
i

Miro-Markus Tuokko

3D TRACKING OF A MOBILE DEVICE

Master of Science Thesis
Faculty of Engineering and Natural Sciences

Risto Ritala
Heikki Huttunen

August 2020

ABSTRACT

Miro-Markus Tuokko: 3D tracking of a mobile device
Master of Science Thesis
Tampere University
Automation Engineering
August 2020

There are multiple different methods for tracking the location and orientation of a rigid object.
Finnish company Piceasoft Ltd. has a need to track a mobile phone while it is being turned by
hand. The tracker needs to be running on an Android phone. In this thesis, different tracking
methods are studied. How well the methods would fit this application is evaluated. The edge-
based tracking method is chosen as the most fitting because it does not require a training stage,
and the same tracker can be used for tracking different mobile phones. The edge-based method
is also light enough so it can be executed on a mobile device.

Mathematical concepts that are needed in the implementation of an edge-based tracker are
discussed in detail. The first step in the tracking process is to project a 3D model of the object to
the image plane. Internal and external matrices are used in perspective projection. The outermost
edges of the projected model are found next because the inner edges are not used by the tracker.
The outermost edges are divided into control points.

The image from the camera is used to find the corresponding points for the control points. A
search line is drawn for each one of the control points. The search lines are perpendicular to the
outermost edges of the model. A measurement point should be located on each of the search
lines. The measurement points are located on the edges of the phone that is in the image. The
search lines are rotated and stacked on top of each other to create a search bundle. Histograms
are used to find the measurement points from the search bundle.

A new estimate for the pose can be calculated from the control points and the corresponding
measurement points. The pose estimate is calculated iteratively using the Gauss-Newton algo-
rithm. The 3D model can then be projected to the image plane using the new pose estimate, and
the process can be repeated.

The performance of the implemented tracker is evaluated. The tracker can perform the original
task that it was supposed to do, but not in all conditions. The tracking may fail if the background
is the same color as the phone that is being tracked. Edges in the image that are parallel and
close to the edges of the phone may also cause tracking failure. How the phone is grabbed while
it is being turned also matters. The tracking may fail if a large part of the phone is not visible to
the camera. The phone must not move too much between consecutive processed frames, or the
measurement points cannot be found from the next frame, and the tracking fails.

Keywords: 3D, tracking, edge, pose, mobile, device

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

TIIVISTELMÄ

Miro-Markus Tuokko: Mobiililaitteen asennon määrittäminen kamerakuvasta
Diplomityö
Tampereen yliopisto
Automaatiotekniikka
Elokuu 2020

Jäykän esineen asennon määrittämiseen kuvan perusteella on kehitetty useita menetelmiä.
Suomalaisella Piceasoftilla on tarve pystyä määrittämään mobiililaitteen asento kamerakuvasta,
samaan aikaan kun laitteesta otetaan kädellä kiinni ja se käännetään ympäri. Asennon tunnistava
ohjelmisto suoritetaan Android-mobiililaitteella. Tässä työssä käydään lävitse erilaisia asennon
määrittämiseen soveltuvia metodeja, ja niiden soveltuvuutta tässä työssä ratkaistavaan
ongelmaan arvioidaan. Reunoihin perustuva metodi valitaan parhaaksi metodiksi tähän työhön,
koska se ei tarvitse erillistä koulutusvaihetta. Reunoihin perustuvaa metodia voidaan myös
käyttää erilaisten puhelinten asennon seuraamiseen. Metodi on myös tarpeeksi kevyt
suoritettavaksi mobiililaitteella.

Matemaattiset konseptit, joita tarvitaan reunoihin perustuvan metodin toteuttamiseen,
käydään työssä läpi. Asennon määrittämisprosessin ensimmäinen vaihe on projisoida
seurattavan esineen 3D-malli kuvatasolle. Perspektiiviprojektiossa käytetään kameran sisäistä ja
ulkoista matriisia. Seuraava vaihe on etsiä projisoidun mallin uloimmat reunat, koska metodi ei
hyödynnä sisempiä reunoja. Uloimmat reunat jaetaan kontrollipisteisiin.

Kameralta saatavaa kuvaa käytetään kontrollipisteitä vastaavien mittauspisteiden
löytämiseen. Jokaiselle kontrollipisteelle piirretään etsintäviiva. Etsintäviivat ovat kohtisuorassa
uloimpiin reunoihin nähden. Jokaisella etsintäviivalla tulisi olla yksi mittauspiste. Mittauspisteet
sijaitsevat kuvassa olevan puhelimen reunoilla. Etsintänipun muodostamista varten etsintäviivat
käännetään niin, että ne ovat vaakatasossa. Etsintänippu muodostetaan pinoamalla käännetyt
etsintäviivat päällekkäin.

Asennolle lasketaan uusi arvio käyttäen kontrollipisteitä sekä niitä vastaavia mittauspisteitä.
Asentoarvio lasketaan iteratiivisesti käyttäen Gauss-Newton menetelmää. 3D-malli voidaan
seuraavaksi projisoida kuvatasolle käyttäen uutta asentoarviota, ja prosessi voidaan toistaa
uudelleen.

Työssä myös arvioidaan toteutetun asentoarvioijan suorituskykyä. Toteutettu ohjelma pystyy
suoriutumaan alkuperäisestä tehtävästään, mutta ei kaikissa olosuhteissa. Asennon arviointi voi
epäonnistua, jos tausta ja seurattava laite ovat samanväriset. Kuvassa olevat reunat, jotka ovat
lähellä ja samansuuntaisia seurattavan laitteen reunojen kanssa, voivat aiheuttaa asennon
arvioinnin epäonnistumisen. Myös sillä on merkitystä, miten seurattavasta laitteesta on otettu
kädellä kiinni. Asennon arviointi saattaa epäonnistua, jos käsi peittää suuren osan laitteesta, eikä
laite ole kokonaan näkyvissä kameralle. Laite ei saa myöskään liikkua liian paljon peräkkäisten
käsiteltyjen kuvien välillä, koska mittauspisteiden etsintä epäonnistuu tällöin, mikä johtaa asennon
arvioinnin epäonnistumiseen.

Avainsanat: 3D, asento, arviointi, mobiililaite

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

PREFACE

I want to thank Piceasoft for giving me the opportunity to make this Master of Science

Thesis. The help, guidance, and feedback given to me by Henri Salminen has been a

great help during the writing process. I want to thank Risto Ritala for making sure that

my thesis is according to the scientific standards and Heikki Huttunen for being the

second examiner of my work.

The support and encouragement from my family have been priceless to me through my

studies. I want to thank my friends for the countless fun nights and for struggling with

me through the courses. Special thanks to Elisa for being there for me during the writ-

ing process.

Tampere, 28th August 2020

Miro Tuokko

CONTENTS

1. INTRODUCTION .. 1

2. METHODS FOR 3D RIGID BODY TRACKING ... 3

2.1 Detection-based tracking ... 3

2.2 Edge-based tracking .. 4

2.3 Template matching .. 5

2.4 Particle filter ... 6

2.5 Marker-based tracking ... 7

2.6 Depth based tracking ... 8

3. MATHEMATICAL TOOLS ... 10

3.1 Perspective projection .. 10

3.2 Internal and external matrices .. 11

3.3 Pose estimation ... 13

3.3.1 Closed-form solutions ... 13

3.3.2 Least-Squares Minimization .. 14

3.4 Robust tracking .. 16

4. IMPLEMENTATION .. 20

4.1 Tracking environment and performance requirements 20

4.2 Choosing the tracking method .. 21

4.3 Projecting a 3D model and finding the outermost edges 22

4.4 Finding corresponding points ... 25

4.5 Estimating pose ... 35

5. PERFORMANCE EVALUATION OF THE TRACKER ... 39

5.1 Color of the device and the background ... 39

5.2 Partial occlusion ... 45

5.3 Tracking a rotating mobile phone ... 48

6. CONCLUSION .. 52

REFERENCES... 53

LIST OF FIGURES

Figure 1. A 3D point is projected to the image plane. .. 11

Figure 2. Least-squares, Least absolute deviation, Huber estimator, and Tukey
estimator are drawn in one figure. .. 18

Figure 3. A 3D model is projected to an image plane. ... 23

Figure 4. Outermost edges are found from a projected 3D model. 25

Figure 5. Search lines are drawn for each of the control points. 26

Figure 6. A searching bundle and the original image with green search lines. 27

Figure 7. Candidate points are drawn with magenta on top of the search bundle. 29

Figure 8. Non-maximum suppression is applied to the result of the convolution
step. 30

Figure 9. Background and foreground regions. ... 32

Figure 10. The measurement points are found from among the candidate points. .. 34

Figure 11. A black mobile phone being tracked against a white background. 40

Figure 12. A black mobile phone being tracked against a black background. 41

Figure 13. The shadow of the phone is detected as an edge. 43

Figure 14. The bottom edge is incorrectly detected because of the white screen. .. 44

Figure 15. Part of the mobile phone is blocked by a thumb..................................... 46

Figure 16. Tracking fails because a hand blocks a too large area of the phone. 47

Figure 17. Successful tracking of a mobile phone while it is turned by hand. Tracker
is running on Huawei P30 Pro. ... 49

Figure 18. The tracking of the rotating phone fails. Tracker is running on Huawei P30
Pro. 50

LIST OF SYMBOLS AND ABBREVIATIONS

AR Augmented reality
N3M Natural 3D Markers
SIFT Scale-invariant feature extraction
DLT Direct Linear Transform
PnP Perspective-n-Point
POSIT pose from orthography and scaling with iterations
LM Levenberg-Marquardt
LAD Least absolute deviations
RAPID Real-time Attitude and Position Determination
RGB Red, green, and blue
HSV Hue, saturation, and value
FPS Frames per second

1

1. INTRODUCTION

Mobile devices have become very popular, which has created a market also for sec-

ond-hand devices. The price of new flagship models is increasing with every device

generation. New generations offer more processing power and improved hardware, but

new groundbreaking features have become less frequent. Consumers now have the

option of choosing a second-hand mobile device instead of a new one. The main bene-

fit of choosing a used device is the lower price compared to a new one.

The condition of the device has a major impact on the price of a second-hand device.

To find a price acceptable both for the seller and the buyer, a reliable, easy, and fair

way to evaluate the condition of a used mobile device is needed. Piceasoft Ltd, a Finn-

ish company, provides a service for assessing the condition of mobile devices. The as-

sessment includes testing the hardware and software of the device. As part of this as-

sessment process, the amount of scratches on the screen and the body of the device is

detected.

Scratches on the device can be detected only visually. A high-quality image of the de-

vice is needed for scratch detection. In order to find all the scratches on a mobile de-

vice, two images are required, one from the front side and another from the back. The

device must be identified based on the camera video stream before the used device is

imaged, to assure that the correct device is being imaged and assessed. Identifying the

device from the front side is quite straightforward because the content on the screen of

the device is known, e.g., a known QR code can be displayed on the screen and then

read from the camera video stream.

Identifying the device while the backside is visible to the camera is more complicated.

In this thesis, the identification is made by tracking the device while it is being turned by

hand. In the beginning, the device is front side up, and a QR code is displayed on the

screen. The QR code is read, and the system identifies the device. After that, the track-

ing of the device is started. The device that is being tracked is turned around by hand,

so the backside becomes visible to the camera. The identity of the backside seen by

the camera is known if the tracking is successful. Finally, a picture of the backside of

an identified device can be taken for scratch detection.

2

This thesis focuses on the tracking phase of the process, so scratch detection is not

discussed. The first research question of this thesis is:

What kind of tracking methods exists, and which one of them is the most suitable for

tracking a mobile device while it is being turned around by hand?

Available tracking methods were studied to answer this question. The best method for

this application needs to be chosen based on the pros and cons of the studied meth-

ods. The second research question of this thesis is:

How can the tracking method be implemented on an Android device, and in what kind

of situations it will fail?

The tracker needs to be running on an Android device. The performance of the tracker

is evaluated because it is essential to understand the limitations of the method.

The thesis is organized as follows. Section 2 reviews the relevant pose tracking meth-

ods. The methods are divided into detection-based, edge-based, template matching,

particle filter, marker-based and depth-based methods. The basic concept of each

method is discussed. Section 3 discusses in detail the mathematical concepts needed

in implementing a 3D tracking algorithm for a rigid body. These mathematical tools are

perspective projection, internal and external camera parameters, pose estimation using

linear and non-linear methods, and algorithms for making the tracking process robust.

Section 4 presents the main contribution of this thesis: the implementation of the 3D

tracking method. Choosing the most suited method for tracking a mobile device under

inspection is discussed, and then the implementation of the chosen method is pre-

sented in detail. Finally, Section 5 evaluates the performance of the method developed.

3

2. METHODS FOR 3D RIGID BODY TRACKING

3D object tracking is a problem often encountered in robotics, augmented reality (AR),

and computer vision. The goal of 3D object tracking is to estimate the pose of an object

using images obtained from a camera. The pose of the object consists of position and

orientation relative to the camera. In this thesis, all coordinates and rotations are ex-

pressed in Euclidian space. Objects tracked are assumed to be rigid. Therefore the

pose consists of three translation coordinates and three rotation angles. The pose is

estimated from live camera feed instead of a prerecorded video.

2.1 Detection-based tracking

Detection methods are also suited for tracking applications. Object and its pose are de-

tected from each frame individually. One benefit of tracking by detection is that it is not

recursive, contrary to many other tracking methods. Recursive tracking methods are

less robust than non-recursive methods because they fail if something goes wrong be-

tween consecutive frames. Detection-based trackers are better in recovering from mis-

takes because every frame is handled individually. Recursive methods also need an in-

itialization, unlike detection trackers.

Objects are detected based on local features found from an image. The local features

can be points, regions, or edges visible in the image. One of the most popular methods

for feature extraction is scale-invariant feature transformation (SIFT) algorithm [1]. SIFT

finds key points from an image. Weighted gradient histograms are calculated and

saved for these key points in the training phase. In the detection phase, SIFT features

are extracted from a new image and matched with the features saved in the training

phase. Nearest neighbor matching is used to find the corresponding key points. SIFT is

invariant to image scaling and rotation, and thus the same key points of an object can

be found from different images even if the object has been rotated or moved.

Gordon and Lowe use SIFT features for 3D object tracking [2]. In the training phase, a

set of images of the object is needed. The training images can be from unknown, spa-

tially separated viewpoints, and they do not need to be pre-calibrated. SIFT keypoints

are extracted from the training images, and their 3D positions are recovered by a global

optimization over all camera parameters and point coordinates. At detection-phase,

features extracted from a frame are matched with the training feature database. From

4

the matched features, a set of corresponding 2D-3D points is acquired. Object pose

can be recovered from these corresponding points.

Falsely detected keypoints lead to less stable pose estimation, which causes the jitter

effect [3]. Jitter is a problem in particular for detection-based tracking methods because

each frame is handled separately, and there is no temporal consistency. A motion

model can be used to dynamically smoothen the changes in the pose of the object be-

tween frames. Gordon and Lowe minimize jitter by regularizing the solution with the

pose from the previous frame [2].

Instead of SIFT features, Hinterstoisser et al. present Natural 3D Markers (N3M) [4]. A

set of 4 or 5 feature points that are close to each other and unique geometrically and

photometrically can be an N3M. An offline learning stage is needed for extracting N3Ms

before they can be used at run time. During the online stage, the feature points are ex-

tracted from each frame. A point classifier is used for finding the corresponding N3M

points that were learned offline. The pose of the object can then be calculated from

these corresponding sets of points.

Detection-based tracking methods estimate the pose from multiple corresponding point

pairs. Some algorithm is needed for rejecting the pairs that are mistakenly classified as

corresponding. One method for dealing with these errors is the random sample con-

sensus (RANSAC) [5]. Datapoints are divided into inliers and outliers by RANSAC. For

example, Gordon and Lowe use RANSAC to make their tracking method robust [2].

RANSAC is discussed in more detail in Section 3.4.

2.2 Edge-based tracking

Edge-based object tracking methods match the edges of a known 3D model with high

contrast edges detected from the image. The texture of the 3D model is not utilized by

these methods. Edges are naturally stable to changes in lighting, while texture may not

be [6]. Edge detection from an image is one of the fundamental operations in computer

vision, and there are multiple methods to do it. One of the most popular methods for

detecting edges is the Canny detector [7]. It finds edges with image gradients and

makes them one pixel wide.

RAPID (Real-time Attitude and Position Determination) is the first real-time edge-based

detector [8]. It projects the 3D model into the 2D image plane. The projection depends

on the pose estimate from the previous frame. Visible edges of the projected model are

divided into control points. The next step is to find the corresponding points for the con-

trol points. The corresponding points are searched from a one-dimensional line that is

5

perpendicular to the edge. After finding corresponding points to the control points, a

new pose estimate is solved as a least-squares problem. Calculating the pose estimate

from a set of corresponding point pairs is discussed in more detail in Section 3.3.

Many improvements have since been proposed to the RAPID tracker, but the basic

idea remains the same. The main weakness of the RAPID tracker is its sensitiveness

to background and texture clutter, shadows, and partial occlusions. [9] These cause

false matches between control points and measurement points. False matches make

the new pose estimate less accurate. RAPID does not identify and remove incorrect

measurements or use the information about how stable the control points are between

frames. Each control point is treated individually, without using the information that the

measurements of the points on the same edge are correlated.

Drummond and Cipolla use an M-estimator to make the RAPID tracker more robust

[10]. M-estimators are discussed in more detail in Section 3.4. Armstrong and Zisser-

man divide control points into groups instead of treating each point individually [9].

Each group represents a line, and measurement outliers that do not fit into that line are

rejected. Measurements are divided into inliers and outliers using RANSAC, which is a

means for improving the robustness of pose estimate, as discussed in detail in Section

3.4 [5]. Armstrong and Zisserman also compute a weight to each line based on how of-

ten it is correctly found [9].

Measurement points are found from a one-dimensional search line for each control

point. Multiple measurement point candidates can be found from a single search line.

Drummond and Cipolla deal with this problem by giving a weight to each control point

based on how many candidate measurement points are found [10]. Seo et al. calculate

the probability of a measurement point candidate being the correct measurement point

for every candidate point [11]. Probabilities are computed comparing histograms of

background and foreground with corresponding histograms of measurement candi-

dates.

2.3 Template matching

A template matching tracker compares the content of each camera image with sample

templates [12]. The object that will be tracked needs to be well-textured for template

tracking to work well. A training stage is required before a template matching tracker

can be used in real-time. Templates of the object are extracted during the training

stage. Each of the templates contains the pose of the object. Therefore the pose of the

6

object can be estimated by matching template regions with the images from the cam-

era.

Masson et al. divide the surface into small patches [13]. The patches are extracted dur-

ing an offline learning stage. With multiple patches, only a part of the surface needs to

be visible to the camera: the pose estimation is less sensitive to the object being

blocked, and the performance of the algorithm is improved.

Jurrie and Dhome estimate an interaction matrix from the textured 3D model during the

offline learning stage [14]. The interaction matrix represents the object in such a man-

ner that it can be located from the images obtained from the camera. Multiple interac-

tion matrices are required for tracking full 360° rotations. During the tracking stage, the

difference between the frame and the reference pattern is computed. Pose estimation

is calculated from corresponding 2D and 3D points.

Ladikos et al. [15] combine feature-based tracking with template-based tracking. Their

default tracking method is template-based tracking because it can handle well changes

in illumination, image blur, and small movements between frames. Feature-based

tracking is used when there are large movements between frames, and the template-

based algorithm fails. Due to limited computational resources, feature-based and tem-

plate-based tracking methods are not concurrent.

2.4 Particle filter

The tracking of a 3D object can be represented as a Bayesian state estimation prob-

lem. A particle filter is one of the Bayesian filters, and it estimates the state of the sys-

tem [16]. The state of the rigid body in a 3D tracking application is the pose of the ob-

ject: the x-, y-, and z-coordinates and rotations around the x-, y- and z-axis. The state

at the time t is represented by a symbol 𝐗𝑡. The next state 𝐗𝑡+1 can be estimated by

adding a small motion to the 𝐗𝑡.

A motion model estimates the next state of the object. A simple motion model can be,

for example, the difference between the previous state 𝐗𝑡−1 and the current state 𝐗𝑡.

The motion model and noise are added to the current state. Noise is added because

the motion model is not perfect. In addition to the previous state and the predicted

state, a measurement of the current state is needed. Measurement at the time t is rep-

resented by the symbol 𝐙𝑡.

A large number of particles are required for satisfactory results. One particle is one

state sample of the system. A new cycle starts by first creating a new set of particles

7

from the results of the last cycle. New particles are resampled from the old collection of

particles according to probabilities that are the normalized weights of the previous parti-

cles. The motion model is applied to all of the new particles to get new predicted states.

The next step is to compare the latest measurement data with the updated particles.

Particles that match the measurement data better are given bigger weights. The

weights are also normalized. The new set of particles and weights are used by the next

cycle. The state estimate is the weighted sum of all the particles.

The initialization of the particles is required before the particle filter cycle can start. New

states cannot be acquired without the previous states. Choi and Christensen have im-

plemented a 3D object tracking method that uses the particle filter [17]. They have cho-

sen to use chamfer matching for particle initialization [18].

2.5 Marker-based tracking

Markers can be used in 3D tracking if it is possible to modify the object that is being

tracked. Markers are visual cues that are easy to detect from an image. The 3D posi-

tion and orientation of the markers in the body coordinate system are known before-

hand. Well designed markers are of high contrast, and they are easy to recognize and

identify. The benefit of using markers instead of natural features is that their locations

can be measured from the image with higher accuracy. Perspective distortion needs to

be taken into account when detecting the markers. E.g., a circular marker can be seen

as an ellipse in the image because of the perspective distortion [19].

The markers need to be distinguished from one another if there are multiple markers in

use. Colors or unique shapes can be used for marker identification. Black circles with

white backgrounds and vice versa are used in augmented reality application made by

Hoff and Nguyen [20]. The black and white regions can be detected using a simple

thresholding operation because of the high contrast. Instead of black and white, State

et al. [21] use colorful markers for more reliable detection. Each marker consists of a

central dot and an outer ring, and four colors are used. This configuration enables 12

unique markers for pose estimation.

The optimal size for the marker depends on the distance between the camera and the

marker. The tracking system will have a narrow tracking range if all the markers are of

the same size. Different size markers have different detection ranges. Cho et al. [22]

use multiple size fiducials for expanding the tracking range. The markers are made out

of numerous rings, and various colors are used for the rings. The smallest markers

have one core circle and one outer ring. As the fiducial size increases, a new ring is

8

added outside of the previous size marker. Fiducials are divided into groups based on

how many circles they have.

Only one corresponding point is obtained from each circular marker. Different shapes

of the markers can allow for multiple corresponding points from a single marker. Koller

et al. [23] use four corners of a square marker as corresponding points between 3D

model points and measurement points. There are small red squares inside the marker

for identification purposes. The pose is estimated with an Extended Kalman filter once

fiducials are found and identified.

Rekimoto [24] uses more complex markers, 2D square-shaped barcodes. Only one

marker is needed for pose estimation. The marker contains identification information

and acts as a landmark for pose estimation. An image obtained from a camera is first

binarized, and then connected black regions are searched for. A heuristic check on the

size and aspect ratio is applied to the region candidates bounding rectangles, and the

best match is chosen as the marker. The internal and external parameters of the cam-

era are solved by using the four corner points of the marker.

2.6 Depth based tracking

RGB-D cameras have, in addition to a regular RGB camera, a specific type of depth-

sensing device that can augment the image with depth information [25]. This depth in-

formation can be used by different 3D tracking algorithms to improve performance and

accuracy. Kinect is an example of an RGB-D camera that it is widely used for research

purposes because it’s low cost. Kinect provides depth information for surfaces without

texture, unlike depth information received from passive stereo cameras [26].

Park et al. [26] use depth information to improve the template matching tracking

method. The training stage is needed for extracting the templates of the object. No 3D

model of the object is required in advance. The shape of the object is learned in the

training stage. Each template consists of the pose of the object, depth map for the tem-

plate region, and contour points extracted from the image. At run time, the object is first

detected from the color image using the pre-learned templates, and an initial estimate

for the pose is acquired. The initial pose estimate usually is accurate for the rotation

part, but errors in translation can be large. The original pose estimate is refined with the

depth map.

Choi and Christensen [27] use a depth map as part of a particle filter tracker. Their

method is the first particle filter method using a depth sensor and able to run in real-

time. The design of an efficient and robust likelihood function, which determines the

9

particle weights together with measurement data, is essential for the performance of a

particle filter. As measurements for example 3D point coordinates, surface normals,

edges from depth discontinuities, and surface texture can be applied. Choi and Chris-

tensen define a measurement point using 3D coordinates, normal, and color values so

that the measurement points can be compared with the rendering results directly. Di-

rect comparison between measurement points and rendered points allows efficient cal-

culation of likelihood for a large number of particles.

10

3. MATHEMATICAL TOOLS

Common mathematical expressions in 3D tracking algorithms are introduced in this

Chapter. Tracking methods based on a 3D model of the tracked object need a projec-

tion model. The 3D model is projected to a 2D image plane. The perspective projection

of a 3D model is used in this thesis, and it is discussed in Subchapter 3.1. Internal and

external matrices for the perspective projection are discussed in Subchapter 3.2.

Pose tracking methods often find the corresponding points from an image for the pro-

jected points. The projection of the model is altered to improve the matching to the

measurement points. The location of the projection depends on the pose of the object.

The projection matches the measurement if the pose used in the projection matches

the pose of the real object.

Pose estimate is calculated from the distances between the projected points and the

measurement points. Linear and non-linear methods for finding the optimal pose are

discussed in Subchapter 3.3. Finding the measurement points from the image often in-

clude errors. Algorithms for dealing with false matches are discussed in Subchapter

3.4. All the coordinates and rotations are expressed in Euclidean space.

3.1 Perspective projection

A pinhole camera model is a simple model for a real-world camera. The pinhole cam-

era model is a pure perspective projection model for projecting points in space onto a

plane [28]. The center of the camera is the origin of a Euclidian coordinate system. An

image plane is a plane where the z-coordinate is equal to the focal length f of the cam-

era. A point in space is mapped to a point on the image plane where a line joining the

point in space and the camera center meets the image plane. Projection of a 3D point

𝐌c = [xc, yc, zc]
T to an image plane is shown in Figure 1. Point 𝐦c = [uc, vc]

T is the

projection point of the 𝐌c to the image plane. Principal point 𝐩 = [u0, v0]
T is the point

where the optic axis of a camera intersects the image plane. C is the location of the

camera.

11

Figure 1. A 3D point is projected to the image plane.

The 3D point needs to be converted to a homogeneous coordinate before the projec-

tion. Homogeneous 3D point is related to its projection point by

 𝑠𝐦 = 𝐏𝐌, (1)

where s is the scale factor, 𝐦 = [u, v, 1]T and 𝐌 = [x, y, z, 1]T are the homogeneous

corresponding points, and 𝐏 is a 3x4 perspective projection matrix.

3.2 Internal and external matrices

An object is tracked in a coordinate system that is attached to the camera. Coordinates

of the object are first transformed from world coordinates to camera coordinates and

then projected to the image plane. Projection matrix 𝐏 is used to express coordinates of

a 3D model in the coordinate system of the camera. The projection matrix is a product

of an internal parameter matrix 𝐊 and an external parameter matrix 𝐄

 𝐏 = 𝐊𝐄. (2)

Internal parameter matrix of the camera is

12

 𝐊 = [
𝛼𝑢 s 𝑢0 0
0 𝛼𝑣 𝑣0 0
0 0 1 0

], (3)

where 𝛼𝑢 and 𝛼𝑣 are the scaling factor in u and v direction, [𝑢0, 𝑣0]
T is the principal

point of the image, and s is the skew parameter. The skew is non-zero only if u and v

directions are not perpendicular. Matrix 𝐊 is also known as a camera calibration matrix,

and the camera is calibrated when all the values in 𝐊 are known.

In addition to the camera parameters, a matrix that represents the pose of the object is

needed. The pose of a 3D object consists of a location and rotation matrices. The ex-

ternal parameter matrix is

 𝐄 = [
𝐑3𝑥3 𝐭3𝑥1
0 0 0 1

], (4)

where R is a 3x3 rotation matrix, and t is a 3x1 translation matrix. The rotation matrix is

a combination of rotations around x-, y- and z-axis. Rotation around the x-axis is called

roll, and matrix representation of it is

 𝐑𝑥(𝛼) = [
1 0 0
0 cos𝛼 −sin𝛼
0 sin𝛼 cos𝛼

], (5)

where 𝛼 is the rotation angle around the x-axis. Rotation around y-axis is called pitch,

and matrix form of it is

 𝐑𝑦(𝛽) = [
cos 𝛽 0 sin𝛽
0 1 0

−sin𝛽 0 cos𝛽
] (6)

where 𝛽 is the rotation angle around the y-axis. Rotation around z-axis is called yaw

 𝐑𝑧(𝛾) = [
cos 𝛾 −sin𝛾 0
sin 𝛾 cos𝛾 0
0 0 1

] (7)

where 𝛾 is the angle of rotation around the z-axis. Rotation matrix R is the product of

the three rotation matrices

 𝐑 = 𝐑𝑧(𝛾)𝐑𝑦(𝛽)𝐑𝑥(𝛼). (8)

Each of the rotations 𝛼, 𝛽, and 𝛾 can be solved from the rotation matrix. The rotation

angles always have more than one solution when they are solved from the rotation ma-

trix [29].

13

3.3 Pose estimation

Coordinate points of a 3D model are projected to a 2D image plane. The location of the

points on the image plane depends on the external parameter matrix 𝐄. The projected

points need corresponding measurement points. An image obtained from a camera is

used for finding the locations of the measurement points.

A set of projected points and a corresponding set of measurement points are used to

estimate the optimal value for the pose. In pose estimation algorithms, the difference

between the location of the projected points and the measurement points is minimized

by adjusting the pose.

3.3.1 Closed-form solutions

Solving the projection matrix 𝐏 is necessary for uncalibrated cameras, whereas for cali-

brated cameras it is enough to solve the external parameter matrix 𝐄. Direct Linear

Transform (DLT) can be used for solving the projection matrix [30]. The projection ma-

trix consists of 11 free parameters, so if at least six projected points are matched with

the corresponding measurement points, a unique solution for the matrix 𝐏 exists [6].

Other methods that solve the external parameter matrix instead of the projection matrix

require fewer corresponding point pairs because of the 𝐄 consists of only six free pa-

rameters.

The problem of estimating pose with a given set of n corresponding point pairs is called

the Perspective-n-Point (PnP) problem. For 3 corresponding point pairs, the problem is

called P3P. Haralick et al. review major direct solutions for the P3P problem and dis-

cuss their stability [31]. Quan and Lan introduces an algorithm for 4-, 5-, and n-point

pose estimation problem [32].

Pose from orthography and scaling with iterations (POSIT) is an algorithm for solving

PnP where n is larger than 3 [33]. The camera model in POSIT is an orthographic pro-

jection model so that a linear system can be used for approximating pose. POSIT

needs no pose estimate initialization. All the points on the object are assumed to have

the same depth. The size variations between the model and the image are due to scal-

ing when the depth remains constant. More than three points on the same plane do not

improve the performance of the POSIT algorithm. POSIT has been implemented in the

Open Source Computer Vision Library (OpenCV) [34].

14

3.3.2 Least-Squares Minimization

Least-squares minimization is a popular solution for extrinsic matrix 𝐄 estimation from a

set of corresponding point pairs. Least-squares is an iterative method, and it can han-

dle noise in the measurements better than the methods above. Least-squares mini-

mizes the distances between the projected points and the measurement points. Least-

squares can be represented with a formula

 𝐄 = arg min
𝐄

 ∑dist2(𝐏𝐌i,𝐦𝑖),

𝑁

𝑖=0

 (9)

where N is the number of corresponding point pairs. The formula minimizes the

squared distances between the projected 2D points and their corresponding measured

2D points. Measurement errors are expected to be Gaussian and independent from

each other. The least-squares algorithm is initialized with a guess of the matrix 𝐄. [6]

Equation (9) can also be written as finding the pose that minimizes the sum of dis-

tances between projected and measured points

 𝐩 = arg min
𝒑

 ∑‖𝑧(𝐩) − 𝐛 ‖2
𝑁

𝑖=0

 (10)

where 𝐩 is the vector containing the pose parameters, 𝐛 is the vector containing the

measured points, and 𝑧 is a function that projects the 3D model points into the 2D im-

age plane.

Pose parameter vector 𝐩 can be written as the unknowns of a set of linear equations if

the function 𝑧 is linear. In matrix form

 𝐀𝐩 = 𝐛, (11)

and 𝐩 can be solved from this equation using the pseudo-inverse of 𝐀

 𝐩 = (𝐀T𝐀)
−𝟏
𝐀𝐓𝐛. (12)

All the measured points have an equal effect on the pose estimate. Weights can also

be given to the measured points. For example, higher weights can be given to higher

quality measurements. [6]

A modified method is required if the function 𝑧 is non-linear. Gauss-Newton and Leven-

berg-Marquardt are iterative algorithms that can be used for estimating the solution of a

non-linear problem. An initial guess is needed for both algorithms, and the pose is up-

dated in every iteration by

15

 𝐩𝑖+1 = 𝐩𝑖 + ∆𝑖, (13)

where Δ𝑖 is a step that is calculated differently based on the method that is being used.

The goal is to find the pose that locally minimizes the cost function

 𝑓(𝐩) =
1

2
(𝐛 − 𝑧(𝐩))

𝑇
(𝐛 − 𝑧(𝐩)), (14)

where 𝐛 − 𝑧(𝐩) is the reprojection error. The real cost function is too complicated to be

minimized in closed form, and therefore an approximation is used instead. Taylor ap-

proximation of the cost function is

 𝑓(𝐩 + Δ) = 𝑓(𝐩) + 𝐠𝑇Δ +
1

2
ΔT𝐇Δ, (15)

where 𝐠 is the gradient vector
𝑑𝑓

𝑑𝑝
(𝐩) = (𝐛 − 𝑧(𝐩))

𝑇
𝐉 and H is the Hessian matrix

 𝐇 =
𝑑2𝑓

𝑑𝑝2
(𝐩) = 𝐉T𝐉 +∑(𝐛 − 𝑧(𝐩))T

𝑑2𝑧𝑖
𝑑𝑝2

 𝑖

, (16)

where 𝐉 is the Jacobian matrix of the prediction model. The second derivate of 𝑧 can be

assumed small in comparison to the 𝐉T𝐉 component of the Hessian matrix if the projec-

tion error is small or the model is nearly linear. The Hessian matrix can then be approx-

imated by dropping the second term in formula 16. This approximation is called the

Gauss-Newton approximation. [35] The next step is to differentiate 𝑓 with respect to Δ

and set it equal to zero. After rearranging the terms, we get the Gauss-Newton equa-

tion

 ∆= −(𝐉T𝐉)
−1
𝐉T(𝐛 − 𝑧(𝐩)). (17)

The main advantage of the Gauss-Newton approximation is its simplicity. The second

derivates of z(p) are usually very complex and difficult to calculate. The convergence

rate of the Gauss-Newton approximation is significantly reduced if the second deriva-

tive of the prediction model is not small.

Levenberg-Marquardt (LM) algorithm is similar to the Gauss-Newton algorithm, but it

calculates the step ∆ slightly differently and ends up with

 ∆= −(𝐉T𝐉 + 𝜆𝐈)
−1
𝐉T(𝐛 − 𝑧(𝐩)) (18)

where the term 𝜆𝐈 stabilizes the algorithm. The value of 𝜆 is reduced if the new value

for Δ reduces the distance between the corresponding points, and the new value for Δ

is accepted. The new value for Δ is rejected if it increases the reprojection error. The

next iteration is calculated using a larger value for 𝜆. The algorithm stops if there is no

16

value for 𝜆 that decreases the reprojection error. With small values for 𝜆 the LM algo-

rithm behaves similarly to the Gauss-Newton algorithm. [6]

Both the Gauss-Newton and the LM algorithms can get stuck at a local minimum. The

global minimum is more likely to be found with a good initial guess. Computation of the

Jacobian matrix is required by both algorithms. Jacobian can be calculated numerically,

but an analytical expression is better for speed and accuracy.

3.4 Robust tracking

Tracking methods based on a 3D model project this model into a 2D image plane.

Measurement points corresponding to the projected points are needed in pose estima-

tion. In practice, finding the measurement points often include errors. For example, er-

rors can be caused by unfavorable lighting conditions, shadows, occlusion, and clutter

in the background or in the texture of the object. Errors in finding the correct measure-

ment points can be substantial. Even a single large error may have a significant impact

on the pose estimate determined with least-squares minimization. RANSAC and M-es-

timators are popular methods to limit how much one corresponding point can affect the

pose estimation [5].

RANSAC randomly extracts the smallest possible subset from the available data set re-

quired for generating a model. Using the smallest possible subset maximizes the prob-

ability that all of the chosen points are accurate measurements, and there are no false

measurements among them. A model is generated using the selected points, and all of

the data points are divided into inliers and outliers based on how well they fit the gener-

ated model. The goal is to find a model that maximizes the number of inliers and mini-

mizes the number of outliers.

RANSAC is an iterative process, and the smallest number of iterations 𝑘 needed can

be calculated by

 𝑘 =
log(1 − 𝑝)

log(1 − 𝑤𝑛)
 , (19)

where 𝑝 is the probability that all of the selected points are inliers in at least one of the

iteration rounds, 𝑤 is the probability of choosing an inlier randomly from the dataset,

and 𝑛 is the smallest number of points required for generating a model [5]. After the

best division to inliers and outliers is found, the outliers are ignored. A new model is

generated using all inlier datapoints.

17

The least-squares method tries to find model parameters that minimize the squared er-

ror between projected and measured points. As the distance is squared, long distances

have a massive impact on the estimated parameters. Instead of squaring the dis-

tances, other functions can be used. M-estimation minimizes

 ∑𝜌(𝑟𝑖)

𝑖

, (20)

where 𝑟 is the distance between the measurement and the predicted value, and 𝜌 is

some function. In least-squares regression 𝜌(𝑟) = 𝑟2 and outliers have a large effect

on the result because the errors are squared. Least absolute deviation (LAD), or L1

norm, takes the absolute value of the distance. For LAD the function that is being mini-

mized is 𝜌(𝑟) = |𝑟|. Outliers do not affect the result as much as in least-squares be-

cause the is no second power.

Two other popular M-estimator functions are Huber estimator and Tukey estimator. The

formula for the Huber estimator is

 𝜌𝐻𝑢𝑏(𝑟) = {

𝑟2

2
, if |𝑟| ≤ 𝑐

𝑐 (|𝑟| −
𝑐

2
) , otherwise

, (21)

where c is a threshold. Huber estimator is very similar to LAD when |𝑟| > 𝑐, but unlike

LAD, Huber is differentiable when 𝑟 = 0. For Tukey estimator the formula is

 𝜌𝑇𝑢𝑘(𝑟) =

{

 𝑐

2

6
(1 − (1 − (

𝑟

𝑐
)
2

)
3

) , if |𝑟| ≤ 𝑐

𝑐2

6
, otherwise

, (22)

where c is a threshold for Tukey estimator. The Tukey estimator becomes flat when

|𝑟| > 𝑐, which means that large errors between the corresponding points do not have

influence in the pose estimate. For small values of 𝑟, both the Huber and the Tukey es-

timators behave similarly to the least-squares estimator. In figure 2, there are least-

squares, LDA, Huber, and Tukey estimators drawn in the same figure. The threshold 𝑐

is set as 1 for the Huber and 3 for the Tukey estimator.

18

Figure 2. Least-squares, Least absolute deviation, Huber estimator, and Tukey es-
timator are drawn in one figure.

The Huber estimator finds the global minimum more reliably than the Tukey estimator

because the Huber is convex, as can be seen from figure 2. The Tukey estimator re-

moves the effect of clear outliers entirely, but it needs to have a good initial guess not

to get stuck in a local minimum [6]. For example, the result of RANSAC can be used as

an initial guess for the Tukey estimator, but also other options exist.

The Gauss-Newton and Levenberg-Marquardt algorithms can be used with one of the

M-estimators. The chosen M-estimator is used to give a weight for each of the corre-

sponding point pairs. The weight 𝑤 for pair 𝑖 is

 𝑤𝑖 =
√𝜌(𝑟𝑖)

𝑟𝑖
. (23)

A diagonal weight matrix 𝐖 = diag(… 𝑤𝑖 …) can be formed from all of the weights.

The iteration step with weights calculated with the Gauss-Newton method is

 ∆= −(𝐉T𝐖𝐉)
−1
𝐉T𝐖(𝐛− 𝑧(𝐩)). (24)

19

The weight matrix can be similarly added to the Levenberg-Marquardt method. The it-

eration step of the LM method with the weight matrix is

 ∆= −(𝐉T𝐖𝐉+ 𝜆𝐈)
−1
𝐉T𝐖(𝐛− 𝑧(𝐩)). (25)

Weights are recalculated in every iteration of the Gauss-Newton and LM algorithms.

20

4. IMPLEMENTATION

The purpose of the tracking algorithm in this thesis is to keep the identity of a mobile

device known while it is turned around by hand. The requirements for the tracking algo-

rithm in this application are discussed in this Section. How well the tracking methods

introduced in Section 2 meet these requirements is assessed. The method that is the

best fit for this application is chosen and implemented. The steps in the tracking pro-

cess of the chosen method are discussed in detail.

4.1 Tracking environment and performance requirements

Before the object can be tracked, a mobile device is detected and identified from a

camera stream. Identification information is displayed on the screen of a mobile device

using a QR code. Tracking can be started after a QR code containing correct identifica-

tion is read. The device is turned around by hand, so the backside becomes visible to

the camera. A picture is taken of the backside of the device. The number of scratches

on the back cover is detected from the picture. This thesis focuses only on the tracking

stage. The device is not identified, and no picture of the backside is taken while evalu-

ating the performance of the implemented tracker.

During the tracking, both the camera and the object that is being tracked may move.

The device needs to be identified again if it leaves and re-enters the field of view of the

camera. The tracking algorithm is not required to recover identification if the object

leaves and re-enters the field of view of the camera.

The tracking algorithm must run on an Android mobile device as an Android application

on most of the high-end Android devices. Most Android devices have a camera that

can be used for tracking. Mobile devices have limited computational capability com-

pared to desktop computers, which is why one requirement for the tracking algorithm is

limited computational complexity. Low frame rate and tracking failure may result from

too high computational complexity.

The objective of the pose estimation is to keep the identity of a mobile device known

while it is being turned by hand. The tracker is required to be able to track different mo-

bile devices. Small errors in the pose estimate are not critical for performing this objec-

tive. The background of the device during the tracking is not defined, and it can be clut-

tered. The tracking algorithm must be able to perform in different environments. During

the tracking, the mobile device will be rotated by hand. The hand will block part of the

21

device, so it is not acceptable for the tracker to fail if a small part of the object is not vis-

ible to the camera. The object can be rotated around any axis, so the tracker is re-

quired to cope with any rotation.

4.2 Choosing the tracking method

The non-recursive nature of detection-based tracking methods gives them an ad-

vantage over the recursive algorithms. They can recover from errors between consecu-

tive frames because detection is done individually for each frame. The previous pose

estimate is not used in the calculation of a new pose estimate. The detection-based

methods can recover if the object leaves and re-enters the field of view of the camera

without reinitialization, unlike recursive methods. This feature would be useful in this

application because there is no guarantee that the object will stay in the area that is

visible to the camera, but it is not required.

A significant downside to the detection-based methods is that they depend on the tex-

ture of the object. In this application, it is essential to be able to track any mobile device

based on the shape only. The texture of the object is unknown because it varies be-

tween different mobile devices. The detection-based trackers also require a training

stage before they can be used in real-time. The application must be able to track many

different device types. Tracking of different device types would require retraining the

detection-based tracker each time a new device type becomes to be inspected. For

these reasons, a detection-based tracker is not the appropriate choice for this applica-

tion.

Marker-based tracking methods can be accurate and fast. They modify the environ-

ment to assist in the tracking process. Markers would be easy to add to the screen of

the mobile device that will be tracked. These markers could then be used for accurate

tracking. Markers on the backside of the device would be required for tracking the de-

vice while only the backside is visible to the camera. It is important to be able to track

both sides of the mobile device in this application. Adding markers to the backside of

each device that will be tracked would not be practical for the use case in this thesis.

For this reason, a marker-based tracker was rejected.

Tracking algorithms using the particle filter method have yielded accurate results. Choi

and Christensen have been able to track objects that are held in hand and are partially

blocked from the view of the camera [17]. High accuracy and reliability are achieved by

having a large number of particles. More particles mean more computational load.

22

Karlsson et al. have analyzed the complexity of the particle filter by counting the num-

ber of required floating-point operations [36]. A particle filter tracking method is a viable

choice if computational complexity is not a problem. In this application, the tracker is

running on a mobile device. Computation capability, limited on mobile platforms, ex-

cludes the particle filter from this application.

The edge-based trackers are lighter to run than particle filter trackers, and thus are

more suitable for mobile devices. The recent edge-based methods can be made robust

against background and foreground clutter, which was a big problem in the first genera-

tion of the edge-based trackers. The weakness of the edge-based methods is their re-

cursiveness, which makes them vulnerable to drift. An edge-based tracker does not re-

quire a training stage. The tracking is based on the edges of the object, and the texture

is not used. The same tracker can be used for tracking different mobile devices. The

edge-based tracking method was found as the most suitable tracking method for the

application in this thesis.

4.3 Projecting a 3D model and finding the outermost edges

A 3D model of the object is required by the edge-based tracking method. There are dif-

ferent methods for acquiring the model. For example, Izadi et al. use the depth sensor

of a moving Kinect camera to create a 3D model in real-time [37]. The object that is be-

ing tracked in this thesis is a mobile device. The same 3D model is used for tracking

various devices because mobile phones are similar in shape. A different 3D model is

required for tracking differently shaped devices, such as tablets. The 3D model need

not match perfectly the real device.

In this thesis, the 3D model was drawn with a computer-aided drawing program. The

model provides only the shape, not the texture of the device. This is because the sur-

face texture varies between devices, and thus cannot be used in the tracking process.

For example, the location of the rear-facing camera is not a suitable anchor point for

tracking because the location of it varies between devices.

The model file contains the 3D coordinates for all the vertices of the model. The file

also includes a list of vertex pair indices that are connected by an edge. The vertex

points can be projected to the image plane with Equation (1). The intrinsic parameters

of the camera in matrix 𝐊 need to be known before the points can be projected. Ele-

ments of 𝐊 are shown in Equation (3). In this application, the values for 𝛼𝑢 and 𝛼𝑣 are

4000. Skew s is set to 0, and the principal point is [540, 960]. In Figure 3 the 3D model

is projected using pose 𝐩 = [0, 0, 50,
π

4
, π,

5π

8
].

23

Figure 3. A 3D model is projected to an image plane.

The projected edges of the model are divided into inner and outer edges. To do this,

the first step is to find the bottom-right vertex by choosing the vertex with the largest y-

coordinate. If there are multiple vertices with the same y-coordinate, the one with the

largest x-coordinate is chosen. The next step is to find all the vertices that are con-

nected to the bottom-right vertex by an edge. The smallest angle between a connected

edge and the x-axis needs to be found because it is one of the outermost edges. The

vertex at the other end of the chosen edge is added to a list of outermost vertices.

All vertices connected by an edge to the most recently found outermost vertex are

found next. The angles between the connected edges and the latest outermost edge

are calculated. The angle is calculated in the clockwise direction. The edge with the

smallest angle is one of the outermost edges, and the vertex at the other end of it is

added to the list of outermost vertices. This process is repeated until all the outermost

24

vertices are found, which is detected by the bottom-right starting vertex being the next

candidate for a new outermost vertex. The algorithm for finding the outermost vertices

is described in Program 1.

 Input: edges, a list of all edges,
 vAll, a list of all vertex points
Output: vOutermost, a list of outermost vertices

1 vStart = findBottomRightVertex(vAll)
2 vCurrent = null
3 vPrev = null
4 vOutermost = null

 5 while (vCurrent != vStart):
6 if (vCurrent == null)
7 vCurrent = vStart
8 endIf;
9 vConnected = findConnectedVertices(edges, vCurrent)

10 smallestAngle = 2*Pi
11 for (vNext in vConnected):
12 if vPrev == null:
13 angle = calculateAngleBetweenXAxisAndEdge(vCurrent,

 vNext)
14 else:
15 angle = calculateAngleBetweenEdges(vPrev, vCurrent,

 vNext)
16 endIf;
17 if (angle < smallestAngle):
18 smallestAngle = angle
19 vNextOuter = vNext
20 endIf;
21 endFor;
22 vPrev = vCurrent
23 vCurrent = vNextOuter
24 vOutermost.add(vNextOuter)
25 endWhile;
26 return vOutermost;

Program 1. Algorithm for finding the outermost edges.

The result of this algorithm can be seen in Figure 4. The outermost edges are drawn in

red color in the figure. All of the inner edges are drawn in blue. The 3D model, the cam-

era parameters, and the pose are the same in Figures 3 and 4. The outermost vertices

need to be filtered from all of the vertices every time the pose is updated.

25

Figure 4. Outermost edges are found from a projected 3D model.

The tracking algorithm implemented in this thesis only uses the outermost edges. The

inner edges of the projected model are discarded. An image obtained from a camera is

used for finding the corresponding edges for the projected edges.

4.4 Finding corresponding points

The edges of the real object corresponding to the projected edges need to be found

from an image. To do this, the projected outermost edges are divided into control

points. The corresponding points to the control points that are found from the image are

called measurement points. One-dimensional search lines 𝒍𝑖 are used for finding the

measurement points. It is much simpler to look for the measurement points from a

search line than from the whole image. Each control point has its own search line.

Search lines are perpendicular to the outermost edges of the projected 3D model. The

control points are always located in the middle of the search lines. In Figure 5, the

outermost edges have been divided into the control points. A search line is drawn for

each of the control points in green.

26

Figure 5. Search lines are drawn for each of the control points.

The search lines are extracted from the image, rotated, and stacked on top of each

other to create a searching bundle 𝐋. The measurement points should match the con-

trol points. When the points match, the foreground of the object is located on the left

side of the searching bundle. The background is located on the right side of the search-

ing bundle. Each horizontal line of the searching bundle represents one of the search

lines. One measurement point needs to be found from each of the search lines.

The resolution of the searching bundle is the width of the search lines multiplied by the

number of search lines. The resolution of the image is much greater than the resolution

of the searching bundle. Images with a smaller resolution are faster to process. The

pixel values of the green search lines are extracted, rotated, and stacked on top of

each other to create a searching bundle in figure 6. The original image and the search

27

lines are located at the bottom, and the searching bundle can be seen at the top of Fig-

ure 6.

Figure 6. A searching bundle and the original image with green search lines.

At the bottom of Figure 6 is an image of a dark mobile phone against a light back-

ground. The 3D model is projected on top of the image in red and blue. The pose used

in the projection does not match the real pose of the mobile phone because the edges

of the model do not match the edges of the phone. Projected edges are divided into

control points, and a search line is drawn for each of the control points using green

28

color. The pixel values of the search lines are extracted from the image and used for

creating the searching bundle. The searching bundle is located in the top half of the im-

age.

The searching bundle is used for finding the measurement points that correspond to

the control points. Each horizontal line of the searching bundle is one of the searching

lines. Control points are located at the middle point of each horizontal line in the search

bundle. One measurement point can be found from each of the horizontal lines. Meas-

urement point candidates 𝒄𝑖 are found by doing 1-dimensional convolution for each

row. In this thesis, the search bundle is converted from RGB to hue, saturation, and

value (HSV) color space. Only the value channel is convolved because it yielded the

best results when testing the performance with combinations of the RGB and HSV

channels.

Filter mask [-1, -1, 0, 1, 1] is used in the convolution. The gradient response for the

value channel is calculated for all possible points on the search bundle

 𝑐𝑖𝑗 = ‖∇𝐼𝑣(𝑙𝑖𝑗)‖, (26)

where 𝑙𝑖𝑗 is a location on the search line 𝒍𝑖 , and 𝐼𝑣(.) is the intensity of the value chan-

nel. The resulting 𝑐𝑖𝑗 is added to the candidate point list 𝐜𝐢 if it is larger than some

threshold value. The threshold is set to 0.6 in this thesis.

The candidate points are drawn with magenta on top of the searching bundle at the top

of Figure 7. Each search line has multiple candidate points. The candidate points are

used for finding edges from the image. All the edges are successfully detected by the

candidate points. Several candidate points are not the edges of the phone; firstly reflec-

tions on the screen of the mobile phone are identified as candidate points; secondly

shadows are often recognized as candidate points; and thirdly edge on the bottom right

of the searching bundle that is not part of the mobile device is found as candidate

points.

29

Figure 7. Candidate points are drawn with magenta on top of the search bundle.

Multiple candidate points are produced by a single edge. The real edges of the mobile

phone are thicker than one pixel in the image, so the convolution value is large at sev-

eral consecutive pixels. In Figure 7, on each search line, a response to a single edge of

the phone can be seen as 2-4 magenta candidate points next to each other.

The multiple candidate points responding to a single edge can be combined to only one

point using one-dimensional non-maximum suppression. Only the largest value of a

neighborhood is saved. The convolution value of the candidate point is compared to

the convolution value of the neighboring candidate points. All the candidate points that

30

are not the largest one in their neighborhood are discarded. In this thesis, 3 neighbors

are used in the non-maximum suppression step. The result of the non-maximum sup-

pression can be seen in Figure 8.

Figure 8. Non-maximum suppression is applied to the result of the convolution
step.

There can be only one measurement point corresponding to one control point. The best

point among the candidate points needs to be chosen if there are more than one candi-

date points on a search line. The probability that the candidate point is the correct

measurement point is calculated for each candidate point. The probabilities of the can-

didate points belonging to the same search line add up to 1. No measurement point for

a search line is found if there are no candidate points on that search line.

31

The probability of a candidate point being the measurement point is calculated using

histograms. Histograms of the background and foreground regions are calculated from

the search bundle 𝐋. The pixel values of the background area are added to the back-

ground histogram, and the same is done to the foreground pixels. The pixels that are

on the left side of the control points in the search bundle belong to the foreground area,

and the right side of the control points belongs to the background area.

Similar to Peréz et al., HSV values of the pixels are saved in the histograms instead of

the RGB values [38]. The HSV color space is used because it is less sensitive to illumi-

nation changes [39]. The V component of HSV is the most sensitive to illumination

changes, so it is not included in the histogram. HS histogram that is composed of H

histogram with 𝑁𝐻 bins and S histogram with 𝑁𝑆 bins has a bin number of 𝑁 = 𝑁𝐻𝑁𝑆.

The kernel density of the histogram is

 𝐻(Ω) = {ℎ𝑛(Ω)} 𝑛 = 1,…,𝑁
, (27)

where ℎ𝑛(Ω) is the probability of bin 𝑛 inside an area Ω. The histogram for the fore-

ground region is 𝐻𝑓(Ω+) and for the background region is 𝐻𝑏(Ω−). The area Ω+ is the

left column of the searching bundle and the area Ω− is the right column of the search-

ing bundle.

Background and foreground histograms need to be formed for all of the candidate

points. Foreground histogram for a candidate point 𝑐𝑖𝑗 is 𝐻𝑓(𝛷𝑖𝑗
+) and background his-

togram of the point is 𝐻𝑏(𝛷𝑖𝑗
−). The pixels that belong to the 𝛷𝑖𝑗

+ are on the left side of

the candidate point on the search line 𝒍𝑖. The pixels on the search line that are on the

right side of the candidate point 𝑐𝑖𝑗 belong to the 𝛷𝑖𝑗
−. The areas Ω+, Ω−, Φ𝑖𝑗

+ and Φ𝑖𝑗
− are

drawn in Figure 9.

32

Figure 9. Background and foreground regions.

At the top of Figure 9 is a searching bundle divided into two columns with a red line.

The pixels that are on the left side column belong to the foreground region Ω+, and the

pixels on the right side belong to the background region Ω−. At the bottom image is the

same search bundle with foreground and background regions drawn for a single candi-

date point. Candidate point 𝑐𝑖𝑗 is drawn with a magenta square, the foreground area of

Φ𝑖𝑗
+ with blue color and the background area Φ𝑖𝑗

− with green.

The foreground histogram of the candidate points is compared to the foreground histo-

gram of the whole search bundle. The same comparison is made to the foreground his-

33

tograms. The Bhattacharyya coefficient is a measure of the similarity between two his-

tograms [40]. The coefficient between the foreground histogram of the search bundle

and the foreground histogram of a candidate point 𝑐𝑖𝑗 is

 𝐵𝐶𝑖𝑗
𝑓[Ω+, Φ+] = ∑√ℎ𝑛(Ω

+)ℎ𝑛(Φ𝑖𝑗
+)

𝑁

𝑛=1

, (28)

and, similarly, the coefficient for the background histogram of the search bundle and

the candidate point can be calculated by

 𝐵𝐶𝑖𝑗
𝑏 [Ω−, Φ−] = ∑√ℎ𝑛(Ω

−)ℎ𝑛(Φ𝑖𝑗
−)

𝑁

𝑛=1

. (29)

For the candidate point 𝑐𝑖𝑗 that is the real measurement point 𝑚𝑖 of the search line,

both the Bhattacharyya coefficients 𝐵𝐶𝑖𝑗
𝑓
 and 𝐵𝐶𝑖𝑗

𝑏 are large. At least either of the 𝐵𝐶𝑖𝑗
𝑓

and 𝐵𝐶𝑖𝑗
𝑏 is small if the candidate point 𝑐𝑖𝑗 is not the measurement point 𝑚𝑖. Using the

Bhattacharyya coefficients, a probability that the candidate point is the measurement

point can be defined as

 𝑝(𝑐𝑖𝑗|𝑚𝑖) =
1

𝑍
𝐵𝐶𝑖𝑗

𝑓
𝐵𝐶𝑖𝑗

𝑏 , (30)

where 𝑍 is the normalizing constant that ensures ∑ 𝑝(𝑐𝑖𝑗|𝑚𝑖) = 1𝑗 .

Candidates that have low 𝐵𝐶𝑖𝑗
𝑓
 or 𝐵𝐶𝑖𝑗

𝑏 value are filtered out with a threshold. The

threshold is set to 20 in this thesis. The probability of the candidate point being the

measurement points is set to 0 if one of the coefficients is below the threshold value.

Weak responses are filtered out because doing so ensures that the object that is being

tracked can be found using the search lines. No measurement points should be found if

the edges of the object are not on the search lines.

Probabilities are calculated for all the candidate points on a search line, and the candi-

date point with the highest probability is chosen as the measurement point. The same

process is done for all the search lines. The measurement points are drawn in a differ-

ent color than the other candidate points in Figure 10.

34

Figure 10. The measurement points are found from among the candidate points.

At the top of Figure 10 is the searching bundle, and at the bottom is the original image

with the projected model drawn on top of it. The candidate points are drawn using ma-

genta, and the measurement points are drawn with cyan on top of the search bundle.

Most of the measurement points are found correctly. The measurement points should

be located on the edge where the black left side meets the grey right side. Some cyan

points are on the background area because they are not detected successfully. None

of the measurement points are in the foreground area of the mobile phone. At the bot-

tom of the figure, the measurement points are drawn on top of the green search lines

35

using magenta. The correct measurement points are located on the edge of the mobile

phone.

A new pose estimate is calculated using the control points and the measurement

points. The value for the pose does not need to perfect. It is enough that the new esti-

mate is better than the current one. For this reason, it is enough that most of the meas-

urement points are found correctly.

4.5 Estimating pose

The pose is adjusted based on the distances between the control points and the meas-

urement points, found as described above, by applying the methods discussed in Sec-

tion 3.3. Closed-form algorithms, such as DLT and POSIT, can be used for solving opti-

mal pose from a corresponding set of points. The main benefit of using these methods

is that they are fast to execute, and they do not require a lot of computational re-

sources. The main weakness of these algorithms is that they do not cope well with er-

rors in the set of measurement points. There is no guarantee that the solved pose is

close to the real pose if the set of measurement points contains errors. Not all meas-

urement points are found perfectly by the implemented method, as can be seen in Fig-

ure 10. Closed-form solutions are not viable in this application because the measure-

ment points are not found without errors.

Iterative minimization algorithms perform better than closed-form algorithms if there are

errors in the measurements. The iterative nature of these algorithms makes them

slower to execute than non-iterative algorithms. Finding the measurement points with-

out errors in all conditions is not realistic for the use case in this thesis. Therefore, an

iterative algorithm, either the Gauss-Newton or the Levenberg-Marquardt, is the best

choice for finding the optimal pose. The Gauss-Newton algorithm does not require the

calculation of the stabilization term, which makes it slightly less complex and easier to

implement. This thesis uses the Gauss-Newton algorithm for calculating a new esti-

mate for the pose.

The iteration step of the Gauss-Newton algorithm is calculated using Equation (17). A

set of control points and a set of corresponding measurement points are needed before

the formula can be used. In addition to the point sets, an image Jacobian 𝐉 is required

by Equation (17). The image Jacobian is a combination of Jacobians for all the corre-

sponding point pairs.

36

The first step when calculating the Jacobian for a generic homogeneous point

[X, Y, Z, 1]T is transforming it into the camera coordinates. Coordinates of the point in

the camera coordinate system are

 [

𝑋𝑐
𝑌𝑐
𝑍𝑐

] = 𝐏 [

𝑋
𝑌
𝑍
1

], (31)

where P is the same projection as in Equation (2). Function 𝑔 transforms the camera

coordinates to a point on the image plane

 𝑔(𝐩) = [
𝑥
𝑦
] =

[

𝑋𝑐
𝑍𝑐
𝑌𝑐
𝑍𝑐]

 , (32)

where p is a vector containing the pose parameters. Jacobian for the point can be cal-

culated from the function 𝑔 by partial derivative

 𝐉𝑝(𝐩) = [
𝜕𝑔(𝐩)

𝜕𝐩

] =

[

𝜕𝑥

𝜕𝑡𝑥

𝜕𝑥

𝜕𝑡𝑦

𝜕𝑥

𝜕𝑡𝑧

𝜕𝑥

𝜕𝑟𝑥

𝜕𝑥

𝜕𝑟𝑦

𝜕𝑥

𝜕𝑟𝑧
𝜕𝑦

𝜕𝑡𝑥

𝜕𝑦

𝜕𝑡𝑦

𝜕𝑦

𝜕𝑡𝑧

𝜕𝑦

𝜕𝑟𝑥

𝜕𝑦

𝜕𝑟𝑦

𝜕𝑦

𝜕𝑟𝑧]

 , (33)

where 𝑡𝑥 is the translation along the x-axis, 𝑡𝑦 is the translation along the y-axis, 𝑡𝑧 is

the translation along the z-axis, 𝑟𝑥 is the rotation around the x-axis, 𝑟𝑦 is the rotation

around the y-axis and 𝑟𝑧 is the rotation around the z-axis. The Jacobian needs to be

calculated for each control point that has a corresponding measurement point. The

point Jacobians can then be combined into the image Jacobian by placing them on top

of each other

 𝐉 =

[

𝐉p1
𝐉p2
⋮
𝐉N]

 , (34)

where N is the number of control points that have a corresponding measurement point.

The dimension of the image jacobian 𝐉 is 2N x 6.

The pose is updated by adding the iteration step to the old pose as in Equation (13).

The 3D model is projected to the same image using the updated value for the pose.

New measurement points are found for the new projection. The distances between the

control points and measurement points are calculated using the new points. Tukey esti-

mator with the threshold set to 15, as discussed in Section 3.4, is used for giving

weights for all of the measurement points. The calculated pose is the final pose if the

37

error between the control points and measurement points is small enough. The new it-

eration step is calculated if the distance between the point pairs is not small enough,

and the maximum number of iterations for one frame is not reached. The algorithm

used to find the optimal pose is presented in Program 2.

 Input: image, an image obtained from a camera,
 pose, the previous pose,
 3DModel, the model of the object
Output: pose, a new estimate for the pose

1 for (iterationCount = 0; iterationCount < maxIterationRounds;
++iterationCount):

2 controlPoints = GetControlPoints(pose, 3DModel)
3 for (controlPoint in controlPoints):
4 measurementPoint = GetMeasurementPoint(controlPoint, im

 age)
 5 //Check that measurement point is found for this control

 point
6 if (measurementPoint.isValid()):
7 measurementPoints.append(measurementPoint)
8 else:
9 controlPoints.remove(controlPoint)

10 endIf;
11 endFor;
12 //Check that enough control points have corresponding

 measurement points
13 if (measurementPoints.amount() < pointAmountThreshold):
14 break;
15 endIf;
16 //If the distance between the control points and measurement

 points is small enough pose estimate is good enough
17 reprojectionError = CalculateError(controlPoints,

 measumentPoints)
18 if (reprojectionError < maximumAllowedError) {
19 break;
20 }
21 pose = CalculateNewPose(controlPoints, measurementPoints,

 pose);
22 endFor;
23 return pose;

Program 2. Algorithm for finding the optimal pose.

The algorithm is executed when the previous execution of the algorithm is done, and a

new frame is obtained. The latest pose, the 3D model, and the latest image are given

as the input for the algorithm. The pose and the 3D model are used for obtaining all of

the 2D control points. The next step is to find the measurement points corresponding to

the control points. A control point is discarded if no corresponding measurement point

is found for it. The pose estimate is not updated if too many control points are without

measurement points, and the algorithm returns the same pose that was given to it as

an input.

38

After enough measurement points are found, the distances between the measurement

points and the corresponding control points are calculated. The pose estimate is accu-

rate enough if all of the distances between the measurement and control points are

smaller than a threshold value. The threshold is set to 5 pixels in both the x- and the y-

direction in this thesis. A new pose estimate is calculated if there is at least one dis-

tance between a measurement and a control point that is larger than the threshold. The

image Jacobian is calculated using all of the control points that have a corresponding

measurement point. The next iteration of the pose is calculated with Equation (17). A

pose estimate is iterated at most six times. After the six iterations, the algorithm returns

the most recent pose estimate. The algorithm needs to be executed with a new image

if there is not good enough pose estimate found within the six iteration steps.

39

5. PERFORMANCE EVALUATION OF THE
TRACKER

The main objective of the implemented tracker is to be able to track a mobile device

while it is being turned by hand. The environment where the tracking is being done is

not defined. The tracker must work regardless of the background. The movement

speed of the device affects the performance of the tracker. The contrast between the

color of the device and the background affects the performance because it needs to be

large enough for finding the measurement points reliably. This section discusses the

factors that have an effect on the performance of the tracker.

The tracker created in this thesis is an Android application, and it can be installed on

different Android devices. The performance of the tracker is dependent on the device

that it is installed on. Some devices have more computational capacity than others. The

algorithm in Program 2 is faster to execute on the more advanced devices. The faster

execution of the algorithm results in a higher rate of processed frames.

The movement of the object is smaller between frames because the object has less

time to move. The tracking is less likely to fail if the movements between processed

frames are small. The tracking fails if the object moves out of the range of the search

lines. A high frame rate does not affect how well measurement points are found or how

accurately a new pose estimate is found from a single image.

The tracking application is tested on three different Android phones for this thesis, a

Huawei P30 Pro, an OnePlus 5, and a Huawei Mate 10 Lite. During the tracking, the

frame rate is 7-12 fps (frames per second) for the P30 Pro, 4-7 fps for the OnePlus 5,

and 2-6 fps for the Mate 10 Lite.

5.1 Color of the device and the background

The color difference between the object and the background is used for finding the

measurement points. It is easier to find the device correctly when the background is of

a different color than the device. The convolution in Equation (26) gives larger values if

the contrast is large. Calculating the probabilities with Equation (30) is also more relia-

ble with a large contrast. In Figure 11, a black mobile phone is tracked against a white

background.

40

Figure 11. A black mobile phone being tracked against a white background.

In the middle of Figure 11, there is a black mobile phone that is being tracked. The

background in the image is white. On top of the image, the outermost edges of a 3D

model are drawn in red. The search lines for the control points are drawn using green

color. The search bundle made of the search lines is located in the top-left corner of the

Figure. The candidate points are drawn using magenta, and the measurement points

are drawn in cyan on top of the search bundle. There are also two buttons on the bot-

tom of the image, one for stopping the tracking and one for opening a settings menu.

The tracking is successful in the image because the edges of the 3D model match the

edges of the real mobile phone. The cyan measurement points form almost a straight

41

vertical line on top of the searching bundle. It is easy to find the correct measurement

points because of the color difference between the object and the background. The

magenta points on the searching bundle are the candidate points that were not chosen

as the measurement point. They are located mainly on the left side of the searching

bundle because there are reflections on the screen of the phone. The candidate points

on the right side of the searching bundle are caused by the shadow of the phone. Fig-

ure 12 is an example of an environment that is more difficult for the tracker.

Figure 12. A black mobile phone being tracked against a black background.

42

The layout in Figure 12 is the same as in Figure 11. In the middle of the figure is a

black mobile phone against a black background. Using a pose estimate obtained from

the tracker, a 3D model is projected on top of the phone. Search lines in green color

are drawn perpendicular to the edges of the 3D model. The search bundle obtained by

combining the search lines is drawn in the top-left corner. Candidate points are drawn

in magenta, and measurement points are drawn in cyan on top of the searching bun-

dle.

The tracker has failed to correctly detect the pose of the phone from the image. Be-

cause the pose is incorrect, the bottom edge of the mobile phone does not match the

bottom edge of the 3D model. This is caused by the lack of contrast between the object

and the background. Unlike in Figure 11, the cyan measurement points do not form a

straight vertical line in the searching bundle in Figure 12. There are multiple errors in

finding the correct measurement points. Regardless of these errors, the left, right, and

top edges are detected pretty well by the tracker. The least-squares minimization dis-

cussed in Section 4.4 makes it possible not to completely lose track of the object in this

kind of situation. Closed-form methods for pose estimation discussed in Section 3.3.2.

would not be as accurate in this scenario because of the measurement errors. Another

situation where one of the edges is not detected correctly is shown in Figure 13.

43

Figure 13. The shadow of the phone is detected as an edge.

In Figure 13 is a black mobile phone against a white background being tracked. The

layout is the same as in Figures 11 and 12. There is a 3D model, searching lines, and a

searching bundle with candidate and measurement points drawn on top of the original

image. The left edge of the model does not match the edge of the phone. The other

three edges of the model match much better the real edges of the phone.

The left edge of the model is detected incorrectly because of the shadow of the mobile

phone. The shadow forms an edge that is parallel to the left edge of the phone. The

tracker can mistakenly detect edges in the background area as the edges of the object

if they are parallel. The mistakes are more common if the background area between

44

the false edge and the real edge is the same color as the phone. The color affects the

result because of the coefficients calculated in Equations (28) and (29). In Figure 13,

the false edge is located in the background area, but there can also be clutter leading

to false detections in the foreground area. In Figure 14, the bottom edge is incorrectly

detected because of an edge in the foreground area.

Figure 14. The bottom edge is incorrectly detected because of the white screen.

The layout in Figure 14 is the same as in the previous figures. Black mobile phone is

being tracked against a white background. The screen of the phone is on, and a white

image is shown on the screen, contrary to the previous figures with the screen off. The

screen creates edges to the foreground area if the screen is of a different color than the

45

body of the mobile phone. The edges of the screen can be detected as the edges of

the phone and cause inaccurate pose estimation. The bottom edge of the phone in Fig-

ure 14 is not detected correctly because of the edge of the screen.

5.2 Partial occlusion

In an optimal scenario, the entire mobile phone is visible to the camera at all times.

This is rarely the case for the use case in this thesis because the phone is rotated by

hand. It is difficult to grab and rotate the phone without blocking at least part of it. For

this reason, the tracker must be robust against partial occlusion. Depending on how the

phone is grabbed, a different portion of the device is blocked. A minor portion of occlu-

sion does not affect the performance of the implemented tracker. The tracking is suc-

cessful in Figure 15 despite a thumb blocking a part of the phone.

46

Figure 15. Part of the mobile phone is blocked by a thumb.

Black mobile phone is held in hand and tracked against a white background in Figure

15. The 3D model is drawn on top of the image using the estimated pose. Search lines

are drawn on top of the model, and the search bundle is located in the top left corner.

Candidate and measurement points are drawn on top of the searching bundle. The

thumb of the hand holding the device blocks part of the left edge of the phone. The

pose estimate is accurate in the figure regardless of the thumb.

Hand is a problem for the tracker because it blocks part of the edge of the phone. It is

impossible to find the correct measurement points if they are not visible to the camera.

The cyan measurement points are not found correctly in the bottom part of the search

47

bundle. There are enough measurement points visible to the camera so that the track-

ing is successful. In Figure 16, too many measurement points are blocked, which

causes the tracking to fail.

Figure 16. Tracking fails because a hand blocks a too large area of the phone.

Black mobile phone is held in hand and tracked in Figure 16. The hand blocks the

whole bottom edge of the phone. The estimated pose is used for projecting the 3D

model of the phone on top of the image. The edges of the model do not match the

edges of the phone, which means that the pose estimate is not accurate. The inaccu-

racy is caused by the hand blocking a large area of the phone. There is one cyan point

48

on each horizontal line on the search bundle in the top left corner, so measurement

points are found for each of the control points. The found points do not match the real

points, so a model can not be fit well to the points. For this reason, the cyan measure-

ment points on top of the search bundle do not form a vertical line.

5.3 Tracking a rotating mobile phone

The main objective of the tracker is to keep track of a mobile phone while it is being

turned by hand. How well the implemented tracker performs in this task depends on

several factors. One of these factors is the calculation capacity of the phone on which

the tracker is running. How fast a single frame is processed depends on the calculation

capacity. A tracker running on a low calculation capacity device cannot keep up with

objects that move fast. A lower calculation capacity is enough only if the object moves

slowly.

The color of the background affects how easy it is to find the correct measurement

points. The tracker performs better if the background is of a different color than the ob-

ject. The tracker looks for edges of the mobile phone from the image. Other edges that

are parallel and close to the edges of the phone may cause the tracking to fail. Good

contrast between the object and the background and no other edges near the edges of

the phone increase chances of successful tracking. Successful tracking of a phone be-

ing rotated by hand is shown in six stages in Figure 17.

49

Figure 17. Successful tracking of a mobile phone while it is turned by hand. Tracker
is running on Huawei P30 Pro.

Figure 17 consists of six images that are in chronological order starting from the top left

and ending in the bottom right one. Tracker is running on Huawei P30 Pro. In the im-

ages, a black mobile phone is tracked while it is turned by hand. The outermost edges

of the 3D model are drawn on top of the images in red. The red edges match the edges

of the phone in all of the images except the bottom left one. The tracker follows the ob-

50

ject with a small delay caused by the execution time of the tracking algorithm in Pro-

gram 2. The computational capacity of the phone that the tracker runs on determines

the length of the delay. An example of a failing tracking result is shown in Figure 18.

Figure 18. The tracking of the rotating phone fails. Tracker is running on Huawei P30
Pro.

A tracking sequence is divided into six images in Figure 18. Similar to Figure 17, the

tracking result is drawn on top of each image in red. The tracking is not successful be-

cause the red edges do not match the edges of the phone in the bottom half of the fig-

ure. The step between the top right and the bottom left images is crucial to the success

51

of the tracking because only a small part of the phone is visible to the camera. The left

and right edges of the phone are close to each other, so the tracker can confuse them

with one another. The background is the same color as the phone, which increases the

chances that the tracking will fail. The phone is gripped in a manner that makes a large

area of the phone not visible to the camera. A combination of these factors makes the

tracking fail in Figure 18.

Too fast movement speed of the tracked phone can cause the tracking to fail. The

phone is moved by hand, so measurement of the movement speed is difficult. The ex-

act slowest speed that causes failure depends on the device that the tracker is running

on. The maximum allowed movement speed would be required to be measured for dif-

ferent devices, and it is not done in this thesis. The movement speed is the only factor

dependent on the device that the tracker is running on. For this reason, the tracking of

a rotating phone is demonstrated only on Huawei P30 Pro.

52

6. CONCLUSION

In this thesis, methods for tracking the position and orientation of a rigid 3D object were

researched. The tracking method should be able to track a mobile device while it is be-

ing turned around by hand. How well each of the different tracking methods would fit

this application was estimated based on their merits and shortcomings. An edge-based

tracking method was chosen as the most suitable because it does not require a training

stage. Other advantages of the edge-based method are that the same model can be

used for tracking different device types, and the algorithm is light enough for being exe-

cuted on an Android phone.

The mathematical tools that are needed in the implementation of the tracker are dis-

cussed in detail. The first step in the tracking process is to project the 3D model of the

object to the image plane. The next step is to find the outermost edges of the projected

model and divide them into control points. Each of the control points should have a cor-

responding measurement point. The measurement points are looked for from the im-

age using a search bundle that is created by combining search lines. A probability that

a measurement point is the correct one is calculated using histograms. A new estimate

for the pose is calculated with the Gauss-Newton algorithm using the two sets of corre-

sponding points, control points and measurement points.

The implemented tracker can perform the task that it was supposed to, but it has limita-

tions. The object that is being tracked cannot move too much between consecutive pro-

cessed frames. How much movement is allowed depends on the device that the

tracker is running on. Tracking may also fail if the background is the same color as the

object. Parallel edges to the edges of the object may also cause tracking failure. A grip

of the object that makes a large area of the object not visible to the camera can also

cause the tracking to fail.

The most critical part of the tracking is when the phone is on its side, and only a small

part of the phone is visible to the camera. A motion model that predicts the future

movement of the object based on the previous pose estimates could be added to make

the tracking more reliable. When finding the measurement points, the algorithm does

not take into consideration which one of the points belong to the same edge. Finding

the correct measurement points could be made more reliable in the future if the edge

information was also taken into consideration.

53

REFERENCES

[1] Lowe DG, Object recognition from local scale-invariant features, Proceedings of
the seventh IEEE international conference on computer vision, Vol. 2, 1999,
pp.1150-1157

[2] Skrypnyk I and Lowe DG, Scene modelling, recognition and tracking with invari-

ant image features, Third IEEE and ACM international symposium on mixed and
augmented reality, 2004, pp.110-119

[3] Panin G and Knoll A, Mutual Information-Based 3D Object Tracking, International

Journal of Computer Vision, Vol. 78, No. 1, 2008, pp.107-118

[4] Hinterstoisser S, Benhimane S and Navab N, N3M: Natural 3D Markers for Real-

Time Object Detection and Pose Estimation, IEEE 11th International Conference
on Computer Vision, 2007, pp.1-7

[5] Fischler M and Bolles R, Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography, Communica-
tions of the ACM, Vol. 24, No. 6, 1981, pp.381-395

[6] Lepetit V and Fua P, Monocular model-based 3d tracking of rigid objects: A sur-
vey, Foundations and Trends in Computer Graphics and Vision, Vol. 1, 2005,
pp.1-89

[7] Canny J, A computational approach to edge detection. IEEE Transactions on
pattern analysis and machine intelligence, No. 6, 1986, pp.679-698

[8] Harris C and Stennett C, RAPID-a video rate object tracker, BMVC, 1990, pp.1-
6.

[9] Zisserman MAA, Robust object tracking, Proceedings of the Asian Conference
on Computer Vision, Singapore, 1995, pp.5-8.

[10] Drummond T and Cipolla R, Real-time visual tracking of complex structures,
IEEE Transactions on pattern analysis and machine intelligence, Vol. 24, No. 7,
2002, pp.932-946

[11] Seo B, Park H, Park J, et al. Optimal local searching for fast and robust texture-
less 3D object tracking in highly cluttered backgrounds, IEEE transactions on
visualization and computer graphics, Vol. 20, No. 1, 2013, pp.99-110

[12] Jurie F and Dhome M, Real Time Robust Template Matching, BMVC, 2002,
pp.123-132.

[13] Masson L, Dhome M and Jurie F, Robust real time tracking of 3d objects, Pro-
ceedings of the 17th International Conference on Pattern Recognition, Vol. 4,
2004, pp.252-255

54

[14] Jurie F and Dhome M, Real time 3D template matching, Proceedings of the
2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Vol. 1, 2001

[15] Ladikos A, Benhimane S and Navab N, A real-time tracking system combining
template-based and feature-based approaches, VISAPP, 2007, pp.325-332

[16] Gordon NJ, Salmond DJ and Smith AF, Novel approach to nonlinear/non-
Gaussian Bayesian state estimation, IEE proceedings F (radar and signal pro-
cessing), Vol. 140, No. 2, 1993, pp.107-113

[17] Choi C and Christensen HI, 3D textureless object detection and tracking: An

edge-based approach, IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2012, pp.3877-3884

[18] Liu M, Tuzel O, Veeraraghavan A, et al. Fast directional chamfer matching, IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
2010, pp.1696-1703

[19] Christen O, Naroska E, Micheel A, et al. Target marker: A visual marker for long

distances and detection in realtime on mobile devices, 2nd International Confer-
ence of Machine Vision and Machine Learning, 2015

[20] Hoff WA, Nguyen K and Lyon T, Computer-vision-based registration techniques
for augmented reality, Intelligent Robots and Computer Vision XV: Algorithms,
Techniques, Active Vision, and Materials Handling, Vol. 2904, 1996, pp.538-548,
International Society for Optics and Photonics

[21] State A, Hirota G, Chen DT, et al. Superior augmented reality registration by in-

tegrating landmark tracking and magnetic tracking, Proceedings of the 23rd an-
nual conference on Computer graphics and interactive techniques, 1996,
pp.429-438

[22] Neumann U, Jongweon L and Youngkwan C, A Multi-ring Color Fiducial System
and An Intensity-invariant Detection Method for Scalable Fiducial-Tracking Aug-
mented Reality, Proc. Int’l Workshop Augmented Reality, 1999, pp.147-165

[23] Koller D, Klinker G, Rose E, et al. Real-time vision-based camera tracking for
augmented reality applications, Proceedings of the ACM symposium on Virtual
reality software and technology, 1997, pp.87-94

[24] Rekimoto J, Matrix: A realtime object identification and registration method for
augmented reality, Proceedings. 3rd Asia Pacific Computer Human Interaction
(Cat. No. 98EX110), 1998, pp.63-68, IEEE

[25] Nunes JF, Moreira PM and Tavares JMR, Human motion analysis and simula-

tion tools: a survey, Handbook of Research on Computational Simulation and
Modeling in Engineering, 2016, pp.359-388, IGI Global

[26] Park Y, Lepetit V and Woo W, Texture-less object tracking with online training

using an RGB-D camera, 2011 10th IEEE International Symposium on Mixed
and Augmented Reality, 2011, pp.121-126, IEEE

55

 [27] Choi C and Christensen HI, RGB-D object tracking: A particle filter approach on
GPU, 2013 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 2013, pp.1084-1091, IEEE.

[28] Heikkila J, Geometric camera calibration using circular control points, IEEE

Transactions on pattern analysis and machine intelligence, Vol. 22, No. 10,
2000, pp.1066-1077

[29] Slabaugh GG, Computing Euler angles from a rotation matrix, Retrieved on Au-
gust, Vol. 6, No. 2000, 1999, pp.39-63

[30] Hartley R and Zisserman A, Multiple view geometry in computer vision, Cam-
bridge University Press, 2003.

[31] Haralick RM, Lee C, Ottenburg K, et al. Analysis and solutions of the three point
perspective pose estimation problem, CVPR, Vol. 91, 1991, pp.592-598.

[32] Quan L and Lan Z, Linear n-point camera pose determination, IEEE Transac-
tions on pattern analysis and machine intelligence, Vol. 21, No. 8, 1999, pp.774-
780

[33] Dementhon DF and Davis LS, Model-based object pose in 25 lines of code, In-
ternational journal of computer vision, Vol. 15, 1995, Springer

[34] Bradski G and Kaehler A, Learning OpenCV: Computer vision with the OpenCV
library, O'Reilly Media, Inc., 2008

[35] Triggs B, McLauchlan PF, Hartley RI, et al. Bundle adjustment—a modern syn-
thesis, International workshop on vision algorithms, 1999, pp.298-372, Springer.

[36] Karlsson R, Schon T and Gustafsson F, Complexity analysis of the marginalized
particle filter, IEEE Transactions on Signal Processing, Vol. 53, No. 11, 2005,
pp.4408-4411, IEEE

[37] Izadi S, Kim D, Hilliges O, et al. KinectFusion: real-time 3D reconstruction and
interaction using a moving depth camera, Proceedings of the 24th annual ACM
symposium on User interface software and technology, 2011, pp.559-568

[38] Pérez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking, European

Conference on Computer Vision, 2002, pp.661-675, Springer

[39] Wang G, Wang B, Zhong F, et al. Global optimal searching for textureless 3D

object tracking, The Visual Computer, Vol. 31, No. 6-8, 2015, pp.979-988,
Springer

[40] Comaniciu D, Ramesh V and Meer P, Real-time tracking of non-rigid objects us-

ing mean shift, Proceedings IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 2000 (Cat. No. PR00662), Vol. 2, 2000, pp.142-149, IEEE

	1. Introduction
	2. Methods for 3D rigid body tracking
	2.1 Detection-based tracking
	2.2 Edge-based tracking
	2.3 Template matching
	2.4 Particle filter
	2.5 Marker-based tracking
	2.6 Depth based tracking

	3. Mathematical tools
	3.1 Perspective projection
	3.2 Internal and external matrices
	3.3 Pose estimation
	3.3.1 Closed-form solutions
	3.3.2 Least-Squares Minimization

	3.4 Robust tracking

	4. Implementation
	4.1 Tracking environment and performance requirements
	4.2 Choosing the tracking method
	4.3 Projecting a 3D model and finding the outermost edges
	4.4 Finding corresponding points
	4.5 Estimating pose

	5. Performance Evaluation Of The Tracker
	5.1 Color of the device and the background
	5.2 Partial occlusion
	5.3 Tracking a rotating mobile phone

	6. Conclusion
	references

