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Abstract: Risk of celiac disease (CD) is increased in relatives of CD patients due to genetic and possible
environmental factors. We recently reported increased seropositivity to anti-Saccharomyces cerevisiae
(ASCA), Pseudomonas fluorescens-associated sequence (anti-I2) and Bacteroides caccae TonB-linked
outer membrane protein (anti-OmpW) antibodies in CD. We hypothesized these markers also to
be overrepresented in relatives. Seropositivity and levels of ASCA, anti-I2 and anti-OmpW were
compared between 463 first-degree relatives, 58 untreated and 55 treated CD patients, and 80 controls.
CD-associated human leukocyte antigen (HLA)-haplotypes and transglutaminase (tTGab) and
endomysium (EmA) antibodies were determined. One or more of the microbial antibodies was
present in 75% of relatives, 97% of untreated and 87% of treated CD patients and 44% of the controls.
The relatives had higher median ASCA IgA (9.13 vs. 4.50 U/mL, p < 0.001), ASCA IgG (8.91 vs.
5.75 U/mL, p < 0.001) and anti-I2 (absorbance 0.74 vs. 0.32, p < 0.001) levels than controls. There was
a weak, positive correlation between tTGab and ASCA (r = 0.31, p < 0.001). Seropositivity was
not significantly associated with HLA. To conclude, seropositivity to microbial markers was more
common and ASCA and anti-I2 levels higher in relatives of CD patients than controls. These findings
were not associated with HLA, suggesting the role of other genetic and environmental factors.

Keywords: celiac disease; relatives; microbiota; Saccharomyces cerevisiae; Pseudomonas fluorescens;
Bacteroides caccae

1. Introduction

Celiac disease (CD) is an immune-mediated condition characterized by gluten-induced
small-bowel enteropathy. Almost all patients carry human leukocyte antigen (HLA) alleles encoding
DQ2 or DQ8 heterodimers [1]. These alleles are nevertheless also present in up to 35% of the general
population and do not fully explain the genetic risk [2]. Recent genome-wide association studies and
immunogenetic studies have identified numerous non-HLA loci and single nucleotide polymorphisms
that may modify CD risk [3,4]. Partly due to shared genetic predisposition, the relatives of patients
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have an increased susceptibility to CD, the average prevalence among first-degree relatives being
approximately 8% [5] compared with 1%–2% in the general population [6,7].

However, only a minority of at-risk individuals develop CD, and the concordance even varies
between identical twins [8,9], which implicates environmental factors. The prevalence may also
vary between adjacent countries with similar genetic backgrounds and gluten consumption [10],
and retrospective measurements of stored samples indicate a rise in the true incidence [6,11,12].
As one potentially associated factor, the role of intestinal microbiota in the development of CD has
aroused particular interest [13–15]. Previously, we and others observed elevated levels of antibodies
to microbial markers Saccharomyces cerevisiae (ASCA), Pseudomonas fluorescens-associated sequence
(anti-I2) and Bacteroides caccae TonB-linked outer membrane protein (anti-OmpW) in inflammatory
bowel disease [16–18]. We have shown increased seroreactivity to these markers also in overt CD [19]
and a decrease of the antibody levels during gluten-free diet (GFD) [20]. Further, these microbial
markers are detectable in early stages of the disease even before the presence of villous atrophy and
serum CD-specific autoantibodies [21].

We hypothesized that close relatives of CD patients, with partially shared living environments
and genetic factors, could have increased seroreactivity to microbial markers. This was investigated by
comparing their frequency of seropositivity and levels of microbial antibodies with those in untreated
and treated CD patients and in healthy controls.

2. Materials and Methods

2.1. Study Participants

The study was carried out at Tampere University and Tampere University Hospital. Previously
diagnosed CD patients were recruited in a nationwide search through newspaper advertisements
and via patient societies. Their medical records were obtained with permission, and only subjects
with a biopsy-proven diagnosis were included. Relatives of these patients were invited to a screening
study comprising personal interviews and measurement of CD serology. Additional blood samples
were drawn for research purposes. Exclusion criteria for the relatives were previously diagnosed CD
or dermatitis herpetiformis, or otherwise initiated gluten-free diet (GFD). Altogether, 3031 relatives
met the inclusion criteria and entered the original screening study. Duodenal biopsy was offered for
all relatives with positive CD serology. For the present study, serum samples from 463 first-degree
relatives were randomly selected for the measurement of ASCA, anti-I2 and anti-OmpW. The CD
control group comprised 58 biopsy-proven patients who underwent measurements of the CD serology
and microbial markers at diagnosis and after one year on GFD (n = 55). In addition, 80 adult blood
donors with negative CD serology served as non-CD controls.

2.2. CD Autoantibodies and Genotyping

Serum immunoglobulin A (IgA) class endomysium autoantibodies (EmA) were tested by an
indirect immunofluorescence method using human umbilical cord as substrate [22]. Titers 1: ≥ 5 were
deemed positive and diluted up to 1:4000 or until negative. Serum IgA class tissue transglutaminase
autoantibodies (tTGab) were measured by an enzyme-linked immunosorbent assay (ELISA, INOVA
diagnostics, San Diego, CA) according to the manufacturer’s instructions. A cutoff ≥ 30 U/mL was
applied for seropositivity. Some of the CD autoantibody-positive relatives declined the biopsy, but,
due to the high specificity of EmA/tTGab [23], the vast majority of them are also likely to have CD.
They were therefore analyzed as a separate group.

The CD-associated HLA DQ haplotypes (DQ2.5, DQ2.2, DQ8) were determined from the relatives
and CD patients with the tagging single nucleotide polymorphism method or with the Olerup SSP DQ
low-resolution kit (Olerup SSP AB, Stockholm, Sweden) as described elsewhere [24,25].
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2.3. Microbial Antibodies

Serum IgA and IgG class ASCA were measured by a commercial ELISA (Quanta Lite ASCA,
INOVA Diagnostics Inc., San Diego, CA) considering levels ≥ 25 U/mL positive. E. coli XL-1 blue
and E. coli BL-21 (Stratagene, La Jolla, CA) strains and previously reported antigen purification
techniques [26,27] were used to produce I2-GST and OmpW antigens. The serum samples were diluted
1:50, and IgA anti-I2 and anti-OmpW antibodies were measured with an in-house ELISA. For anti-I2,
the cutoff level for positivity was set at absorbance 0.5. For anti-OmpW, it was set at 0.6 in children and
1.0 in adults based on our previous studies showing age differences in the normal range [16,19].

2.4. Statistical Analysis

Quantitative data are shown in tables as percentages or as medians with lower and upper quartiles.
The data were cross-tabulated in order to ascertain the overlap of seropositivity for microbial antibodies
in different study groups. The Kruskal–Wallis test was used to compare the differences in microbial
antibody levels between the groups. Correlations between autoantibodies and microbial markers were
tested with Spearman’s rank correlation coefficient. Associations in the seropositivity to microbial
antibodies within and between the families were also tested. The chi-square statistic for the change in
the -2 log-likelihood from the constant only model to the model with “family” was used to determine
whether the inclusion of “family” contributed significantly to model fit. A p value < 0.05 was considered
significant. Statistical analyses were carried out with SPSS Statistics for Windows (IBM Corp., Armonk,
NY, USA).

2.5. Ethical Aspects

The study protocol was approved by the Ethics Committee of the Pirkanmaa Hospital District,
study identification code ETL R05183. All participants or, in the case of children, their legal guardians
gave written informed consent. The paper follows the rules of the Declaration of Helsinki.

3. Results

The gender distribution was fairly equal among the relatives, whereas a majority of CD patients
were women, and there were more men in the non-CD control group (Table 1). There were no major
differences in the median ages between the groups (Table 1), but 49 (10.6%) of the relatives were
<18 years of age, while the other groups comprised only adults.

Table 1. Demographic data on relatives of celiac disease (CD) patients, CD patients and non-celiac controls.

Seropositive
Relatives

Seronegative
Relatives *

CD at
Diagnosis

CD on
GFD

Non-CD
Controls

n = 49 n = 414 n = 58 n = 55 n = 80

Females, % 42.9 57.2 77.6 76.4 35.0
Age, median (quartiles), y 41 (31–54) 42 (28–59) 45 (36–59) 46 (38-60) 41 (31–56)

* Negative serum endomysium (titer 1: < 5) and tissue transglutaminase (< 30 U/mL) antibodies. GFD, gluten-free diet.

The relatives were divided into CD autoantibody-negative (n = 414) and autoantibody-positive
(n = 49) groups and were analyzed separately (Table 1). Among the autoantibody-negative relatives,
seropositivity for at least one of the microbial markers was more common than in the non-CD controls
but less frequent than in the CD patients (Figure 1). The most notable difference was seen in ASCA,
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as 19% of the relatives without CD-autoantibodies and none of the controls were seropositive for ASCA
IgA, ASCA IgG, or both. In addition, anti-I2 and anti-OmpW positivity was more common among the
autoantibody-negative relatives than controls (61% and 40% vs. 31% and 24%, respectively; Figure 1).
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Figure 1. Distribution of seropositivity to antibodies against Saccharomyces cerevisiae (ASCA),
Pseudomonas fluorescens-associated sequence (anti-I2 antibodies) and Bacteroides caccae TonB-linked outer
membrane protein (anti-OmpW antibodies) among autoantibody-negative relatives of celiac disease
(CD) patients, CD patients (at diagnosis and on a GFD) and controls.

The median levels of ASCA IgA, ASCA IgG and anti-I2 were also significantly higher in the
autoantibody-negative relatives than those in the control group (Figure 2a–c), whereas anti-OmpW
was higher only in untreated and treated CD patients (Figure 2d). ASCA IgG was higher in both
untreated and treated CD patients and anti-I2/OmpW in untreated patients when compared with
autoantibody-negative relatives (Figure 2b–d).

Altogether, 46 out of the 49 autoantibody-positive relatives had HLA-DQ2 haplotype,
DQ8 haplotype, or both. As many as 86% of them showed seroreactivity to at least one microbial
marker compared to 73% of the CD antibody-negative relatives, and the median levels of the microbial
antibodies were also higher (ASCA IgA 11.1 vs. 8.90 U/mL, p = 0.019; ASCA IgG 12.8 vs. 8.37 U/mL,
p = 0.001; absorbance for anti-I2 0.93 vs. 0.71, p = 0.320 and for anti-OmpW 1.00 vs. 0.81, p = 0.022,
respectively). In contrast to the autoantibody-negative group, anti-OmpW levels were also significantly
higher than in the controls (absorbance 0.79, p = 0.043).

Adjusting for age and gender or exclusion of children from the comparisons did not affect the
results of the prevalence of seropositivity nor median levels of the microbial markers, although the
medians were significantly lower in children than in adults (ASCA IgA 6.30 vs. 9.64 U/mL, p < 0.001;
ASCA IgG 7.13 vs. 9.18 U/mL, p = 0.070; absorbance for anti-I2 0.34 vs. 0.79, p < 0.001 and for
anti-OmpW 0.54 vs. 0.87, p < 0.001, respectively).

Seropositivity to anti-I2 and anti-OmpW was significantly more frequent between relatives in
the same family than between different families (p < 0.001 for anti-I2 and p = 0.001 for anti-OmpW,
respectively). In ASCA, this was observed only when autoantibody-positive relatives were also
included in the analysis (p = 0.007).

There were no significant differences in the distribution of seropositivity across microbial markers
when the relatives were categorized according to their HLA haplotypes (Table 2).

There was a weak, positive correlation between the values of tTGab and ASCA IgA (r = 0.31,
p < 0.001), whereas correlation coefficients between the other microbial markers and tTGab or EmA
were <0.3.
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Figure 2. Serum levels of antibodies to Saccharomyces cerevisiae (ASCA) in IgA (a) and IgG (b) classes,
Pseudomonas fluorescens-associated sequence (anti-I2) (c) and Bacteroides caccae TonB-linked outer
membrane protein (anti-OmpW) (d) in autoantibody-negative relatives. Horizontal lines indicate the
cutoff level for seropositivity of each antibody.

Table 2. Frequency of seropositivity to microbial markers in autoantibody-negative relatives of celiac
disease patients with different human leukocyte antigen (HLA) haplotypes.

DQ2
n = 233

DQ8
n = 67

DQ2 + DQ8
n = 8

DQ2/8 Negative
n = 89

% % % %

ASCA IgA 11.2 10.4 12.5 10.1

ASCA IgG 12.9 13.4 0 14.6

Anti-I2 58.4 61.2 75.0 66.3
Anti-OmpW 39.5 35.8 25.0 43.8

ASCA, Anti-Saccharomyces cerevisiae antibodies; anti-I2, antibodies to Pseudomonas fluorescens-associated sequence;
anti-OmpW, antibodies to Bacteroides Caccae TonB-linked outer membrane protein; DQ2, HLA-DQA1*05-DQB1*02 (DQ2.5)
or HLA-DQA1*02-DQB1*02 (DQ2.2); DQ8, HLA-DQA1*03-DQB1*0302. There were no statistically significant differences
between the groups in the distribution of seropositivity.
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4. Discussion

The main finding of the present study was increased seroreactivity to microbial markers in the
relatives of CD patients compared with controls even after the exclusion of CD autoantibody-positive
individuals. This was observed particularly with ASCA and anti-I2, the median levels of which were
also significantly higher than levels in the controls, although they were lower than in CD patients.
To the best of our knowledge, the only study to report on this issue so far was a conducted by Da Silva et
al., who investigated seropositivity to ASCA in relatives of CD patients [28]. They divided 76 relatives
into EmA/tTGab negative and positive groups, while 57 individuals with negative CD autoantibodies
and no family risk served as controls. Partly in contrast to us, there was a significantly higher frequency
of positivity to ASCA IgA/G only in autoantibody-positive relatives compared with the controls [28].
This discrepancy may, at least in part, be explained by the smaller number of participants since there
was a trend toward overrepresentation of ASCA, also among the CD autoantibody-negative relatives.
There may also have been methodological differences, as the authors did not report the kits used for
the ASCA measurements.

Owing to the high specificity of tTGab and EmA [23], most of the autoantibody-positive relatives
were likely CD patients. Therefore, their increased seroreactivity to microbial markers is logically in
line with that observed in already-diagnosed CD. By contrast, the increased frequency of seroreactivity
to a part of the microbial markers in the autoantibody-negative relatives is not as easily explained.
It is to be noted that Setty and colleagues [29] previously reported that tTGab-negative relatives of
CD patients had signs of intestinal epithelial stress, demonstrated by ultrastructural alterations of
microvilli, and increased expression of heat shock proteins and interleukin-15 along with elevated
expression of activating NK receptors on intraepithelial cytotoxic T cells. Thus, even in the absence of
CD autoantibodies or characteristic histological damage to the intestine, at least some of the relatives
appeared to display proinflammatory responses reminiscent of CD. This raises the question of whether
the observed abnormal microbial antibody production could also be implicated in this process.

Setty et al. also speculated about a possible genetic predisposition to epithelial stress [29] and
suggested a possible HLA and other as yet-unidentified genetic associations. We observed no significant
association between the distribution of ASCA, anti-I2 and anti-OmpW positivity and the CD-related
HLA haplotypes, suggesting that at least HLA genetics does not markedly affect the serological
response. In line with this, HLA DQ2/8 are not overexpressed in inflammatory bowel disease (IBD)
patients [30] who also may have increased seropositivity to microbial markers [16,17]. Genetics may
still play a role in microbial antibody production in intestinal diseases, as demonstrated by two studies
comparing levels of microbial antibodies between monozygous and dizygous twin pairs with IBD.
Amcoff et al. reported that the differences in the anti-I2 antibody levels were smaller within than
between monozygous twin pairs, even if only one of them had IBD [31]. However, this was not
seen in dizygous twins with one suffering from IBD and the other being healthy and having partly
discordant genetics, supporting the role of genetic factors [31]. By contrast, similar ASCA levels were
observed only in a subgroup of monozygous twins both having IBD [31,32]. Bearing this in mind, it is
interesting that we found stronger associations of anti-I2 positivity between the relatives from the same
family than between the families, whereas with ASCA this was seen only when autoantibody-positive
relatives were included in the analysis. Taken together, it seems that both genetic and environmental
factors have a role in the antibody production, with this varying depending on the microbial marker,
but further studies are needed.

Environmental factors including gluten intake [33,34] and infections in early life [35–37] have also
been associated with increased CD risk. Other suggested, although controversial [38,39], risk factors
include bacterial infections and frequent use of antibiotics [40,41]. Interestingly, the incidence has been
reported to vary depending on socioeconomic circumstances [10], leading to the hypothesis that slight
microbial exposure increases CD risk by driving immune reactions toward autoantigens and dietary
components [42]. Close relatives usually share the living milieu and may, thus, experience similar
environmental modulatory effects on the microbiota and immune system that, in addition to genetics,
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could give rise to parallel responses to microbial antigens. It remains unclear, however, which external
factors drive these responses and whether the microbial markers have a causal role [43]. It is likely that
a complex interaction between multiple factors, such as dysregulation of the immune system, changes
in the epithelial barrier, and dysbiosis causes the loss of tolerance to microbial antigens [13,44–46].
In addition, a very recent study showed that Pseudomonas fluorescens peptides mimic gluten epitopes
and activate gliadin-reactive T cells, with this cross-reactivity possibly contributing to the onset of
CD [47].

We previously found most of the potential CD patients to already exhibit the microbial markers
before the development of villous damage or autoantibodies [21], reflecting the situation in the relatives
in the present study. Interestingly, Torres and colleagues recently showed that ASCA also predicts
forthcoming Crohn’s disease up to five years before the diagnosis [48]. More studies are needed to
determine the role of these markers in early development of CD and whether they could be utilized to
predict the disease in at-risk groups.

The main strengths of our study include the large and well-defined cohort of relatives of CD
patients who underwent systematic screening for CD-associated HLA and autoantibodies and the
representative control groups. As a weakness, however, large differences between the group sizes could
have influenced the results. Furthermore, only the groups with relatives contained pediatric subjects,
although the results remained unchanged after excluding children from the analyses. Genetic data
of the non-HLA alleles were also lacking, which could be an even more significant limitation among
relatives with a less marked HLA predisposition to CD. Since we did not have detailed information on
the health condition of the relatives, and the histological status of their intestines remains unknown,
it is possible that some of them had unreported CD or another disease affecting the results. Furthermore,
dietary data of the relatives was lacking, and it is possible that cross-reactions between food antigens
influenced the microbial antibody levels. ASCA is known to cross-react with other yeast strains [49],
and the lack of correlation between ASCA antibodies and Saccharomyces cerevisiae DNA on intestinal
mucosa [50] indicates the possibility of some yet-unidentified cross-reactive antigens. In accord with
our previous study [51], for currently unclear reasons, ASCA levels were generally higher in the
IgG class than the IgA class. By contrast, IgA class ASCA seems to be more consistently elevated
in IBD [48,52]. Which of these two antibody classes is the more useful marker in CD would be an
interesting subject for further research. The median duration of GFD in the CD group was only one
year, which may have biased the serological results, as histological and serological recovery often
take longer despite a strict diet [53]. Finally, a few adults here had surprisingly high anti-OmpW
values compared with our previous studies. Although we still believe that the used cutoff was valid,
we recommend that it be confirmed in other populations.

In conclusion, we found increased seroreactivity to serum microbial markers, particularly ASCA
and anti-I2, in relatives of CD patients even in the absence of the disease-specific autoantibodies or
other signs of active CD. This observation was not explained by the presence or absence of predisposing
HLA haplotypes, thereby suggesting the role of other genetic and environmental factors.

Author Contributions: L.V.: Conceptualization, writing the original draft; S.I.: Conceptualization, supervision,
writing—review and editing; H.H.: Conceptualization, methodology, writing—review and editing; P.S.:
Conceptualization, methodology, writing—review and editing; K.K. (Katri Kaukinen): Conceptualization,
funding acquisition, writing—review and editing; K.L.: Conceptualization, methodology, funding acquisition,
writing—review and editing; K.K. (Kalle Kurppa): Conceptualization, funding acquisition, supervision,
writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This study was supported by the Academy of Finland, the Finnish Medical Foundation, the Sohlberg
Foundation, the Paulo Foundation, the Sigrid Juselius Foundation, the Foundation for Pediatric Research,
the Competitive State Research Financing of the Expert Area of Tampere University Hospital, Helsinki University
Hospital Research Fund, the Finnish Medical Foundation and the Finnish Coeliac Society.

Acknowledgments: We would like to acknowledge Jonathan Braun, Pathology and Laboratory Medicine, UCLA
David Geffen School of Medicine, UCLA Health System for his support.

Conflicts of Interest: The authors declare no conflicts of interest.



Nutrients 2020, 12, 1073 8 of 10

References

1. Kapitany, A.; Toth, L.; Tumpek, J.; Csipo, I.; Sipos, E.; Woolley, N.; Partanen, J.; Szegedi, G.; Olah, E.; Sipka, S.;
et al. Diagnostic significance of HLA-DQ typing in patients with previous coeliac disease diagnosis based on
histology alone. Aliment. Pharmacol. Ther. 2006, 24, 1395–1402. [CrossRef] [PubMed]

2. Wijmenga, C.; Gutierrez-Achury, J. Celiac disease genetics: Past, present and future challenges. J. Pediatr.
Gastroenterol. Nutr. 2014, 59, S4–S7. [CrossRef] [PubMed]

3. Trynka, G.; Hunt, K.A.; Bockett, N.A.; Romanos, J.; Mistry, V.; Szperl, A.; Bakker, S.F.; Bardella, M.T.;
Bhaw-Rosun, L.; Castillejo, G.; et al. Dense genotyping identifies and localizes multiple common and rare
variant association signals in celiac disease. Nat. Genet. 2011, 43, 1193–1201. [CrossRef] [PubMed]

4. Coleman, C.; Quinn, E.M.; Ryan, A.W.; Conroy, J.; Trimble, V.; Mahmud, N.; Kennedy, N.; Corvin, A.P.;
Morris, D.W.; Donohoe, G.; et al. Common polygenic variation in coeliac disease and confirmation of ZNF335
and NIFA as disease susceptibility loci. Eur. J. Hum. Genet. 2016, 24, 291–297. [CrossRef]

5. Singh, P.; Arora, S.; Lal, S.; Strand, T.A.; Makharia, G.K. Risk of celiac Disease in the first- and second-degree
relatives of patients with celiac disease: A systematic review and meta-analysis. Am. J. Gastroenterol. 2015,
110, 1539–1548. [CrossRef]

6. Lohi, S.; Mustalahti, K.; Kaukinen, K.; Laurila, K.; Collin, P.; Rissanen, H.; Lohi, O.; Bravi, E.; Gasparin, M.;
Reunanen, A.; et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 2007, 26,
1217–1225. [CrossRef] [PubMed]

7. Mäki, M.; Mustalahti, K.; Kokkonen, J.; Kulmala, P.; Haapalahti, M.; Karttunen, T.; Ilonen, J.; Laurila, K.;
Dahlbom, I.; Hansson, T.; et al. Prevalence of celiac disease among children in Finland. N. Engl. J. Med. 2003,
348, 2517–2524. [CrossRef]

8. Hervonen, K.; Karell, K.; Holopainen, P.; Collin, P.; Partanen, J.; Reunala, T. Concordance of dermatitis
herpetiformis and celiac disease in monozygous twins. J. Invest. Dermatol. 2000, 115, 990–993. [CrossRef]

9. Kuja-Halkola, R.; Lebwohl, B.; Halfvarson, J.; Wijmenga, C.; Magnusson, P.K.; Ludvigsson, J.F. Heritability of
non-HLA genetics in coeliac disease: A population-based study in 107,000 twins. Gut 2016, 65, 1793–1798.
[CrossRef]

10. Kondrashova, A.; Mustalahti, K.; Kaukinen, K.; Viskari, H.; Volodicheva, V.; Haapala, A.M.; Ilonen, J.;
Knip, M.; Mäki, M.; Hyöty, H.; et al. Lower economic status and inferior hygienic environment may protect
against celiac disease. Ann. Med. 2008, 40, 223–231. [CrossRef]

11. Rubio-Tapia, A.; Kyle, R.A.; Kaplan, E.L.; Johnson, D.R.; Page, W.; Erdtmann, F.; Brantner, T.L.; Kim, W.R.;
Phelps, T.K.; Lahr, B.D.; et al. Increased prevalence and mortality in undiagnosed celiac disease.
Gastroenterology 2009, 137, 88–93. [CrossRef] [PubMed]

12. Catassi, C.; Kryszak, D.; Bhatti, B.; Sturgeon, C.; Helzlsouer, K.; Clipp, S.L.; Gelfond, D.; Puppa, E.;
Sferruzza, A.; Fasano, A. Natural history of celiac disease autoimmunity in a USA cohort followed since
1974. Ann. Med. 2010, 42, 530–538. [CrossRef] [PubMed]

13. Nadal, I.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Imbalance in the composition of the duodenal
microbiota of children with coeliac disease. J. Med. Microbiol. 2007, 56, 1669–1674. [CrossRef] [PubMed]

14. De Palma, G.; Nadal, I.; Medina, M.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Intestinal dysbiosis
and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol.
2010, 10, 63. [CrossRef] [PubMed]

15. Collado, M.C.; Donat, E.; Ribes-Koninckx, C.; Calabuig, M.; Sanz, Y. Specific duodenal and faecal bacterial
groups associated with paediatric coeliac disease. J. Clin. Pathol. 2009, 62, 264–269. [CrossRef] [PubMed]

16. Iltanen, S.; Tervo, L.; Halttunen, T.; Wei, B.; Braun, J.; Rantala, I.; Honkanen, T.; Kronenberg, M.; Cheroutre, H.;
Turovskaya, O.; et al. Elevated serum anti-I2 and anti-OmpW antibody levels in children with IBD. Inflamm.
Bowel Dis. 2006, 12, 389–394. [CrossRef] [PubMed]

17. Ashorn, S.; Honkanen, T.; Kolho, K.L.; Ashorn, M.; Välineva, T.; Wei, B.; Braun, J.; Rantala, I.; Luukkaala, T.;
Iltanen, S. Fecal calprotectin levels and serological responses to microbial antigens among children and
adolescents with inflammatory bowel disease. Inflamm. Bowel Dis. 2009, 15, 199–205. [CrossRef]

18. Landers, C.J.; Cohavy, O.; Misra, R.; Yang, H.; Lin, Y.C.; Braun, J.; Targan, S.R. Selected loss of tolerance
evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology
2002, 123, 689–699. [CrossRef]

http://dx.doi.org/10.1111/j.1365-2036.2006.03133.x
http://www.ncbi.nlm.nih.gov/pubmed/17059521
http://dx.doi.org/10.1097/01.mpg.0000450392.23156.10
http://www.ncbi.nlm.nih.gov/pubmed/24979196
http://dx.doi.org/10.1038/ng.998
http://www.ncbi.nlm.nih.gov/pubmed/22057235
http://dx.doi.org/10.1038/ejhg.2015.87
http://dx.doi.org/10.1038/ajg.2015.296
http://dx.doi.org/10.1111/j.1365-2036.2007.03502.x
http://www.ncbi.nlm.nih.gov/pubmed/17944736
http://dx.doi.org/10.1056/NEJMoa021687
http://dx.doi.org/10.1046/j.1523-1747.2000.00172.x
http://dx.doi.org/10.1136/gutjnl-2016-311713
http://dx.doi.org/10.1080/07853890701678689
http://dx.doi.org/10.1053/j.gastro.2009.03.059
http://www.ncbi.nlm.nih.gov/pubmed/19362553
http://dx.doi.org/10.3109/07853890.2010.514285
http://www.ncbi.nlm.nih.gov/pubmed/20868314
http://dx.doi.org/10.1099/jmm.0.47410-0
http://www.ncbi.nlm.nih.gov/pubmed/18033837
http://dx.doi.org/10.1186/1471-2180-10-63
http://www.ncbi.nlm.nih.gov/pubmed/20181275
http://dx.doi.org/10.1136/jcp.2008.061366
http://www.ncbi.nlm.nih.gov/pubmed/18996905
http://dx.doi.org/10.1097/01.MIB.0000218765.84087.42
http://www.ncbi.nlm.nih.gov/pubmed/16670528
http://dx.doi.org/10.1002/ibd.20535
http://dx.doi.org/10.1053/gast.2002.35379


Nutrients 2020, 12, 1073 9 of 10

19. Ashorn, S.; Raukola, H.; Välineva, T.; Ashorn, M.; Wei, B.; Braun, J.; Rantala, I.; Kaukinen, K.; Luukkaala, T.;
Collin, P.; et al. Elevated serum anti-Saccharomyces cerevisiae, anti-I2 and anti-OmpW antibody levels in
patients with suspicion of celiac disease. J. Clin. Immunol. 2008, 28, 486–494. [CrossRef]

20. Ashorn, S.; Välineva, T.; Kaukinen, K.; Ashorn, M.; Braun, J.; Raukola, H.; Rantala, I.; Collin, P.; Mäki, M.;
Luukkaala, T.; et al. Serological responses to microbial antigens in celiac disease patients during a gluten-free
diet. J. Clin. Immunol. 2009, 29, 190–195. [CrossRef]

21. Viitasalo, L.; Niemi, L.; Ashorn, M.; Ashorn, S.; Braun, J.; Huhtala, H.; Collin, P.; Mäki, M.; Kaukinen, K.;
Kurppa, K.; et al. Early microbial markers of celiac disease. J. Clin. Gastroenterol. 2014, 48, 620–624. [CrossRef]
[PubMed]

22. Ladinser, B.; Rossipal, E.; Pittschieler, K. Endomysium antibodies in coeliac disease: An improved method.
Gut 1994, 35, 776–778. [CrossRef] [PubMed]

23. Hadithi, M.; von Blomberg, B.M.; Crusius, J.B.; Bloemena, E.; Kostense, P.J.; Meijer, J.W.; Mulder, C.J.;
Stehouwer, C.D.; Pena, A.S. Accuracy of serologic tests and HLA-DQ typing for diagnosing celiac disease.
Ann. Intern. Med. 2007, 147, 294–302. [CrossRef] [PubMed]

24. Monsuur, A.J.; de Bakker, P.I.; Zhernakova, A.; Pinto, D.; Verduijn, W.; Romanos, J.; Auricchio, R.; Lopez, A.;
van Heel, D.A.; Crusius, J.B.; et al. Effective detection of human leukocyte antigen risk alleles in celiac disease
using tag single nucleotide polymorphisms. PLoS ONE 2008, 28, e2270.

25. Koskinen, L.; Romanos, J.; Kaukinen, K.; Mustalahti, K.; Korponay-Szabo, I.; Barisani, D.; Bardella, M.T.;
Ziberna, F.; Vatta, S.; Szeles, G.; et al. Cost-effective HLA typing with tagging SNPs predicts celiac disease risk
haplotypes in the Finnish, Hungarian, and Italian populations. Immunogenetics 2009, 61, 247–256. [CrossRef]

26. Sutton, C.L.; Kim, J.; Yamane, A.; Dalwadi, H.; Wei, B.; Landers, C.; Targan, S.R.; Braun, J. Identification of a
novel bacterial sequence associated with Crohn’s disease. Gastroenterology 2000, 119, 23–31. [CrossRef]

27. Wei, B.; Dalwadi, H.; Gordon, L.K.; Landers, C.; Bruckner, D.; Targan, S.R.; Braun, J. Molecular cloning of
a bacteroides caccae TonB-linked outer membrane protein identified by an inflammatory bowel disease
marker antibody. Infect. Immunol. 2001, 69, 6044–6054. [CrossRef]

28. Da Silva Kotze, L.M.; Nisihara, R.M.; Nass, F.R.; Theiss, P.M.; Silva, I.G.; da Rosa Utiyama, S.R.
Anti-Saccharomyces cerevisiae antibodies in first-degree relatives of celiac disease patients. J. Clin. Gastroenterol.
2010, 44, 308. [CrossRef]

29. Setty, M.; Discepolo, V.; Abadie, V.; Kamhawi, S.; Mayassi, T.; Kent, A.; Ciszewski, C.; Maglio, M.; Kistner, E.;
Bhagat, G.; et al. Distinct and synergistic contributions of epithelial stress and adaptive immunity to functions
of intraepithelial killer cells and active celiac disease. Gastroenterology 2015, 149, 681–691. [CrossRef]

30. Bosca-Watts, M.M.; Minguez, M.; Planelles, D.; Navarro, S.; Rodriguez, A.; Santiago, J.; Tosca, J.; Mora, F.
HLA-DQ: Celiac disease vs inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 96–103. [CrossRef]

31. Amcoff, K.; Joossens, M.; Pierik, M.J.; Jonkers, D.; Bohr, J.; Joossens, S.; Romberg-Camps, M.; Nyhlin, N.;
Wickbom, A.; Rutgeerts, P.J.; et al. Concordance in anti-OmpC and anti-I2 indicate the influence of genetic
predisposition: Results of a European study of twins with crohn’s disease. J. Crohns. Colitis. 2016, 10, 695–702.
[CrossRef] [PubMed]

32. Halfvarson, J.; Standaert-Vitse, A.; Jarnerot, G.; Sendid, B.; Jouault, T.; Bodin, L.; Duhamel, A.; Colombel, J.F.;
Tysk, C.; Poulain, D. Anti-Saccharomyces cerevisiae antibodies in twins with inflammatory bowel disease. Gut
2005, 54, 1237–1243. [CrossRef] [PubMed]

33. Andren Aronsson, C.; Lee, H.S.; Koletzko, S.; Uusitalo, U.; Yang, J.; Virtanen, S.M.; Liu, E.; Lernmark, A.;
Norris, J.M.; Agardh, D.; et al. Effects of gluten intake on risk of celiac disease: A case-control study on a
Swedish birth cohort. Clin. Gastroenterol. Hepatol. 2016, 14, 403–409. [CrossRef] [PubMed]

34. Andren Aronsson, C.; Lee, H.S.; Hard Af Segerstad, E.M.; Uusitalo, U.; Yang, J.; Koletzko, S.; Liu, E.;
Kurppa, K.; Bingley, P.J.; Toppari, J.; et al. Association of gluten intake during the first 5 years of life with
incidence of celiac disease autoimmunity and celiac disease among children at increased risk. JAMA 2019,
322, 514–523. [CrossRef]

35. Kemppainen, K.M.; Lynch, K.F.; Liu, E.; Lönnrot, M.; Simell, V.; Briese, T.; Koletzko, S.; Hagopian, W.;
Rewers, M.; She, J.X.; et al. Factors that increase risk of celiac disease autoimmunity after a gastrointestinal
infection in early life. Clin. Gastroenterol. Hepatol. 2017, 15, 694–702. [CrossRef]

36. Kahrs, C.R.; Chuda, K.; Tapia, G.; Stene, L.C.; Marild, K.; Rasmussen, T.; Ronningen, K.S.; Lundin, K.E.A.;
Kramna, L.; Cinek, O.; et al. Enterovirus as trigger of coeliac disease: Nested case-control study within
prospective birth cohort. BMJ 2019, 364, 231. [CrossRef]

http://dx.doi.org/10.1007/s10875-008-9200-9
http://dx.doi.org/10.1007/s10875-008-9255-7
http://dx.doi.org/10.1097/MCG.0000000000000089
http://www.ncbi.nlm.nih.gov/pubmed/24518796
http://dx.doi.org/10.1136/gut.35.6.776
http://www.ncbi.nlm.nih.gov/pubmed/8020804
http://dx.doi.org/10.7326/0003-4819-147-5-200709040-00003
http://www.ncbi.nlm.nih.gov/pubmed/17785484
http://dx.doi.org/10.1007/s00251-009-0361-3
http://dx.doi.org/10.1053/gast.2000.8519
http://dx.doi.org/10.1128/IAI.69.10.6044-6054.2001
http://dx.doi.org/10.1097/MCG.0b013e3181bea0d4
http://dx.doi.org/10.1053/j.gastro.2015.05.013
http://dx.doi.org/10.3748/wjg.v24.i1.96
http://dx.doi.org/10.1093/ecco-jcc/jjw021
http://www.ncbi.nlm.nih.gov/pubmed/26818662
http://dx.doi.org/10.1136/gut.2005.066860
http://www.ncbi.nlm.nih.gov/pubmed/15863472
http://dx.doi.org/10.1016/j.cgh.2015.09.030
http://www.ncbi.nlm.nih.gov/pubmed/26453955
http://dx.doi.org/10.1001/jama.2019.10329
http://dx.doi.org/10.1016/j.cgh.2016.10.033
http://dx.doi.org/10.1136/bmj.l231


Nutrients 2020, 12, 1073 10 of 10

37. Stene, L.C.; Honeyman, M.C.; Hoffenberg, E.J.; Haas, J.E.; Sokol, R.J.; Emery, L.; Taki, I.; Norris, J.M.;
Erlich, H.A.; Eisenbarth, G.S.; et al. Rotavirus infection frequency and risk of celiac disease autoimmunity in
early childhood: A longitudinal study. Am. J. Gastroenterol. 2006, 101, 2333–2340. [CrossRef]

38. Marild, K.; Kahrs, C.R.; Tapia, G.; Stene, L.C.; Stordal, K. Infections and risk of celiac disease in childhood:
A prospective nationwide cohort study. Am. J. Gastroenterol. 2015, 110, 1475–1484. [CrossRef]

39. Kemppainen, K.M.; Vehik, K.; Lynch, K.F.; Larsson, H.E.; Canepa, R.J.; Simell, V.; Koletzko, S.; Liu, E.;
Simell, O.G.; Toppari, J.; et al. Association between early-life antibiotic use and the risk of islet or celiac
disease autoimmunity. JAMA Pediatr. 2017, 171, 1217–1225. [CrossRef]

40. Sander, S.D.; Nybo Andersen, A.M.; Murray, J.A.; Karlstad, O.; Husby, S.; Stordal, K. Association between
antibiotics in the first year of life and celiac disease. Gastroenterology 2019, 156, 2217–2229. [CrossRef]

41. Riddle, M.S.; Murray, J.A.; Cash, B.D.; Pimentel, M.; Porter, C.K. Pathogen-specific risk of celiac disease
following bacterial causes of foodborne illness: A retrospective cohort study. Dig. Dis. Sci. 2013, 58,
3242–3245. [CrossRef] [PubMed]

42. Bach, J.F. The hygiene hypothesis in autoimmunity: The role of pathogens and commensals. Nat. Rev.
Immunol. 2018, 18, 105–120. [CrossRef] [PubMed]

43. Verdu, E.F.; Galipeau, H.J.; Jabri, B. Novel players in coeliac disease pathogenesis: Role of the gut microbiota.
Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 497–506. [CrossRef] [PubMed]

44. Kupfer, S.S.; Jabri, B. Pathophysiology of celiac disease. Gastrointest. Endosc. Clin. N. Am. 2012, 22, 639–660.
[CrossRef] [PubMed]

45. Schumann, M.; Siegmund, B.; Schulzke, J.D.; Fromm, M. Celiac disease: Role of the epithelial barrier. Cell Mol.
Gastroenterol. Hepatol. 2017, 3, 150–162. [CrossRef]

46. Kalliomäki, M.; Satokari, R.; Lähteenoja, H.; Vahamiko, S.; Gronlund, J.; Routi, T.; Salminen, S. Expression of
microbiota, Toll-like receptors, and their regulators in the small intestinal mucosa in celiac disease. J. Pediatr.
Gastroenterol. Nutr. 2012, 54, 727–732. [CrossRef]

47. Petersen, J.; Ciacchi, L.; Tran, M.T.; Loh, K.L.; Kooy-Winkelaar, Y.; Croft, N.P.; Hardy, M.Y.; Chen, Z.;
McCluskey, J.; Anderson, R.P.; et al. T cell receptor cross-reactivity between gliadin and bacterial peptides in
celiac disease. Nat. Struct. Mol. Biol. 2020, 27, 49–61. [CrossRef]

48. Torres, J.; Petralia, F.; Sato, T.; Wang, P.; Telesco, S.E.; Choung, R.S.; Strauss, R.; Li, X.J.; Laird, R.M.;
Gutierrez, R.L.; et al. Serum biomarkers identify patients who will develop inflammatory bowel diseases up
to 5 y before diagnosis. Gastroenterology 2020, (in press). [CrossRef]

49. Schaffer, T.; Muller, S.; Flogerzi, B.; Seibold-Schmid, B.; Schoepfer, A.M.; Seibold, F. Anti-Saccharomyces
cerevisiae mannan antibodies (ASCA) of Crohn’s patients crossreact with mannan from other yeast strains,
and murine ASCA IgM can be experimentally induced with Candida albicans. Inflamm. Bowel Dis. 2007, 13,
1339–1346. [CrossRef]

50. Mallant-Hent, R.C.; Mooij, M.; von Blomberg, B.M.; Linskens, R.K.; van Bodegraven, A.A.; Savelkoul, P.H.
Correlation between Saccharomyces cerevisiae DNA in intestinal mucosal samples and anti-Saccharomyces
cerevisiae antibodies in serum of patients with IBD. World J. Gastroenterol. 2006, 12, 292–297. [CrossRef]

51. Viitasalo, L.; Kurppa, K.; Ashorn, M.; Saavalainen, P.; Huhtala, H.; Ashorn, S.; Mäki, M.; Ilus, T.; Kaukinen, K.;
Iltanen, S. Microbial Biomarkers in Patients with Nonresponsive Celiac Disease. Dig. Dis. Sci. 2018, 63,
3434–3441. [CrossRef] [PubMed]

52. Pekki, H.; Kurppa, K.; Mäki, M.; Huhtala, H.; Sievänen, H.; Laurila, K.; Collin, P.; Kaukinen, K. Predictors
and significance of incomplete mucosal recovery in celiac disease after 1 year on a gluten-free diet. Am. J.
Gastroenterol. 2015, 110, 1078–1085. [CrossRef] [PubMed]

53. Yao, F.; Fan, Y.; Lv, B.; Ji, C.; Xu, L. Diagnostic utility of serological biomarkers in patients with Crohn’s
disease: A case-control study. Medicine 2018, 97, e11772. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/j.1572-0241.2006.00741.x
http://dx.doi.org/10.1038/ajg.2015.287
http://dx.doi.org/10.1001/jamapediatrics.2017.2905
http://dx.doi.org/10.1053/j.gastro.2019.02.039
http://dx.doi.org/10.1007/s10620-013-2733-7
http://www.ncbi.nlm.nih.gov/pubmed/23812827
http://dx.doi.org/10.1038/nri.2017.111
http://www.ncbi.nlm.nih.gov/pubmed/29034905
http://dx.doi.org/10.1038/nrgastro.2015.90
http://www.ncbi.nlm.nih.gov/pubmed/26055247
http://dx.doi.org/10.1016/j.giec.2012.07.003
http://www.ncbi.nlm.nih.gov/pubmed/23083984
http://dx.doi.org/10.1016/j.jcmgh.2016.12.006
http://dx.doi.org/10.1097/MPG.0b013e318241cfa8
http://dx.doi.org/10.1038/s41594-019-0353-4
http://dx.doi.org/10.1053/j.gastro.2020.03.007
http://dx.doi.org/10.1002/ibd.20228
http://dx.doi.org/10.3748/wjg.v12.i2.292
http://dx.doi.org/10.1007/s10620-018-5285-z
http://www.ncbi.nlm.nih.gov/pubmed/30238202
http://dx.doi.org/10.1038/ajg.2015.155
http://www.ncbi.nlm.nih.gov/pubmed/26032154
http://dx.doi.org/10.1097/MD.0000000000011772
http://www.ncbi.nlm.nih.gov/pubmed/30095633
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Participants 
	CD Autoantibodies and Genotyping 
	Microbial Antibodies 
	Statistical Analysis 
	Ethical Aspects 

	Results 
	Discussion 
	References

