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ABSTRACT 

Daniel Pato de la Torre: Detection of Mobile Interference in Environmental Audio 
Recordings 
Tampere University of Technology 
Bachelor’s Degree Programme in Signal Processing 
Examiner: Annamaria Mesaros 
May 2020 

 
 

The era of machine learning has been beginning to be an engine for the development and 

creation of applications for a few years and the public is not aware that machine learning 

is on most of the technological devices on the market. Nowadays, this technology is 

attracting a lot of attention to the researches and it is giving results that were not possible 

before: the development of vehicles without drivers to recognize a traffic signal, text 

detection for translation or the recognition of voice and sounds etc. This kind of 

techniques are made possible by machine learning. Machine learning consists in teaching 

computers to do what is natural for people: learn through examples. Therefore, it is 

necessary to have available a large amount of data to provide these examples. 

The purpose of this thesis is to develop an application that detects the interference 

produced by mobile phones in audio recordings through a deep learning architecture, 

known as feedforward neural networks (FNN), which is used in many machine learning 

methods. These neural networks will carry out the necessary learning to analyze an 

acoustic signal and differentiate whether a test audio example contains interference. 

To perform this learning, first the sound file is represented in the frequency domain 

through the mel spectrogram. Deep neural networks (DNN), use a layered structure of 

units to extract characteristics of the given sound representation input with an increased 

abstraction in each layer. This increases the ability of the network to efficiently learn the 

highly complex relationship between sound representation and target sounds. 

In this thesis, we will classify interference and no interference categories by constructing a 

simple model of these samples as inputs and the binary classification at the output. 

 

Keywords: machine learning, neural networks, interference, frequency domain, deep 

learning, mel spectogram, model, network, binary classification. 

 

The originality of this thesis has been checked using the Turnitin OriginalityCheck service. 
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1. INTRODUCTION 

 
 

In a world where technology advances to the rhythm of a blink and the devices 

are increasingly smaller, powerful and accessible to all, a better integration of 

these devices into the daily life of people is sought. One of these technologies 

is that allows understanding and recognizing events or situations where there 

are no input parameters, but databases. This technology is known as machine 

learning. 

In order to understand and get to know this current technology better, there are 

several practical examples that explain what it involves. For example, the 

prediction of traffic in cities, in which it is observed when and where traffic jams 

would happen, or the facial recognition used by many of the applications that 

we use today and that we publish on our social networks. In addition, in modern 

cars, automatic braking is used when it is detected that a person or object is 

going to collide against the vehicle. 

In the case of the audio branch and engineering, there are various projects, 

research and applications that also use machine learning. The basic concept is 

the analysis of the audio file and the classification of sounds. For example, in 

the given audio fragment, the sounds from the audio file can be separated, 

detected and classified.  

Nowadays we use mobile phones for everything: call, send a message, take a 

photo or video, record an audio etc. But, when we use the mobile phone, other 

mobile phones can cause interference. It usually happens when we record in 

public places such as public transport, where reception conditions increase the 

transmission power making these interferences inevitable. The most common 

for environmental audio databases is that these interferences are annotated 

and discarded manually, thus making it a slow and tedious process.  

For that reason, the machine learning techniques can be used to resolve this 

problem automatically by doing the detection and the classification of 

interferences in audio recordings. 
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1.1 Objectives 
 

The main objective of this thesis is the detection of interferences in 

environmental audio recordings to make a classification of all audible mobile 

phone interference (if it has an interference or not) and automate the process 

by using machine learning techniques. 

 

1.2 Structure of the Thesis  
 

The structure of this thesis is as follows: 

• Introduction: The current chapter. It deals with the content of the 

document in an introductory way to put the reader in context. Also, it 

contains the objectives and purposes of the thesis. 

• Background: How to calculate mel spectrogram from an audio file and 

why mel energies are suitable for the problem. Next the differences 

between machine learning and deep learning techniques, an introduction 

on neural networks and the use of feed-forward neural networks for 

classification. 

• Method: Experimental setup, results and analysis of results. 

• Conclusions: Development of ideas and solutions after carrying out the 

experiment. 
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2. BACKGROUND 

 

2.1 Audio classification 

The supervised classification task is the key concept for sound identification. A 

model is created for each class based on many different examples. In our case, 

there will be two classes, No Interference and Interference. When the model 

receives a test example, the system we use for classification will analyze the 

signal and assign it to the most appropriate class of the two. In the training 

phase, the model that is created is based on the characteristics extracted from 

the training data [2]. 

There are many applications for classification of environmental audio, as well as 

applications focused on people such as speaker identification, speaker gender 

classification or speaker classification have been developed. Also, in the 

musical field there are applications such as music artist and genre classification 

[8]. The DCASE challenge (Detection and Classification of Acoustic Scenes and 

Events) consists of different tasks that approach a challenge on the recognition 

of the environmental sounds and classification of the events that happen in the 

scene. [5] 

2.2 Audio features 

When it comes to sound representation, there is a time domain where one can 

display the waveform of the audio signal, the amplitude and period, among 

other aspects. However, frequency domain features can provide a better 

representation based on the frequencies involved in the audio signal [1]. 

Therefore, it is necessary to use frequency domain because the frequency 

components of a sound are differentiated, and it is possible to analyze and 

discriminate between different sounds in frequency.  
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The most used spectral domain feature representation is the mel spectrogram 

which we use as spectral representation. The block diagram for calculating the 

mel spectrum is presented in Figure 1 [9]. 

 

 

 

 

 

Feature extraction consists of the following steps:  frame blocking, windowing 

and frequency domain representation. 

The process starts with an audio fragment in the time domain. The next step is 

to split the signal into short time segments (frames). The size of the analysis 

frame is chosen based on the application and it usually is between 20 and 100 

ms depending on the analysed signal. After this step, each time frame signal is 

multiplied by a window function. This process is called windowing. There are 

several types of windows, such as the Hamming, Hanning or Blackman window. 

In this process, windows are useful because the process eliminates the sharp 

edges that cause broadband noise. Overlapping the analysis segments is a 

suitable procedure to make up for the attenuated parts of the input. Next, we 

proceed to apply the Fourier transform to each frame. The Fourier transform is 

employed because it shows the signal as a weighted sum of sinusoidal 

components and short windows are used because signal is considered 

stationary in such short time [12]. In practice the STFT is a succession of FFTs 

of windowed data frames. The final step is applying a mel filterbank to transform 

the spectrum to mel scale.  

 

 

 

 

 

 

 

 

 

 

 

Framing  Framing  WindowingWindowing DFTDFT Filter BankFilter Bank LogarithmLogarithm

Figure 1 Block diagram for mel spectrogram calculation 

Audio Output 
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This scale was created to interpret the pitch in the auditory system in similar 

way with human perception [11]. The experiment concluded that pitch 

perception is linear up to 1000 Hz, from there, the perceptual scale becomes 

logarithmic. 

The bank of filters applied to the transform response is typically 40 triangular 

filters, but more can also be used [4]. Each filter has response 1 at its center 

frequency, and response 0 at center frequency of adjacent filters. These filters 

on the mel scale are smaller in bandwidth at low frequencies than at high 

frequencies, where their bandwidth increases. 

The spectrogram is the spectral representation of a signal as time progresses. 

The spectrogram on linear frequency scale is transformed to spectrogram on 

mel scale. Logarithm of the energies on mel scale is used in order to mimic 

perception of loudness by the human auditory system. 

 

 

 

 

 

 

 

 

 

 

2.3 Machine learning 

Artificial intelligence emerged in the 1950s and became a very popular 

phenomenon due to the great evolution of the computational capacity it had at 

that time. Alan Turing, considered the father of computing, in his article [6] 

argued the intelligence of a machine if it acted like a human being. Since this 

event, the evolution of artificial intelligence has been remarkable and has grown 

exponentially. Thanks to AI, more advanced algorithms and AI sub-genres such 

as machine learning and deep learning have emerged and are now used with 

massive amounts of data and for countless applications.  

 

 

 

Figure 2 Mel-spectogram from an audio file which has INTERFERENCE 
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In [10], there is a formal definition for machine learning (ML) explaining that it is 

the applied form of statistics that discerns complex mathematical functions 

where the confidence intervals of these functions do not matter so much. To 

explain better what ML is, there are three things that it needs: 

▪ Inputs data points: For example, the audio files that we are going to use 

for this project. 

▪ Expected output: In our case, determine if the files that we introduce as 

input have interferences or not. 

▪ Algorithm measure of learning: How to evaluate the model with the 

expected output and the inputs. The most common measure for 

classification is the confusion matrix or accuracy. 

This technology involves the creation of a model that is trained using an 

algorithm with a database. By giving this model a different sample than what it 

has been trained with, it is possible to predict a result. There are several 

categories of ML, but in this thesis, we focus on supervised learning for 

classification. In supervised learning the system is given training data along with 

the desired outputs. According to [10] a supervised algorithm associates the 

input with the output, using a training set of inputs x and outputs y. 

 

Deep learning (DL) is a specific subfield of ML and brings many possibilities for 

supervised learning. The advantage of these methods is that they can estimate 

very complex functions through neural networks by adding more layers and 

units within a layer. The name of ‘deep’ comes from the large consecutive 

layers of representations (hidden layers) that one can use.  

This technology is primarily used in automatic learning methods, which are so-

called neural network architectures, also known as deep neural networks. The 

term neural network comes from the field of neurology, precisely from the 

neural networks that form the brain. But it should not be confused and directly 

associated with the idea that deep learning models work in the same way as the 

brain, since they are only influenced by features similar to the behavior of 

neurons and therefore they are mathematical models that learn through data 

[13]. 

The main difference between machine learning and deep learning is in how the 

expected characteristics are extracted to make a classification and determine a 

result.  
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2.4 Feed-Forward Neural networks 

The basic processing element of a neural network is a neuron (a mathematical 

function Fx that is intended to resemble a biological neuron) which has input 

values (X1, X2, X3...) and will generate an output value (Y1) through the neuron. 

The neuron performs a weighted summation of the input values according to 

the weight assigned to each input and works similar to a linear regression line. 

The result of the linear regression line (the output) is usually evaluated above 

and below the threshold. This process is aimed at binary classification [14].  

In order to solve more complex problems, it is necessary to create a neural 

network composed of at least two neurons. Two or more neurons placed in a 

row are in one layer and have the same information as the input (input layer) 

and have one output layer. Layers between the input and output layers are 

called hidden layers. The set of all the neurons and their different layers add up 

to the linear combination of all of them and generate an equivalent linear 

regression that must be activated by the activation functions. Most neural 

network models use sigmoid function.  

 

 

 

 

 

 

 

 

 

 

 

This activation function is used in most binary classification cases as this is a 

particular case of this situation. This function is used because it has a good 

behavior at the output as it is an exponential transition that separates the 

samples very well between 0 and 1. 

 

 

 

 

Figure 3 Function sigmoid graph 
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𝑓(𝑥) =
1

1 + 𝑒−𝑥
 

 

Non-linear functions must be added to distort the concatenation of linear 

regressions in order to obtain as output a linear regression of the whole set of 

neurons. 

 

Feed-forward neural networks are the preferential model of deep learning and 

the model used in this project. The main distinction between these networks 

and other models is the absence of feedback, i.e. the data obtained at the 

output of the neural network model do not return to the input of the model as 

input data [7]. What this implies is that the information is only transmitted in one 

direction, passing since input layer through hidden layers towards output layer 

of the neural network.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Input layers (left), hidden layer (mid) and output layer (right) from a basic neural network 
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3. METHOD 

In this section, a report on the development of the application will be presented, 

explaining everything that has been used in the process, how it has been 

developed and its evaluation. 

3.1 Dataset 

The dataset which it used for this project has 1-second audio segments from 10 

acoustic scenes (some of them are used) having mobile phone interference, in 

total 2510 sound files. The equipment used for recording are a binaural 

Soundman OKM II Classic/studio A3 electret in-ear microphone and a Zoom F8 

audio recorder (48 kHz sampling and 24-bit resolution) [3]. Dataset is split into 

training and test sets with 70% data in the training   

3.2 Computational requirements  

In the previous sections we have introduced which resources are going to be 

used in this project. Here, we are going to deal with each of these resources in 

detail. 

The application has been developed with the Python programming language, 

which provides various specific audio libraries. In the code developed, 4 

essential libraries have been used, including libraries for the extraction of audio 

features and for creating models of neural networks: 

o Numpy: It is a scientific numerical calculus library for Python. It is used 

in this project to create matrices and operations with them.   

o Pandas: It is a library of science and data analysis software based on 

Numpy for Python. It is used to read the database of the audio segments 

that contain interference by transforming the data in CSV format into 

arrays to operate with them. 

o Librosa: This is an audio and music analysis library for Python. The 

main purpose of using this library is the melspectrogram function that will 

be used to extract the characteristics of the audio segment being 

analyzed. It is also used to load the data from the audio segments to 

process the values and enter them into the mel spectrogram function. 

o Keras: A deep learning library used for neural networks in Python. There 

are two important functions necessary for the creation of the neural 

network. 
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Sequential from Keras: It is a function that creates a neural model of a stack of 

layers that can be modified with parameters along with the Dense function. 

Dense from Keras: It is a function that comes along with the previous one and 

modifies the parameters of each layer such as the number of nodes that will be 

used or the activation function that will be applied in each case. 

 

 

 
 

 
 
 
 
 
 

Besides Keras (since the library's own functions are used), TensorFlow and 

Anaconda are used. While the first is an extensive open-source library for 

machine learning and especially deep neural networks (DL), the other is a well-

known data science research platform in machine learning. 

The corresponding versions of these applications that were used for this project 

are as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Application Version 

Python 3.7.3 

Anaconda Navigator 1.9.7 

Keras 2.2.4 

Tensorflow 1.13.1 

Numpy 1.16.4 

Pandas 0.24.2 

Librosa 0.7.1 

Figure 6 Versions of the neccesary applications used in the code 

Figure 5 Libraries used in the practical implementation 
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3.3 Experimental setup 

In summary, we have a database containing one-second-long ambient audio 

segments where several audios contain mobile phone interference and other 

ones do not contain interference. The goal is to create a neural model that 

automates the process of classifying audio segments between interference and 

non-interference. For this purpose, a binary classification will be performed, 

being a value of 1 for those cases where there are interferences and a value of 

0 for those cases without interferences. The dataset is divided in three subsets: 

Train, Test and Evaluate. 

• Train: it corresponds to the training data for the neural model which is 

trained with the audio files identified as INTERFERENCE or NORMAL so 

that this model learns to differentiate them. 

• Test: It contains different audios from those of the training set. 

• Evaluate: Contains the ground truth for the test set. 

Each audio file is represented in feature domain as a matrix with dimensions 

40x44, where 40 is the number of the mel energies and 44 is the number of 

frames. The number of frames depends on frame length and file length, so it 

takes 44 frames for one audio file in our dataset. 

 

First, the next step is obtaining mel energies from spectrogram. It is necessary 

loading all audio from TRAIN data to obtain mel energies values. Spectrogram 

function needs parameters as the window type, window length, mel filters 

numbers and the mel numbers. The window type used is Hanning window 

because it is used for better resolution in the frequency domain and for noise 

measurements, window length is 40ms because using shorter time it obtains 

more spectral information. As for the number of mel filters and number of mel 

energies we use 40 to obtain the mel spectrogram. 

The previously initialized arrays are simply concatenated and saved in a new 

array whether the file contains interference or not. 

The neural network includes 2 hidden layers of 50 and 20 neurons respectively 

and an output layer of one neuron with the sigmoid activation function as 

explained above and that will determine if the result of the model will contain a 1 

or a 0.  
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In the training stage, a high number of epochs have been used for learning (200 

epochs) and 32 batch size of data for each iteration. A second experiment was 

also performed where the number of iterations is 100 and batch size is 64. 

 

The TESTING stage uses the same procedure as for the TRAINING stage only 

this time the trained model will test with the data from the TEST set to obtain a 

prediction of each time frame of each audio file and determine if the file will be 

INTERFERENCE or NORMAL. The criterion for choosing whether an audio is 

NORMAL or INTERFERENCE is the majority voting method. At this stage, we 

predict file by file and frame by frame. If each file has 44 frame length, the first 

frame is evaluated as a sigmoid function. If mel energies value of that frame is 

greater than or equal to 0.5, that frame will be considered 1, otherwise it will be 

considered 0. This process is performed until 44 frame length is reached. With 

the output matrix full of zeros and ones, at the end a count is made of the 

number of ones and zeros that the audio file has. If there are more zeros than 

ones, the label that the file will have will be 0 or NORMAL, on the contrary, it will 

be 1 or INTERFERENCE. This method is replicated for all audio files in the 

TEST set. 

 

In the EVALUATION part the results obtained from the TESTING stage of each 

audio file will be compared with the ground truth in the EVALUATE set. This 

process will generate a result determining the accuracy of the model and the 

confusion matrix. As for the confusion matrix, this is a tool used in supervised 

learning, where the elements (in our case they are audio files) are divided into 

predictions and actual values of each class. The classes, as we know, are 

NORMAL and INTERFERENCE.  

In order to calculate the percentage of the model's accuracy, the sum of the 

NORMAL / NORMAL and INTERFERENCE / INTERFERENCE values of the 

predicted and real values is done. The sum of this set is divided by the total 

number of audio files and multiplied by 100 to obtain the percentage of 

accuracy of the model. 
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For this case where number of epochs are 200, batch size is 32 and number 

of mel energies are 40 (Figure 7), the model has 58.58 % accuracy. 

 

 

 

 

 

To improve this result, the epochs and batch size variables have been changed.  

For the second case, number of epochs are 100, batch size equal to 32 

(Figure 8), where the model has 60.02 %. Now it has been demonstrated that 

by reducing the number of iterations the percentage of accuracy increases due 

to an overfitting of the model. 

 

 

 

 

 

 

 

 

For a third case, only the batch size value was changed to 64 (Figure 9), and 

the model has 61.11 % accuracy.  

 

 

 

 

 

 

 

 ACTUAL 

 

PREDICTED 

 NORMAL INTERFERENCE 

NORMAL 222 158 

INTERFERENCE 187 266 

Figure 7 Confusion matrix with n_mels=40, epochs = 200 and batch_size = 32 

 ACTUAL 

 

PREDICTED 

 NORMAL INTERFERENCE 

NORMAL 149 231 

INTERFERENCE 102 351 

Figure 8 Confusion matrix with n_mels=40, epochs = 100 and batch size = 32 

 ACTUAL 

 

PREDICTED 

 NORMAL INTERFERENCE 

NORMAL 231 149 

INTERFERENCE 175 278 

Figure 9 Confusion matrix with n_mels=40, epochs = 100 and batch size = 64 
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For the next experiment, mel energies number was changed to 128 instead 

of 40 and the previous experiments were repeated (Figure 10 and 11).  

 

 

 

 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Actual / 
Predicted 

n_mels = 40 

Epochs=200 
Batch=32 

 NORMAL INTERFERENCE 

NORMAL 222 158 

INTERFERENCE 187 266 

Epochs=100 
Batch=32 

 NORMAL INTERFERENCE 

NORMAL 149 231 

INTERFERENCE 102 351 

Epochs=100 
Batch=64 

 NORMAL INTERFERENCE 

NORMAL 231 149 

INTERFERENCE 175 278 

Figure 10 Confusion matrices using differents variables. n_mels:40, epochs:100 and 200, batch size:32 and 64 

Actual / 
Predicted 

n_mels = 128 

Epochs=200 
Batch=32 

 NORMAL INTERFERENCE 

NORMAL 71 309 

INTERFERENCE 28 425 

Epochs=100 
Batch=32 

 NORMAL INTERFERENCE 

NORMAL 279 101 

INTERFERENCE 310 143 

Epochs=100 
Batch=64 

 NORMAL INTERFERENCE 

NORMAL 148 232 

INTERFERENCE 72 381 

Figure 11 Confusion matrices using differents variables. n_mels:128, epochs:100 and 200, batch size:32 and 64 

Actual / 
Predicted 

n_mels = 40 n_mels = 128 

Epochs=200 
Batch=32 

58.58% 59.54 % 

Epochs=100 
Batch=32 

60.02% 50.66% 

Epochs=100 
Batch=64 

61.11% 63.51% 

Figure 12 Accuracy of different experiments in percentage 
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If we increase the number of mel energies for the case where epochs = 100 

and batch = 32, the model suffers a drop in classification accuracy. 

 

In addition, a few more network architectures were tested to try how the model 

works with other variables, so the structure of the neural network was changed. 

The original architecture is Network 1, the structure with more layers Network 

2 and the network with less layers Network 3. (Figure 12) 

It was used for the different structures the values n_mels=128, epochs = 200 

and batch = 64.  

 

Initially in Network 1:  

• 4 layers. 

• In the entry layer, 100 neurons were used. 

• 2 hidden layers with 50 and 20 neurons. 

Network 2: 

• 8 layers. 

• In the input layer, 500 neurons were used. 

• In the 6 hidden layers, from 250 neurons to 10 neurons decreasing twice 

the number of neurons per layer.  

Network 3: 

• 3 layers. 

• In the entry layer, 100 neurons were used. 

• In the hidden layer, 50 neurons. 

 

 

 

 

 

 

 NETWORK 1 NETWORK 2 NETWORK 3 

Actual / 
Predicted 

NORMAL INTERF. NORMAL INTERF. NORMAL INTERF. 

NORMAL 71 309 130 250 284 96 

INTERF. 28 425 84 369 304 149 

Accuracy % 59.54 % 59.90 % 51.98 % 

Figure 13 Accuracy of models using different structures and their confusion matrices  



21 
 

 

4. CONCLUSION 

 

The conclusions to be drawn from this experiment are diverse and varied.  

Reviewing all the process that has been done in the experimental setup, the 

purpose was to build a neural network that analyzes, detects and classifies 

audio files in two output tags: NORMAL or INTERFERENCE.  

A 40x44 dimension feature representation was used for each file, being 40 mel 

energies and 44 frames, extending the experiment to 128 mel energies to 

observe a difference of the model. In addition, for the calculation of the 

spectrogram, typical parameters such as the Hanning window and a small 

window length were used. 

The neural network model should be reviewed and improved using other types 

of neural networks such as CNN and using another methodology to classify as 

the method used majority vote. 

 

Firstly, the results at first sight determine that the model does not learn the data 

well enough (Underfitting). In particular Network 2 (case where there are more 

hidden layers), while training the model in the Keras fit function, I have 

observed a drop from the parameter accuracy=0.8332 in epoch=175 to a value 

accuracy=0.6720 for epoch=176.  

This probably means that learning should be stopped at epoch=175, however, 

the accuracy on the test data was not improved with this experiment as 

expected in theory. 

In summary, it has been shown that by varying most of the elements involved in 

the neural network such as the number of mel energies and iterations, the 

accuracy of this deep learning model varies slightly without obtaining a reliable 

result. The results vary between 58% and 64% accuracy.  
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APPENDIX 

 

This appendix includes the code to create a model to detect interferences and 
make a classification. The variables used in this code are: epochs=200, 
batch_size=32 and n_mels=40. 

 
import numpy as np #number processing 

import pandas as pd #load .csv files 

import librosa as lr #mel spectogram 

from keras.models import Sequential 

from keras.layers import Dense 

 

#Reading our dataset 

data = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_train.csv", sep 

= ';') 

test = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_test.csv") 

evl = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_evaluate.csv", 

sep = ';') 

 

#Variables 

t_files = data.values 

event_label = data['event_label'] 

labels = event_label.values 

data_dir = './TAU-urban-acoustic-errors-2019_BASEDATOS/audio/' 

M = np.empty((1,44)) 

A = np.empty([40,44]) 

count = 0 
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#MEL SPECTOGRAM 

for file in range (0, len(t_files), 1): 

    audio, sfreq = lr.load(data_dir + t_files[file][0]) 

    D = np.abs(lr.stft(audio))**2 

    mels = lr.feature.melspectrogram(S=D, sr=sfreq,  

                                     win_length=0.04,  

                                     power=1,  

                                     window='Hanning', 

                                     n_mels=40) 

     

   

  #Change Event_label by number (NORMAL = 0 ; INTERFERENCE = 1) 

    if event_label[file] == 'NORMAL': 

        event_label[file] = 0 

    else: 

        event_label[file] = 1 

    #Create array of zeros or ones (If it is NORMAL = Zeros // INTERFERENCE 

= Ones)            

    if labels[file] == 0: 

        N = np.zeros((1,44)) 

    else: 

        N = np.ones((1,44))        

    #Concatenate outputs arrays(ZEROS or ONES) 

    if count == 0: 

        M = N 

    else: 

        M = np.concatenate((M,N),1)     
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    #Concatenate inputs arrays (mel energies)         

    if count >= 1: 

        A = np.concatenate((A,mels), 1) 

    else: 

        count = count + 1 

        A = mels  

 

    print ('\nTRAINING FILE NUMBER: ', file)        

       

############ MODEL & TRAINING ############## 

     

#Define Keras Model 

model = Sequential() 

model.add(Dense(100, input_dim=40, activation='relu')) #nodes, inputs, 

activation function 

model.add(Dense(50, activation='relu')) 

model.add(Dense(20, activation='relu'))   

model.add(Dense(1, activation='sigmoid')) 

print (model.summary()) 

 

#Compile neural network 

model.compile(loss='binary_crossentropy', # Cross-entropy 

                optimizer='rmsprop', # Root Mean Square Propagation 

                metrics=['accuracy']) # Accuracy performance metric 

 

#Transpose matrixes 

M=np.transpose(M)  

A=np.transpose(A) 
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#Inputs and outputs 

x_train = A #mel energies 

y_train = M #labels 

 

#Training neural network 

model.fit(x_train, y_train,  

          epochs=200, #epochs are iterations  

          batch_size=32, #batch are data amount by each iteration 

          validation_split=0.3) 

 

########### TESTING ################# 

 

#Variables 

test_files = test.values 

A1=np.empty([44,1]) 

pred = np.empty([877,44]) 

B1 = np.empty([833,1]) 

count_ones= 0 

count_zeros= 0 

cont = 0 

 

#MEL SPECTROGRAM 

for f in range (0, len(test_files), 1): 

    #Load audio files 

    audio, sfreq = lr.load(data_dir + test_files[f][0]) 

    D = np.abs(lr.stft(audio))**2 

    S1 = lr.feature.melspectrogram(S=D, sr=sfreq,  

                                   win_length=0.04,  

                                   power=1,  

                                   window='Hanning',  

                                   n_mels=40) 
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    S1=np.transpose(S1) 

    pred = model.predict(S1) #predict model by each file 

    if cont >= 1: 

        A1 = np.concatenate((A1,pred), 1) 

    else: 

        cont = cont + 1 

        A1 = pred  

     

    print ('\nTESTING FILE NUMBER: ', f) 

   

A1 = np.transpose(A1)   

for f_ile in range (0,len (test_files), 1): 

    count_ones = 0 

    count_zeros = 0 

    for frame in range (0,len(S1),1): 

        if A1[f_ile,frame]>=0.5: 

            A1[f_ile,frame]=1 

            count_ones = count_ones + 1 

        else: 

            A1[f_ile,frame]=0 

            count_zeros = count_zeros + 1 

    if count_ones >= count_zeros: 

        label = 1 

    else: 

        label = 0 

    B1[f_ile,0] = label 

 

 

 

 

 

 

 

 



27 
 

 

 

########### EVALUATION ################# 

 

#Variables 

evaluation_files = evl.values 

labels = evl['event_label'] 

true_labels=labels.values 

correct = 0 

 

#Count numbers of true zeros and ones in evaluation file 

for r in range (0, len(true_labels), 1): 

    if true_labels[r] == 'NORMAL': 

        true_labels[r] = 0 

    else: 

        true_labels[r] = 1 

    if true_labels[r] == B1[r,0]: 

        correct = correct + 1 

         

print ('\nTRUE ZEROS AND ONES: ', correct)     

 

accuracy = correct / len(true_labels) * 100  

 

print ('\nACCURACY = ', accuracy)   

B1 = np.transpose(B1) 

trues = np.reshape(true_labels,833) 

predictions = np.reshape(B1,833) 

df_confusion = pd.crosstab(trues, predictions) 

print(df_confusion)
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