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Abstract

We give common generalizations of the Menon-type identities by Sivaramakrishnan (1969)
and Li, Kim, Qiao (2019). Our general identities involve arithmetic functions of several
variables, and also contain, as special cases, identities for ged-sum type functions. We point
out a new Menon-type identity concerning the lem function. We present a simple character
free approach for the proof.
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1 Introduction

Menon'’s classical identity [13] states that for every n € IN := {1,2,...},

n
M(n):= ) (a—1,n)=p(n)7(n), (1.1)
(a1
where (a,n) stands for the greatest common divisor of a and n, ¢(n) is Euler’s totient function
and 7(n) = de 1 is the divisor function.

Menon [13] proved this identity by three distinct methods, the first one being based on the
Cauchy-Frobenius-Burnside lemma on group actions. This method was used later by Sury [16],
Té6th [18], Li and Kim [10], and other authors to derive different generalizations and analogs of
(1.1). Number theoretic methods were also applied in several papers to deduce various Menon-
type identities. See, e.g., [4, 6, 7, 9, 11, 12, 20, 21, 22, 24, 25].


http://arxiv.org/abs/1911.05411v2

It is less known and is not considered in the above mentioned papers the following old
generalization, due to Sivaramakrishnan [15], in a slightly different form:

t

M(m,n,t) Z (a—1,n) (nzT(n) H <1—m>, (1.2)

a=1 n
(=1 p¥[In1
where m,n,t € IN such that m | ¢, n |t and ny = max{d € N :d | n,(d,m) =1}. f m =n =1t,
then M(n,n,n) = M(n), that is, (1.2) reduces to (1.1). However, if n | m and ¢t = m, then it
follows from (1.2) that

m
> (a—1,n) =@(m)r(n),
(alm)=1
which was recently obtained by Jafari and Madadi [8, Cor. 2.2], using group theoretic arguments,
without referring to the paper [15]. It was pointed out by Sivaramakrishnan [15] that if ¢ = [m, n],
the least common multiple of m and n, then M (m,n,[m,n]) is a multiplicative function of two
variables.
In a quite recent paper, Li, Kim and Qiao [12, Th. 2.5] proved that for any integers n > 1,

k>0, ¢>1 one has

> (a" = 1Lby, . bgn) = @(n)(idy « CO)(n), (1.3)

where * denotes the Dirichlet convolution, idy(n) = n* and C¥)(n) is the number of solutions
of the congruence z‘ = 1 (mod n) with (z,7) = 1. Note that the condition (z,n) = 1 can be
omitted here. For the proof they used properties of characters of finite abelian groups. The case
k = 0 recovers certain identities given by the second author [18]. If £ =0 and ¢ = 1, then (1.3)
reduces to (1.1).

The sum M (n) is related to the ged-sum function, also known as Pillai’s arithmetical func-

tion, given by
G(n):==> (a,n)=n)_ # (n € IN). (1.4)

a=1 dn

A large number of different generalizations and analogs of the function G(n) is presented in
the literature. See, e.g., [5, 17].

It is the goal of this paper to give common generalizations of the identities (1.2) and (1.3),
and to present a simple character free approach for the proof. Our general identity, included in
Theorem 3.1, involves arithmetic functions of several variables, and also contains, as a special
case, identities for ged-sum type functions, such as identity (1.4). The identity of Theorem 3.7
is concerning arithmetic functions of a single variable.

We point out the following new Menon-type identity, which is another special case of our
results. See Theorem 4.1 and Corollary 4.2. If n € IN, then

Z [(a —1,n),(b—1,n)] = p(n)? H <1 +2v — %) . (1.5)

1<a,b<n p¥|In
(am)=(bm)=1



Note that identity (1.2) was generalized by Sita Ramaiah [14, Th. 9.1] in another way, namely
in terms of regular convolutions. Our results can further be generalized to regular convolutions
and to k-reduced residue systems. For the sake of brevity, we do not present the details. For
appropriate material we refer to [2, 3, 14].

2 Preliminaries

2.1 Arithmetic functions of several variables

Let f,g : N¥ — C be arithmetic functions of k variables. Their Dirichlet convolution is
defined as

(foxg)ne,.ome) = > fd,. . di)g(na/dy, ... ng/dy).
di|ni,....dg|ng

In the case k = 1 we write simply f *1 ¢ = f * g. The identity under x; is
Ok(ni,...,ng) =0d(ny)---d(ng),

where (1) = 1 and 6(n) = 0 for n # 1. An arithmetic function f of k variables possesses an

inverse under *y, if and only if f(1,...,1) # 0. Let (x(n1,...,nx) be defined as (x(n1,...,ng) =1

for all ny,...,ni € IN. Its Dirichlet inverse is the Mdbius function py of k variables given as
pr(na, ..o mg) = p(na) - png),

where p is the classical Mébius function of one variable.
Let g be an arithmetic function of one variable. Then the principal function Pry(g) associated
with ¢ is the arithmetic function of k variables defined as

n, lfn = ...=n :’I’L’
Pri(g)(n1,...,ng) = {9( ) 1 i

0, otherwise.
(See Vaidyanathaswamy [23].) Let f be the arithmetic function of k variables defined by

fny,...,ng) =g((n1,...,nk)),
having the gcd on the right-hand side. Then
fou.om) = > (uxg)d) = D Pru(pxg)(d,... dg),
dl(n1,...,n) di|ny,...,dg|ny
that is,
f="Pry(p* g) =k Ck,
which means that

Pry,(* g) = pu *i, f- (2.1)
An arithmetic function f of k variables is said to be multiplicative if f(1,...,1) =1 and
flming,...,mpng) = f(ma,...,mg)f(n1,...,ng)
for all positive integers myq, ..., my and nq,...,n, with (mq ---mg,ny ---ng) = 1. For example,
the ged function (nq,...,ng) and the lem function [nq,...,nk| are multiplicative. If f and

g are multiplicative functions of k£ variables, then their Dirichlet convolution f %5 g is also
multiplicative. See [19, 23].



2.2 Number of solutions of congruences

For a given polynomial P € Z[x] let Np(n) denote the number of solutions x (mod n) of the
congruence P(xz) = 0 (mod n) and let N p(n) be the number of solutions = (mod n) such that
(z,n) = 1. Furthermore, for a fixed integer s € IN, let Np(n, s) be the number of solutions x
(mod n) such that (z,n,s) = 1.

The functions Np(n), Np(n) and Np(n, s) are multiplicative in n, which are direct conse-
quences of the Chinese remainder theorem.

It is casy to see that if P(z) = ag+ a1z +- - -+ apz® and (ag,n) = 1, then Np(n) = Np(n) =
N p(n,s). This applies, in particular, to P(z) = —1 + zt. See the Introduction regarding the
notation C'¥)(n), used by Li, Kim and Qiao [12].

2.3 Lemma

We will need the next lemma.

Lemma 2.1. Let d,r,s € N, x € Z such that d | r, s | r. Then

1

gH <1 - 5), if (d,s,x) =1,
> =t

1<a<r ptd

(a,8)=1 0, otherwise.

a=x (mod d)
In the special case r = s this is known in the literature, usually proved by the inclusion-

exclusion principle. See, e.g., [1, Th. 5.32]. Also see [7, Lemmal] for a generalization in terms of
regular convolutions. Here we use a different approach, similar to the proof of [14, Th. 9.1] and

to the proofs of our previous papers [21, 22].

Proof of Lemma 2.1. Let A denote the given sum. If (d, s,x) # 1, then the sum A is empty and
equal to zero. Indeed, if we assume p | (d, s, z) for some prime p, then p | a = x (mod d). Hence
p | (a,s) =1, a contradiction.

Assume now that (d, s,x) = 1. By using the property of the Mébius function, the given sum

can be written as
r/é

A= ¥ Zu(5)=;u(5) YL (2.2)

1<a<r  §|(a,s) J=1
a=z (mod d) 6j=x (mod d)

Let § | s be fixed. The linear congruence 05 = x (mod d) has solutions in j if and only if
(6,d) | x. Here (6,d) | 6 and ¢ | s, hence (6,d) | s. Also, (6,d) | d. If (6,d) | x holds, then
(6,d) | (d,s,z) =1, therefore (6,d) = 1. We deduce that the above congruence has

T
N=—
ds

solutions (mod r/§) and the last sum in (2.2) is N. This gives

A5 X P=T(-5)

(5,d)=1 pld



3 Main results

Assume that

(1) k,¢ > 0 are fixed integers, not both zero;

(2) mi,7i,8i,m4,t; € IN are integers such that m; | ry, s; | i, nj [ t; (1 <i <k, 1<j<0);
(3) f: Nkt — C is an arbitrary arithmetic function of k + ¢ variables;

(4) P;,Q; € Z[x] are arbitrary polynomials (1 <i <k, 1 <j </).

Consider the sum

Z Z f((Pl(a1)7m1)7 B (Pk(ak)7mk)7 (Ql(b1)7n1)7 ceey (Qé(bf)vnf))a
1<a;<r; 1<b; i <t;
(ai,s:)=1 1<g<e

1<i<k

where (Pj(a;), m;) and (Q;(b;),n;) represent the ged’s of the corresponding values (1 <4 < F,
1<j<?).

Theorem 3.1. Under the above assumptions (1)-(4) we have

bt ¥ite f)(dy, .o dg,er, ... e
S =y Tty tzZ Z (Kb *het (dkel ” )

dilm; ej|n;
1<i<k 1<5<¢

X H Npi(di,si)ﬁ(si,di) H NQj(ej) )

1<i<k 1<j<¢
where Npi(di,si) and Ng,(ej) (1 <i <k, 1<j</{) are defined in Section 2.2, and
1
5(8i,di) = H 1——-].
p
plsi
ptd;
Corollary 3.2. If ¢ =0, then Theorem 3.1 gives the pure Menon-type identity

* di,...,d ~
S=ri-my > (i ’fc‘lf).(. }d k) I Ne(diosiBisidi) | (3.1)
di|m LGk 1<i<k
1<i<k

and if k =0, it gives the pure gcd-sum identity

S=tite 3 (w*zefl).(.e?,---,ee) IT Mo, (es)

e
e;ln; ¢ 1<t
1252

If k=1, f(n)=n (ne€N) and P(z) = x — 1, then identity (3.1) reduces to

i:l (a—1,m):rz@]‘[<1_1>

p
a= d
(a,9)=1 " i



I ().

p”lma
where m | 7, s |  and m; = max{d € N : d | m,(d,s) = 1}, which is identity (1.2) (with the
corresponding change of notations).

Remark 3.1. Haukkanen and Wang [7] considered systems of polynomials in several variables
and a different constraint, namely (aq,...,ax,n) = 1 in the first sum defining S.

Proof of Theorem 3.1. It is an immediate consequence of the definition of the function py that

Fu,.ome) = > (ks £)(das- . dy). (3.2)

di|ni,...dg|ng

By using (3.2) we have

S = Z Z Z Z (Mt ¥ f)(dry - dpsen, ... eq)

1<ai<ri 1<b;<t; d;|(P;(a;),m;) e;|(Q;(bj),n;)
(ass0)=1 1<j<f  1<i<h 1<j<t
1<i<k

= > (hsetree H)(drs o dier, )
dilm; ejln;
1<i<k 14520

X< 11 2 1)( I1 > 1).
1<i<k ISaiS_Ti 1<j<t 1<b,;<t;
P, i(ai()azi’gi()n:(}d &) Q;(b;)=0 (mod e;)

Now we use Lemma 2.1 to evaluate the sum

Bi = Z 1.

1<a;<r;
(ai,si)zl
Pi (ai)EO (mod dl)

For any = such that (z,d;, s;) =1 we have

> 1= %ﬂsi,di),

1<a;<r;
(ai,si)=1
a;=z (mod d;)

and there are N p,(d;, ;) such values of z (mod d;). Hence,

B; = %5(32-, di)ﬁpi(di, 8i)-

We also have

Y =g ().

1<b; <t €
Qj (bj)EO (mod Ej)

6



Notice that here 7;/d; and t;/e; are integers for any 1, j.
Putting together this gives

S: Z Z (/j,k+g*]H_gf)(dl,...,dk,el,...,eg)
dilm; ej|n;
1<i<k 1<5</

1Zi<k 1<j<e
,U]g+£ *k—l—f f)(d17 cee 7dk7 €1y 765)
TRty oty § §
cdger e

dilm; ej|n;
1<i<k 1<5<¢

><< H Np,(di, 8:)B(si, di )( H Na, e])

1<i<k 1<j<0
O
Corollary 3.3. Assume that m; | s; and s; | r; for any i with 1 <i <k Then
p(s1) (kte *k-i—é f)(d1, cd,er, ... e)
S=r .7
1<2<Lk lé]éf
x( 11 Npi(di))< 11 NQj(ej)).
1<i<k 1<j<t
Proof. Apply Theorem 3.1. Since d; | m;, we have d; | s;. Hence Npi (di,si) = Npi(di) and
1 ©(si)/si
ﬁs,-,d,- = <1——>:7.
Cod) =11{1 =5 ) = Saya,
pld;
O

Corollary 3.4. Assume that m; =1r; = s; andn; =t for anyi,j (1 <i<k,1<j</{). Then

S = (P(ml) . (,0 Xy Z Z ﬂk—i—ﬂ *k—i—f f)(dlv(dk;jlkaelae .- 765) (33)

dilm; ej|n;
1<i<k 1<5<0

(HNP )(HNQJeJ).

1<i<k 1<j<e

Theorem 3.5. Assume conditions (1)-(4). Furthermore, let r; = [m;,s;], t; =n; (1 <1 <k,
1 <35 <¥) and let f be a multiplicative function of k + ¢ variables. Then the sum

S =85(ma, ..., MpyS1yeeySkyNly-.,Np)

represents a multiplicative function of 2k + £ variables.



Proof. Note that
Blsiydi) = Y = .Th(é,di), (3.4)

where the function of two variables

h(o,d;) = p(c)
c|d
cld;
is multiplicative, being the convolution of multiplicative functions. Therefore, 3(s;,d;), given by
the convolution (3.4) is also multiplicative.
We conclude that .S, given in Theorem 3.1 as a convolution of 2k+¢ variables of multiplicative

functions, is multiplicative, as well. O
Corollary 3.6. Assume that m; = r; = s; and n; = t; for any i,j and f is multiplica-
tive, viewed as a function of k + £ variables. Then S given by (3.3) is also multiplicative in
Mi,...,ME,N1,...,N¢, as a function of k + £ variables.

Remark 3.2. Note that in his original paper Menon [13, Lemma] proved that if f is a multi-
plicative arithmetic function of r variables and P; € Z[z]| are polynomials, then the function

F(n) =) f((Pi(a),n),....(Pr(a),n))
a=1

is multiplicative in the single variable n. Here F'(n) is not a special case our sum S, but it can
be treated in a similar way. By using (3.2) one obtains the formula

Finy=n Y (pr *{d{,).(.d.ljc'z;]'7dr>N(d1""’d’")’ (3.5)

di|n,...,dr|n
valid for any function f of r variables, where N(dy,...,d;) is the number of solutions (mod
[d1,...,d,]) of the simultaneous congruences Pj(x) =0 (mod dy), ..., P-(z) =0 (mod d,). Note
that N(dy,...,d,) is a multiplicative function of r variables. If f is multiplicative, then the
convolution representation (3.5) shows that F' is also multiplicative.

In what follows assume that

(1’) k, ¢ > 0 are fixed integers, not both zero;

(27) m,74,84,t; € IN are integers such that n | 74, s; [, n|t; (1 <i <k, 1 <5 <40);
(3’) g : N — C is an arbitrary arithmetic function;

(4’) P;,Q; € Z[z] are arbitrary polynomials (1 <i <k, 1<j </).

Consider the sum

Ti= Y > 9((Pi@),... Pelar). Q(br), ... Qelbe).n)),
1<a;<r; ISbjStj
(ai,8)=1 1<j5<¢
1<i<k
with the ged on the right hand side.
We have the following result.



Theorem 3.7. Assume conditions (1°)-(4’). Then

*
T = ety ety Iudkz-é ( H sz d 3 327 ) ( H NQJ ) y

dln 1<i<k 1<j<t
where .
=1 (5)
plsi
ld
Proof. Apply Theorem 3.1 in the case when m; =n; =n (1 <i <k, 1<j </)and

f(xl7’”7xk7y17"'7yf) :g((xlw”7xk7y17"'7yf))'

Then
f((Pi(ar),m1), ..., (Pr(ak), my), (Q(b1),n1), - .-, (Qe(be), np))

=g((P (1)7---7Pk(ak)aQ(bl)7---,Qz(bg),n)).

From (2.1) we obtain

(mxg)(n), ifxy=-=zp=p=...=y
0, otherwise.

I
=

(Mk—l—f K40 f)(xh’ s Ty Y1y e 7y£) = {

O

In the special case g(n) =n, Qj(z) =z, r; =5, =t; =n (1 <i <k, 1 <j <) we obtain
from Theorem 3.7 the next result.

Corollary 3.8.

S > (Piar), ..., Pelag), b, ... beyn) = o(n)* (idg +Gy) (n),

1<a;<n 1<b;<n
(ai,n)=1 1<j<t
1<i<k

where

Gr(n) = ()" ] Ne(n)

1<i<k
If P(x) =2% —1 (1 <i<k), then we obtain
Corollary 3.9. If¢; € N (1 <i<k), then
S0> T @ -1, af — Lb,. . ben) = @(n)F(ide <Hy) (n),

1<a;<n 1<b;<n
(ai,n)=1 1<]<Z
1<i<k

where

Hi(n) = o)™ [T %), (3.6)

1<i<k

C(%)(n) being the number of solutions of the congruence % =1 (mod n).



For k =1, (3.6) reduces to identity (1.3) by Li, Kim and Qiao [12].
Several other special cases can be discussed. For example, let £ = 0. By formula (3.3) we
have
Ving,...ong) ==Y f((Pi(ar),m), ... (Prlak),ng)) (3.7)
1<a;<n;

(ai,ni)=1
1<i<k

= et -otm) 3 P (T] Fnta),

1<i<k

If f:IN — C is multiplicative, then V' (nq,...,n) is multiplicative, as well, by Corollary 3.6.

For prime powers p*', ..., p"* the values V(p",...,p") can be computed in the case of special
functions f and special polynomials F;.
We confine ourselves with the case of the lem function f(ni,...,ng) = [n1,...,ng] and the

polynomials P;(x) =z — 1 (1 <i < k), included in the next section.

4 A special case

In this section we consider the function

Winy,...ong) == > (a1 —Lm),...,(ak — 1,mp)].
1<a;<n;
(ai,n;)=1
1<i<k

Theorem 4.1. For any ny,...,n; € N,

Wni,...,ng) =p(ny) - png)h(ng, ..., ng),

where the function h is multiplicative, symmetric in the variables and for any prime powers

P, pY% such that vy > - > > 1, vy = =1, =0,
h(pulu"'7puk)
L (v 4 + )+§ (=17’ (( t > 3 1 )
= yl Vt ' _ ) o ' '
j=1 (p - 1)] (p] - 1) Vi +1 MLt} p]’/max]\/[
#M=j 11

Proof. According to (3.7) we have

o kx f)(das - dy)
o(dy)---p(dr)

W(ni,...,ng) = e(n)---o(ng) Z (

di|n;
1<i<k
where f(nq,...,ng) = [n1,...,ng.
Here W(nq,...,ng) is multiplicative and we compute the values W(p*,... p"*). Let g =
HE *E f, that iS,
glna,.oong) = > pldy) - pldy) [na/dy, . n/dy]

dy|ny,...,dg|ng

10



Then g is multiplicative and for any prime powers p**,... p" (v1,...,v; > 0),

g™ P = Y pldn) - pldy) [P da, - p dy]
dlv-"vdke{lvp}
Assume that thereis j > 1such that vy =10 = =v; =v > vj1 2 Vjp0 > - 2> Uy > 1,
VUm+1 = -+ = v, = 0. Then we have for any dy,...,d, € {1,p}, dpt1,...,dr =1,
-1 .
pV ) lfdlz"':d':pv
[p™ /dy,....p™/di] = . ’
Y, otherwise,

and

g(p”l,---,p”k)=<p” > o) Y u(dj)—p”u(p)“rp”‘lu(p)j)

(177" —p"h), i j=m,
<Y ) Y plde) = {0 o
dj+1€{17p} dm€{17p} ’ )
Therefore, since g is symmetric in the variables, we deduce
1, ifvy = =1 =0,
(=1)=tp(p¥), if a number j > 1 of vy,...,1; is equal to v > 1,
g, ... p%) = : (4.1)
while all others are zero,
0, otherwise.
Furthermore, let
g(du, ... dy)
Mg,y = 3 Sdede)
di)---old
di|ni,...,dg|ny ) ()
which is also multiplicative and symmetric in the variables. Let p*1,... ,pZ’“ be any prime
powers and assume, without loss of generality, that for some ¢t > 0, one has vy > --- > vy > 1,
Vig1 = -+ :Vk:().
If t =0, then A(1,...,1) = 1. If t > 1, then

g(dl,...,dt,l,...,l)

h(p™,...,p"*) = Z .

da[p¥L,...de|p"t pldr) -~ pldy)

Let dy = p®',...,dy = p”, with 0 < 8; <wv1,...,0 < B; < vy. For any subset M of {1,...,t}

such that #M = j (1 < j <t)let B, = v (1 < v < vax ) for every m € M and ,, = 0 for
m ¢ M. Then, according to (4.1),

gldy, ... di, 1, 1) (=17 lpp¥) (1)1

o(dr)---o(de) ey )Y

We deduce that



Vmax M 1

t
=1+ (-1~ N
R S N
#M=j

Here, with the notation A := vpaxar, we have for j > 2,

Vmax M 1 1 i 1
Kj = Nj—1 i—1 —1(v—1
= p(pr) (p—1)7~1 & pli=Hl=1)

i o
T p— 1 T=1) " pAG-D )
and for j =1, K1 = A.
That is,

t

_1)i—1pi-1 1
h(p™,....p") =14+ w1+ -+ 1) + Z 0 _(1)]-)_1(15_1 ) Z <1 N pA(j—1)>

i=2 MC{L,...t}
#M=j
1+ (L) T A
=1l+w+-+ur)+ T (( >— T)

j=1 e AAS M. ’

#M=j+1

U
Corollary 4.2. (n; =--- =ng =n) For any n,k € N,

S Y la 1), (a4 — 1,n)]

1<ai<n 1<ap<n
(a1,n)=1 (ag,n)=1

=om)f J] {1+ kv + %_i(—l)j <j _Ii 1) (r— 1)€')ij —1) (1 - %)

In the case k = 2 this gives the formula (1.5), while for £ = 1 we reobtain Menon’s identity
(1.1).
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