this section. It involves, in particu-
lar,reflecting on the research questions raised in chapter one. There’s also been a dis-
cussion about the limitation of this work. The section ends by providing some suggestions
about future work in this field.

7.1 Reflections of the research questions

This thesis focused on implementing these possibilities and conducting a firmware up-
date on BLE nodes to demonstrate the capabilities of device management through these
systems. In this thesis the 4th and 5th research questions in section 1.1 were answered
as follows:

1. What are the ways to perform device management on BLE nodes?

Various device management possibilities for BLE nodes have been explored to address
the question. BLE nodes support BLE mesh networking or 6LoWPAN with a suitable pro-
gram running therein. There are a couple of ways to manage BLE nodes in BLE mesh
networks. The first one is manual, where a user remotely login into the remote Gateway
and performs the management tasks (i.e. update firmware) on BLE mesh nodes by exe-
cuting management commands manually.
The second way of managing BLE nodes in the BLE mesh network is done via an LwM2M
client. The LwM2M client has been implemented by the SDK supplied by Nordic Semi-
conductor. The implemented LwM2M client resides within the Gateway, and the manage-
ment commands needed to update the firmware are embedded inside the LwM2M client.
The LwM2M client registers itself to the LwM2M server, and the firmware update could
be done from the interface of the LwM2M server.

2. Is it possible to use LwM2M Client for managing BLE nodes in 6loWPAN network?

This question was focused on the management of the BLE nodes in the 6LoWPAN net-
work. To address this question, in this work a firmware object has been implemented with
the SDK provided by Anjay. This object has been placed inside the LwM2M client, and the
LwM2M resides inside the BLE nodes. The 6LoWPAN nodes connect to the BLE router
over BLE links and expose their resources to the LwM2M server. The management tasks
could be done from the interface of the LwM2M server. Three different possibilities have
been explored to answer the 4th and 5th research questions. Two of them are for man-

52

aging BLE nodes in the BLE mesh networks. Updating firmware using these techniques
do not depend on the size of the BLE mesh network. Among these two, the second one
seems more pragmatic since that requires less human interactions and time compared
to the first approach. The third technique provides the ability to perform device manage-
ment per node easily which is very difficult to achieve in BLE mesh networks. However,
device management effort using such techniques depends on the number of BLE nodes.
Overall, according to research questions, the outcome of this thesis work generally suc-
ceeded in achieving two objectives. From the perspective of BLE node management, this
work has demonstrated a few possibilities which can facilitate BLE nodes management
in BLE mesh networks and 6LowPAN networks.

7.2 Limitations

The first limitation of this work is experimenting with only the device firmware update.
Throughout the thesis, it has been repeatedly talked about device management, however,
in this work, the focus was given only on device firmware update instead of all other device
management tasks. Though this thesis has talked about overall device management, it
has tested only a firmware update. The second limitation comes from the BLE node
management in the BLE mesh network. In this system, a BLE mesh node maintains a
physical connection with Gateway which is the only one node that lets other mesh nodes
get the firmware from it. This management system has a single point of failure. If this
Gateway node somehow gets corrupted or loses the connection with the Gateway then
it will not be possible to perform any management tasks on this mesh network anymore.
This thesis has not addressed any ways to overcome such situations. The third limitation
of this study comes from the device management of the BLE nodes in 6LoWPAN networks
via LwM2M client. In this implementation, instead of performing real a firmware update,
a firmware update mockup was done. Performing a real firmware update would require
the implementation of a transportation protocol that would transport the firmware from
the LwM2M server to the LwM2M client. In this firmware update mockup, the LwM2M
client changed its LED to reflect a successful firmware update instead of performing a
real firmware update.

7.3 Future Study

The developed solution, as part of this work, has enabled the management of IP based
and non-IP BLE nodes securely by remote users. But there has not been any comparative
studies among the proposed solution and other solutions. A qualitative and quantitative
comparison of these management systems would be an interesting future study. The
memory footprint of the different alternative solutions and time consumption during the
firmware update of the identical size of the firmware would be another interesting study.
In this work, the firmware package was placed in the Gateway, transferring the firmware
securely to the end node could be another topic of further study.

53

8 CONCLUSION

In this thesis work, three different possibilities for managing BLE nodes have been im-
plemented. The firmware update in BLE nodes in three different scenarios has been
demonstrated using these implemented solutions to show the device management ca-
pabilities of BLE nodes in different BLE networks. It started with exploring different low
powered communication protocols, which helped to understand different BLE networks.
Later there has been a study to understand the device management challenges. Based
on this ground, three management solutions have been implemented. Two of the im-
plemented solutions were dedicated for performing device management in BLE mesh
networks. The first one helped to perform the device management manually by a re-
mote user logging into the Gateway. The second approached used an LwM2M client in
the Gateway and automated the manual steps in the first approach. The third approach
was for managing BLE nodes in the 6LoWPAN network. The test results achieved from
these implemented solutions suggest that these approaches are very feasible ways for
performing device management in BLE nodes in different networks.

54

REFERENCES

[1] Dian, F. J., Yousefi, A. and Somaratne, K. A study in accuracy of time synchroniza-
tion of BLE devices using connection-based event. 2017 8th IEEE Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEMCON).
IEEE. 2017, 595–601.

[2] Somaratne, K., Dian, F. J. and Yousefi, A. Accuracy analysis of time synchronization
using current consumption pattern of BLE devices. 2018 IEEE 8th Annual Comput-
ing and Communication Workshop and Conference (CCWC). IEEE. 2018, 841–
844.

[3] Dian, F. J., Yousefi, A. and Somaratne, K. Performance evaluation of time synchro-
nization using current consumption pattern of BLE devices. 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC). IEEE. 2018,
906–910.

[4] Lin, J.-R., Talty, T. and Tonguz, O. K. On the potential of bluetooth low energy tech-
nology for vehicular applications. IEEE Communications Magazine 53.1 (2015),
267–275.

[5] Lin, Z.-M., Chang, C.-H., Chou, N.-K. and Lin, Y.-H. Bluetooth Low Energy (BLE)
based blood pressure monitoring system. 2014 International Conference on Intelli-
gent Green Building and Smart Grid (IGBSG). IEEE. 2014, 1–4.

[6] Hossen, M., Kabir, A., Khan, R. H., Azfar, A. et al. Interconnection between 802.15.
4 devices and IPv6: implications and existing approaches. arXiv preprint arXiv:1002.1146
(2010).

[7] Darroudi, S. M. and Gomez, C. Bluetooth low energy mesh networks: A survey.
Sensors 17.7 (2017), 1467.

[8] Kushalnagar, N., Montenegro, G., Schumacher, C. et al. IPv6 over low-power wire-
less personal area networks (6LoWPANs): overview, assumptions, problem state-
ment, and goals. (2007).

[9] Al-Sarawi, S., Anbar, M., Alieyan, K. and Alzubaidi, M. Internet of Things (IoT) com-
munication protocols: Review. 2017 8th International Conference on Information
Technology (ICIT). May 2017, 685–690. DOI: 10.1109/ICITECH.2017.8079928.

[10] Adams, J. T. An introduction to IEEE STD 802.15. 4. 2006 IEEE Aerospace Con-
ference. IEEE. 2006, 8–pp.

[11] Specification, Z. Zigbee standards organization. Document 053474r17, Jan 17 (2008),
26.

[12] Samie, F., Bauer, L. and Henkel, J. IoT technologies for embedded computing: A
survey. Proceedings of the Eleventh IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis. ACM. 2016, 8.

https://doi.org/10.1109/ICITECH.2017.8079928

55

[13] Salman, T. and Jain, R. Networking protocols and standards for internet of things.
Internet of Things and Data Analytics Handbook (2015) 7 (2015).

[14] Song, J. and Tan, Y. K. Energy consumption analysis of ZigBee-based energy har-
vesting wireless sensor networks. 2012 IEEE International Conference on Commu-
nication Systems (ICCS). Nov. 2012, 468–472. DOI: 10.1109/ICCS.2012.6406192.

[15] Qadir, Q. M., Rashid, T. A., Al-Salihi, N. K., Ismael, B., Kist, A. A. and Zhang, Z.
Low power wide area networks: a survey of enabling technologies, applications and
interoperability needs. IEEE Access 6 (2018), 77454–77473.

[16] Prabh, K. S., Royo, F., Tennina, S. and Olivares, T. A MAC protocol for reliable
communication in low power body area networks. Journal of Systems Architecture
66 (2016), 1–13.

[17] Ahmed, N., Rahman, H. and Hussain, M. I. A comparison of 802.11 ah and 802.15.
4 for IoT. ICT Express 2.3 (2016), 100–102.

[18] Mulligan, G. The 6LoWPAN architecture. Proceedings of the 4th workshop on Em-
bedded networked sensors. ACM. 2007, 78–82.

[19] Lu, C.-W., Li, S.-C. and Wu, Q. Interconnecting ZigBee and 6LoWPAN wireless
sensor networks for smart grid applications. 2011 Fifth International Conference
on Sensing Technology. IEEE. 2011, 267–272.

[20] Gomez, C., Oller, J. and Paradells, J. Overview and evaluation of bluetooth low
energy: An emerging low-power wireless technology. Sensors 12.9 (2012), 11734–
11753.

[21] Haartsen, J. C. Bluetooth radio system. Wiley Encyclopedia of Telecommunications
(2003).

[22] Mikhaylov, K. and Tervonen, J. Multihop data transfer service for Bluetooth Low
Energy. 2013 13th international Conference on ITS Telecommunications (ITST).
IEEE. 2013, 319–324.

[23] Oliveira, P. F. and Matos, P. BLEGen—a code generator for bluetooth low energy
services. Lecture Notes on Software Engineering 4.1 (2016), 7–11.

[24] Bluetooth, S. Bluetooth core specification version 4.0. Specification of the Bluetooth
System 1 (2010), 7.

[25] Dian, F. J., Yousefi, A. and Lim, S. A practical study on Bluetooth Low Energy (BLE)
throughput. 2018 IEEE 9th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON). IEEE. 2018, 768–771.

[26] J. Nieminen, T. S. IPv6 over BLUETOOTH(R) Low Energy. URL: https://tools.
ietf.org/html/rfc7668. (accessed: 03.08.2020).

[27] Thaler, D. RFC4903: Multilink Subnet Issues. IETF RFC (2007).
[28] Bluetooth. Bluetooth Mesh – An Introduction for Developers. URL: https://www.

bluetooth.com/bluetooth-resources/bluetooth-mesh-networking-an-introduction-

for-developers/. (accessed: 11.09.2018).
[29] Gomez, C., Darroudi, S., Savolainen, T. and Spoerk, M. IPv6 Mesh over BLUE-

TOOTH (R) Low Energy using IPSP. (2019).

https://doi.org/10.1109/ICCS.2012.6406192
https://tools.ietf.org/html/rfc7668
https://tools.ietf.org/html/rfc7668
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-networking-an-introduction-for-developers/
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-networking-an-introduction-for-developers/
https://www.bluetooth.com/bluetooth-resources/bluetooth-mesh-networking-an-introduction-for-developers/

56

[30] Nieminen, J., Gomez, C., Isomaki, M., Savolainen, T., Patil, B., Shelby, Z., Xi, M.
and Oller, J. Networking solutions for connecting bluetooth low energy enabled ma-
chines to the internet of things. IEEE network 28.6 (2014), 83–90.

[31] Shelby, Z. and Bormann, C. 6LoWPAN: The wireless embedded Internet. Vol. 43.
John Wiley & Sons, 2011.

[32] Bluetooth, S. Internet Protocol Support Profile-Bluetooth Specification version: 1.0.
0. 2014.

[33] Gogic, A., Mujcic, A., Ibric, S. and Suljanovic, N. Performance analysis of Bluetooth
low energy mesh routing algorithm in case of disaster prediction. Int. J. Comput.
Electr. Autom. Control Inf. Eng 3 (2016), 1075–1081.

[34] Kim, H.-S., Lee, J. and Jang, J. W. Blemesh: A wireless mesh network protocol for
bluetooth low energy devices. 2015 3rd International Conference on Future Internet
of Things and Cloud. IEEE. 2015, 558–563.

[35] Leong, C. Y. and Koshijima, I. Internet of Things (IoT) for Dynamic Change Man-
agement in Mass Customization. SEMANTICS Workshops. 2017.

[36] Alliance, O. M. Lightweight machine to machine technical specification. Technical
Specification OMA-TS-LightweightM2M-V1 (2013).

[37] Shelby, Z., Hartke, K. and Bormann, C. The constrained application protocol (CoAP).
(2014).

[38] Berners-Lee, T., Fielding, R. and Frystyk, H. Hypertext transfer protocol–HTTP/1.0.
1996.

[39] www.eclipse.org. ECLIPSE WAKAAMA. URL: https://www.eclipse.org/wakaama/.
(accessed: 10.09.2018).

[40] LeshanTM, E. Leshan. URL: https://github.com/eclipse/leshan. (accessed:
20.09.2018).

[41] Anjay. Anjay. URL: https://github.com/AVSystem/Anjay. (accessed: 11.09.2018).
[42] Schmidt, S., Tausig, M., Koschuch, M., Hudler, M., Simhandl, G., Puddu, P. and

Stojkovic, Z. How Little is Enough? Implementation and Evaluation of a Lightweight
Secure Firmware Update Process for the Internet of Things. IoTBDS. 2018, 63–72.

[43] Thantharate, A., Beard, C. and Kankariya, P. CoAP and MQTT Based Models to
Deliver Software and Security Updates to IoT Devices over the Air. 2019 Inter-
national Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData). IEEE. 2019, 1065–1070.

[44] Weißbach, M., Taing, N., Wutzler, M., Springer, T., Schill, A. and Clarke, S. Decen-
tralized coordination of dynamic software updates in the Internet of Things. 2016
IEEE 3rd World Forum on Internet of Things (WF-IoT). IEEE. 2016, 171–176.

[45] Kolomvatsos, K. An intelligent, uncertainty driven management scheme for soft-
ware updates in pervasive IoT applications. Future generation computer systems
83 (2018), 116–131.

https://www.eclipse.org/wakaama/
https://github.com/eclipse/leshan
https://github.com/AVSystem/Anjay

57

[46] Markopoulou, D., Papakonstantinou, V. and Hert, P. de. The new EU cybersecu-
rity framework: The NIS Directive, ENISA’s role and the General Data Protection
Regulation. Computer Law & Security Review 35.6 (2019), 105336.

[47] Baldini, G., Fröhlich, P., Gelenbe, E., Hernandez-Ramos, J. L., Nowak, M., Nowak,
S., Papadopoulos, S., Drosou, A. and Tzovaras, D. IoT Network Risk Assessment
and Mitigation: The SerIoT Approach. ().

[48] Bormann, C. and Hoffman, P. Concise binary object representation (cbor). Tech.
rep. RFC 7049, DOI 10.17487/RFC7049, October 2013,< https://www. rfc-editor.
org . . ., 2013.

[49] Keoh, S. L., Kumar, S. S. and Tschofenig, H. Securing the internet of things: A
standardization perspective. IEEE Internet of things Journal 1.3 (2014), 265–275.

[50] PUB, N. F. 186-4,“Digital signature standard (DSS),” July 2013.
[51] Josefsson, S. and Liusvaara, I. Edwards-curve digital signature algorithm (EdDSA).

Internet Research Task Force, Crypto Forum Research Group, RFC. Vol. 8032.
2017.

[52] Moran, B., Meriac, M., Tschofenig, H. and Brown, D. A firmware update architecture
for Internet of Things devices. Internet-Draft draft-moran-suit-architecture-02, IETF
(2019).

[53] Moran, B., Meriac, M. and Tschofenig, H. Firmware Manifest Format. Internet En-
gineering Task Force, Internet-Draft draft-moran-suit-manifest-01 (2018).

[54] Schaad, J. Cbor object signing and encryption (cose). RFC 8152, Standards Track,
IETF (2017).

[55] Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J. A. and Leung, K. K. A
survey on the ietf protocol suite for the internet of things: Standards, challenges,
and opportunities. IEEE wireless communications 20.6 (2013), 91–98.

[56] Tschofenig, H. and Fossati, T. Transport layer security (tls)/datagram transport layer
security (dtls) profiles for the internet of things. RFC 7925. Internet Engineering
Task Force, 2016.

[57] Nordic. nRF Command Line Tools. URL: https://www.nordicsemi.com/Software-
and-tools/Development-Tools/nRF-Command-Line-Tools. (accessed: 12.09.2018).

[58] Semiconductor, N. nRF5 SDK for Mesh. https://www.nordicsemi.com/Software-
and-Tools/Software/nRF5-SDK-for-Mesh. 2018.

[59] Nordic. Memory Layout. URL: https://infocenter.nordicsemi.com/index.jsp?
topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader.html.
(accessed: 11.10.2018).

https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Command-Line-Tools
https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK-for-Mesh
https://www.nordicsemi.com/Software-and-Tools/Software/nRF5-SDK-for-Mesh
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v15.0.0%2Flib_bootloader.html

	Introduction
	Research Questions
	Scope
	Methodology
	Structure

	LOW POWERED COMMUNICATION PROTOCOLS
	IEEE 802.15.4
	ZigBee
	6LoWPAN
	BLE
	BLE Network Topology
	BLE Addressing
	BLE Throughput and Range

	6LoWPAN over BLE
	Network topology

	BLE Mesh
	Bluetooth Mesh: Layers and Functionalities
	Important BLE mesh terminologies
	Provisioning
	BLE Mesh Security
	BLE Mesh Networks: Standardization
	 BLE Mesh Flooding vs. Routing

	Device Management
	Device Management Goals
	Device Management Functions
	Device Management lifecycle
	Provisioning:
	Configuration
	Monitoring
	Update
	Decommissioning

	OMA Lightweight M2M(LWM2M)
	 OMA Lightweight M2M Implementations
	Eclipse Wakaama
	Eclipse Leshan
	Anjay

	Firmware Update
	Challenges in Firmware Update
	Open Standards for Secure Constrained IoT Firmware Updates
	Cryptographic Algorithms
	Firmware Metadata
	Standards for Firmware Transport

	Architecture and Design
	Architecture for Managing BLE mesh nodes manually
	Architecture for Managing BLE mesh nodes through LWM2M Client
	Architecture for Managing 6LoWPAN BLE nodes

	Implementation and Testing
	Managing BLE nodes in BLE mesh network manually
	Implementation of the different components
	Firmware Update in Nordic Boards
	Firmware Update in the Mesh Network:
	Performing Firmware Update Manually
	Performing Firmware Update using LWM2M Client

	Management of BLE nodes in 6LoWPAN network
	Implementation of the different components
	Firmware Update

	Result and Discussion
	Reflections of the research questions
	Limitations
	Future Study

	Conclusion
	References

