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ABSTRACT 

Dilshan Subasinghe: Generating individual electricity load profiles with the top-down analysis 
method 
Master of Science Thesis, 64 pages, 1 Appendix page 

Tampere University 

Degree Programme in Electrical Engineering 

August 2020 
 

Simulations with realistic network models and electric loads are essential for developing smart 
grid integration strategies such as integrating distributed generation and electric vehicles into the 
grids. Accurate simulations require detailed information on the electricity consumption of custom-
ers connected to the grid. However, the electricity consumption data from individual customers 
are challenging to acquire because of data privacy concerns. Especially with the introduction of 
the new General Data Protection Regulation (GDPR) in the European Union, the electricity distri-
bution system operators are not interested in sharing individual consumption data. Running de-
tailed smart grid simulations requires individual customer load profiles and cannot be based on 
publicly available average load profiles such as national customer class load profiles. The aver-
aged load profiles do not yield sufficiently accurate results because they do not reflect the tem-
poral load variations present in actual consumption data. 

The study material of this thesis will consist of new type consumer load profiles as a replace-
ment for the Finnish customer class load profiles, and their previously calculated statistical prop-
erties by Dr.Tech. Antti Mutanen, and some thousands of real smart meter measurements. In this 
M.Sc. thesis, the goal is to study how those type consumer load profiles in the study material 
could be reverse-engineered into realistically varying individual synthetic load profiles using the 
top-town analysis method.  

This thesis develops three algorithms for generating individual load profiles based on Markov 
chain process.  The first algorithm uses the traditional Markov chain method to generate synthetic 
load profiles. Then, the traditional Markov chain method is extended to improve the results, and 
the new algorithm (i.e. second algorithm) is called the suggested Markov chain algorithm. The 
third algorithm in this thesis is called the adaptive Markov chain algorithm in the literature and 
borrows several machine learning concepts to develop it. Finally, an aggregate load profile match-
ing method is described, implemented and applied to realistically adjust and scale the synthetic 
load profiles generated by the above algorithms. All the algorithms described in this thesis are 
implemented using MATLAB, and a part of the adaptive Markov chain algorithm is implemented 
using Python. The suggested Markov chain method, combined with the aggregate load profile 
matching method, allows generating realistic synthetic load profiles, and meets the goal of this 
thesis. The results are shown and validated in the final chapters, and they confirm that the sug-
gested Markov chain method works properly for load profile generation and it can better capture 
the yearly seasonal variations in power consumption. The MATLAB programs are designed and 
implemented for hourly smart meter measurement input data. These programs can later be flexi-
bly modified for higher-resolution input data and synthetic load profiles. Furthermore, the devel-
oped adaptive Markov chain algorithm can be further developed in the future with different deep 
learning techniques to get more realistic load profiles. 
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1. INTRODUCTION 

Most of the existing traditional power grids around the world were built several decades 

ago and the power system has well served during that time period. However, recently, 

the traditional power systems are subjected to regulations by many national governments 

due to experiencing technical, economic and environmental issues. The modern society 

evolves this old power system infrastructure to be more reliable, manageable and 

scalable, while also being secure, cost-effective and interoperable [1]. Such a next-

generation power system is called a “smart grid”. Smart grids mean more than energy 

generation and transmission, and the concepts behind modern electricity grids are also 

smarter. The flexibility of smart grids has been improved with the use of novel control 

techniques, ICT technologies, and equipment with two-way communication compatibility 

between customers and utilities. The power system reliability has been increased 

significantly by reducing the number of outages and system restoration times have been 

reduced with fault location, isolation, and service restoration applications. The 

development of smart grids has increased the research and development of smart 

metering. A smart meter can be considered as a gateway for two-way communication 

between customers and energy system’s parties.  A next-generation smart meter can 

measure the energy consumption of the customers in real-time and transmit the data to 

distribution system operators (DSOs). Therefore, DSOs can manage and coordinate the 

flexibility of the grid, planning and operation of the network, and promote the energy 

efficiency with reflective tariff plans. In smart metering, the term "real-time" refers to a 

time resolution between 5-60 minutes. According to the Finnish energy regulator, over 

99 % of premises are equipped with smart meters in Finland [19]. However, the current 

Finnish smart metering infrastructure is only partially capable of real-time operation. The 

next generation of smart meters will be updated at a later phase to facilitate real-time 

data operations, thus shortening the measurement time from 1 hour to 15 - 5 minutes 

and making the data immediately available. Even now, there is an ongoing project in 

Finland and testing new generation smart meters in 30 000 households to provide 

greater flexibility to the electricity grid [24].  

There are important requirements for gathering and utilization of these consumption data 

via smart meters for also different other parties than DSOs. For instance, the power 

system within the EU electricity market should be able to withstand the intermittent nature 
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of increasing renewable electricity generation. This can be achieved by activating the 

demand side to enable a more flexible balance between demand and supply. In practice, 

the smart meters are well-illustrated with initiatives and technology solutions to enable 

the demand side, thus collecting and communicating information on electricity 

consumption. As well as, when developing the smart grid operations such as integrating 

distributed energy resources and new types of loads (e.g. electric vehicles, smart 

buildings, power electronic equipment etc) into the grids, it is necessary to have more 

realistic network simulations and load models for smart grid operations. However, there 

is a difficulty in acquiring customer consumption data from DSO for any of the above 

mentioned or other purposes for different parties, because of this smart meter 

measurement data is protected due to privacy and data protection concerns. These 

privacy and data protection concerns came to effect with the introduction of the European 

Union General Data Protection Regulation (GDPR) which applies for processing the 

customer information, collection and utilization of smart meter data [17]. Therefore, 

DSOs are prevented from sharing individual consumption data of a customer for other 

parties without the customer’s consent and this is the root cause for research question 

in this thesis. 

Under this situation, the requirement for generating more realistically varying synthetic 

load profiles is raised for different purposes. It is not accurate enough to run a detailed 

smart grid simulation with average load profiles that are publicly available (e.g. national 

customer class load profiles), because the average load profiles do not clearly show the 

dynamic load variations in real-time consumption data of the customers. An average load 

profile can be obtained by dividing the aggregated load profile with the number of cus-

tomers of a specific customer class which may lose important features of the load profile 

such as information on load factors, peak powers of the customers, etc. In this M.Sc. 

thesis, the goal is to study how derived customer class load profiles (i.e. called “type 

consumer load profiles”) by Mutanen et al. could be reverse engineered into realistically 

varying individual load profiles [5]. The study material includes type consumer load pro-

files, their previously calculated statistical properties, and some thousands of smart me-

ter measurements from the customers located in a specific area in Finland, 2016. The 

summary of the research questions and research work can be depicted clearly as in 

Figure 1.1.  

The solution for the above privacy concerns is to generate synthetic load profiles by using 

load profile generator algorithms. The use of two different algorithms to generate syn-

thetic load profiles for different customer classes can be found in the literature (i.e. bot-
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tom-up and top-down approaches). The bottom-up approach begins with each house-

hold appliance and models household characteristics, single customer behaviours and 

activity levels, and then builds up the load profile. For this, in order to study the used 

household appliances and time of use of electricity by customers, the algorithm requires 

a considerably high amount of measurement data of appliances as inputs [8]. Therefore, 

the low availability of data leads to a poor outcome. This is a drawback in the bottom-up 

algorithm. In contrast, the top-down approach is a quite different load profile generating 

algorithm which uses existing smart meter measurement data to generate more realistic 

load profiles for each household using the same statistical properties of available type 

consumer load profiles. A top-down approach will require less computational effort com-

pared to a bottom-up approach. In this thesis, the aim is to present a top-down model to 

generate synthetic load profiles using a traditional Markov model for any number of 

customers based on the data set provided as a study material. 

In the literature, some research works can be found which has been done already by 

using bottom-up [8][16][18][22] and top-down [8][13][23][25] algorithms to generate syn-

thetic load profiles. McLoughlin et al. have built a homogeneous Markov chain model 

with the top-down approach to generate domestic load profiles [13]. The outcomes show 

satisfactory results for key statistical properties such as mean, standard deviation be-

tween measurement and synthetic load profiles. But the Markov chain failed to catch the 

Figure 1.1 An overview of the research work. The customer class load profiles and several 
smart meter measurement data are available from the study material as input. Forming of cus-

tomer class load profiles is called “load profiling” 



4 
 

temporal variations in the input load profiles; it was utterly random. Bucher et al. present 

a combination of both bottom-up and top-down load models [8]. They have built a meth-

odology for generating synthetic load profiles from the top-down approach based on sta-

tistical analysis of either measurement data or artificially generated load data from the 

bottom-up approach. The results of this research show that the top-down synthetic load 

data exactly corresponded to the statistical properties of the bottom-up synthetic load 

data. Labeeuw et al. present a good approach for this thesis work with inhomogeneous 

Markov models and the clustering of customer data [25]. They have proposed a Markov 

chain process for tracking daily behaviour and a Markov decision-making process for 

spreading the behaviour changes on other days of the week. 

The rest of the chapters of this thesis are structured as follows. First, chapter 2 presents 

the background study for customer load profiles and synthetic load profile generation. 

Thereafter, chapter 3 presents an overview of the theories and definitions used in the 

research methodology. chapter 4 describes the data set used for this study. Later, Chap-

ter 5 presents three algorithms for synthetic load profile generation based on Markov 

chain (MC). The three algorithms include a conventional MC and an adaptive MC de-

scribed in the literature, as well as a suggested new methodology. In that same chapter, 

the outputs of the three synthetic load profile generators are compared to each other. 

This is followed by chapter 6 which evaluates the output of the best load profile generator 

obtained from the comparison in chapter 5. Finally, the conclusions drawn from the re-

search are presented in chapter 7. 
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2. BACKGROUND STUDY FOR CUSTOMER 

LOAD PROFILES AND SYNTHETIC LOAD PRO-

FILE GENERATION 

This chapter includes relevant information from background studies on customer load 

profiles and synthetic load profile generation.  Accordingly, some subtopics such as elec-

tricity consumption, the existing smart metering, the customer class load profiles in Fin-

land and factors affecting customer load profiles are discussed under this chapter. Fur-

thermore, this chapter highlights the previous research activities at Tampere University 

and uses them as background material for this thesis. 

2.1 Electricity consumption in Finland 

Today, power distribution and retail companies are increasingly focusing on collecting 

customer energy consumption data and analyzing the load profiles regularly to learn how 

the load demand is varying. This thesis continues the study with Finnish electricity con-

sumption data in a specific area. Therefore, it is meaningful to get an overall idea of the 

present electricity consumption in Finland before moving on to the next chapters.   

 

 

 

 

 

 

 

 

 

Figure 2.1 shows the electricity consumption in various consumer sectors in Finland in 

2019 as shares of total electricity consumption. The "household and agriculture" sector 

accounts for a significant proportion of overall electricity consumption (i.e., 28 %), while 

Figure 2.1 Finnish electricity consumption in different sectors in 2019, 86 TWh [12] 
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the "services and building" sector has acquired the second-largest electricity consump-

tion. The household electricity consumption sector takes a significant proportion of over-

all consumption in most of the other European countries as well [13]. Due to specific 

geographical latitudes in Finland, its climate is mainly characterized by many cold days. 

For this reason, heating systems mainly impact on the electricity consumption of con-

sumers. Therefore, heating solutions are playing a vital role in the Finnish electricity con-

sumption shares. For instance, Figure 2.2 illustrates that around 78% of household en-

ergy was allocated for heating in 2018. The share of electricity consumption in house-

holds accounted for about 33% of the total household energy consumption. From that 

electricity consumption, the shares of electricity consumption for indoor heating and 

household appliances are respectively 47% and 36 % [20].  The consumers can choose 

heating methods freely in the Finnish heating market. The available heating methods are 

among district heating, electrical heating and other site-specific solutions with heat 

pumps and different energy sources. Apart from that, consumers can also purchase cool-

ing solutions based on district cooling, heat pumps and other electrical-based equipment. 

So, the Finnish heating market is quite competitive. Also, the heating market is entirely 

unregulated [14]. Therefore, there is no legislation regarding the selection or pricing for 

the heating and cooling methods. Due to these facts, consumers today tend to switch 

their heating systems from low to high-efficiency systems.  

 

 

 

 

 

 

 

 

 

The total share of industrial electricity consumption in 2016 is around 46 %, and forest, 

chemical and metal industries are the primary consumers in that category. The hourly 

power consumption values of extensive consumers such as industrial customers are 

comparatively higher than other consumers. Moreover, it appears that new types of loads 

Figure 2.2    Energy consumption in households 2011-2018 [11] 
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will continue to be added to the Finnish power system, such as electric vehicles, heat 

pumps and modern electronic equipment. For instance, Figure 2.3 shows that the num-

ber of electric and plug-in vehicles has increased significantly in 2019, which could im-

pact on the annual energy consumption level of the customer classes and load behav-

iours of customers. Figure 2.4 shows that the number of installed heat pumps is increas-

ing every year, and most of them are air-air type heat pumps that are usually used to 

supplement the direct electric heating. According to Finnish Heat Pump Association, the 

number of heat pumps sold in 2019 has increased by 30% from the previous year. There-

fore, adding new types of loads to the Finnish power system must be properly modeled, 

and customer class load profile updating, and customer classification must be done ac-

cordingly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 The number of electric vehicles, gas vehicles and plug-in hybrid cars in passen-
ger vehicle stock, 2010-2019 [12] 

Figure 2.4 Annual heat pump installations in Finland [15] 
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2.2 Electricity metering in Finland 

Electricity meter reading is an essential component in energy market-related functions 

as well for distribution network calculations. In the past, mechanical electric meters were 

used to measure the electricity usage of customers. The meter readings of those me-

chanical meters were done by DSO’s meter readers at customer’s premises. In those 

days, meter readings were obtained infrequently (e.g., like once a year), and balancing 

bills were prepared for customers once the meter readings were done (e.g. once a year). 

However, with the improvement of the technology, Automatic Meter Reading (AMR) sys-

tems are introduced to collect more important data from customers such as electricity 

consumption, diagnosis and status via one-way communication mediums. The collected 

data can be transferred to a central database for further analysis, troubleshooting and 

billing processes. This AMR system is a digital implementation of a pre-mechanical an-

alogue meter, so it replaces the mechanical induction disk and provides better resolution 

data readings [10]. One of the main advantages of the AMR system compared to an 

analogue meter is that it reduces the number of DSO employee site visits. Thus, bills can 

be adjusted based on actual consumption rather than estimated consumption of energy. 

AMR systems have been evolved over time, and today it is a trendy research area. With 

that, different advanced functionalities have been added to the AMR systems, so that 

naming used by different groups has been changed from AMR to smart meters [10].  In 

Finland, smart meters have been installed in over 99 % of premises [19]. Therefore, it is 

possible to get more up to date consumption data and use them for different activities for 

permitted parties. The next generation metering techniques with bidirectional communi-

cations are called advanced metering. Advanced metering systems include all the func-

tionalities of AMR, but AMR may not include all the advanced metering functionalities. 

Advanced metering systems can be used to collect information with different resolutions 

[4]. However, in this thesis, hourly measurement data are used in the data set. 

2.3 Customer class load profiles in Finland 

Customer class load profiles can be used to explain the aggregated behaviour of the 

customers in different customer classes such as household, commercial and industry 

etc. The load profiling term is used to form such a customer class load profile for different 

customer classes. Before introducing AMR systems, load profiling was done by measur-

ing a sample of customers, classifying them by the type of electricity use, and generaliz-

ing the generated results to cover the other customers in the same type. The bottom-up 

approach also has been used as an alternative method for this [4]. In different years, 

several customer class load profiles were published in Finland. For instance, in the 
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1980s, large scale cooperation in load research was started by Finnish utilities. During 

this project, over 1000 customers’ hourly measurement data were collected, and after 

that first measurement period (i.e., 1983 -1985), 18 customer class load profiles were 

published in 1986 [4]. Then, another set of measurements were collected in the following 

measurement period (i.e., 1986 - 1988), and one more set of customer class load profiles 

was published. The total number of customer load profiles that were published at the end 

of the above mentioned first and second measurement periods was 46. These customer 

class load profiles mainly belong to classes such as housing, agriculture, industrial, com-

mercial and administration. Each of these classes is further divided into subclasses ac-

cording to different consumption patterns that describe its features such as the type of 

heating solution or building type. In Finland, these load profiles are the only publicly 

available comprehensive set of customer class load profiles [4]. After that, several other 

new customer class load profiles were published, but those are only used by 15 compa-

nies who participated in that project. And also, some companies have built individual 

customer class load profiles for some of their large power consumers.  

2.4 Significant factors affecting customer load profiles 

Load analysis is beneficial for finding the factors affecting the power consumption of dif-

ferent customers. The overall general load behaviour of customers in a customer class 

can be predicted by observing its customer class load profile and customer type of the 

class. For that, Figure 2.5 shows average load profiles on Mondays of the first week of 

the four seasons of 2016 for customers living in energy-efficient detached houses with 

electric heating. The average load profiles shown in the figure are taken from the data 

set used for this thesis. More details on this data set are covered in Chapter 4. This figure 

represents only the average load profiles, and individual customer load profiles within 

the customer class contain more details such as load fluctuations and peaks.   

As seen in Figure 2.5, the power consumption varies throughout the day. The power 

consumption between time 00:00h and 05:00h is significantly lower compared to other 

hours of the day because residents usually use this time interval to sleep; thus, activity 

levels are minimum. The initial rise in daily residential power consumption in the average 

load profile can be observed from around 05:00h to 08:00h, because the residents in the 

houses wake up in the morning and get ready for work. Then the level of power con-

sumption becomes either slightly stable or reduce until 15:00h with a small slope. The 

reason for this observation is that the daytime activities are limited in detached houses, 

and one or several persons of the family may have left for work or school. However, 

electricity consumption starts to rise again during the afternoon and the highest peak can 
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be observed in the evening due to after work entertainment, cooking and dining activities. 

This average load profile represents a specific customer class, and its consumption pat-

tern varies depending on the common activity type of the customer class on different 

days of the week. For instance, the presence of a resident in a detached house could be 

considered as comparatively high on weekend days during the daytime, so that activity 

level will also be different on weekend days. Thus, the average power consumption dur-

ing the daytime on a weekend day can be slightly higher than the typical weekday. In 

contrast, the evening, the power consumption on a weekday can be higher than a day 

on the weekend [16]. Hence, customer behaviour and residence characteristics can 

cause fluctuations in the power consumption of load profiles throughout the day.  

 

 

 

 

 

 

 

 

The annual power consumption of a consumer also depends on different other factors 

such as the number of occupants of a dwelling, geographical location and weather fac-

tors etc. Although not applicable to Finland, the geographical location can affect rural 

and urban areas in other countries. The lifestyles of people from rural areas are quite 

simple, and necessities are lower than urban living people. Moreover, urban houses are 

equipped with modern type of electrical equipment such as cookers, heaters and other 

appliances. Therefore, residents in rural areas consume less electricity during a day 

compared to residents in urban houses. Furthermore, geographical location may also 

cause climate factors that typically occur quite identically in successive years such as 

temperature, humidity and daily light hours. Notably, people in countries close to the 

equator have to cope with hot climate conditions to make their lives comfortable; in con-

trast, countries close to poles must cope with cold conditions. So that heating and cooling 

solutions must be used.  These seasonal variations of power consumption due to heating 

energy consumption can be clearly seen in Figure 2.5. Furthermore, daylight variation 

Figure 2.5 Average load profiles on Mondays of the first week for the 4 seasons in 
2016 for a class of customers who live in energy-efficient detached houses with electric 

heating in a specific area, Finland 
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throughout the day can cause fluctuations of hourly power consumption due to different 

uses of domestic appliances (e.g., lighting loads). The electricity consumption of custom-

ers also can be affected slightly by wind speed and direction, but the effect is compara-

tively small [4]. Likewise, above-discussed factors could affect load profiles, and they are 

essential to predict and exhibit the behaviour of the customers. 

2.5 Relevant previous research activities in Tampere University 

Since the customer class load profiles described in subchapter 2.3 are more than 28 

years old today, those load profiles can be outdated in the current power system. Today, 

consumption patterns of customers have changed considerably with the competitive 

heating market and introduction of new types of loads as described in subchapter 2.1 

such as electric, plug-in hybrid vehicles, heat pumps. Antti Mutanen has presented some 

defect fixing methods in existing load profiles in his doctoral thesis [4]. In that PhD thesis, 

some possible further improvements to increase the accuracy of customer class load 

profiles have been discussed by using methods such as temperature dependency, cus-

tomer classification and customer behaviour change detection. The different clustering 

algorithms like K-Means, ISODATA, GMM can be used for customer classification, and 

they provide a good basis for analyzing the behaviour of customers further [3][6][7]. It 

indicates that clustering improves the accuracy of the load profiles, and it can be used to 

update both customer class and its load profiles simultaneously. Therefore, clustering 

can be done periodically in order to improve the accuracy of load profiles. Furthermore, 

Mutanen et al. have defined 14 type consumer classes based on consumer’s activity, 

fuse size, and average annual energy consumption as an alternative to the Finnish na-

tional customer classes described in subchapter 2.3 [5]. The outcomes from these pre-

vious research activities are useful for this thesis and are also used as supportive mate-

rials for the synthetic load profile generation. Therefore, in this thesis, type consumer 

classes are used and introduced in chapter 4. 

2.6 Synthetic load profile generation and associated theories 

Many smart grid simulations such as in distributed power generation simulations and 

renewable energy simulations require customer electricity load profiles frequently. How-

ever, the smart meter data of the customers may not be readily available for other parties 

due to GDPR, as explained in the introduction of this thesis. Therefore, one solution to 

this load profile requirement for smart grid simulations is to represent the consumption 

with its customer class load profile. Such a general load profile might be accurate enough 

depending on the objective of the simulation. But the customer class load profile does 
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not reflect the load behaviour of each customer in a specific power distribution area.  For 

comparison purposes, Figure 2.6 shows a load profile of a customer and the correspond-

ing customer’s customer class load profile from the data set. According to Figure 2.6, the 

customer class load profile hides a lot of essential details and features of the actual cus-

tomer load profile. The literature shows that customer load profiles can be generated to 

overcome this problem by using stochastic processes to represent the consumption at 

each time step, which is known as synthetic load profile generation [8][13][16][18][22] 

[23][25]. In this thesis, a traditional, a new approach, and an adaptive methodology for 

generating more realistic synthetic load profiles by using the top-down analysis method 

will be presented with observations and analysis. The Markov chain related definitions 

with different statistics theories can be applied to build a synthetic load profile generator. 

Furthermore, machine learning concepts can be used to optimize the output of the load 

profiles to get closer to desired results (e.g. multinomial logistic/multiple linear regres-

sion). The background of used theories from the above areas will be discussed in the 

next chapter (i.e. chapter 3). 

  

Figure 2.6 An individual customer load profile (left) and the corresponding customer class 
load profile (right) 
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3. DEFINITIONS AND THEORIES 

This chapter presents the definitions and theories used in this research, and they serve 

as a guide for the methods and analysis presented in the following chapters. 

3.1 Markov chain 

3.1.1 Definition of Markov chain 

Markov chain (MC) is named after the Russian mathematician A. A. Markov (1856 - 

1922), who is known for his work on number and probability theories. MC is an important 

mathematical tool for stochastic processes and gives random outcomes. MCs are often 

used to study temporal and sequential data. A stochastic process is a mathematical 

model that evolves in a probabilistic way over time. The underlying idea of MC is to 

simplify some predictions of the stochastic process. The present state of a stochastic 

process depends only on the previous states. As explained later in subchapter 3.1.4, the 

number of previous states in the process considered for the MC depends on the degree 

of order of the MC. For example, for a first-order MC, the next state of the process de-

pends only on the present state, not the previous states. The following definitions are 

given for the first-order MC.  

Definitions: 

Consider a MC with the process 𝑋0, 𝑋1, 𝑋2, …… , 𝑋𝑡 for the following definitions. 

1. The state of a MC at time 𝑡 is the value of 𝑋𝑡. 

e.g. if 𝑋𝑡 = 1, the process is at state 1 when time is t 

2. The state-space of a MC (i.e. denoted as 𝑆) is the set of all existing states. The size 

of 𝑆 is a finite value. 

e.g.  𝑆 = {1, 2, 3, 4, 5} 

3. A trajectory of a MC is a set of specified values for 𝑋0, 𝑋1, 𝑋2, … 

e.g.: if 𝑋0 = 1, 𝑋1 = 3, and 𝑋2 = 5, then the trajectory from t = 0 to t = 2 is given 

as 1, 3, 5 

 

As explained earlier, the basic property of a MC is that only the state of the latest time 

step in a trajectory affects to the next time step (i.e. for first-order MC). This Markov 
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property can be formulated in mathematical notation as in (3.1), where 𝑋𝑡+1 depends on 

𝑋𝑡, and it does not depend on 𝑋𝑡−1,…..𝑋1 or 𝑋0. 

 𝑃(𝑋𝑡+1 = 𝑠𝑡+1 | 𝑋𝑡 = 𝑠𝑡 ,  𝑋𝑡−1 = 𝑠𝑡−1, … … . 𝑋0 = 𝑠0) = 𝑃(𝑋𝑡+1 = 𝑠𝑡+1 | 𝑋𝑡 = 𝑠𝑡) (3.1) 

where 𝑠0, … . 𝑠𝑡 represent the states respectively when time is 0 to t [9]. 

Definition: Let a sequence of discrete random variables be {𝑋0, 𝑋1, 𝑋2, …… , 𝑋𝑡} and this 

sequence is said to be a MC if is follows the Markov property defined in (3.1). 

3.1.2 Determining the states 

A state-space can be selected in different ways for a process. In the literature, three 

approaches to defining a state-space can be found. In the context of synthetic load profile 

generation, a state represents an interval of power consumption values. One approach 

to determining state-space is to divide the total range of possible values in the data into 

equal length-segments. However, due to the lack of data distribution between states, this 

may lead to states with few transitions and improper modeling. 

 

e.g. Let us consider a dataset 𝐷 = {𝑎0, 𝑎1 …}), 

Where the length of each interval = 
max(𝐷)−min(𝐷)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠
  

 

Alternatively, there is another approach in the literature that can define the limits of states 

by splitting the cumulative density function. Therefore, states are defined as having the 

same number of transitions for each state. Figure 3.1 shows the above-mentioned 

procedure for a state-space with 10 states. 

 

 

 

 

 

 

 

 

 

Figure 3.1 Dividing the cumulative density function into 10 equal divisions in order to define 
a state-space with 10 states 
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Moreover, another method used to define the states of an MC application used in wind 

speed modeling can be found in the literature [2]. This method is also valid for use in the 

application for generating synthetic load profiles, because it can be used for any data set 

independently of the application. First, the mean value (𝜇) and standard deviation (𝜎) are 

determined using the probability distribution of the dataset. Then, the states are defined 

using the divisions of 𝜇 and 𝜎 as shown in Figure 3.2. 

 

 

 

 

 

 

 

 

 

3.1.3 Transition probability matrix 

A transition diagram can be used to show transitions between states in each time step, 

and the diagram also can be summarized in a matrix. The matrix describing MC is called 

the Transition Probability Matrix (TPM) and is an important tool in MC analysis. 

Let 𝑃 be a transition matrix of a MC process, and 𝑝𝑖𝑗 represents the element in 𝑖𝑡ℎ row 

and 𝑗𝑡ℎ column of 𝑃. Each element of P satisfies the following features at time 𝑡. 

1. Rows of 𝑃 represent now, or from (𝑋𝑡) state; 

2. Columns of 𝑃 represent next, or to (𝑋𝑡+1) state; 

3. The conditional probability for next = 𝑗, when now = 𝑖, which also means the 

probability of moving from state 𝑖 to state 𝑗 is given by the element 𝑝𝑖𝑗 of 𝑃. 

 𝑝𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖) (3.2) 

The transition probability matrix (𝑃) must represent all states in the state-space 𝑆. Let 

the size of 𝑆 be 𝑁, therefore, 𝑃 becomes a square matrix with a dimension of 𝑁 𝑥 𝑁 for 

Figure 3.2 Defining the Markov chain states using 𝝁 and 𝝈 
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first-order MC. The sum of all the probabilities in each row of 𝑃 is equal to 1. For example, 

for the 𝑖𝑡ℎ row, 

 
∑𝑝𝑖𝑗

𝑁

𝑗=1

= ∑ 𝑃(𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖)

𝑁

𝑗=1

= 1 (3.3) 

A MC is called a homogeneous if its transition probabilities 𝑝𝑖𝑗 are independent of time. 

That means, the transitions follow the same pattern without matter of when it started. In 

contrast, a non-homogeneous MC has transition probabilities with functions of time. In 

this thesis, the power consumption values of different hours is predicted by using previ-

ous power states. Thus, non-homogeneous MCs will be used. 

Definition If a state 𝑠𝑡 of a MC cannot leave from that state, it is called as an absorbing 

state (i.e.  𝑝𝑖𝑖 = 1 , 𝑝𝑖𝑗 = 0  𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 ∈ 𝑆 𝑎𝑛𝑑 𝑖 ≠ 𝑗). Therefore, once the outcome is 

reached to an absorbing state, it is impossible to make a transition to another state [9]. 

3.1.4 Constructing the transition probability matrix 

A MC can be characterized based on its degree of orders. In a first order MC, the prob-

ability of a transition to a state at time 𝑡 depends only on the immediately preceding state 

at 𝑡 − 1 as mentioned earlier. Similarly, second or higher orders MCs are processes that 

the current state depends on two or more preceding states. With the symbols used in 

subchapter 3.1.3, the transition probability matrix for a first-order MC can be presented 

as below. 

 

𝑃 = [

𝑝11 𝑝12

𝑝21 𝑝22

… 𝑝1𝑁

… 𝑝2𝑁

⋮ ⋮
𝑝𝑁1 𝑝𝑁2

⋮ ⋮
… 𝑝𝑁𝑁

] (3.4) 

If 𝑛𝑖𝑗 is the number of transitions from state 𝑖 to state 𝑗 in the sequences in the data set, 

the transition probabilities can be estimated using the expression in (3.5), because the 

summation of probabilities of a row in transition matrix is equal to 1 as shown in (3.3).  

 𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑ 𝑛𝑖𝑘
𝑁
𝑘=1

 (3.5) 

By using (3.5), the homogeneous transition matrix can be constructed from the relative 

frequencies (i.e. from state 𝑖 to state 𝑗) in the sequences. In contrast, the non-homoge-
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neous transition matrix can be estimated for each time t by considering the relative fre-

quencies at time t in the sequences. A second-order MC can be illustrated symbolically 

as below. 

 

𝑃 =  

[
 
 
 
 
 
 
 
𝑝111 𝑝112

𝑝121 𝑝122

… 𝑝11𝑁

… 𝑝12𝑁

⋮ ⋮
𝑝1𝑁1 𝑝1𝑁2

⋮ ⋮
… 𝑝1𝑁𝑁

𝑝211 𝑝212

𝑝221 𝑝222

… 𝑝21𝑁

… 𝑝22𝑁

⋮ ⋮
𝑝𝑁𝑁1 𝑝𝑁𝑁2

⋮ ⋮
… 𝑝𝑁𝑁𝑁]

 
 
 
 
 
 
 

 (3.6) 

In a second-order transition matrix, the transition probability 𝑝𝑖𝑗𝑘 represents the proba-

bility of the next state 𝑘 if the preceding states were 𝑖 and 𝑗 respectively. It can be seen 

that the sum of the probabilities of each row is also equal to 1 as in (3.3) for a higher-

order MC transition matrix. 

A high number of states is better for a detailed MC model because it can capture more 

precise variations of the random process. When the number of states is increased, the 

size of the transition matrix is also increased because the size of the matrix depends on 

the number of states as explained earlier in the same subchapter. Moreover, the availa-

ble data will be distributed across the states when the number of states is increased. 

Therefore, a higher number of states might lead to an over-fitting model because there 

is less data available to compute the probabilities for transitions using (3.5). Furthermore, 

a higher-order MC contains more transitions, as clearly seen from the sizes of the tran-

sition matrices illustrated above for the first and second-order MCs in the same subchap-

ter. Therefore, a higher-order MC significantly reduces the amount of data available to 

calculate the probability of each transition in (3.5), because the available data are dis-

tributed among the transitions [25]. 

3.2 Multinomial logistic regression 

A logistic regression model can be used to classify observations into one of two classes. 

In case of more than two classes, multinomial logistic regression is used, and it is also 

called softmax regression. In this thesis, the adaptive MC in the literature is developed 

with multinomial logistic regression. In other words, the transition matrix of the adaptive 

MC is built based on time-related inputs and classification of power states. An explana-

tion of how to use this section in a real MC application is described in subchapter 5.6. A 

multinomial logistic regression has a target 𝑦 which ranges more than two classes. 

Therefore, the training data set used for multinomial logistic regression forms  
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{(𝑥(1), 𝑦(1)),… . . , (𝑥(𝑚), 𝑦(𝑚))} for 𝑚 observations, where 𝑥(𝑖) ∈ ℛ𝑛+1 is the number of in-

put features, 𝑦(𝑘)  ∈ {1, … , 𝐾}, and 𝐾 is the number of classes.  

In multinomial logistic regression, the probability of 𝑦 being each class 𝑘 (i.e. 𝑃(𝑦 = 𝑘|𝑥)) 

need to be estimated for a given input features set. For that, the generalization of sig-

moid, which is called the softmax function, can be used as in (3.7). 

 𝜑𝑖 =
𝑒𝜂𝑖

∑ 𝑒𝜂𝑗𝐾
𝑗=1

 (3.7) 

 𝜂𝑖 =  𝜃𝑖
𝑇𝑥  (3.8) 

where i ∈ {1,… , K}, 𝑥 is the input features vector (i.e.  𝑥 =  𝑥(𝑖) = (1, 𝑥1, 𝑥2 …… . 𝑥𝑛), 𝑥 ∈

ℛ𝑛+1) and 𝜃 is coefficients of the model (i.e.  𝜃 = (𝜃1, 𝜃2 …… . 𝜃𝐾),  𝜃𝑖 ∈ ℛ𝑛+1). Therefore, 

hypothesis (i.e. ℎ𝜃(𝑥)) gives the estimated probabilities of K number of classes for a 

given input features set (i.e. 𝑥 =  𝑥(𝑖)) as below. 

 ℎ𝜃(𝑥) =  [

𝑃(𝑦 = 1|𝑥)
𝑃(𝑦 = 2|𝑥)

⋮
𝑃(𝑦 = 𝐾|𝑥)

] =
1

∑ 𝑒𝜃𝑗
𝑇𝑥𝐾

𝑗=1
[
 
 
 𝑒

𝜃1
𝑇𝑥

𝑒𝜃2
𝑇𝑥

⋮

𝑒𝜃𝐾
𝑇𝑥]

 
 
 

 (3.9) 

The ℎ𝜃(𝑥) is 𝐾𝑥1 dimensioned vector and 𝜃 is a 𝐾𝑥(𝑛 + 1) dimensioned matrix. Note 

that 
1

∑ 𝑒
𝜃𝑗
𝑇𝑥𝐾

𝑗=1

 in (3.9) normalizes the distribution and therefore, sum of the elements in 

ℎ𝜃(𝑥) equals to 1. The multinomial logistic regression has the following cost function. 

 𝐽(𝜃) =  −[∑ ∑ 1{𝑦(𝑖) = 𝑘} log
𝑒(𝜃𝑘

𝑇𝑥(𝑖))

∑ 𝑒𝜃𝑗
𝑇𝑥(𝑖)𝐾

𝑗=1

𝐾

𝑘=1

𝑚

𝑖=1

] (3.10) 

where 𝑚 is the length of the training data set. The function 1{} which is called “indicator 

function”, evaluates 1 or 0 if the condition in the brackets is true or false respectively (i.e. 

1{𝑎 𝑡𝑟𝑢𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡} = 1, 1{𝑎 𝑓𝑎𝑙𝑠𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡} = 0).  

The objective is to obtain the minimum value of the cost function to find the coefficients 

of the model. But analytically the minimum cost function cannot be solved. Thus, an 

iterative optimization algorithm can be used to find the coefficient. For that, the formula 

for gradient is obtained as in (3.11) by taking the derivatives of (3.10). 

 ∇𝜃𝑘
𝐽(𝜃) =  − ∑𝑥(𝑖)[1{𝑦(𝑖) = 𝑘}− log

𝑒(𝜃𝑘
𝑇𝑥(𝑖))

∑ 𝑒𝜃𝑗
𝑇𝑥(𝑖)𝐾

𝑗=1

]

𝑚

𝑖=1

 (3.11) 

∇θk
J(θ) is a vector and its lthelement is the partial derivative of J(θ) with respect to the 

lth element of θk. Likewise, the minimum of J(θ) can be calculated by using a standard 

optimization package and the gradient function [21]. 
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4. AVAILABLE DATA FOR THE STUDY 

This chapter describes the content of the study material used in this study. Mutanen et 

al. have defined 14 type consumer classes based on consumer’s activity, fuse size, and 

average annual energy consumption as a replacement for the Finnish customer classes 

described in subchapter 2.3 [5]. This study material uses those defined type consumer 

classes and they are presented in Table 4.1. The study material contains a smart meter 

measurement data set (i.e. referred as “measured data set” in the next subchapters) 

from customers located in a specific area of Finland, and previously calculated statistical 

properties for a measured large data set collected from different areas of Finland. How-

ever, the study material does not contain the smart meter measurements of the large 

data set. Therefore, the measured data set is used as the input for the synthetic load 

profile generator as explained in the following chapters, because it is the only consump-

tion data set available in the study material. The large data set was used to analyze and 

calculate different parameters in previous research activities. The content of each data 

set is described below in detail. 

Table 4.1 Definition of the type consumer classes used in this thesis (source: [5]) 

 

The previously computed data in the study material for the large data set consist of dif-

ferent calculated type consumer load profiles in the year 2018 calendar, hourly energy 

distributions for four different distribution models (i,e. normal, log-normal (Logn), Gauss-

Type 
consumer 

class 
Activity description 

Energy 
con-

sumption 
(MWh/a) 

1 Summer cabin 1.0 

2 Apartment, 1 - phase connection 1.5 

3 Apartment, 3 - phase connection 2.5 

4 Detached house, no electric heating 5.0 

5 Detached house, energy efficient, electric heating 10 

6 
Detached house, direct electric heating and timed do-
mestic water heater 

16 

7 Detached house, electric storage heater 19 

8 Outdoor lighting, pecu switch 34 

9 Farm, cattle farming 42 

10 Business, short opening hours 50 

11 Industry, small-scale, 1 - shift 180 

12 Business, long opening hours 600 

13 Industry, connected to medium voltage network, 1 - shift 1000 

14 Industry, connected to medium voltage network, 3 - shift 6000 
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ian mixture model (GMM),  and Logn + GMM), hourly energy histogram and the 10 high-

est average peak powers for different calculation methods etc. Table 4.2 shows the num-

ber of customers in the large data set used to calculate the above data. 

The measured data set consists of hourly smart meter measurement data from 1682 

customers in 2016, and the customers are grouped according to the type consumer clas-

ses. Describing the content of this measured data set further, it includes sub data sets 

such as active power (kW) data for type consumer classes 1 to 14, imported reactive 

power measurement data for type consumer classes 10 to 14, and exported reactive 

power data for type consumer classes 11 and 13. The analysis in this thesis is carried 

out only for active power measurement data. Table 4.2 shows the number of customers 

for each type consumer class in the measured data set, and it will be useful to understand 

the differences in the results between type consumer classes described in the next chap-

ters. The size of the measured data set is 8784 x 1682 (i.e. 2016 is a leap year and 

therefore there are 8784 hours).  

Table 4.2  The number of customers available in the measured data set for each type con-
sumer class 

Type 
consumer 

class 

Number of customers 

Small data set  
(referred to “meas-
ured data set”) 

Large data set 

1 247 10246 

2 172 15375 

3 456 57734 

4 213 11453 

5 165 1759 

6 113 1600 

7 80 616 

8 36 1209 

9 35 207 

10 69 604 

11 24 77 

12 44 187 

13 21 115 

14 7 47 

 

As well as, there is a data matrix called “info2016” that includes time-related data (e.g. 

timestamp, season, month, day, hour etc.), long-term average temperature and hourly 

temperature measurement data for the geographical area of the measured customers. 

The size of this information matrix is 8784 x 12 and, it contains the data mentioned above 

for every hour of the measured data set. 
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5. METHODOLOGIES FOR GENERATING SYN-

THETIC LOAD PROFILES AND COMPARING 

THEM 

Generation of synthetic load profiles with traditional MC methodology can be found in 

several research activities in the literature. First, this chapter explains the algorithm of 

traditional MC for the application of synthetic load profile generation. Later, a slightly 

improved version of the traditional MC methodology for improving outputs will be pre-

sented as a new approach to synthetic load profile generation. In literature, another ap-

proach of MC using multinomial logistic regression models called “adaptive MC” can be 

found. The adaptive MC gives better seasonal variations in annual synthetic load profiles 

compared to the traditional MC. All the above three methodologies will be clearly ex-

plained with details in this chapter. The algorithms suggested in this chapter will be a 

good source for future research activities. In the end, a comparison between the tradi-

tional MC and suggested approach of MC will be provided.  

5.1 Traditional first-order Markov chain methodology 

A Markov model requires a finite number of Markov states to proceed with the steps of 

the chain algorithm. Therefore, it is crucial to choose an appropriate state-space system 

with an appropriate number of states to minimize the issues in the resultant output data 

(i.e. synthetic load profiles). In this thesis, the appropriate number of states is selected 

by running the MC algorithm several times with a different number of states, as explained 

in subchapter 6.1. A Transition Probability Matrix (TPM) of a Markov model is constructed 

based on the state space and the input data set. There is no precise way to define a 

state space for a Markov model. In the literature, different approaches to defining a state 

space are proposed according to the characteristics of the input data set. Those ap-

proaches are explained in subchapter 3.1.2 in details. The algorithm of a traditional MC 

to generate a synthetic load profile is explained in this subchapter step by step. The 

smart meter (SM) measurement data set described in chapter 4 is used as the input data 

matrix for this MC. The algorithm generates load profiles only for one type consumer 

class at a time. Therefore, the input data matrix only consists of the filtered measurement 

data for the relevant type consumer class. Assuming one hour time resolution with N 

number of states for a particular type consumer class, this matches to a TPM with a 

dimension of N x N. If the input data set has 𝑐 number of customers for the chosen type 
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consumer class, the matrix dimension of the input data set will be  8784 𝑥 𝑐 (i.e. the input 

data set contains measured data in 2016 and this year has 366 days). The load distribu-

tions of type consumer class (e.g. hourly distributions) are observed, and it can be seen 

that those load distributions differed over time. Therefore, the synthetic time series data 

must be time-independent, so that non-homogeneous TPMs are implemented in the 

model. Which means every hour, a different TPM will be constructed in the algorithm. 

Only precise subsets from the input data matrix will be used to calculate probability en-

tries of a TPM in each hour. For instance, only states recognized at hour 1000 are used 

to calculate the probabilities of transitions from hour 1000 to 1001 for a First-order MC 

(FOMC). The constructing of TPM is a straightforward process and, has been explained 

in subchapter 3.1.4. A FOMC is implemented in this thesis since higher-order MC re-

duces the amount of data available for constructing the TPM. The algorithm is described 

in the following text by outlining the major steps in order.  

1. Choose a consumer type, select the input data matrix and a suitable number of 

states. 

2. Define the state space for the input data matrix (i.e., smart meter measurements). 

Each state means an interval of the input data series. Since input data is used to 

determine the states, it is better to define states according to a statistical method 

so that an equal amount of data will be distributed among the states. Therefore, 

this will prevent as much as possible the absorbing states (i.e. also known as 

closed states) that cause breaking of MC (i.e., see subchapter 3.1.3). 

3. Convert the power values of the input data matrix into states and obtain the input 

states matrix. The state can be determined by comparing each time step's power 

value of the input data matrix with power intervals of each state in the state space. 

The state with the power interval that belongs to the input power value is chosen 

as the corresponding state for the time step and so on. 

4. Define the initial state, set it as the state at hour 1 in the output matrix. (i.e., be-

cause, for a FOMC, the first state needs to be given as an input to the algorithm). 

This initial state is randomly obtained based on the probability of each state in 

the first hour of the input state matrix (𝑐 𝑥 1 array). The probability of each state 

can be calculated based on the frequency of occurrence of each state in the first-

hour row of the input states matrix.  
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5. The following loop can be executed until the required hourly output data is cov-

ered. Since the initial state is selected randomly in step 4, the sequence gives 

hourly data from second hour onward.  

Let the current hour be  𝑛, 

5.1 Obtain the state at (𝑛 − 1)𝑡ℎ hour (say 𝑖) from the output data matrix 

(if, the current hour is 2, the previous state (i.e., 1st hour) is equal to 

the initial state). 

5.2 Find all the transitions at (𝑛 − 1)𝑡ℎ hour from input states matrix and 

generate non-homogeneous transition probability matrix (TPM) for 

all the found transitions (say 𝑃) 

5.3 Generate cumulative transition matrix for TPM from step 5.2 (say 𝐹) 

5.4 Generate a uniform random number between 0 and 1 (say 𝑈𝑖). 

5.5 Find the 𝑗𝑡ℎ column in the 𝑖𝑡ℎ row (i.e. state at (𝑛 − 1)𝑡ℎ hour) of the 

cumulative matrix such that, 

𝐹𝑖(𝑗−1) < 𝑈𝑖 ≤ 𝐹𝑖𝑗   

5.6 This column number 𝑗 is the state of the current hour and set it in 

the output matrix. 

5.7 State of the current hour (output of step 5.6) must be transformed 

into power values as below to represent the output as a power value 

at hour 𝑛. 

 Generate a uniform random number between 0 and 1 (𝑧) 

 Fit a Probability Density Function (PDF) (e.g. GMM) to the 

power values of the input data matrix for hour 𝑛. Derive Cumu-

lative Density Function (CDF) from PDF and sample the cor-

responding power value from this CDF in the range defined by 

the state 𝑗 using 𝑧  

At the end of this algorithm, a synthetic load profile will be created for the selected type 

consumer class. A random walk is performed to generate synthetic load profiles using a 

MC. In the literature, two different methods can be found for analyzing a time series using 

random walks. In this thesis, the Markov chain Monte Carlo simulation (MCMC) method 

is used (i.e. steps 5.4 - 5 .6 in the loop). Above explained steps of the traditional algorithm 

can be clearly understood by using a visually presented flow chart as in Figure 5.1. 
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5.2 Implementation of traditional Markov chain and its output 

The traditional Markov chain presented in subchapter 5.1 was implemented in MATLAB 

software and used to generate 100 load profiles for the type consumer class 7 by using 

SM data in the data set. At very first glance to the load profiles in the sample, it seems 

that each load profile has unexpected constant high amplitude spikes. Two such instan-

taneous load profiles from the sample are shown in Figure 5.2 below. The investigated 

reason for high and continuous spikes is the limited amount of data in the data set for 

the type consumer class. Moreover, another issue that was observed, the hourly peaks 

of the generated load profile are failed to track by the algorithm. Therefore, generated 

synthetic load profiles slightly deformed visually than the available measured load pro-

files. At least, none of the output load profile gives a visually satisfying result with com-

pared to the measured load profiles in the data set. 

  
Figure 5.2 Two synthetic load profiles that were generated from traditional Markov chain 

methodology for type consumer class 7 

Figure 5.1 Flow chart representation for traditional MC in synthetic load profile generation 
application 
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5.3 A suggested new approach for generating synthetic load 
profiles 

Due to poor results in generated synthetic load profiles by the traditional MC as dis-

cussed in the subchapter 5.2, the traditional MC algorithm is modified and introduced as 

another version of the traditional MC in this thesis in order to minimize the issues and 

generate more realistic synthetic load profiles. Though the input data is limited, another 

additional set of accessible data can be found in the study material. This suggested 

methodology uses data from that study material. The algorithm in the suggested meth-

odology works better than the traditional methodology, which will be analyzed later and, 

can be used when the amount of input data for the TPM is slightly small. However, it is 

always recommended to collect a considerably large data set for the type consumer class 

to provide as an input for the MC algorithm. In the design phase of this new algorithm, 

two alternative ideas were proposed related to the way of considering the previous hour’s 

state to construct the TPM. Both ideas were implemented as two separate methods in 

this thesis work to find the effect of these methods for the synthetic load profiles and their 

electrical parameters. Then most viable method will be chosen through the observations 

as explained later with decision makings. After initial tests and observations from the 

algorithm, some improvements were added to optimize the outputs to get closer to the 

desired outcomes of the load profiles (i.e. annual average energy, peak powers). Those 

improvements are included through both scientific and trial and error methods. The idea 

behind the suggested new approach for MC can be reviewed as below. 

The main issue in the traditional MC methodology is the continuous and high spikes 

through the time series as shown in Figure 5.2. Therefore, a method should be devel-

oped to control the peak power of each hour. In the study material, hourly power distri-

butions, peak power distributions, corresponding histograms and results from different 

other analyses for each type consumer class can be found. They were calculated and 

recorded for the large data set by Mutanen et al. [5]. The idea is, when the hourly peak 

power is known, the possible output power variations can be controlled between 0 and 

the peak power of that hour. In the traditional method, the power range is always con-

stant. So, a single state set is used with a constant maximum power for every hour. 

Therefore, a dynamic state-space generating scheme is suggested to that algorithm 

which generates a dedicated set of states according to the power limitation based on the 

hourly power histogram of a particular hour instead of a fixed state-space like in the 

traditional method. This can be achieved by slightly modifying the traditional MC algo-

rithm in order to redefine a dedicated state space for each hour. More precisely, step 2 

of the traditional algorithm in subchapter 5.1 should be added into the loop in step 5 at 
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the beginning of the loop. When the state space of an hour is changed, the input state 

matrix should also be redefined according to the dedicated new state space for the par-

ticular hour. When it comes to constructing the TPM, two different methods can be sug-

gested to generate non-homogeneous TPM for each hour based on the previous hour’s 

state. Those two methods will be explained in subchapters 5.3.1 and 5.3.2. 

5.3.1 Method of constructing the TPM by converting the previ-
ous hour’s state to the current hour’s state 

This method suggests converting the previous hour’s power in the input matrix into cur-

rent state space’s state matrix in order to construct the TPM. In the traditional MC meth-

odology, TPM represents the transitions that always uses one state-space.  Therefore, 

this method was proposed as an attempt to construct TPMs similar to the traditional MC 

methodology. When constructing the TPM for a FOMC, first, row vectors which represent 

the hour 𝑛 and 𝑛 − 1 will be obtained from the input data matrix, and both vectors will be 

translated into current hour’s (i.e. 𝑛𝑡ℎ hour) state-space states. The rest of the steps to 

construct the TPM is straightforward and, the probability of each element of TPM will be 

calculated based on the number of transitions from the previous state to the current state 

as in subchapter 5.5. The TPM representation for this method is shown in Figure 5.3. 

 

 

 

 

 

When the TPM is implemented by using "from" and "to" states of transitions with a single 

state space set (i.e., state space in the hour 𝑛) as shown in Figure 5.3, the previous 

hour's output state also must be converted into current state space in order to apply the 

MCMC correctly because the current and previous state sets might be in 2 different 

scales so that the same state number may have two different power intervals. In other 

words, the previous state can be a different state with respect to the current hour's state 

space when comparing the power values, and this can be further explained below. 

Let 𝑆𝑛 be state system at hour 𝑛, Then, the states set at hours 𝑛 − 1 and 𝑛 are given as,  

 𝑆𝑛−1 = {𝑠(𝑛−1),𝑟}        𝑟 ∀1… .𝑁   (5.1) 

Figure 5.3 The TPM representation for the method with converting the previous hour’s 
state into the current hour’s state 
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 𝑆𝑛 = {𝑠𝑛,𝑟}                   𝑟 ∀ 1… .𝑁    (5.2) 

where N is the number of states. 

If state spaces in 2 consecutive hours are in 2 different power scales (let 𝑉𝑛−1, 𝑉𝑛 where 

𝑉𝑛−1 ≪ 𝑉𝑛), and assuming states have been determined by dividing the maximum power 

equally into the number of states, the power of the state 𝑘 is given as, 

 
𝑠(𝑛−1),𝑘 = 𝑘.

𝑉𝑛−1

𝑁
 

(5.3) 

 
𝑠𝑛,𝑘 = 𝑘.

𝑉𝑛
𝑁

 
(5.4) 

  where 𝑠(𝑛−1),𝑘  ≠  𝑠𝑛,𝑘   ∵ 𝑉𝑛−1 ≪ 𝑉𝑛  

Therefore, a state in the previous hour’s state space set (i.e., 𝑠(𝑛−1),𝑘  )  is not equal to 

the state in the current hour’s state space set (i.e., 𝑠𝑛,𝑘). 

In order to find the previous hour’s output state, several mathematical operations can be 

performed. In this thesis, this conversion was implemented by converting the previous 

hour’s generated output power to a state of the current hour’s state space with several 

computational logics in order to avoid absorbing states. Let previous power value which 

is generated by the algorithm be 𝑣𝑛−1 and the previous state can be found by finding 𝑟 

such that,  

  𝑠𝑛,𝑟−1 < 𝑣𝑛−1 ≤ 𝑠𝑛,𝑟   (5.5) 

where 𝑟 is the state number. 

The above-mentioned computational logics shift one state forward and backwards from 

the found output state to find a non-absorbing condition if the output state is already 

giving absorbing states.  

5.3.2 Method of constructing the TPM without converting the 
previous hour’s state to the current hour’s state 

The second method is to construct the TPM by just keeping the previous state in the 

state space of the previous hour without any change. That means TPM's rows will rep-

resent the states in the previous hour's state space, and columns will represent the states 

in the current hour's states space. When constructing the TPM for a FOMC, transitions 

of states from hour n-1 to n will be collected from the row vectors in the input data matrix 
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same as in 5.3.1, but states will remain in corresponding hour's state space set. Com-

pared to the first method in 5.3.1, this method reduces the computational tasks in the 

algorithm, so that it increases the efficiency. The rest of the steps to construct the TPM 

is straightforward and, the probability of each element of TPM will be calculated based 

on the number of transitions from previous states to current states as described in sub-

chapter 5.5. The TPM representation for this method is shown in Figure 5.4. 

 

 

 

 

 

5.3.3 The suggested MC algorithm 

The suggested modified version of traditional MC algorithm for the synthetic load profile 

generator is presented in this subchapter. The primary modifications to the traditional 

MC to obtain the suggested MC are briefly explained in subchapter 5.3. Step 5.3 in the 

traditional MC can be performed with either method described in subchapters 5.3.1 or 

5.3.2. This algorithm is also using the same dimensional input matrix as in traditional MC 

and non-homogeneous TPM will be constructed in each hour. First, A FOMC is imple-

mented for the suggested methodology and later it is developed for a second-order MC 

to compare the variations between synthetic load profiles and, to show the effect of lim-

ited data availability for higher-order MCs. The algorithm is described in the following text 

by outlining the major steps in order. 

1. Choose a consumer type, select the input data matrix and define the number of 

states. 

2. Define state space for hour 1 (𝑆1). The power range of the state space is selected 

from 0 to the maximum power of the particular hour. The peak power of an hour 

can be determined from the power histogram of hour 𝑛 in the study material. 

3. Convert the power values of the input data matrix and obtain the input state matrix 

using the state space for hour 1 (i.e. 𝑆1). 

4. Define the initial state of the FOMC as described in step 4 of subchapter 5.1 for 

the traditional MC algorithm. 

Figure 5.4 The TPM representation for the method without converting the previous hour’s 
state into the current hour’s state 
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5. The following loop can be repeated until the required number of hourly data is 

covered in the synthetic load profile. Since the initial state is selected randomly 

in step 4, the loop gives hourly output power values from 2nd hour onward.  

Let the current hour be 𝑛, 

5.1 Define the state space for hour 𝑛 (𝑆𝑛). 

5.2 Convert the power values of the input data matrix into state matrix using 

the state space 𝑆𝑛 for hour n. 

5.3 Generate non-homogeneous TPM (say 𝑃) for all the found transitions 

from hour 𝑛 − 1 to hour 𝑛 by using either method in subchapters 5.3.1 or 

5.3.2. 

5.4 if the method in subchapter 5.3.1 was used in the previous step (i.e. step 

5.3), convert previous hour’s generated output power value into a state 

(say 𝑖) of current state space 𝑆𝑛 as explained at the end of the same sub-

chapter. Otherwise, keep the previous hour’s output state (say 𝑖) same as 

it is in previous hour’s state space (i.e., no conversion is required)  

5.5 Generate cumulative transition matrix for TPM from step 5.4 (say 𝐹). 

5.6 Generate a uniform random number between 0 and 1 (say 𝑈𝑖) 

5.7 Find the 𝑗𝑡ℎ column in the 𝑖𝑡ℎ row (i.e. state at (𝑛 − 1)𝑡ℎ hour) of the cu-

mulative matrix such that, 

𝐹𝑖(𝑗−1) < 𝑈𝑖 ≤ 𝐹𝑖𝑗  

5.8 Set column number 𝑗 as the state of the current hour and set it in the output 

matrix. 

5.9 State of the current hour must be transformed into power values as below to 

represent the outcome as a power value for hour 𝑛. 

 Generate another uniform random number between 0 and 1 

(𝑧). 

 Obtain CDF from the hourly GMM PDF (i.e. from the study ma-

terial) for hour 𝑛 from the study material. Sample the corre-

sponding power value from this CDF in the range defined by 

the state 𝑗 using 𝑧  

Above described steps can be presented in a flow chart as in Figure 5.5, and it only 

represents the process of generating a single synthetic load profile. Multiple synthetic 
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load profiles can be generated by running the process repetitively. The execution time of 

the algorithm can make faster when generating more than one synthetic load profile es-

pecially for large type consumer classes (e.g., 12, 13 and 14) by determining hourly state 

spaces, TPMs and Cumulative Transition Matrices (CTMs) and taking those steps off 

from the loop (i.e. reducing execution time by running the same repetitive steps only 

once).  

 

 

 

 

 
 

 

 

 

 

 

 

5.3.4 Comparison of the results between 5.3.1 and 5.3.2 

To find the effect of the two methods described in subchapters 5.3.1 and 5.3.2 for output 

synthetic load profiles, samples of 100 synthetic load profiles were generated for type 

consumer classes 1-13 by using two methods respectively. From the results, no signifi-

cant difference could be observed in the synthetic load profiles visually at first glance. As 

the next chapter explains, three measures will be used to find the accuracy of the MC 

algorithm in this thesis. Those are average annual energy, highest peak power and load 

duration curves. In this subchapter, a quick comparison was made between the two 

methods for the generated synthetic load profiles samples before the analysis in chapter 

5 using two of the measures. First, the annual average energy was calculated for the 

samples of each type consumer class and each method, and values are presented in 

Figure 5.5 Flow chart representation for suggested MC in synthetic load profile generation 
application 
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Table 5.1. According to Table 5.1, the annual energies are almost close to each other 

between the two methods. Moreover, the highest peak power was also calculated using 

the generated samples for each type consumer class and method, and any significant 

difference between the values of the two methods could not be observed.  However, 

several computational logics have been used in the implementation of state conversion 

method, and for this reason, this method takes comparatively large execution time com-

pared to the other method when generating more synthetic load profiles. The execution 

time of the algorithm is an important measure in load profile generation and analysis. 

Also, as subchapter 5.3.5 describes, the state conversion method could be conceptually 

ineffective and may give disproportional transitions in different cases. Therefore, consid-

ering the execution time and the circumstances in subchapter 5.3.5, the rest of the com-

parisons in this thesis will be continued with the method described in subchapter 5.3.2 

(i.e., without the state conversion method). 

Table 5.1 Evaluation of annual average energies for the generated samples of synthetic load 
profiles with two methods as described in subchapter 5.3.1 and 5.3.2 

 

5.3.5 Potential issues arising from the method outlined in 5.3.1; 
With examples 

The hypothesis used in the state conversion method is to keep the previous hour's input 

state vector in the current state space instead of the previous hour's state space, so that 

Consmer 
Class 

Sample 
size of the 
generated 
synthetic 
load pro-

files 

Annual average energy (without temp. 
norm) (MWh) 

Difference 
(%) 

Markov chain 
with converting pre-
vious hour’s state 

into the current 
hour’s state space 

method 

Markov chain 
without converting 

previous hour’s 
state into the cur-
rent hour’s state 
space method 

1 100 0.864 0.867 0.35 

2 100 1.44 1.44 0.00 

3 100 2.33 2.34 0.43 

4 100 4.75 4.73 0.42 

5 100 9.50 9.50 0.00 

6 100 15.40 15.30 0.65 

7 100 17.46 17.64 1.02 

8 100 30.91 30.83 0.26 

9 100 43.38 43.50 0.28 

10 100 45.47 43.88 3.62 

11 100 162 160.53 0.92 

12 100 540 551 2.00 

13 100 840 821.58 2.24 

14 50 4625.48 4521.05 2.31 
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format of the TPM will be identical to the form of traditional MC methodology's TPM (i.e. 

see Figure 5.3). However, this method creates a conceptually high number of hits in the 

last rows of the TPM when the previous hour's maximum power is larger than the current 

hour's maximum power due to different scales in the state spaces. Also, when the previ-

ous hour's maximum power value is smaller than the current hour's maximum power, the 

process will be less effective due to sub optimal use of TPM. These two scenarios can 

be further understood by using the numerical example presented below. Figure 5.6 

shows TPM representation for the case when the previous hour's state space's scale is 

larger than the current hour's state space’s scale. 

Let the number of states for the type consumer class be 10 and states are defined using 

equal division method, maximum power at hour n, 𝑉𝑛 = 20 kW. Then, the state space at 

hour n is given as, 

𝑆𝑛 = {2, 4, 6, 8, 10, 12, 14, 16, 18,20}  𝑘𝑊   

Next, consider the 2 cases described in the beginning of this subchapter. 

Case 1: when maximum power at hour n-1 is less than maximum power at hour n 

( 𝑽𝒏−𝟏 < 𝑽𝒏 , assume 𝑽𝒏−𝟏 = 𝟏𝟎 𝒌𝑾) 

If above state-space 𝑆𝑛 is used to translate the power values at hour 𝑛 − 1, the maximum 

possible state that can be found in the input states vector becomes 5, because of the 

maximum power at the hour 𝑛 − 1 is 10 kW. Therefore, rows 6 to 10 in the TPM will be 

0 (sub optimal use of TPM) 

 

 

 

 

 

 

Case 2:  when maximum power at hour n-1 is greater than maximum power at hour 

n ( 𝑽𝒏−𝟏 > 𝑽𝒏 assume 𝑽𝒏−𝟏 = 𝟑𝟎 𝒌𝑾 )  

If state space 𝑆𝑛 is used to translate the power values at hour 𝑛 − 1, all the power values 

above the maximum power at hour 𝑛 (i.e. 20 kW) do not anymore get a room for a state 

higher than 10. Therefore, all the power values above 20 kW at hour 𝑛 will be counted 

Figure 5.6 Matrix representation when maximum power at the previous hour is higher than the 

current hour 
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for the last state (i.e. 10) of 𝑆𝑛. So, there will be disproportionally a high number of hits 

for the last row in the TPM. 

5.4 Comparison between the suggested and traditional meth-
odologies 

As a summary, the main differences between the two methodologies can be listed as 

below.  

 Dedicated state space for every hour 

 The input state vector of each hour is defined according to the corresponding 

state space of the hour 

 The output state of an hour is translated into power by using the cumulative prob-

ability function from the hourly distributions of the large data set. In the traditional 

method, the cumulative probability function is determined by using the hourly dis-

tributions of the measured SM data set. 

These differences come along as several additional or modified steps in different loca-

tions of the traditional MC algorithm (i.e. modified version of traditional MC) as explained 

in subchapter 5.3. However, the same functionalities of these steps can be combined 

into a one and included into a single location (i.e., inside step 5.7) of the traditional MC 

as an alternative algorithm to the suggested methodology. Nevertheless, it is easier to 

understand the process with the algorithm presented in this thesis, rather than adding all 

the steps into a single step directly.  

To compare the outputs of the suggested and traditional methodologies, two samples 

with 100 synthetic load profiles for type consumer class 7 was generated using two meth-

odologies. Figure 5.7 shows a load profile for the customer number 25 in the measured 

data set with the closest two synthetic load profiles that were generated from traditional 

and suggested MC methodologies. The index used to find most approaching synthetic 

load profile is the minimum MAPE and RMSE combination of synthetic load profile in the 

samples compared to the measured load profile. It should be noted that every synthetic 

load profile generated by traditional methodology has constant high peaks with a value 

close to the maximum power of the state space, and reasons for this is discussed in the 

subchapter 5.2. For instance, in the presented synthetic load profile from traditional 

methodology has a constant band of spikes from hours around 0 to 3000 and 6000 to 

8760. Moreover, the same high spikes can be seen hours from around 3000 to 6000 as 

well, but less frequently. These variations have slightly deviated when compared to the 

measured customer load profile in Figure 5.7. However, the synthetic load profile from 
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suggested methodology shows spikes with varying amplitudes, and also the upper and 

lower bands have followed the measured customer’s load profile quite similarly. Still, 

slight spikes can be seen throughout the time series in the synthetic load profile from 

suggested methodology also, but the values of the spikes are limited, and they show 

similar characteristics as in measured customer load profile. (e.g.  hours between 3000 

and 6000). The presence of spikes in a synthetic load profile must be acknowledged 

because a synthetic load profile generator gives a probabilistic load profile based on the 

provided input data set and random uniform numbers as for MCMC in the algorithm. The 

synthetic load profiles from the traditional methodology have RMSEs in the range of 2.12 

kW – 2.63 kW compared to the data of customer number 25 in the measured data set, 

while the suggested methodology gives only RMSEs in the range of 1.71 kW - 1.86 kW. 

Moreover, RMSEs were calculated for all the synthetic load profiles in the samples 

against the measured data set and results were in the range of 1.78 kW – 3.43 kW and 

1.39 kW– 2.91 kW for traditional and suggested methodologies respectively. The se-

lected load profiles of Figure 5.7 have RMSE of 2.31 kW and 1.73 kW respectively for 

traditional and suggested methodologies. Based on these observations, it can be con-

cluded that the suggested MC methodology is giving better output load profile compared 

to the traditional MC methodology. 

 
 
 
 
 
 
 
 
 

 
(a) 

 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 

 
(c) 

 
Figure 5.7 Generated (a) suggested vs (b) traditional synthetic load profiles vs (c) a most 

approaching load profile in SM data set (consumer type 7 customer 25) 
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5.5 The suggested approach for second-order Markov chain 

In this thesis, the effects of FOMC vs Second-order MC (SOMC) for the output synthetic 

load profiles were observed before carrying out the main analysis. The suggested new 

methodology is used to implement the algorithm for SOMC over traditional MC due to 

the conclusion from subchapter 5.4. The steps related to a SOMC should be added or 

modified in the methodology explained in subchapter 5.3.3 for the implementation of 

SOMC, because steps given in subchapter 5.3.3 are developed for a FOMC. More about 

FOMC and SOMC have been clearly defined in subchapter 3.1.4.  

The SOMC requires two initial states for first 2-time steps at the beginning of the MC. 

These two initial states will be randomly selected based on the probability of each state's 

occurrence. The state at the 1st time step is found similarly as in FOMC algorithm. Once 

the first state is selected, transitions from that state at hour 1 are chosen. Thus, the 

probability of getting each state in 2nd time step from the previously found state can be 

calculated by using the hit counts and the second state can be initialized randomly by 

using these state probabilities. After selecting initial states, in order to find the next state 

in each hour, transitions from 2 previous output states are used to construct the TPM in 

SOMC. Constructing the TPM is a straightforward process and similar to the steps ex-

plained in subchapters 3.1.4 and 5.3.3. The dimension of the TPM will be (N x N) x N, 

where N is the number of states in the state space. If the output state at (𝑛 − 1)𝑡ℎ hour 

is 𝑖 and (𝑛 − 2)𝑡ℎ hour is 𝑗, row 𝑖𝑗 of TPM represents transitions from states 𝑖𝑗 to others, 

and next state 𝑘 can be found with the random walk procedure as described in the sug-

gested algorithm for FOMC. This SOMC also implemented in MATLAB and used to gen-

erate 100 synthetic load profiles samples for each type consumer class. For these sam-

ples, the average energies and peak powers were calculated and compared with the 

corresponding values from the generated samples for FOMC in subchapter 5.4. It can 

be observed that the average energies and peak powers are almost close to each other. 

However, as explained in subchapter 3.1.4, higher-order MC reduces the amount of the 

data available for constructing TPMs. Moreover, the measured data set used in the thesis 

also has a limited number of customers per each type consumer class. Due to these 

reasons, SOMC gave synthetic load profiles with limited combinations of input data set 

compared to FOMC.  Therefore, in this thesis, the final analysis will be carried out with 

FOMC rather than SOMC. 
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5.6 The adaptive Markov chain in the literature 

In the literature, a synthetic load profile generator has been developed by using binomial 

logistic regression and the MC model (i.e. also known as an ‘adaptive MC’) [23]. Accord-

ing to the analysis of that research, adaptive MC has minimized error between aggre-

gated SM data and synthetically generated data, as well as, it has successfully captured 

seasonality as compared to traditional MC. In this thesis, the same adaptive MC is ex-

plained step by step clearly, which cannot be found in the literature. 

The idea behind adaptive MC is to generalize the concept of time-inhomogeneity without 

loss of accuracy. For that purpose, each element in a row of TPM is represented by a 

multinomial logistic regression ℎ𝑖𝜃(𝑥) that learns the corresponding transition probability 

of the element.  

 ℎ𝑖𝜃(𝑥) = [𝜑𝑖1     𝜑𝑖2   …… ..    𝜑𝑖(𝑛−1)     𝜑𝑖𝑛]  (5.6) 

Where          𝜑𝑖𝑗 =
𝑒

𝜂𝑖𝑗

∑ 𝑒𝜂𝑖𝑘𝑛
𝑘=1

 ,     𝜑𝑖𝑗(𝑥) ∈ [0, 1] , 𝜂𝑖𝑗 = 𝜃𝑖𝑗
𝑇𝑥 

Where 𝑖, 𝑗 represents an arbitrary row, column of TPM and 𝑛 is the total number of power 

states (i.e. also equal to the length of a row/column in TPM) respectively. In this applica-

tion, 𝑥 represents the time related features (i.e. 𝑥 = (1, ℎ𝑜𝑢𝑟, 𝑑𝑎𝑦, 𝑚𝑜𝑛𝑡ℎ)). 𝜃 denotes the 

vector of coefficients for the features. (i.e., 𝜃 = (𝜃0, 𝜃1, 𝜃2, 𝜃3)). The coefficients should 

be calculated using a learning process that aimed at minimizing a cost function. The 

theoretical background of multinomial logistic regression has been discussed in sub-

chapter 3.2. In this methodology, the hour feature is defined by using the values from 1 

to 24, where 1 = 0001 h and 24 = 2400 h and so on (i.e. ℎ𝑜𝑢𝑟 = {1, 2, …… , 24}). The day 

of the week is defined by using the values from 1 to 7, where 1 stands for Monday and 

7 for Sunday etc. (i.e. 𝑑𝑎𝑦 = {1,… . 7}). Also, the month feature can be defined as 

𝑚𝑜𝑛𝑡ℎ = {1,…12}, where 1 = January and 12 = December.  

For the sake of simplicity of explanation, one SM customer in type consumer class is 

considered from the data set in this subchapter. But the same methodology can be ex-

panded simply for a group of customers of the same type consumer class. First, a state-

space should be defined for the input data matrix and the input data matrix should be 

converted into states in order to obtain input state matrix as described in steps 2 and 3 

of the traditional MC algorithm. This input state matrix can be used as the overall training 

data set for the logistic regression, where each time step of the data set represented by 
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the three time-related features. Table 5.2 shows a sample training data set to demon-

strate how the training data set looks like. 

[
 
 
 
 
 
𝜑11 𝜑12 …
𝜑21 𝜑22 …
⋮ ⋮ ⋮

… 𝜑1(𝑛−1) 𝜑1𝑛

… 𝜑2(𝑛−1) 𝜑2𝑛

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

𝜑𝑛1 𝜑𝑛2 …

⋮ ⋮ ⋮
⋮ ⋮ ⋮
… 𝜑𝑛(𝑛−1) 𝜑𝑛𝑛]

 
 
 
 
 

 

Figure 5.8 The TPM representation with multinomial logistic regression 

 
Table 5.2 Demonstration of an overall sample training data set for a single customer 

Customer 1 State at time t 
Feature 

“hour” 

Feature 

“weekday” 

Feature 

“month” 

hour1, Fri, Jan 1 1 5 1 

hour2, Fri, Jan 2 2 5 1 

hour3, Fri, Jan 1 3 5 1 

hour4, Fri, Jan 3 4 5 1 

… … … … … 

hour11, Wed, Jun 1 11 3 6 

hour12, Wed, Jun 6 12 3 6 

… … … … … 

hour22, Sat, Dec 3 22 6 12 

hour23, Sat, Dec 1 23 6 12 

hour24, Sat, Dec 4 24 6 12 

 

Based on this training data set, the TPM can be constructed and Figure 5.8 shows how 

the TPM looks like after applying multinomial logistic regressions. Each element of the 

TPM is a function of the three input features defined previously which outputs a value 

between 0 and 1. Each row of the TPM can be thought of as a multinomial logistic re-

gression model. For clarification purposes, let’s take the example of “Hour t - state 1” 

which means that at current time t, the power state is 1 in order to train the functions 𝜑11 

to 𝜑1𝑛. For that, only the rows in the training data set containing “state 1” at time t must 

be considered (i.e. highlighted in orange in Table 5.2). Then, in order to train the multi-

nomial logistic regression 𝜑1𝑗 (i.e. = {1, . . , 𝑛} ), the state at time t+1 is set as the target. 

The target represents a class in a multinomial logistic regression. Therefore, it is also 

called multiclass logistic regression. Based on the previous sample training data set 

given in Table 5.2, the specific training data set for calculating the coefficients of the 

functions in 𝜑1𝑗 would be: 
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Table 5.3 Selected data set from overall training data set in order to calculate functions of 𝝋𝟏𝒋 

Training data set to 

determine 𝜑1𝑗 

Feature 

“hour” 

Feature 

“weekday” 

Feature 

“month” 

Target 

(Class) 

hour 1, Fri, Jan 1 5 1 2 

hour 3, Fri, Jan 3 5 1 3 

… … … … … 

hour 11, Wed, Jun 11 3 6 6 

… … … … … 

hour 23, Sat, Dec 23 6 12 4 

 

After applying multiple linear regression to the selected dataset in Table 5.3, the coeffi-

cient matrix for the number of 𝑛 functions is obtained.  The coefficient matrix has a di-

mension of 4 𝑥 𝑛 (i.e. coefficients for intercept and 3 features (total is 4)). Since each row 

of the TPM is a multinomial logistic regression model, the above example steps should 

be applied to all transitions from each state in the overall training data set.  

When the training for each case was done, each element of the TPM can be derived for 

a certain time in terms of features 𝑥. For instance, when the features for a certain time t 

(e.g., hour 4, Thu, Apr (4, 4, 4)) is fixed, the derived functions can output the probability 

for transitions to each of the states at time t+1 (i.e.., hour 5, Thu, Apr). The input for the 

logistic regression functions (𝜑𝑖𝑗) is features of time t (e.g. 4, 4, 4). Since each row is a 

multinomial logistic regression, the sum of the output of the functions in the same row is 

equal to one as in traditional MC. In this methodology, 24 × 7 × 12 = 2016 combinations 

of hours, weekdays and months exist. Therefore, the adaptive MC can also be consid-

ered as a traditional MC whose TPM has a dimension of 2016 × 𝑛 × 𝑛. Note that the 

regression models can be tuned by choosing different other time-related features to cap-

ture the seasonality (e.g. hourly temperatures). And also, above defined values for fea-

tures can be further adjusted to improve accuracy (e.g. weekdays, weekends can be 

grouped separately and used the values 1 and 2 instead of values 1 to 7, Using values 

1 to 4 for the months according to the four seasons of the year instead of 1 to 12 etc.). 

Once the TPM is constructed for time t, the synthetic power value for time t can be ob-

tained using the random walk process explained in the traditional MC section.   

This algorithm was implemented in MATLAB and using Python language. However, the 

synthetic load profiles from the program were not visually satisfied as expected because 

this algorithm relies significantly on the accuracy of the multinomial logistic regression 

models. The outputs were generated for the type consumer class 7 and that training data 

set was an extremely imbalanced one. Therefore, a proper resampling technique should 

be used (e.g. near-miss, over-sampling, under-sampling etc). Due to limited timeframe, 

no further improvements to this algorithm have been made, and these developed steps 
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can be used in the future research work with proper deep learning techniques for further 

tuning the accuracy of the models. However, as discussed later in chapter 6, the sug-

gested MC methodology (see subchapter 5.3) in this thesis is also showing better results 

(i.e. low MAPE and capturing seasonal variations accurately). 

5.7 Temperature normalization of consumption data 

In subchapter 2.4, several factors affecting electricity consumption are discussed in de-

tail. It is not fair to compare consumption data from different years because of these 

dependencies on data. In order to compare original consumption data from different 

years, those data must be normalized to a common environment to treat them equally. 

According to subchapter 2.4, weather factors such as temperature, daylight, as well as 

wind and humidity affect electrical demand. In this thesis, only the temperature depend-

ency has been considered because the outdoor temperature is the major weather de-

pendent factor for electric load. It can be assumed that the temperature sensitive part of 

the load depends on the temperature by normalizing the temperature of the consumption 

data. The used temperature dependency model in this thesis is shown in (5.7) [4]. 

 ∆𝑃(𝑡) = 𝑎(𝑡) 𝑥 (𝑇24(𝑡) − 𝐸[𝑇(𝑡)]) (5.7) 

where the symbols are denoted as, 

∆𝑃(𝑡) : the outdoor temperature dependent part of electric load at time 𝑡  

𝑎(𝑡) : the customer class specific load temperature dependency parameter (W/°C)  

𝑇24(𝑡) : the average outdoor temperature from the previous 24 hours, and  

𝐸[𝑇(𝑡)] : the expected value of the outdoor temperature.  

The 𝐸[𝑇(𝑡)] contains long term monthly average temperatures of the data recorded lo-

cation. The 𝑇24(𝑡) can be calculated by taking the average of previous 24 hours outdoor 

temperatures as in (5.8): 

 𝑇24(𝑡) =
∑ 𝑇(𝑖)𝑡−1

𝑖=𝑡−24

24
 (5.8) 

The customer class specific load temperature dependency parameter contains the 6 val-

ues for the year which each value represents two consecutive months starting from Jan-

uary. Calculation of temperature dependency parameters and more details can be found 

in the literature [4]. Once, the temperature dependent part of the load in each time is 

found, temperature normalization can be done by performing algebraic operations. 
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5.8 Approximation to the type consumer load profiles by opti-
mally matching the aggregate load profile 

If the synthetic load profiles generated from any of the methods described in the previous 

subchapters are realistic, their average load profile should also reach toward the corre-

sponding type consumer load profile. In other words, these synthetic load profiles must 

fill in the aggregate load profile obtained by multiplying the type consumer load profile by 

the number of synthetic customers. This thesis suggests a multiple linear regression for 

scaling the synthetic load profiles in a realistic range in order to best fit to the aggregate 

load profile. This method is best suited for a large synthetic load profile sample, because 

a small sample may mathematically but not realistically fit well to the aggregate load 

profile. The results of this method are shown later in subchapter 6.3. In multiple linear 

regression, the synthetic load profiles and aggregate load profile are taken as explana-

tory variables and response variable respectively. When there are N number of time 

steps in each load profile, the variables can be represented as follows. 

 Explanatory variable: 𝑥𝑗 = (𝑥1𝑗, 𝑥2𝑗, …… , 𝑥𝑁𝑗)
𝑇
 (5.9) 

 Response variable: 𝑦 = (𝑦1, 𝑦2, …… , 𝑦𝑁)𝑇 (5.10) 

When there are 𝑚 number of explanatory variables, the corresponding linear regression 

model can be introduced as below, 

 𝑦 =  𝑋𝛽 +  𝜖 (5.11) 

where, 
𝑋 = (𝑥1, 𝑥2, …… . 𝑥𝑚) is the input explanatory variable matrix 

𝛽 = (𝛽1, 𝛽2 …… . 𝛽𝑚)𝑇 is the vector of regression coefficients 

𝜖 = (𝜖1, 𝜖2 …… . 𝜖𝑁)𝑇 is the vector of residuals 
 

Each regression coefficient represents the corresponding scaling factor of the synthetic 

load profile. The regression coefficients can be estimated by solving the regression in 

(5.11). This regression problem is solved by minimizing the squared distance between 

the linear combination of explanatory variables and the response variable 𝑦 as below. 

 �̂� =  
arg𝑚𝑖𝑛

𝛽
  ∑  𝜖𝑖

2𝑁
𝑖=1  = 

arg𝑚𝑖𝑛
𝛽

  𝜖𝑇𝜖 = 
arg𝑚𝑖𝑛

𝛽
  (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) (5.12) 

The equation in (5.12) can be simplified and, the estimator of 𝛽 can be derived as in 

(5.13). 
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 �̂� = (𝑋𝑇𝑋)−1𝑋𝑇𝑦 (5.13) 

In this load profile generation application, N becomes 8760, and 𝑚 differs according to 

the number of customers of each type consumer class in the data set. But this chosen 

time window for N (i.e. 8760) is a bit long. Therefore, the accuracy of the linear regression 

model can be lower, as the model attempts to fit a larger input data sample. Therefore, 

a piecewise regression can be used to further improve the accuracy of the model. In 

piecewise regression, the above explanatory variable is partitioned into small intervals. 

After that, the linear regression is performed on each interval at breakpoints inde-

pendently. By doing so, the piecewise regression can model the data in each interval 

and thus the entire data set. Once the regression coefficients are found using the above 

procedure, the scaled synthetic load profiles can be derived by multiplying each individ-

ual load profile with corresponding regression coefficient (i.e. 𝑥𝑗𝛽𝑗).  The sum of these 

scaled synthetic load profiles are closer to the aggregate load profile as shown in the 

subchapter 6.3 later. 
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6. RESULTS AND VALIDATION 

This chapter presents the results from the synthetic load profile generator and analysis 

of generated synthetic load profiles. The suggested FOMC methodology was used to 

generate synthetic load profiles based on the decisions taken in comparison to the other 

methodologies in chapter 5. Mainly, three measures are used to analyze the results (i.e., 

annual average energy, peak powers and load duration curves). Later, validation of syn-

thetic load profiles is presented at the end of this chapter.  

6.1 Selecting the number of states for each type consumer 
class 

As described in chapter 5, the number of states should be carefully selected in order to 

get better outputs from the MC algorithm. As the number of states of MC increases, the 

output synthetic load profile attempts to over fit the input data. When the number of states 

of the MC is lower, hourly power consumption in a synthetic load profile is varying rapidly 

and randomly. Therefore, many spikes can be seen in the load profile and this results in 

lower details in synthetic load profiles as discussed in subchapter 3.1.4. These two sce-

narios are clearly depicted in Figure 6.1 with two random load profiles from the traditional 

MC methodology when the number of states is equal to 5 and 25. The selection of an 

optimal number of states for each type consumer class is described in this subchapter. 

The state selection process of this thesis was performed using the traditional MC meth-

odology. First, samples with 100 synthetic load profiles were generated for a different 

number of states such as 5, 10, 15, 20 and 25 for all type consumer classes. There was 

a total of 5 x 14 (i.e. 5 different number of states, 14 type consumer classes) samples. 

Then the average load profile was generated for each sample, and MAPE was calculated 

for each synthetic average load profile with respect to the corresponding measured cus-

tomer average load profile. Figure 6.2 shows the effect of the number of states on MAPE 

for type consumer class 7. According to Figure 6.2, when the number of states is in-

creased, MAPE is decreased. A lower MAPE is theoretically better and has a less error 

in synthetic load profiles. However, a large number of states may provide less amount of 

data for calculating probabilities of TPMs, thereby increasing the risk of overfitting of 

output data. Therefore, a reasonable high number of states was chosen for each type 

consumer class considering the visual inspection and the MAPE between average load 

profiles. Thus, the number of states for each type consumer class is selected using the 

method described above, and they are recorded in Table 6.1. 
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Figure 6.1 Two instantaneous synthetic load profiles when the number of states is (a) =5 (b) 
=25 for type consumer class 7 

 

 

 

 

 

 

 

 

 

Figure 6.2 Evolution of MAPE between average load profiles from measured load profiles 
and synthetic load profiles for the type consumer class 7 with the traditional MC 

 

 

Table 6.1 Number of states selected for each type consumer class based on MAPE and vis-
ual inspection 

 

6.2 Analyzing the synthetic load profiles from suggested FOMC 

This analysis is carried out with the suggested FOMC methodology described in sub-

chapter 5.3 with the method in subchapter 5.3.2 based on decisions taken with the initial 

observations from the two methodologies explained in subchapters 5.3.4 and 5.4. The 
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generated load profiles by the suggested MC methodology can be seen to be more re-

alistic compared to the traditional MC methodology, especially when the input data used 

to calculate the probabilities of MC’s TPM are less. In order to analyze the synthetic load 

profiles, samples of 100 synthetic load profiles for type consumer classes 1-13 and a 

sample of 50 synthetic load profiles for type consumer class 14 were generated and 

stored them in MATLAB variables to analyze the output data with three measures. The 

measures are annual average energy, peak powers and load duration curves of synthetic 

load profiles. The next three subchapters compare the synthetic data in terms of the 

above measures with the SM and type consumer data. 

For type consumer classes 11 to 14 with large power consumers, they take a long time 

for generating a one synthetic load profile with compared to the small type consumer 

classes, because their consumption values are higher, the acceptable resolution for de-

fining a CDF without distorting the output is small (i.e. more data needs to be stored). 

Therefore, the computer needs more memory and processing power for computing. 

Therefore, the sample size of type consumer class 14 has been limited to 50. Type con-

sumer classes 1 and 13 took around 15 minutes and 18 hours respectively for generating 

100 load profiles, while type consumer class 14 took about 32 hours for generating only 

50 load profiles. Different techniques can be used to optimize the MC algorithm further 

and improve the execution time without distorting the output of the algorithm, and this 

can be done as a separate research task in future. 

6.2.1 Annual average energy of load profiles 

In this analysis, the average load profiles of the synthetic and measured customers are 

compared with type consumer load profiles. In this thesis, synthetic load profiles are 

generated using the input data set measured in 2016. That data set is fed directly into 

the input of the synthetic load profile generator without any composing of data such as 

temperature normalization. The output of the synthetic load profile generator is based on 

the measured data. Therefore, the output of the synthetic load profile generator also can 

be thought of as a load profile without temperature normalization. However, the type 

consumer load profiles provided in the study material are temperature normalized and 

applied to 2018 calendar. Therefore, in order to compare average measured customer 

or synthetic average load profiles with the type consumer load profiles, first, those aver-

age load profiles must be temperature normalized and then projected from 2016 to 2018. 

Figure 6.3 shows the flow chart of the average profile forming procedure developed to 

compare with the type consumer load profiles. 
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The flow chart shown in Figure 6.3 is applied to a chosen type consumer class and this 

average profile forming procedure was implemented in MATLAB. The function starts with 

loading the load profiles (i.e. measured or synthetic load profiles in 2016) to the program, 

then generating the average load profile for the given input load profiles. After that, the 

temperature dependency parameters are fetched for the type consumer class of the in-

put load profiles from the study material, and the average load profile is temperature 

normalized using the method explained in subchapter 5.7. The temperature normaliza-

tion allows consumption data to be treated equally to other years. Later, the temperature 

normalized average load profile should be projected to 2018 in order to change the week-

days and special days of 2016 to corresponding days of 2018. Antti Mutanen has devel-

oped a function in his research for projecting load profiles between years. In this thesis, 

the same function has been used to project the temperature normalized load profiles 

from 2016 to 2018. After applying this process, this temperature normalized and pro-

jected average load profile can be used to compare with the corresponding type con-

sumer load profile in the study material. Rest of the content in this subchapter uses the 

term average load profile for temperature normalized and projected average load profile. 

There are 14 type consumer classes in the study material, and synthetic, measured av-

erage load profiles for type consumer classes 1, 4, 7 and 10 are shown in Figure 6.4. 

The first and second columns represent the synthetic and measured average load pro-

files respectively, while the third column represents the corresponding type consumer 

load profile from the study material. 

 

 

 

Figure 6.3 Flow chart of the average profile forming procedure in order to compare 
the average load profile with given type consumer class load profiles in the study material 
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Figure 6.4 Average load profiles for type consumer classes 1,4,7 and 10 (rows 1,2,3,4 re-
spectively); Columns represents (a) average profile from 100 generated synthetic load profiles 

(b) from measured customer load profiles (c) type consumer load profile. 
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According to Figure 6.4, the synthetic average load profile of each type consumer class 

has followed the shape of its corresponding measured customer average load profile 

almost identically. At first glance, synthetic and measured average load profiles look very 

similar, because the highlighted spikes and variations look also similar in both load pro-

files. This is quite natural because the measured data set is the input for synthetic load 

profile generator. Both these average load profiles are less smooth with compared to its 

corresponding type consumer load profile. The type consumer load profile is derived for 

comparatively a large number of customers (i.e. from the large data set), therefore, the 

spikes have been eliminated.  However, the measured data set is a small data set com-

pared to the large data set, and this might be the reason for having less smoothness in 

the measured average load profile. Therefore, the synthetic load profiles appear to be 

trying to follow the measured data set. However, the sample size is only 100, so that it 

is too early to guess without testing this for a large sample of synthetic load profiles. This 

will be analyzed for a large sample of synthetic load profiles in subchapter 6.3.  

The annual average energy for each type consumer class was calculated from the de-

rived synthetic and measured average load profiles. Average annual energies for type 

consumer classes are already available in the study material. All these values are illus-

trated in Table 6.2. Table 6.2 also includes the calculated average energies of average 

load profiles with and without temperature normalization. The absolute percentage errors 

of the annual average energy values between the measured and synthetic average load 

profiles as well as type consumer load profile and synthetic average load profile were 

also calculated and tabulated in Table 6.3 for each type consumer class. As can be seen 

from the tables, there are slight differences between the annual average energy values. 

Table 6.3 shows that the error between measured and synthetic average load profiles 

ranges from 0.20 % to 4.08 % for type consumer classes 1-12. But in the same column, 

type consumer classes 13 and 14 have comparatively bit higher errors (i.e. 9.29 % and 

6.78 % respectively) than others. However, these high errors are still less than 10% and 

moderately acceptable. The annual average energy error between type consumer and 

synthetic load profiles are comparatively higher than the errors between measured and 

synthetic average load profiles.  
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Table 6.2 Average annual energies calculated for type consumer load profiles and, synthetic 
and measured load profiles with and without temperature normalization 

 

 

Table 6.3 Percentage errors between annual average energy values of synthetic and meas-
ured average load profiles/ synthetic average and type consumer load profiles 

Type 
consumer 

Annual average energy error (%)  

between synthetic 
and measured aver-

age load profiles  

between synthetic 
average and type con-

sumer load profiles 

1 1.38 12.10 

2 1.38 4.67 

3 4.08 6.00 

4 2.24 4.20 

5 0.80 1.30 

6 0.43 1.44 

7 1.76 0.32 

8 0.44 4.97 

9 0.27 4.38 

10 0.20 10.90 

11 3.84 8.78 

12 2.32 8.56 

13 9.29 17.48 

14 6.78 24.68 

 

Type con-
sumer 
Class 

Annual average energy (MW) 

Before temperature normal-
ization 

After temperature normaliza-
tion Type con-

sumer load 
profiles 

Synthetic 
average 

load profile 

Measured av-
erage load 

profile 

Synthetic 
average 

load profile 

Measured av-
erage load 

profile 

1 0.867 0.858 0.879 0.867 1 

2 1.44 1.45 1.43 1.45 1.5 

3 2.34 2.44 2.35 2.45 2.5 

4 4.73 4.85 4.79 4.9 5 

5 9.50 9.60 9.87 9.95 10 

6 15.30 15.42 16.23 16.30 16 

7 17.94 18.34 18.94 19.28 19 

8 32.21 32.23 32.31 32.17 34 

9 43.50 43.60 43.84 43.96 42 

10 43.88 44.0 44.55 44.64 50 

11 160.53 167.87 164.19 170.74 180 

12 551 566 548.65 561.68 600 

13 821.58 907.7 825.22 909.78 1000 

14 4521.05 4859.2 4519.5 4848.3 6000 
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As shown in Table 6.2, the average annual energies of synthetic and measured custom-

ers in type consumer class 13 and 14 are significantly lower than their corresponding 

type consumer load profile’s average annual energy compared to other type consumer 

classes. The reason for that is, the type consumer classes 13 and 14 consist only 21 and 

7 customers respectively in the measured data set, and their power consumption values 

are also typically high. The type consumer classes 13 and 14 refer industrial customers 

connected to medium voltage network with 1 shift and 3 shifts respectively. The load 

behaviour of different customers in these classes can be numerous. Therefore, such a 

small number of customers in a type consumer class with high power consumers may 

not reflect the large data set. Therefore, repeating the fact that the annual average en-

ergy errors in type consumer classes 13 and 14 are relatively high in both columns in 

Table 6.3 compared to the others. Furthermore, it is known that the measured data set 

used to derive the average load profiles is small data set compared to the large data set. 

So, the average energy values from the measured data set are more sensitive and can 

fluctuate for load changes. Due to these reasons and according to the conclusion from 

the comparison of the tables, average annual energies of measured and synthetic aver-

age load profiles tend to each other because MC follows the input data set, while the 

errors between synthetic and type consumer load profiles are comparatively high always. 

Another significant big error that could be observed in the 2nd column is 12.10 % for type 

consumer class 1. The customers in type consumer class 1 consume less hourly power 

throughout the year (e.g. most of the hourly powers are less than 1 kW in the time series), 

so the percentage error equation yields a high error due to its ratio.  

Table 6.4 represents the calculated MAPEs for the same above mentioned synthetic 

average load profiles against measured average and type consumer load profiles to 

measure the accuracy of the synthetic average load profiles data. As seen from Table 

6.4, the MAPEs between the type consumer and synthetic average load profiles plus the 

type consumer and measured average load profiles are both considerably higher and 

approximately close each other. But the MAPEs between measured and synthetic aver-

age load profiles are comparatively very low. Therefore, there is a relatively balanced 

data flow between measured and synthetic average load profile data sets. Also, for the 

type consumer class 1, a significant higher MAPE can be observed in all three columns 

of Table 6.4. Based on the MAPE equation, if actual values are too small (e.g. less than 

1), the ratio becomes a more substantial value, and eventually, the outcome returns a 

large error percentage. In the type consumer class 1, the power values are comparatively 

low and there is a large percentage of data with less than 1kW power consumption val-

ues. Due to this reason, MAPEs of the type consumer class 1 are considerably higher. 
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 Table 6.4 Calculated MAPEs for the synthetic average load profiles against measured average 
and type consumer class load profiles 

 

6.2.2 Peak powers of load profiles 

The second measure used in this thesis to compare the synthetic load profiles with the 

referenced load profiles is the average peak powers of the load profiles. As described in 

chapter 4, the study material contains the 10 highest average annual peak powers and 

monthly peak powers for the large data set with different calculation methods. In this 

analysis, the highest 10 average annual peak powers for the measured and synthetic 

data sets are also calculated separately. Unlike the annual average energy calculations, 

the average annual peak powers of the study material have been calculated for the load 

profile data without temperature normalization. Therefore, synthetic and measured load 

profiles can be used directly to calculate annual peak powers without temperature nor-

malization. In this comparison, the peak powers obtained from the study material and 

the measured data set are used to compare with the average annual peak powers cal-

culated for the synthetic load profiles data set. The corresponding peak powers of each 

data set are tabulated in Appendix A1. Below, Table 6.5 shows the highest average an-

nual peak powers (i.e. first) extracted from Appendix A1 for each type consumer class. 

The percentage of errors between the data sets for the highest average annual peak 

powers in Table 6.5 are shown in Table 6.6. According to Table 6.6, the peak power error 

between the synthetic and measured data sets ranges from 1.17 % to 8.12 % and the 

errors in most of the classes are less than 5 %. The errors between the synthetic and 

large data sets other than classes 13 and 14 are also acceptable. The reason for this 

relatively large deviation in classes 13 and 14 is the presence of high power consumers 

Type con-
sumer 
class 

Mean Absolute Percentage Error (MAPE %) 

synthetic data vs 
measured data 

synthetic data vs 
type consumer data 

measured data vs 
type consumer data 

1 32.91 43.18 29.27 

2 6.61 9.27 6.66 

3 7.85 10.39 6.58 

4 5.82 7.41 5.00 

5 4.67 6.57 4.96 

6 4.40 7.74 6.70 

7 5.82 14.19 12.77 

8 11.84 41.81 40.89 

9 3.91 8.39 8.01 

10 3.34 11.13 10.35 

11 8.50 12.37 9.25 

12 3.80 9.26 7.00 

13 8.83 14.47 8.86 

14 7.26 24.61 19.85 
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in the large data set and the fact that not all of that data is included in the measured data 

set (i.e. size of the measured data set is small). Therefore, the synthetic load profile set 

is limited to the given measured data set, and peak power errors are comparatively small 

for the measured data set. Based on the error values in Table 6.6, the percentage errors 

of average annual peak powers between synthetic and measured data are also almost 

acceptable, especially when considering the type consumer classes with large power 

consumers (e.g. 13 and 14). 

Table 6.5 Highest average annual peak powers calculated for synthetic, measured and type 
consumer load profile data 

Type 
con-

sumer 
Class 

Highest annual peak power (kW) 

Synthetic 
load profiles 

Measured cus-
tomer load 

profiles 

Type con-
sumer load 

profiles 

1 3.295 3.217 3.473 

2 1.961 1.890 1.890 

3 4.123 4.437 3.937 

4 5.762 5.956 5.710 

5 7.551 7.366 7.372 

6 9.567 9.680 9.215 

7 12.771 13.051 13.091 

8 10.143 9.845 10.064 

9 18.460 19.196 18.885 

10 19.164 17.724 19.287 

11 87.465 81.277 82.288 

12 133.184 126.702 128.061 

13 353.975 334.735 419.397 

14 1050.548 1094.971 1323.079 

 

Table 6.6 Percentage error between the highest average annual peak power values of 
synthetic and measured load profile, and synthetic and type consumer load profile data 

Type con-
sumer 
Class 

Highest peak power error (%)  

between synthetic 
and measured load 

profile data  

between synthetic 
and type consumer 

load profile data 

1 2.42 5.13 

2 3.76 3.76 

3 7.08 4.72 

4 3.26 0.91 

5 2.51 2.43 

6 1.17 3.82 

7 2.15 2.44 

8 3.02 0.78 

9 3.83 2.25 

10 8.12 0.63 

11 7.61 6.29 

12 5.12 4.00 

13 5.74 15.56 

14 4.06 20.60 
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6.2.3 Load duration curves of load profiles 

The third measure of the generated synthetic load profiles is the load duration curve. For 

that purpose, all the power values in the annual synthetic time series for each measured 

customer and synthetic customer are sorted in descending order and stored in MATLAB. 

Figure 6.5a shows the load duration curves for type consumer class 7, with red colour 

the measured customers as references and blue coloured curves for synthetic custom-

ers. According to Figure 6.5a, the synthetic load duration curves do not clearly show the 

variations as in the measured load duration curves. It is challenging to get the same load 

duration curves for synthetic customers as in measured customers because MC provides 

only an instant load profile of all probabilistic combinations of input data set at a time, as 

explained in subchapter 6.4 later (see Figure 6.12). Likewise, a particular input data set 

may give hundreds of thousands of output combinations. Therefore, a very large syn-

thetic load profile sample might be required to choose an appropriate set of load duration 

curves to represent the objectives of this subchapter.  

As an alternative for this, synthetic load profiles can be generated by grouping similar 

characteristics of the input customers (e.g. grouping by highest peak) and running the 

synthetic load profile generator by taking each group as input. This new synthetic load 

profile set is independent of the previous samples and will not cause any conflict with the 

findings in the previous subchapters, because the new set also follows the measured 

data set. Figure 6.5b shows load duration curves of the new synthetic load profile set 

with the same legends used in Figure 6.5a. According to Figure 6.5b, the synthetic cus-

tomer load duration curves appear to be successfully following the measured customer 

load duration curves. Hence, the load duration curves of the output of the synthetic load 

profile generator follow the load duration curves of the input data set. 

Figure 6.5 Comparison of load duration curves of synthetic customer data with measured 
customer data for type consumer class 7. 

 

 
 

(a) 

 
 

(b) 
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6.3 Effect on measures when synthetic load profiles sample is 
large 

All the results in the previous subchapters were obtained for samples with a small num-

ber of synthetic load profiles (i.e. 100), indicating that synthetic load profile data are close 

to the measured data. However, it remains to be seen how this differs for a larger sample. 

This requires large samples of synthetic load profiles, and it takes a long time to calculate 

load profiles, so this test was only performed for type consumer class 7. Accordingly, a 

sample of 4960 synthetic load profiles was generated. For this sample, first, the temper-

ature normalized and projected average load profile was derived and it is shown in Figure 

6.6a.  

Figure 6.6 Average load profiles for type consumer class 7 (a) average profile from 4960 
synthetic load profiles (b) from measured customer load profiles (c) type consumer load profile. 

The calculated average annual energy and highest peak power for the synthetic average 

load profile are 19.12 MWh and 12.73 kW. From the previous results, the corresponding 

values for the small sample were 18.94 MWh and 12.771 kW. Accordingly, the annual 

average energy has slightly changed and still appears to be close to both type consumer 

and measured average annual energy. The MAPE of the synthetic average load profile 

with respect to the measured average load profile and type consumer load profile is 

1.28 % and 12.69 % respectively. The corresponding values for the previous small sam-

ple were 5.82 % and 14.19 %. It is clear that MAPEs have been decreased and MAPE 

between measured and synthetic average load profiles has reduced by around 80 % for 

the large sample and the MAPE value is comparatively low. This means the synthetic 

and measured average load profile data have a good balance of data throughout the 

time series and they are getting closer. Anyhow, MAPE between synthetic and type con-

sumer average load profiles has also been reduced slightly and can be thought as they 

are slowly converging. Overall, as described in the literature and confirmed by this and 

previous subchapters, the synthetic load profile generator follows the input data set and 

increases the accuracy, especially when the sample is large.  

After that, the optimal aggregate load profile matching method described in subchapter 

5.8 is applied to the above large sample to compare its results with the previous results. 

 
(a) 

 
(b) 

 
(c) 
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As explained in the subchapter 5.8, the aggregate load profile for this method is gener-

ated using the type consumer class load profile. The input synthetic load profiles for this 

method are not temperature normalized, so the type consumer load profile should be 

temperature denormalized to treat all the load profiles equally. Subsequently, the aggre-

gate load profile can be generated by multiplying the temperature denormalized type 

consumer load profile and the number of input customers for the regression model (i.e. 

equals to the synthetic load profile sample size (= 4960)). The piecewise regression 

model described in subchapter 5.8 has been implemented using MATLAB. The regres-

sion coefficients of the model for this synthetic load profile sample can be found using 

this script. Then, the scaled synthetic load profiles can be directly obtained using the 

calculated regression coefficients. Figure 6.7a shows the temperature normalized and 

projected average load profile for the scaled synthetic load profile set. The average load 

profile for measured customers and type consumer load profile in Figure 6.7b and Figure 

6.7c are same as in Figure 6.6b and Figure 6.6c because they are not changed. 

Figure 6.7 Average load profiles for type consumer class 7 average profile (a) from scaled syn-
thetic (b) from measured customer (c) type consumer load profiles. 

 

As shown in Figure 6.7, the average synthetic load profile appears to be closer to the 

type consumer load profile. Table 6.7 shows the values of the measures for the scaled 

synthetic load profile set and compared with the previously calculated values. 

 

Table 6.7 Percentage error between the highest average annual peak power values of syn-
thetic and measured load profile, and synthetic and type consumer load profile data 

Measure 
Value 

(With optimal load 
profile matching) 

Error compared to type consumer 
(%) 

With optimal 
load profile 
matching 

Without optimal 
load profile 
matching 

Average annual energy 18.62 MWh 2.00 0.63 

MAPE of average load profile 4.25 % 4.25 12.69 

The highest peak power 13.34 kW 2.61 1.76 

 

 
(a) 

 
(b) 

 
(c) 
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Table 6.7 confirms that the optimal load profile matching method can be used to adjust 

the generated synthetic load profile sample to bring the aggregate load profile closer to 

the type consumer load profile. The results are also compared between the piecewise 

and linear regressions used inside this method. The piecewise regression provided a 

smoother and better aggregate load profile than the linear regression. The statistical 

properties of each individual scaled synthetic load profiles were not analyzed in this 

study. However, they were visually satisfying. This method also maintains errors of less 

than 5% for all the measures compared to without it. Therefore, this latter method can 

be used to further realistically adjust and scale the generated synthetic load profiles from 

the suggested MC methodology.  

6.4 Validation of load profiles 

A box plot can be used to get an idea of the dispersion of the data sets. An overview of 

power distribution of measurement data (left) and synthetically generated data (right) for 

type consumer classes 1-14  is represented by using box plots in Figure 6.8. The median 

and quartiles are used to construct the box of the plots.  The lower quartile of the box 

represents the first 25 % of data, and the higher quartile represents the first 75% of data 

of the data set. So, the box indicates 50% of the data corresponding to the middle sym-

metrically distributed data in the data set. The median of the data set is indicated by the 

horizontal line located inside the box. According to Figure 6.8, the box length of both 

distributions in all the type consumer classes are identical except class 13, 14. As well 

as, medians of data sets of each type consumer class (i.e. as shown with the horizontal 

line inside the boxes) are in the same level and the skewness of data sets also appear 

similarly. The outliers of the data set can be found outside the whiskers. Outliers can be 

seen in both measured and synthetically generated data sets except for class 12. The 

maximum potential outlier of the synthetically generated data sets in every type con-

sumer class is always a bit lower with compared to the measured data set. This is due 

to the generated data set is small and it is required to generate more load profiles to 

reflect peak values. The box plots confirm that the power distributions of each class are 

matched well. Therefore, both distributions of measured and generated load profile data 

have similar statistical characteristics because box plots are very similar for classes 1-

12. The type consumer class 1 has a significantly minimal box length because a large 

percentage of data in the synthetic and measured data sets has small power values, and 

this is clearly reflected with a low maximum power value in the boxes of the box plots for 

class 1. The box plots of type consumer class 8 confirms that there are no outliers. The 

box plot for type consumer class 13 and 14 are different because the measured data set 
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contains high power values and also a smaller number of customers so that the data set 

is highly volatile. Thus, the measured data may not represent the characteristics of a 

diverse data set, and the synthetically generated data set contains more load profiles 

than the measured data set so that it includes different possible combinations of load 

behaviours from the measured customers. According to this comparison, it can be con-

cluded that the power distributions of synthetic data set manage to carry similar statistical 

details as in measured data set. 

 
(a) 

 

(b) 

 
(c) 

 
(d) 

 

 
(e) 

Figure 6.8 Box plots representing the power distributions for type consumer classes (a) 1 
and 2 (b) 3 to 5 (c) 6 to 9 (c) 10 to 12 (c) 13 and 14 for measured data (left) and synthetically 

generated data (right) 
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In the literature, several MC methodologies can be found for synthetic load profile gen-

eration.  Only a few of them could be able to generate synthetic load profiles that follow 

the seasonal variations successfully throughout the year. One of these MCs (i.e. called 

adaptive MC as described in chapter 5.6) was also implemented in this thesis with ma-

chine learning algorithms to compare with the suggested MC methodology in this thesis. 

However, the output of the adaptive MC was not satisfactory due to a highly imbalanced 

data set. This built adaptive MC can be continued using the steps developed in this thesis 

as another research task by using suitable resampling and deep learning techniques. 

However, the suggested methodology could be tested for seasonal variation by plotting 

daily power consumption from yearly load profiles. Figure 6.9a and Figure 6.9b represent 

the daily power consumptions of a measured and a synthetic customer for classes 1 and 

7. According to Figure 6.9, The power fluctuations during summer vs other seasons for 

the customers in summer cottages and detached houses can be clearly observed. There-

fore, Figure 6.9 confirms that the suggested methodology can nicely reflect the yearly 

seasonal variations in power consumption of customers. As the suggested MC model 

correctly takes into account the seasonal variations, it can generate synthetic load pro-

files that well fit to the input data. 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 6.9 Daily power consumptions of a measured customer and a synthetic customer us-
ing suggested MC methodology for type consumer class (a) 1 and (b) 7 

A MC provides a randomly selected output of all possible output combinations available 

from the input data set in one execution round. The validity of this statement and the 

suggested MC's ability to track the load behaviour of an input customer is verified below. 
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For these purposes, an input data set of customers with similar load behaviours was 

created. This new input data set is referred as artificial data set below. The artificial data 

set consists of 150 customers and is created by choosing a single customer (i.e. cus-

tomer number 25) in type consumer class 2 of the measured data set. Each artificial 

customer load profile was created by generating a random constant load and adding that 

load to the previously selected real consumer load profile. This implies that each cus-

tomer’s hourly energy consumption values in the artificial data set may vary slightly, but 

the load behaviour patterns of the customers are similar to those of the actual consumer 

selected from the measured data set (i.e. customer number 25). Next, this artificial data 

set was fed as input to the suggested MC and generated a sample of synthetic load 

profiles. Figure 6.10 shows a random customer load profile from the aforementioned 

artificial data set and the synthetic load profile sample. According to Figure 6.10, it can 

be seen that synthetic load profile generator has successfully tracked the intra-year load 

behaviour patterns (e.g., at hours 1800-2200 and 3500-5800) similar to the customers 

with same load behaviour in the data set (i.e. load behaviour for all customers in the 

artificial data set is similar) though the consumption values are slightly different. An en-

larged load profile of Figure 6.10 can be used further to analyze the load variations of 

the synthetic load profiles. For instance, let's consider day 1 (i.e. hours from 1 to 24) of 

the two load profiles in Figure 6.10, as shown in Figure 6.11.  According to Figure 6.11, 

it can be seen that the synthetic profile has followed the load fluctuations of the input 

load profile approximately. The outputs from MC give all the possible combinations of 

the input load profiles. For instance, Figure 6.12 shows all the input load profiles in the 

artificial data set and the synthetic load profile in Figure 6.10 in one plot. It can be seen 

that the synthetic load profile represents one possible combination of the input load pro-

files. Therefore, from a large generated sample, it would be able to find a closer synthetic 

load profile with similar load behaviour changes of an input load profile. 

 

(a) 

 

(b) 

Figure 6.10 A randomly selected customer load profile from the (a) artificial data 
set, and (b) synthetic data set generated by providing the artificial data set as input to 

the suggested MC 
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Figure 6.11 Daily load profile of day 1 for the load profiles in Figure 6.10 

 
 

 

 

 

 

 

 

 

Figure 6.12 All the input load profiles in the artificial data set and shown synthetic load pro-
file in Figure 6.10 

These test cases in subchapter 6.4 confirm that the suggested synthetic load profile gen-

erator in thesis generates well-fitting load profiles for a given input load profile data set. 
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7. CONCLUSIONS 

This thesis presented three methods of generating synthetic load profiles using Markov 

chain models. They are the traditional MC method, the suggested MC method and the 

adaptive MC method. The traditional MC method is a basic algorithm of MC applications 

and can be found in research on synthetic load profile generation in the literature. This 

traditional MC methodology can be slightly improved depending on the availability of 

additional data and application requirements. In addition to some thousands of smart 

meter measurement data from a specific area in Finland, the hourly power distributions, 

type consumer load profiles for each type consumer class derived from a large smart 

meter measurement data set from different areas in Finland are available (i.e. the large 

data set is not available) in this thesis. The suggested MC method of this thesis is a 

slightly improved version of the traditional MC method using additional data from the 

study material. After that, an attempt is made to build an adaptive MC with clear steps. 

Finally, a comprehensive aggregate load profile matching method is described to adjust 

and scale the generated load profiles into more realistic load profiles.  

The thesis works begin with the implementation of the traditional MC algorithm. The al-

gorithm is tested for several type consumer classes. The synthetic load profiles obtained 

from the traditional MC are greatly distorted. The synthetic load profiles have high and 

continuous power consumption spikes throughout the time series. Therefore, the sug-

gested MC is developed to minimize these unsatisfactory effects from the traditional MC. 

The suggested MC is tested for two samples of different sizes (i.e. small - 100 and large 

- 4960). The results are analyzed using three measures (i.e. average annual energy, 

average peak power and load duration curve). The values of measures are calculated 

for each sample, and they are compared with the corresponding values of measures for 

input measured customer data set and type consumer data. At first glance, the small 

sample seems to attempt to follow the measured data set for all three measures when 

compared, because the errors between synthetic and measured data are relatively low 

compared to the synthetic and type consumer data. However, the large sample also 

shows that it is further getting closer to the measured data set than its type consumer 

data. For the large sample, the corresponding errors for each measure are further re-

duced relative to the small sample’s errors. As described in the literature and from the 

observations of this thesis, it is confirmed that the synthetic load profile generator follows 

its input data set (i.e. measured data) and increases the accuracy, especially when the 

sample is large. But the measured data set used to generate synthetic load profiles is 
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quite small compared to the large data set, so either the measured or synthetic data sets 

do not appear to reach toward the type consumer data. The results shows that the gen-

erated individual synthetic load profiles follows the input measured data set closely. But, 

the aggregate load profile of them is bit deviated compared to the type consumer load 

profile.  To minimize this deviation in the aggregate load profile, an optimally matching 

aggregate load profile method is described. By using this method, the previously gener-

ated large sample is adjusted and scaled realistically in order to reach toward the corre-

sponding type consumer load profile. Therefore, finally, the combination of these sug-

gested MC and load profile matching methods achieves the goal of generating more 

realistic synthetic load profiles in this thesis. Anyone who needs to generate synthetic 

load profiles for different purposes can follow the methods in this thesis. 

The suggested MC works properly for load profile generation. The load profile generator 

can capture the yearly seasonality successfully. Also, the power distributions of gener-

ated synthetic data confirm that synthetic data have similar statistical properties as in 

measured data. The performance and operation of the suggested MC are further ana-

lyzed under validation section. This study is only carried out for active power load pro-

files. The reactive power load profiles can also be generated in a similar way depending 

on the availability of reactive power smart meter measurement data. The developed 

adaptive MC methodology in this thesis can be further developed in the future with dif-

ferent deep learning techniques to get more realistic load profiles. 
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APPENDIX A1: PEAK POWER TABLE FOR THE 
GENERATED SMALL SAMPLE OF SYNTHETIC 
LOAD PROFILES IN CHAPTER 6 AND 
MEASURED DATA SET 

 

 

 
 

* N is the highest Nth peak power of the load profile data set 

Order 
number  

(N) 

Peak Power (kW) of Consumer Type 

1 2 3 4 5 
Measured Synthetic Measured Synthetic Measured Synthetic Measured Synthetic Measured Synthetic 

1 3.22 3.30 1.89 1.96 4.44 4.12 5.96 5.76 7.37 7.55 

2 2.91 3.01 1.72 1.79 4.11 3.76 5.53 5.39 6.85 7.10 

3 2.73 2.81 1.63 1.69 3.90 3.55 5.32 5.18 6.59 6.80 

4 2.61 2.68 1.57 1.63 3.77 3.41 5.14 5.03 6.39 6.60 

5 2.52 2.56 1.51 1.58 3.65 3.29 5.02 4.94 6.24 6.43 

6 2.45 2.46 1.47 1.54 3.55 3.17 4.90 4.82 6.13 6.30 

7 2.38 2.38 1.44 1.50 3.47 3.08 4.80 4.72 6.03 6.13 

8 2.32 2.31 1.41 1.46 3.39 3.00 4.71 4.63 5.94 6.04 

9 2.27 2.26 1.38 1.43 3.32 2.92 4.63 4.55 5.86 5.94 

10 2.23 2.19 1.36 1.40 3.25 2.83 4.56 4.46 5.80 5.85 

 

Order 
number  

(N) 

Peak Power (kW) of Consumer Type 

6 7 8 9 10 
Measured Synthetic Measured Synthetic Measured Synthetic Measured Synthetic Measured Synthetic 

1 9.68 9.57 13.05 12.77 9.85 10.14 19.20 18.46 17.72 19.16 

2 9.14 9.02 12.66 12.53 9.81 10.10 18.47 17.76 16.90 18.46 

3 8.78 8.71 12.45 12.41 9.80 10.08 18.02 17.43 16.46 18.04 

4 8.56 8.47 12.32 12.31 9.79 10.05 17.71 17.22 16.22 17.66 

5 8.40 8.31 12.22 12.24 9.77 10.03 17.52 17.02 16.02 17.38 

6 8.26 8.17 12.09 12.17 9.76 10.02 17.34 16.89 15.83 17.19 

7 8.14 8.08 12.02 12.11 9.75 10.00 17.11 16.77 15.61 16.98 

8 8.05 7.96 11.96 12.06 9.74 9.99 16.95 16.66 15.40 16.83 

9 7.97 7.87 11.89 12.01 9.73 9.98 16.81 16.56 15.32 16.64 

10 7.88 7.79 11.83 11.96 9.72 9.97 16.69 16.48 15.20 16.48 

 
Order 

number  
(N) 

Peak Power (kW) of Consumer Type 
11 12 13 14 

Measured Synthetic Measured Synthetic Measured Synthetic Measured Synthetic 

1 81.28 87.46 126.70 133.18 334.74 353.98 1094.97 1050.55 

2 79.41 84.84 124.40 131.41 328.33 331.93 1083.47 1034.26 

3 78.09 83.07 123.22 130.49 324.16 325.32 1078.49 1024.56 

4 76.95 81.38 122.31 129.73 319.66 321.92 1074.13 1018.31 

5 75.90 80.41 121.39 129.17 318.11 319.20 1068.87 1011.08 

6 75.32 79.45 120.85 128.68 316.48 316.91 1066.80 1005.21 

7 74.66 78.64 120.31 128.27 314.47 314.88 1063.06 1001.28 

8 74.36 77.80 119.93 127.92 312.80 313.29 1060.63 997.12 

9 73.98 77.17 119.41 127.58 311.88 311.78 1058.13 993.47 

10 73.43 76.64 119.08 127.23 310.53 310.35 1057.16 990.65 

 


