Menon-type identities again: A note on a paper by Li, Kim and Qiao

Pentti Haukkanen
Faculty of Information Technology and Communication Sciences (ITC)
Tampere University, FI-33014 Finland
E-mail: pentti.haukkanen@tuni.fi
László Tóth
Department of Mathematics, University of Pécs
Ifjúság útja 6, 7624 Pécs, Hungary
E-mail: ltoth@gamma.ttk.pte.hu

Publ. Math. Debrecen 96 (2020), 487-502

Abstract

We give common generalizations of the Menon-type identities by Sivaramakrishnan (1969) and Li, Kim, Qiao (2019). Our general identities involve arithmetic functions of several variables, and also contain, as special cases, identities for gcd-sum type functions. We point out a new Menon-type identity concerning the lcm function. We present a simple character free approach for the proof.

2010 Mathematics Subject Classification: 11A07, 11A25
Key Words and Phrases: Menon's identity, gcd-sum function, arithmetic function of several variables, multiplicative function, lcm function, polynomial with integer coefficients

1 Introduction

Menon's classical identity [13] states that for every $n \in \mathbb{N}:=\{1,2, \ldots\}$,

$$
\begin{equation*}
M(n):=\sum_{\substack{a=1 \\(a, n)=1}}^{n}(a-1, n)=\varphi(n) \tau(n), \tag{1.1}
\end{equation*}
$$

where (a, n) stands for the greatest common divisor of a and $n, \varphi(n)$ is Euler's totient function and $\tau(n)=\sum_{d \mid n} 1$ is the divisor function.

Menon [13] proved this identity by three distinct methods, the first one being based on the Cauchy-Frobenius-Burnside lemma on group actions. This method was used later by Sury [16], Tóth [18], Li and Kim [10], and other authors to derive different generalizations and analogs of (1.1). Number theoretic methods were also applied in several papers to deduce various Menontype identities. See, e.g., [4, 6, 7, 9, 11, 12, 20, 21, 22, 24, 25].

It is less known and is not considered in the above mentioned papers the following old generalization, due to Sivaramakrishnan [15], in a slightly different form:

$$
\begin{equation*}
M(m, n, t):=\sum_{\substack{a=1 \\(a, m)=1}}^{t}(a-1, n)=\frac{t \varphi(m) \tau(n)}{m} \prod_{p^{\nu} \| n_{1}}\left(1-\frac{\nu}{(\nu+1) p}\right), \tag{1.2}
\end{equation*}
$$

where $m, n, t \in \mathbb{N}$ such that $m|t, n| t$ and $n_{1}=\max \{d \in \mathbb{N}: d \mid n,(d, m)=1\}$. If $m=n=t$, then $M(n, n, n)=M(n)$, that is, (1.2) reduces to (1.1). However, if $n \mid m$ and $t=m$, then it follows from (1.2) that

$$
\sum_{\substack{a=1 \\(a, m)=1}}^{m}(a-1, n)=\varphi(m) \tau(n)
$$

which was recently obtained by Jafari and Madadi [8, Cor. 2.2], using group theoretic arguments, without referring to the paper [15]. It was pointed out by Sivaramakrishnan [15] that if $t=[m, n]$, the least common multiple of m and n, then $M(m, n,[m, n])$ is a multiplicative function of two variables.

In a quite recent paper, Li, Kim and Qiao [12, Th. 2.5] proved that for any integers $n \geq 1$, $k \geq 0, \ell \geq 1$ one has

$$
\begin{equation*}
\sum_{\substack{1 \leq a, b_{1}, \ldots, b_{k} \leq n \\(a, n)=1}}\left(a^{\ell}-1, b_{1}, \ldots, b_{k}, n\right)=\varphi(n)\left(\operatorname{id}_{k} * C^{(\ell)}\right)(n) \tag{1.3}
\end{equation*}
$$

where $*$ denotes the Dirichlet convolution, $\operatorname{id}_{k}(n)=n^{k}$ and $C^{(\ell)}(n)$ is the number of solutions of the congruence $x^{\ell} \equiv 1(\bmod n)$ with $(x, n)=1$. Note that the condition $(x, n)=1$ can be omitted here. For the proof they used properties of characters of finite abelian groups. The case $k=0$ recovers certain identities given by the second author [18]. If $k=0$ and $\ell=1$, then (1.3) reduces to (1.1).

The sum $M(n)$ is related to the gcd-sum function, also known as Pillai's arithmetical function, given by

$$
\begin{equation*}
G(n):=\sum_{a=1}^{n}(a, n)=n \sum_{d \mid n} \frac{\varphi(d)}{d} \quad(n \in \mathbb{N}) . \tag{1.4}
\end{equation*}
$$

A large number of different generalizations and analogs of the function $G(n)$ is presented in the literature. See, e.g., [5, 17].

It is the goal of this paper to give common generalizations of the identities (1.2) and (1.3), and to present a simple character free approach for the proof. Our general identity, included in Theorem 3.1, involves arithmetic functions of several variables, and also contains, as a special case, identities for gcd-sum type functions, such as identity (1.4). The identity of Theorem 3.7 is concerning arithmetic functions of a single variable.

We point out the following new Menon-type identity, which is another special case of our results. See Theorem 4.1 and Corollary 4.2. If $n \in \mathbb{N}$, then

$$
\begin{equation*}
\sum_{\substack{1 \leq a, b \leq n \\(a, n)=(b, n)=1}}[(a-1, n),(b-1, n)]=\varphi(n)^{2} \prod_{p^{\nu} \| n}\left(1+2 \nu-\frac{p^{\nu}-1}{p^{\nu-1}(p-1)^{2}}\right) . \tag{1.5}
\end{equation*}
$$

Note that identity (1.2) was generalized by Sita Ramaiah [14, Th. 9.1] in another way, namely in terms of regular convolutions. Our results can further be generalized to regular convolutions and to k-reduced residue systems. For the sake of brevity, we do not present the details. For appropriate material we refer to $[2,3,14]$.

2 Preliminaries

2.1 Arithmetic functions of several variables

Let $f, g: \mathbb{N}^{k} \rightarrow \mathbb{C}$ be arithmetic functions of k variables. Their Dirichlet convolution is defined as

$$
\left(f *_{k} g\right)\left(n_{1}, \ldots, n_{k}\right)=\sum_{d_{1}\left|n_{1}, \ldots, d_{k}\right| n_{k}} f\left(d_{1}, \ldots, d_{k}\right) g\left(n_{1} / d_{1}, \ldots, n_{k} / d_{k}\right)
$$

In the case $k=1$ we write simply $f *_{1} g=f * g$. The identity under $*_{k}$ is

$$
\delta_{k}\left(n_{1}, \ldots, n_{k}\right)=\delta\left(n_{1}\right) \cdots \delta\left(n_{k}\right)
$$

where $\delta(1)=1$ and $\delta(n)=0$ for $n \neq 1$. An arithmetic function f of k variables possesses an inverse under $*_{k}$ if and only if $f(1, \ldots, 1) \neq 0$. Let $\zeta_{k}\left(n_{1}, \ldots, n_{k}\right)$ be defined as $\zeta_{k}\left(n_{1}, \ldots, n_{k}\right)=1$ for all $n_{1}, \ldots, n_{k} \in \mathbb{N}$. Its Dirichlet inverse is the Möbius function μ_{k} of k variables given as

$$
\mu_{k}\left(n_{1}, \ldots, n_{k}\right)=\mu\left(n_{1}\right) \cdots \mu\left(n_{k}\right)
$$

where μ is the classical Möbius function of one variable.
Let g be an arithmetic function of one variable. Then the principal function $\operatorname{Pr}_{k}(g)$ associated with g is the arithmetic function of k variables defined as

$$
\operatorname{Pr}_{k}(g)\left(n_{1}, \ldots, n_{k}\right)= \begin{cases}g(n), & \text { if } n_{1}=\cdots=n_{k}=n \\ 0, & \text { otherwise }\end{cases}
$$

(See Vaidyanathaswamy [23].) Let f be the arithmetic function of k variables defined by

$$
f\left(n_{1}, \ldots, n_{k}\right)=g\left(\left(n_{1}, \ldots, n_{k}\right)\right)
$$

having the gcd on the right-hand side. Then

$$
f\left(n_{1}, \ldots, n_{k}\right)=\sum_{d \mid\left(n_{1}, \ldots, n_{k}\right)}(\mu * g)(d)=\sum_{d_{1}\left|n_{1}, \ldots, d_{k}\right| n_{k}} \operatorname{Pr}_{k}(\mu * g)\left(d_{1}, \ldots, d_{k}\right)
$$

that is,

$$
f=\operatorname{Pr}_{k}(\mu * g) *_{k} \zeta_{k}
$$

which means that

$$
\begin{equation*}
\operatorname{Pr}_{k}(\mu * g)=\mu_{k} *_{k} f \tag{2.1}
\end{equation*}
$$

An arithmetic function f of k variables is said to be multiplicative if $f(1, \ldots, 1)=1$ and

$$
f\left(m_{1} n_{1}, \ldots, m_{k} n_{k}\right)=f\left(m_{1}, \ldots, m_{k}\right) f\left(n_{1}, \ldots, n_{k}\right)
$$

for all positive integers m_{1}, \ldots, m_{k} and n_{1}, \ldots, n_{k} with $\left(m_{1} \cdots m_{k}, n_{1} \cdots n_{k}\right)=1$. For example, the gcd function $\left(n_{1}, \ldots, n_{k}\right)$ and the lcm function $\left[n_{1}, \ldots, n_{k}\right]$ are multiplicative. If f and g are multiplicative functions of k variables, then their Dirichlet convolution $f *_{k} g$ is also multiplicative. See [19, 23].

2.2 Number of solutions of congruences

For a given polynomial $P \in \mathbb{Z}[x]$ let $N_{P}(n)$ denote the number of solutions $x(\bmod n)$ of the congruence $P(x) \equiv 0(\bmod n)$ and let $\widehat{N}_{P}(n)$ be the number of solutions $x(\bmod n)$ such that $(x, n)=1$. Furthermore, for a fixed integer $s \in \mathbb{N}$, let $\widehat{N}_{P}(n, s)$ be the number of solutions x $(\bmod n)$ such that $(x, n, s)=1$.

The functions $N_{P}(n), \widehat{N}_{P}(n)$ and $\widehat{N}_{P}(n, s)$ are multiplicative in n, which are direct consequences of the Chinese remainder theorem.

It is easy to see that if $P(x)=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ and $\left(a_{0}, n\right)=1$, then $N_{P}(n)=\widehat{N}_{P}(n)=$ $\widehat{N}_{P}(n, s)$. This applies, in particular, to $P(x)=-1+x^{\ell}$. See the Introduction regarding the notation $C^{(\ell)}(n)$, used by Li, Kim and Qiao [12].

2.3 Lemma

We will need the next lemma.
Lemma 2.1. Let $d, r, s \in \mathbb{N}, x \in \mathbb{Z}$ such that $d|r, s| r$. Then

$$
\sum_{\substack{1 \leq a \leq r \\(a, s)=1 \\ a \equiv x(\bmod d)}} 1= \begin{cases}\frac{r}{d} \prod_{\substack{p \mid s \\ p \nmid d}}\left(1-\frac{1}{p}\right), & \text { if }(d, s, x)=1, \\ 0, & \text { otherwise. }\end{cases}
$$

In the special case $r=s$ this is known in the literature, usually proved by the inclusionexclusion principle. See, e.g., [1, Th. 5.32]. Also see [7, Lemma] for a generalization in terms of regular convolutions. Here we use a different approach, similar to the proof of [14, Th. 9.1] and to the proofs of our previous papers [21, 22].

Proof of Lemma 2.1. Let A denote the given sum. If $(d, s, x) \neq 1$, then the sum A is empty and equal to zero. Indeed, if we assume $p \mid(d, s, x)$ for some prime p, then $p \mid a \equiv x(\bmod d)$. Hence $p \mid(a, s)=1$, a contradiction.

Assume now that $(d, s, x)=1$. By using the property of the Möbius function, the given sum can be written as

$$
\begin{equation*}
A=\sum_{\substack{1 \leq a \leq r \\ a \equiv x(\bmod d)}} \sum_{\delta \mid(a, s)} \mu(\delta)=\sum_{\delta \mid s} \mu(\delta) \sum_{\substack{j=1 \\ \delta j \equiv x(\bmod d)}}^{r / \delta} 1 . \tag{2.2}
\end{equation*}
$$

Let $\delta \mid s$ be fixed. The linear congruence $\delta j \equiv x(\bmod d)$ has solutions in j if and only if $(\delta, d) \mid x$. Here $(\delta, d) \mid \delta$ and $\delta \mid s$, hence $(\delta, d) \mid s$. Also, $(\delta, d) \mid d$. If $(\delta, d) \mid x$ holds, then $(\delta, d) \mid(d, s, x)=1$, therefore $(\delta, d)=1$. We deduce that the above congruence has

$$
N=\frac{r}{d \delta}
$$

solutions $(\bmod r / \delta)$ and the last sum in (2.2) is N. This gives

$$
A=\frac{r}{d} \sum_{\substack{\delta \mid s \\(\delta, d)=1}} \frac{\mu(\delta)}{\delta}=\frac{r}{d} \prod_{\substack{p \mid s \\ p \nmid d}}\left(1-\frac{1}{p}\right) .
$$

3 Main results

Assume that
(1) $k, \ell \geq 0$ are fixed integers, not both zero;
(2) $m_{i}, r_{i}, s_{i}, n_{j}, t_{j} \in \mathbb{N}$ are integers such that $m_{i}\left|r_{i}, s_{i}\right| r_{i}, n_{j} \mid t_{j}(1 \leq i \leq k, 1 \leq j \leq \ell)$;
(3) $f: \mathbb{N}^{k+\ell} \rightarrow \mathbb{C}$ is an arbitrary arithmetic function of $k+\ell$ variables;
(4) $P_{i}, Q_{j} \in \mathbb{Z}[x]$ are arbitrary polynomials $(1 \leq i \leq k, 1 \leq j \leq \ell)$.

Consider the sum

$$
S:=\sum_{\substack{1 \leq a_{i} \leq r_{i} \\\left(a_{i} \leq b_{j} \leq t_{j} \\ 1 \leq i\right)=1 \\ 1 \leq i \leq k}} f\left(\left(P_{1}\left(a_{1}\right), m_{1}\right), \ldots,\left(P_{k}\left(a_{k}\right), m_{k}\right),\left(Q_{1}\left(b_{1}\right), n_{1}\right), \ldots,\left(Q_{\ell}\left(b_{\ell}\right), n_{\ell}\right)\right),
$$

where $\left(P_{i}\left(a_{i}\right), m_{i}\right)$ and $\left(Q_{j}\left(b_{j}\right), n_{j}\right)$ represent the gcd's of the corresponding values $(1 \leq i \leq k$, $1 \leq j \leq \ell$).

Theorem 3.1. Under the above assumptions (1)-(4) we have

$$
\begin{aligned}
& S=r_{1} \cdots r_{k} t_{1} \cdots t_{\ell} \sum_{\substack{d_{i} \mid m_{i} \\
1 \leq i \leq k}} \sum_{\substack{e_{j} \mid n_{j} \\
1 \leq j \leq \ell}} \frac{\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right)}{d_{1} \cdots d_{k} e_{1} \cdots e_{\ell}} \\
& \times\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right) \beta\left(s_{i}, d_{i}\right)\right)\left(\prod_{1 \leq j \leq \ell} N_{Q_{j}}\left(e_{j}\right)\right)
\end{aligned}
$$

where $\widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right)$ and $N_{Q_{j}}\left(e_{j}\right)(1 \leq i \leq k, 1 \leq j \leq \ell)$ are defined in Section 2.2, and

$$
\beta\left(s_{i}, d_{i}\right)=\prod_{\substack{p \mid s_{i} \\ p \nmid d_{i}}}\left(1-\frac{1}{p}\right) .
$$

Corollary 3.2. If $\ell=0$, then Theorem 3.1 gives the pure Menon-type identity

$$
\begin{equation*}
S=r_{1} \cdots r_{k} \sum_{\substack{d_{i} \mid m_{i} \\ 1 \leq i \leq k}} \frac{\left(\mu_{k} *_{k} f\right)\left(d_{1}, \ldots, d_{k}\right)}{d_{1} \cdots d_{k}}\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right) \beta\left(s_{i}, d_{i}\right)\right), \tag{3.1}
\end{equation*}
$$

and if $k=0$, it gives the pure gcd-sum identity

$$
S=t_{1} \cdots t_{\ell} \sum_{\substack{e_{j} \mid n_{j} \\ 1 \leq j \leq \ell}} \frac{\left(\mu_{\ell} *_{\ell} f\right)\left(e_{1}, \ldots, e_{\ell}\right)}{e_{1} \cdots e_{\ell}}\left(\prod_{1 \leq j \leq \ell} N_{Q_{j}}\left(e_{j}\right)\right) .
$$

If $k=1, f(n)=n(n \in \mathbb{N})$ and $P(x)=x-1$, then identity (3.1) reduces to

$$
\sum_{\substack{a=1 \\(a, s)=1}}^{r}(a-1, m)=r \sum_{d \mid m} \frac{\varphi(d)}{d} \prod_{\substack{p \mid s \\ p \nmid d}}\left(1-\frac{1}{p}\right)
$$

$$
=\frac{r \varphi(s) \tau(m)}{s} \prod_{p^{\nu} \| m_{1}}\left(1-\frac{\nu}{(\nu+1) p}\right)
$$

where $m|r, s| r$ and $m_{1}=\max \{d \in \mathbb{N}: d \mid m,(d, s)=1\}$, which is identity (1.2) (with the corresponding change of notations).

Remark 3.1. Haukkanen and Wang [7] considered systems of polynomials in several variables and a different constraint, namely $\left(a_{1}, \ldots, a_{k}, n\right)=1$ in the first sum defining S.

Proof of Theorem 3.1. It is an immediate consequence of the definition of the function μ_{k} that

$$
\begin{equation*}
f\left(n_{1}, \ldots, n_{k}\right)=\sum_{d_{1}\left|n_{1}, \ldots, d_{k}\right| n_{k}}\left(\mu_{k} *_{k} f\right)\left(d_{1}, \ldots, d_{k}\right) \tag{3.2}
\end{equation*}
$$

By using (3.2) we have

$$
\begin{aligned}
& S=\sum_{\substack{1 \leq a_{i} \leq r_{i} \\
\left(a_{i}, i_{i}=1 \\
1 \leq i \leq k\right.}} \sum_{\substack{1 \leq b_{j} \leq t_{j} \\
1 \leq j \leq \ell}} \sum_{\substack{d_{i} \mid\left(P_{i}\left(a_{i}\right), m_{i}\right) \\
1 \leq i \leq k}} \sum_{\substack{e_{j} \mid\left(Q_{j}\left(b_{j}\right), n_{j}\right) \\
1 \leq j \leq \ell}}\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right) \\
& =\sum_{\substack{d_{i} \mid m_{i} \\
1 \leq i \leq k}} \sum_{\substack{e_{j} \mid n_{j} \\
1 \leq j \leq \ell}}\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right) \\
& \times\left(\prod_{\substack{1 \leq i \leq k}} \sum_{\substack{1 \leq a_{i} \leq r_{i} \\
\left(a_{i}, s_{i}\right)=1 \\
P_{i}\left(a_{i}\right) \equiv 0\left(\bmod d_{i}\right)}} 1\right)\left(\prod_{\substack{1 \leq j \leq \ell}} \sum_{\substack{1 \leq b_{j} \leq t_{j} \\
Q_{j}\left(b_{j}\right) \\
\equiv 0\left(\bmod e_{j}\right)}} 1\right) .
\end{aligned}
$$

Now we use Lemma 2.1 to evaluate the sum

$$
B_{i}:=\sum_{\substack{1 \leq a_{i} \leq r_{i} \\\left(a_{i}, s_{i}\right)=1 \\ P_{i}\left(a_{i}\right) \equiv 0\left(\bmod d_{i}\right)}} 1 .
$$

For any x such that $\left(x, d_{i}, s_{i}\right)=1$ we have

$$
\sum_{\substack{1 \leq a_{i} \leq r_{i} \\\left(a_{i}, s_{i}=1 \\ a_{i} \equiv x\left(\bmod d_{i}\right)\right.}} 1=\frac{r_{i}}{d_{i}} \beta\left(s_{i}, d_{i}\right),
$$

and there are $\widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right)$ such values of $x\left(\bmod d_{i}\right)$. Hence,

$$
B_{i}=\frac{r_{i}}{d_{i}} \beta\left(s_{i}, d_{i}\right) \widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right) .
$$

We also have

$$
\sum_{\substack{1 \leq b_{j} \leq t_{j} \\ j\left(b_{j}\right) \equiv 0\left(\bmod e_{j}\right)}} 1=\frac{t_{j}}{e_{j}} N_{Q_{j}}\left(e_{j}\right) .
$$

Notice that here r_{i} / d_{i} and t_{j} / e_{j} are integers for any i, j.
Putting together this gives

$$
\begin{gathered}
S=\sum_{\substack{d_{i} \mid m_{i} \\
1 \leq i \leq k}} \sum_{e_{j} \mid n_{j}}\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right) \\
\times\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right) \frac{r_{i}}{d_{i}} \beta\left(s_{i}, d_{i}\right)\right)\left(\prod_{1 \leq j \leq \ell} \frac{t_{j}}{e_{j}} N_{Q_{j}}\left(e_{j}\right)\right) \\
=r_{1} \cdots r_{k} t_{1} \cdots t_{\ell} \sum_{\substack{d_{i} \mid m_{i} \\
1 \leq k}} \sum_{e_{j} \mid n_{j}} \frac{\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right)}{d_{1} \cdots d_{k} e_{1} \cdots e_{\ell}} \\
\quad \times\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right) \beta\left(s_{i}, d_{i}\right)\right)\left(\prod_{1 \leq j \leq \ell} N_{Q_{j}}\left(e_{j}\right)\right) .
\end{gathered}
$$

Corollary 3.3. Assume that $m_{i} \mid s_{i}$ and $s_{i} \mid r_{i}$ for any i with $1 \leq i \leq k$ Then

$$
\begin{gathered}
S=r_{1} \frac{\varphi\left(s_{1}\right)}{s_{1}} \cdots r_{k} \frac{\varphi\left(s_{k}\right)}{s_{k}} t_{1} \cdots t_{\ell} \sum_{\substack{d_{i} \mid m_{i} \\
1 \leq i \leq k}} \sum_{e_{j} \mid n_{j}} \frac{\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{k}\right) e_{1} \cdots e_{\ell}} \\
\times\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}\right)\right)\left(\prod_{1 \leq j \leq \ell} N_{Q_{j}}\left(e_{j}\right)\right) .
\end{gathered}
$$

Proof. Apply Theorem 3.1. Since $d_{i} \mid m_{i}$, we have $d_{i} \mid s_{i}$. Hence $\widehat{N}_{P_{i}}\left(d_{i}, s_{i}\right)=\widehat{N}_{P_{i}}\left(d_{i}\right)$ and

$$
\beta\left(s_{i}, d_{i}\right)=\prod_{\substack{p \mid s_{i} \\ p \nmid d_{i}}}\left(1-\frac{1}{p}\right)=\frac{\varphi\left(s_{i}\right) / s_{i}}{\varphi\left(d_{i}\right) / d_{i}}
$$

Corollary 3.4. Assume that $m_{i}=r_{i}=s_{i}$ and $n_{j}=t_{j}$ for any $i, j(1 \leq i \leq k, 1 \leq j \leq \ell)$. Then

$$
\begin{align*}
S=\varphi\left(m_{1}\right) \cdots \varphi\left(m_{k}\right) n_{1} \cdots n_{\ell} \sum_{\substack{d_{i} \mid m_{i} \\
1 \leq i \leq k}} \sum_{e_{j} \mid n_{j}}^{1 \leq j \leq \ell} \tag{3.3}
\end{align*} \frac{\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(d_{1}, \ldots, d_{k}, e_{1}, \ldots, e_{\ell}\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{k}\right) e_{1} \cdots e_{\ell}} .
$$

Theorem 3.5. Assume conditions (1)-(4). Furthermore, let $r_{i}=\left[m_{i}, s_{i}\right], t_{j}=n_{j}(1 \leq i \leq k$, $1 \leq j \leq \ell$) and let f be a multiplicative function of $k+\ell$ variables. Then the sum

$$
S=S\left(m_{1}, \ldots, m_{k}, s_{1}, \ldots, s_{k}, n_{1}, \ldots, n_{\ell}\right)
$$

represents a multiplicative function of $2 k+\ell$ variables.

Proof. Note that

$$
\begin{equation*}
\beta\left(s_{i}, d_{i}\right)=\sum_{\substack{\delta \mid s_{i} \\\left(\delta, d_{i}\right)=1}} \frac{\mu(\delta)}{\delta}=\sum_{\delta \mid s_{i}} \frac{\mu(\delta)}{\delta} h\left(\delta, d_{i}\right), \tag{3.4}
\end{equation*}
$$

where the function of two variables

$$
h\left(\delta, d_{i}\right)=\sum_{\substack{c|\delta \\ c| d_{i}}} \mu(c)
$$

is multiplicative, being the convolution of multiplicative functions. Therefore, $\beta\left(s_{i}, d_{i}\right)$, given by the convolution (3.4) is also multiplicative.

We conclude that S, given in Theorem 3.1 as a convolution of $2 k+\ell$ variables of multiplicative functions, is multiplicative, as well.

Corollary 3.6. Assume that $m_{i}=r_{i}=s_{i}$ and $n_{j}=t_{j}$ for any i, j and f is multiplicative, viewed as a function of $k+\ell$ variables. Then S given by (3.3) is also multiplicative in $m_{1}, \ldots, m_{k}, n_{1}, \ldots, n_{\ell}$, as a function of $k+\ell$ variables.
Remark 3.2. Note that in his original paper Menon [13, Lemma] proved that if f is a multiplicative arithmetic function of r variables and $P_{i} \in \mathbb{Z}[x]$ are polynomials, then the function

$$
F(n):=\sum_{a=1}^{n} f\left(\left(P_{1}(a), n\right), \ldots,\left(P_{r}(a), n\right)\right)
$$

is multiplicative in the single variable n. Here $F(n)$ is not a special case our sum S, but it can be treated in a similar way. By using (3.2) one obtains the formula

$$
\begin{equation*}
F(n)=n \sum_{d_{1}\left|n, \ldots, d_{r}\right| n} \frac{\left(\mu_{r} *_{r} f\right)\left(d_{1}, \ldots, d_{r}\right)}{\left[d_{1}, \ldots, d_{r}\right]} N\left(d_{1}, \ldots, d_{r}\right), \tag{3.5}
\end{equation*}
$$

valid for any function f of r variables, where $N\left(d_{1}, \ldots, d_{r}\right)$ is the number of solutions (mod $\left.\left[d_{1}, \ldots, d_{r}\right]\right)$ of the simultaneous congruences $P_{1}(x) \equiv 0\left(\bmod d_{1}\right), \ldots, P_{r}(x) \equiv 0\left(\bmod d_{r}\right)$. Note that $N\left(d_{1}, \ldots, d_{r}\right)$ is a multiplicative function of r variables. If f is multiplicative, then the convolution representation (3.5) shows that F is also multiplicative.

In what follows assume that
(1') $k, \ell \geq 0$ are fixed integers, not both zero;
(2') $n, r_{i}, s_{i}, t_{j} \in \mathbb{N}$ are integers such that $n\left|r_{i}, s_{i}\right| r_{i}, n \mid t_{j}(1 \leq i \leq k, 1 \leq j \leq \ell)$;
(3') $g: \mathbb{N} \rightarrow \mathbb{C}$ is an arbitrary arithmetic function;
(4) $P_{i}, Q_{j} \in \mathbb{Z}[x]$ are arbitrary polynomials $(1 \leq i \leq k, 1 \leq j \leq \ell)$.

Consider the sum

$$
T:=\sum_{\substack{1 \leq a_{i} \leq r_{i} \\\left(a_{i} s_{i}=1 \\ 1 \leq i \leq k\right.}} \sum_{1 \leq b_{j} \leq t_{j}}^{1 \leq j \leq \ell}<~ g\left(\left(P_{1}\left(a_{1}\right), \ldots, P_{k}\left(a_{k}\right), Q\left(b_{1}\right), \ldots, Q_{\ell}\left(b_{\ell}\right), n\right)\right),
$$

with the gcd on the right hand side.
We have the following result.

Theorem 3.7. Assume conditions (1')-(4'). Then

$$
T=r_{1} \cdots r_{k} t_{1} \cdots t_{\ell} \sum_{d \mid n} \frac{(\mu * g)(d)}{d^{k+\ell}}\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d, s_{i}\right) \beta\left(s_{i}, d\right)\right)\left(\prod_{1 \leq j \leq \ell} N_{Q_{j}}(d)\right)
$$

where

$$
\beta\left(s_{i}, d\right)=\prod_{\substack{p \mid s_{i} \\ p \nmid d}}\left(1-\frac{1}{p}\right)
$$

Proof. Apply Theorem 3.1 in the case when $m_{i}=n_{j}=n(1 \leq i \leq k, 1 \leq j \leq \ell)$ and

$$
f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)=g\left(\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)\right) .
$$

Then

$$
\begin{gathered}
f\left(\left(P_{1}\left(a_{1}\right), m_{1}\right), \ldots,\left(P_{k}\left(a_{k}\right), m_{k}\right),\left(Q\left(b_{1}\right), n_{1}\right), \ldots,\left(Q_{\ell}\left(b_{\ell}\right), n_{\ell}\right)\right) \\
=g\left(\left(P_{1}\left(a_{1}\right), \ldots, P_{k}\left(a_{k}\right), Q\left(b_{1}\right), \ldots, Q_{\ell}\left(b_{\ell}\right), n\right)\right) .
\end{gathered}
$$

From (2.1) we obtain

$$
\left(\mu_{k+\ell} *_{k+\ell} f\right)\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{\ell}\right)= \begin{cases}(\mu * g)(n), & \text { if } x_{1}=\cdots=x_{k}=y_{1}=\ldots=y_{\ell}=n \\ 0, & \text { otherwise }\end{cases}
$$

In the special case $g(n)=n, Q_{j}(x)=x, r_{i}=s_{i}=t_{j}=n(1 \leq i \leq k, 1 \leq j \leq \ell)$ we obtain from Theorem 3.7 the next result.

Corollary 3.8.

$$
\sum_{\substack{1 \leq a_{i} \leq n \\\left(a_{i}\right)=1 \\ 1 \leq i \leq k}} \sum_{1 \leq b_{j} \leq n}^{1 \leq j \leq \ell}<~\left(P_{1}\left(a_{1}\right), \ldots, P_{k}\left(a_{k}\right), b_{1}, \ldots, b_{\ell}, n\right)=\varphi(n)^{k}\left(\operatorname{id}_{\ell} * G_{k}\right)(n)
$$

where

$$
G_{k}(n)=\varphi(n)^{1-k} \prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}(n)
$$

If $P_{i}(x)=x^{q_{i}}-1(1 \leq i \leq k)$, then we obtain
Corollary 3.9. If $q_{i} \in \mathbb{N}(1 \leq i \leq k)$, then

$$
\sum_{\substack{1 \leq a_{i} \leq n \\\left(a_{i}, n\right)=1 \\ 1 \leq i \leq k}} \sum_{\substack{1 \leq b_{j} \leq n \\ 1 \leq \ell}}\left(a_{1}^{q_{1}}-1, \ldots, a_{k}^{q_{k}}-1, b_{1}, \ldots, b_{\ell}, n\right)=\varphi(n)^{k}\left(\mathrm{id}_{\ell} * H_{k}\right)(n),
$$

where

$$
\begin{equation*}
H_{k}(n)=\varphi(n)^{1-k} \prod_{1 \leq i \leq k} C^{\left(q_{i}\right)}(n) \tag{3.6}
\end{equation*}
$$

$C^{\left(q_{i}\right)}(n)$ being the number of solutions of the congruence $x^{q_{i}} \equiv 1(\bmod n)$.

For $k=1$, (3.6) reduces to identity (1.3) by Li, Kim and Qiao [12].
Several other special cases can be discussed. For example, let $\ell=0$. By formula (3.3) we have

$$
\begin{align*}
& V\left(n_{1}, \ldots, n_{k}\right):=\sum_{\substack{1 \leq a_{i} \leq n_{i} \\
\left(a_{i}, n_{i}\right)=1 \\
1 \leq i \leq k}} f\left(\left(P_{1}\left(a_{1}\right), n_{1}\right), \ldots,\left(P_{k}\left(a_{k}\right), n_{k}\right)\right) \tag{3.7}\\
= & \varphi\left(n_{1}\right) \cdots \varphi\left(n_{k}\right) \sum_{\substack{d_{i} \mid n_{i} \\
1 \leq i \leq k}} \frac{\left(\mu_{k} *_{k} f\right)\left(d_{1}, \ldots, d_{k}\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{k}\right)}\left(\prod_{1 \leq i \leq k} \widehat{N}_{P_{i}}\left(d_{i}\right)\right) .
\end{align*}
$$

If $f: \mathbb{N} \rightarrow \mathbb{C}$ is multiplicative, then $V\left(n_{1}, \ldots, n_{k}\right)$ is multiplicative, as well, by Corollary 3.6. For prime powers $p^{\nu_{1}}, \ldots, p^{\nu_{k}}$ the values $V\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)$ can be computed in the case of special functions f and special polynomials P_{i}.

We confine ourselves with the case of the lcm function $f\left(n_{1}, \ldots, n_{k}\right)=\left[n_{1}, \ldots, n_{k}\right]$ and the polynomials $P_{i}(x)=x-1(1 \leq i \leq k)$, included in the next section.

4 A special case

In this section we consider the function

$$
W\left(n_{1}, \ldots, n_{k}\right):=\sum_{\substack{1 \leq a_{i} \leq n_{i} \\\left(a_{i}, n_{i}\right)=1 \\ 1 \leq i \leq k}}\left[\left(a_{1}-1, n_{1}\right), \ldots,\left(a_{k}-1, n_{k}\right)\right] .
$$

Theorem 4.1. For any $n_{1}, \ldots, n_{k} \in \mathbb{N}$,

$$
W\left(n_{1}, \ldots, n_{k}\right)=\varphi\left(n_{1}\right) \cdots \varphi\left(n_{k}\right) h\left(n_{1}, \ldots, n_{k}\right),
$$

where the function h is multiplicative, symmetric in the variables and for any prime powers $p^{\nu_{1}}, \ldots, p^{\nu_{k}}$ such that $\nu_{1} \geq \cdots \geq \nu_{t} \geq 1, \nu_{t+1}=\cdots=\nu_{k}=0$,

$$
=1+\left(\nu_{1}+\cdots+\nu_{t}\right)+\sum_{j=1}^{t-1} \frac{h\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)}{(-1)^{j} p^{j}}\left(\binom{t}{j+1}-\sum_{\substack{M \subseteq\{1, \ldots, t\} \\ \# M=j+1}} \frac{1}{p^{j \nu_{\max } M}}\right) .
$$

Proof. According to (3.7) we have

$$
W\left(n_{1}, \ldots, n_{k}\right)=\varphi\left(n_{1}\right) \cdots \varphi\left(n_{k}\right) \sum_{\substack{d_{i} \mid n_{i} \\ 1 \leq i \leq k}} \frac{\left(\mu_{k} *_{k} f\right)\left(d_{1}, \ldots, d_{k}\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{k}\right)}
$$

where $f\left(n_{1}, \ldots, n_{k}\right)=\left[n_{1}, \ldots, n_{k}\right]$.
Here $W\left(n_{1}, \ldots, n_{k}\right)$ is multiplicative and we compute the values $W\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)$. Let $g=$ $\mu_{k} *_{k} f$, that is,

$$
g\left(n_{1}, \ldots, n_{k}\right)=\sum_{d_{1}\left|n_{1}, \ldots, d_{k}\right| n_{k}} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right)\left[n_{1} / d_{1}, \ldots, n_{k} / d_{k}\right] .
$$

Then g is multiplicative and for any prime powers $p^{\nu_{1}}, \ldots, p^{\nu_{k}}\left(\nu_{1}, \ldots, \nu_{k} \geq 0\right)$,

$$
g\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)=\sum_{d_{1}, \ldots, d_{k} \in\{1, p\}} \mu\left(d_{1}\right) \cdots \mu\left(d_{k}\right)\left[p^{\nu_{1}} / d_{1}, \ldots, p^{\nu_{k}} / d_{k}\right] .
$$

Assume that there is $j \geq 1$ such that $\nu_{1}=\nu_{2}=\cdots=\nu_{j}=\nu>\nu_{j+1} \geq \nu_{j+2} \geq \cdots \geq \nu_{m} \geq 1$, $\nu_{m+1}=\cdots=\nu_{k}=0$. Then we have for any $d_{1}, \ldots, d_{m} \in\{1, p\}, d_{m+1}, \ldots, d_{k}=1$,

$$
\left[p^{\nu_{1}} / d_{1}, \ldots, p^{\nu_{k}} / d_{k}\right]= \begin{cases}p^{\nu-1}, & \text { if } d_{1}=\cdots=d_{j}=p \\ p^{\nu}, & \text { otherwise }\end{cases}
$$

and

$$
\begin{aligned}
& g\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)=\left(p^{\nu} \sum_{d_{1} \in\{1, p\}} \mu\left(d_{1}\right) \cdots \sum_{d_{j} \in\{1, p\}} \mu\left(d_{j}\right)-p^{\nu} \mu(p)^{j}+p^{\nu-1} \mu(p)^{j}\right) \\
& \times \sum_{d_{j+1} \in\{1, p\}} \mu\left(d_{j+1}\right) \cdots \sum_{d_{m} \in\{1, p\}} \mu\left(d_{m}\right)= \begin{cases}(-1)^{j-1}\left(p^{\nu}-p^{\nu-1}\right), & \text { if } j=m, \\
0, & \text { otherwise. } .\end{cases}
\end{aligned}
$$

Therefore, since g is symmetric in the variables, we deduce

$$
g\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)= \begin{cases}1, & \text { if } \nu_{1}=\cdots=\nu_{k}=0 \tag{4.1}\\ (-1)^{j-1} \varphi\left(p^{\nu}\right), & \text { if a number } j \geq 1 \text { of } \nu_{1}, \ldots, \nu_{k} \text { is equal to } \nu \geq 1 \\ 0, & \text { while all others are zero, } \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore, let

$$
h\left(n_{1}, \ldots, n_{k}\right)=\sum_{d_{1}\left|n_{1}, \ldots, d_{k}\right| n_{k}} \frac{g\left(d_{1}, \ldots, d_{k}\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{k}\right)},
$$

which is also multiplicative and symmetric in the variables. Let $p^{\nu_{1}}, \ldots, p_{k}^{\nu_{k}}$ be any prime powers and assume, without loss of generality, that for some $t \geq 0$, one has $\nu_{1} \geq \cdots \geq \nu_{t} \geq 1$, $\nu_{t+1}=\cdots=\nu_{k}=0$.

If $t=0$, then $h(1, \ldots, 1)=1$. If $t \geq 1$, then

$$
h\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)=\sum_{d_{1} \mid p^{\nu_{1}, \ldots, d_{t} \mid p^{\nu_{t}}}} \frac{g\left(d_{1}, \ldots, d_{t}, 1, \ldots, 1\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{t}\right)} .
$$

Let $d_{1}=p^{\beta_{1}}, \ldots, d_{t}=p^{\beta_{t}}$, with $0 \leq \beta_{1} \leq \nu_{1}, \ldots, 0 \leq \beta_{t} \leq \nu_{t}$. For any subset M of $\{1, \ldots, t\}$ such that $\# M=j(1 \leq j \leq t)$ let $\beta_{m}=\nu\left(1 \leq \nu \leq \nu_{\max M}\right)$ for every $m \in M$ and $\beta_{m}=0$ for $m \notin M$. Then, according to (4.1),

$$
\frac{g\left(d_{1}, \ldots, d_{t}, 1, \ldots, 1\right)}{\varphi\left(d_{1}\right) \cdots \varphi\left(d_{t}\right)}=\frac{(-1)^{j-1} \varphi\left(p^{\nu}\right)}{\varphi\left(p^{\nu}\right)^{j}}=\frac{(-1)^{j-1}}{\varphi\left(p^{\nu}\right)^{j-1}} .
$$

We deduce that

$$
h\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)=1+\sum_{j=1}^{t} \sum_{\substack{\subseteq\{1, \ldots, t\} \\ \# M=j}} \sum_{\nu=1}^{\nu_{\max } M} \frac{(-1)^{j-1}}{\varphi\left(p^{\nu}\right)^{j-1}}
$$

$$
=1+\sum_{j=1}^{t}(-1)^{j-1} \sum_{\substack{M \subseteq\{1, \ldots, t\} \\ \# M=j}} \sum_{\nu=1}^{\nu_{\max } M} \frac{1}{\varphi\left(p^{\nu}\right)^{j-1}} .
$$

Here, with the notation $A:=\nu_{\max M}$, we have for $j \geq 2$,

$$
\begin{aligned}
K_{j}:= & \sum_{\nu=1}^{\nu_{\max } M} \frac{1}{\varphi\left(p^{\nu}\right)^{j-1}}=\frac{1}{(p-1)^{j-1}} \sum_{\nu=1}^{A} \frac{1}{p^{(j-1)(\nu-1)}} \\
& =\frac{p^{j-1}}{(p-1)^{j-1}\left(p^{j-1}-1\right)}\left(1-\frac{1}{p^{A(j-1)}}\right),
\end{aligned}
$$

and for $j=1, K_{1}=A$.
That is,

$$
\begin{gathered}
h\left(p^{\nu_{1}}, \ldots, p^{\nu_{k}}\right)=1+\left(\nu_{1}+\cdots+\nu_{t}\right)+\sum_{j=2}^{t} \frac{(-1)^{j-1} p^{j-1}}{(p-1)^{j-1}\left(p^{j-1}-1\right)} \sum_{\substack{M \subseteq\{1, \ldots, t\} \\
\# M=j}}\left(1-\frac{1}{p^{A(j-1)}}\right) \\
=1+\left(\nu_{1}+\cdots+\nu_{t}\right)+\sum_{j=1}^{t-1} \frac{(-1)^{j} p^{j}}{(p-1)^{j}\left(p^{j}-1\right)}\left(\binom{t}{j+1}-\sum_{\substack{M \subseteq\{1, \ldots, t\} \\
\# M=j+1}} \frac{1}{p^{A j}}\right) .
\end{gathered}
$$

Corollary 4.2. $\left(n_{1}=\cdots=n_{k}=n\right)$ For any $n, k \in \mathbb{N}$,

$$
\begin{gathered}
\sum_{\substack{1 \leq a_{1} \leq n \\
\left(a_{1}, n\right)=1}} \cdots \sum_{\substack{1 \leq a_{k} \leq n \\
\left(a_{k}, n\right)=1}}\left[\left(a_{1}-1, n\right), \ldots,\left(a_{k}-1, n\right)\right] \\
=\varphi(n)^{k} \prod_{p^{\nu} \| n}\left(1+k \nu+\sum_{j=1}^{k-1}(-1)^{j}\binom{k}{j+1} \frac{p^{j}}{(p-1)^{j}\left(p^{j}-1\right)}\left(1-\frac{1}{p^{\nu j}}\right)\right) .
\end{gathered}
$$

In the case $k=2$ this gives the formula (1.5), while for $k=1$ we reobtain Menon's identity (1.1).

5 Acknowledgment

The second author was supported by the European Union, co-financed by the European Social Fund EFOP-3.6.1.-16-2016-00004.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
[2] E. Cohen, An extension of Ramanujan's sum, Duke Math. J. 16 (1949), 85-90.
[3] E. Cohen, Some totient functions, Duke Math. J. 23 (1956), 515-522.
[4] P. Haukkanen, Menon's identity with respect to a generalized divisibility relation, Aequationes Math. 70 (2005), 240-246.
[5] P. Haukkanen, On a gcd-sum function, Aequationes Math. 76 (2008), 168-178.
[6] P. Haukkanen and J. Wang, A generalization of Menon's identity with respect to a set of polynomials, Portugal. Math. 53 (1996), 331-337.
[7] P. Haukkanen and J. Wang, High degree analogs of Menon's identity, Indian J. Math. 39 (1997), 37-42.
[8] M. H. Jafari and A. R. Madadi, On the number of cyclic subgroups of a finite group, Bull. Korean Math. Soc. 54 (2017), 2141-2147.
[9] Y. Li, X. Hu, and D. Kim, A Menon-type identity with multiplicative and additive characters, Taiwanese J. Math. 23 (2019), 545-555.
[10] Y. Li and D. Kim, Menon-type identities derived from actions of subgroups of general linear groups, J. Number Theory 179 (2017) 97-112.
[11] Y. Li and D. Kim, Menon-type identities with additive characters, J. Number Theory 192 (2018), 373-385.
[12] Y. Li, D. Kim, and R. Qiao, A generalization of Menon's identity to higher exponent, Publ. Math. Debrecen 94 (2019), 467-475.
[13] P. K. Menon, On the sum $\sum(a-1, n)[(a, n)=1]$, J. Indian Math. Soc. (N.S.) 29 (1965), 155-163.
[14] V. Sita Ramaiah, Arithmetical sums in regular convolutions, J. Reine Angew. Math. 303/304 (1978), 265-283.
[15] R. Sivaramakrishnan, Generalization of an arithmetic function, J. Indian Math. Soc. (N.S.) 33 (1969), 127-132.
[16] B. Sury, Some number-theoretic identities from group actions, Rend. Circ. Mat. Palermo (2) 58 (2009), 99-108.
[17] L. Tóth, A survey of gcd-sum functions, J. Integer Seq. 12 (2010), Article 10.8.1.
[18] L. Tóth, Menon's identity and arithmetical sums representing functions of several variables, Rend. Sem. Mat. Univ. Politec. Torino 69 (2011), 97-110.
[19] L. Tóth, Multiplicative arithmetic functions of several variables: A survey, in Mathematics Without Boundaries, Surveys in Pure Mathematics, eds. T. M. Rassias and P. M. Pardalos (Springer, 2014), pp. 483-514.
[20] L. Tóth, Menon-type identities concerning Dirichlet characters, Int. J. Number Theory 14 (2018), 1047-1054.
[21] L. Tóth, Short proof and generalization of a Menon-type identity by Li, Hu and Kim, Taiwanese J. Math. 23 (2019), 557-561.
[22] L. Tóth, Menon-type identities concerning additive characters, Arab. J. Math., accepted, https://doi.org/10.1007/s40065-019-0259-3.
[23] R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33 (1931), 579-662.
[24] Yu-Jie Wang, Xin Zhang, and Chun-Gang Ji, A regular Menon-type identity in residually finite Dedekind domains, Acta Arith. 188 (2019), 111-123.
[25] X.-P. Zhao and Z.-F. Cao, Another generalization of Menon's identity, Int. J. Number Theory 13 (2017), 2373-2379.

