

Daniel Pato de la Torre

DETECTION OF MOBILE
PHONE INTERFERENCE

IN ENVIRONMENTAL
AUDIO RECORDINGS

Tampere University of Technology
 Bachelor’s Degree Programme in Signal Processing

May 2020

I

ABSTRACT

Daniel Pato de la Torre: Detection of Mobile Interference in Environmental Audio
Recordings
Tampere University of Technology
Bachelor’s Degree Programme in Signal Processing
Examiner: Annamaria Mesaros
May 2020

The era of machine learning has been beginning to be an engine for the development and

creation of applications for a few years and the public is not aware that machine learning

is on most of the technological devices on the market. Nowadays, this technology is

attracting a lot of attention to the researches and it is giving results that were not possible

before: the development of vehicles without drivers to recognize a traffic signal, text

detection for translation or the recognition of voice and sounds etc. This kind of

techniques are made possible by machine learning. Machine learning consists in teaching

computers to do what is natural for people: learn through examples. Therefore, it is

necessary to have available a large amount of data to provide these examples.

The purpose of this thesis is to develop an application that detects the interference

produced by mobile phones in audio recordings through a deep learning architecture,

known as feedforward neural networks (FNN), which is used in many machine learning

methods. These neural networks will carry out the necessary learning to analyze an

acoustic signal and differentiate whether a test audio example contains interference.

To perform this learning, first the sound file is represented in the frequency domain

through the mel spectrogram. Deep neural networks (DNN), use a layered structure of

units to extract characteristics of the given sound representation input with an increased

abstraction in each layer. This increases the ability of the network to efficiently learn the

highly complex relationship between sound representation and target sounds.

In this thesis, we will classify interference and no interference categories by constructing a

simple model of these samples as inputs and the binary classification at the output.

Keywords: machine learning, neural networks, interference, frequency domain, deep

learning, mel spectogram, model, network, binary classification.

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

I

PREFACE

This thesis was written at the University of Technology in Tampere, Finland,

where the teachers, especially my tutor Annamaria Mesaros and Toni Heittola,

who have taught and guided with great care. It has really been a personal

challenge for me, since this thesis has been written in another country and in

another language than mine. I appreciate my friends from Erasmus, with whom

I have always had great moments and we have supported each other.

I especially want to thank my friends and family, who have helped me even

though I was many kilometers away.

In Tampere, Finland, on 2 May 2020.

Daniel Pato de la Torre

iii

CONTENTS

LIST OF FIGURES .. IV

LIST OF SYMBOLS AND ABBREVIATIONS .. .V

1. INTRODUCTION. .. 6

1.1 Objectives .. 7
1.2 Structure of the Thesis ... 7

2. BACKGROUND ... 8
2.1 Audio Classification .. 8
2.2 Audio features .. 8
2.3 Machine learning .. 10
2.4 Feed-Forward Neural networks .. 12

3. METHOD ... 15
3.1 Dataset ... 15
3.2 Computational requirements .. . 15
3.3 Experimental setup .. . 17

4. CONCLUSION 22

APPENDIX23
REFERENCES29

iv

LIST OF FIGURES

Figure 1. Block diagram for mel spectrogram calculation. .. 9
Figure 2. Mel-spectogram from an-audio file which has interference…………………10
Figure 3. Function sigmoid graph. ... 12
Figure 4. Input layers (left), hidden layer (mid) and output layer (right) from a
 basic neural networks ... 13
Figure 5. Library used in the practical. ... 15
Figure 6. Version of the necessary applications used in the code......…….………....15

Figure 7. Confusion matrix with n_mels=40, epochs=200 and batch_size=32 18
Figure 8. Confusion matrix with n_mels=40, epochs=100 and batch_size=32. 18
Figure 9. Confusion matrix with n_mels=40, epochs=100 and batch_size=64……...18

Figure 10. Confusion matrix with n_mels=40, epochs=100 and 200 and
 batch_size=32 and 64………………………………………………….... 18
Figure 11. Confusion matrix with n_mels=128, epochs=100 and 200 and
 batch_size=32 and 64…………………………………………………...... 19
Figure 12. Accuracy of confusion matrices in percentage. ... 19
Figure 13. Accuracy of models using different structures and their
 confusion matrices .. 20

v

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial Intelligence
CNN Convolutional Neural Network
CSV Comma-Separated Values
DCASE Detection and Classification of Acoustic Scenes and Events
DCT Discrete Cosine Transform
DL Deep Learning
DNN Deep Neural Network
FFT Fast Fourier Transform
FNN Feedforward Neural Network
IEEE Institute of Electrical and Electronics Engineers
MFCC Mel Frequency Cepstral Coefficients
ML Machine Learning
STFT Short-time Fourier Transform
TAU Tampere University
TUT Tampere University of Technology
URL Uniform Resource Locator

6

1. INTRODUCTION

In a world where technology advances to the rhythm of a blink and the devices

are increasingly smaller, powerful and accessible to all, a better integration of

these devices into the daily life of people is sought. One of these technologies

is that allows understanding and recognizing events or situations where there

are no input parameters, but databases. This technology is known as machine

learning.

In order to understand and get to know this current technology better, there are

several practical examples that explain what it involves. For example, the

prediction of traffic in cities, in which it is observed when and where traffic jams

would happen, or the facial recognition used by many of the applications that

we use today and that we publish on our social networks. In addition, in modern

cars, automatic braking is used when it is detected that a person or object is

going to collide against the vehicle.

In the case of the audio branch and engineering, there are various projects,

research and applications that also use machine learning. The basic concept is

the analysis of the audio file and the classification of sounds. For example, in

the given audio fragment, the sounds from the audio file can be separated,

detected and classified.

Nowadays we use mobile phones for everything: call, send a message, take a

photo or video, record an audio etc. But, when we use the mobile phone, other

mobile phones can cause interference. It usually happens when we record in

public places such as public transport, where reception conditions increase the

transmission power making these interferences inevitable. The most common

for environmental audio databases is that these interferences are annotated

and discarded manually, thus making it a slow and tedious process.

For that reason, the machine learning techniques can be used to resolve this

problem automatically by doing the detection and the classification of

interferences in audio recordings.

7

1.1 Objectives

The main objective of this thesis is the detection of interferences in

environmental audio recordings to make a classification of all audible mobile

phone interference (if it has an interference or not) and automate the process

by using machine learning techniques.

1.2 Structure of the Thesis

The structure of this thesis is as follows:

• Introduction: The current chapter. It deals with the content of the

document in an introductory way to put the reader in context. Also, it

contains the objectives and purposes of the thesis.

• Background: How to calculate mel spectrogram from an audio file and

why mel energies are suitable for the problem. Next the differences

between machine learning and deep learning techniques, an introduction

on neural networks and the use of feed-forward neural networks for

classification.

• Method: Experimental setup, results and analysis of results.

• Conclusions: Development of ideas and solutions after carrying out the

experiment.

8

2. BACKGROUND

2.1 Audio classification

The supervised classification task is the key concept for sound identification. A

model is created for each class based on many different examples. In our case,

there will be two classes, No Interference and Interference. When the model

receives a test example, the system we use for classification will analyze the

signal and assign it to the most appropriate class of the two. In the training

phase, the model that is created is based on the characteristics extracted from

the training data [2].

There are many applications for classification of environmental audio, as well as

applications focused on people such as speaker identification, speaker gender

classification or speaker classification have been developed. Also, in the

musical field there are applications such as music artist and genre classification

[8]. The DCASE challenge (Detection and Classification of Acoustic Scenes and

Events) consists of different tasks that approach a challenge on the recognition

of the environmental sounds and classification of the events that happen in the

scene. [5]

2.2 Audio features

When it comes to sound representation, there is a time domain where one can

display the waveform of the audio signal, the amplitude and period, among

other aspects. However, frequency domain features can provide a better

representation based on the frequencies involved in the audio signal [1].

Therefore, it is necessary to use frequency domain because the frequency

components of a sound are differentiated, and it is possible to analyze and

discriminate between different sounds in frequency.

9

The most used spectral domain feature representation is the mel spectrogram

which we use as spectral representation. The block diagram for calculating the

mel spectrum is presented in Figure 1 [9].

Feature extraction consists of the following steps: frame blocking, windowing

and frequency domain representation.

The process starts with an audio fragment in the time domain. The next step is

to split the signal into short time segments (frames). The size of the analysis

frame is chosen based on the application and it usually is between 20 and 100

ms depending on the analysed signal. After this step, each time frame signal is

multiplied by a window function. This process is called windowing. There are

several types of windows, such as the Hamming, Hanning or Blackman window.

In this process, windows are useful because the process eliminates the sharp

edges that cause broadband noise. Overlapping the analysis segments is a

suitable procedure to make up for the attenuated parts of the input. Next, we

proceed to apply the Fourier transform to each frame. The Fourier transform is

employed because it shows the signal as a weighted sum of sinusoidal

components and short windows are used because signal is considered

stationary in such short time [12]. In practice the STFT is a succession of FFTs

of windowed data frames. The final step is applying a mel filterbank to transform

the spectrum to mel scale.

Framing Framing WindowingWindowing DFTDFT Filter BankFilter Bank LogarithmLogarithm

Figure 1 Block diagram for mel spectrogram calculation

Audio Output

10

This scale was created to interpret the pitch in the auditory system in similar

way with human perception [11]. The experiment concluded that pitch

perception is linear up to 1000 Hz, from there, the perceptual scale becomes

logarithmic.

The bank of filters applied to the transform response is typically 40 triangular

filters, but more can also be used [4]. Each filter has response 1 at its center

frequency, and response 0 at center frequency of adjacent filters. These filters

on the mel scale are smaller in bandwidth at low frequencies than at high

frequencies, where their bandwidth increases.

The spectrogram is the spectral representation of a signal as time progresses.

The spectrogram on linear frequency scale is transformed to spectrogram on

mel scale. Logarithm of the energies on mel scale is used in order to mimic

perception of loudness by the human auditory system.

2.3 Machine learning

Artificial intelligence emerged in the 1950s and became a very popular

phenomenon due to the great evolution of the computational capacity it had at

that time. Alan Turing, considered the father of computing, in his article [6]

argued the intelligence of a machine if it acted like a human being. Since this

event, the evolution of artificial intelligence has been remarkable and has grown

exponentially. Thanks to AI, more advanced algorithms and AI sub-genres such

as machine learning and deep learning have emerged and are now used with

massive amounts of data and for countless applications.

Figure 2 Mel-spectogram from an audio file which has INTERFERENCE

11

In [10], there is a formal definition for machine learning (ML) explaining that it is

the applied form of statistics that discerns complex mathematical functions

where the confidence intervals of these functions do not matter so much. To

explain better what ML is, there are three things that it needs:

▪ Inputs data points: For example, the audio files that we are going to use

for this project.

▪ Expected output: In our case, determine if the files that we introduce as

input have interferences or not.

▪ Algorithm measure of learning: How to evaluate the model with the

expected output and the inputs. The most common measure for

classification is the confusion matrix or accuracy.

This technology involves the creation of a model that is trained using an

algorithm with a database. By giving this model a different sample than what it

has been trained with, it is possible to predict a result. There are several

categories of ML, but in this thesis, we focus on supervised learning for

classification. In supervised learning the system is given training data along with

the desired outputs. According to [10] a supervised algorithm associates the

input with the output, using a training set of inputs x and outputs y.

Deep learning (DL) is a specific subfield of ML and brings many possibilities for

supervised learning. The advantage of these methods is that they can estimate

very complex functions through neural networks by adding more layers and

units within a layer. The name of ‘deep’ comes from the large consecutive

layers of representations (hidden layers) that one can use.

This technology is primarily used in automatic learning methods, which are so-

called neural network architectures, also known as deep neural networks. The

term neural network comes from the field of neurology, precisely from the

neural networks that form the brain. But it should not be confused and directly

associated with the idea that deep learning models work in the same way as the

brain, since they are only influenced by features similar to the behavior of

neurons and therefore they are mathematical models that learn through data

[13].

The main difference between machine learning and deep learning is in how the

expected characteristics are extracted to make a classification and determine a

result.

12

2.4 Feed-Forward Neural networks

The basic processing element of a neural network is a neuron (a mathematical

function Fx that is intended to resemble a biological neuron) which has input

values (X1, X2, X3...) and will generate an output value (Y1) through the neuron.

The neuron performs a weighted summation of the input values according to

the weight assigned to each input and works similar to a linear regression line.

The result of the linear regression line (the output) is usually evaluated above

and below the threshold. This process is aimed at binary classification [14].

In order to solve more complex problems, it is necessary to create a neural

network composed of at least two neurons. Two or more neurons placed in a

row are in one layer and have the same information as the input (input layer)

and have one output layer. Layers between the input and output layers are

called hidden layers. The set of all the neurons and their different layers add up

to the linear combination of all of them and generate an equivalent linear

regression that must be activated by the activation functions. Most neural

network models use sigmoid function.

This activation function is used in most binary classification cases as this is a

particular case of this situation. This function is used because it has a good

behavior at the output as it is an exponential transition that separates the

samples very well between 0 and 1.

Figure 3 Function sigmoid graph

13

𝑓(𝑥) =
1

1 + 𝑒−𝑥

Non-linear functions must be added to distort the concatenation of linear

regressions in order to obtain as output a linear regression of the whole set of

neurons.

Feed-forward neural networks are the preferential model of deep learning and

the model used in this project. The main distinction between these networks

and other models is the absence of feedback, i.e. the data obtained at the

output of the neural network model do not return to the input of the model as

input data [7]. What this implies is that the information is only transmitted in one

direction, passing since input layer through hidden layers towards output layer

of the neural network.

Figure 4 Input layers (left), hidden layer (mid) and output layer (right) from a basic neural network

14

3. METHOD

In this section, a report on the development of the application will be presented,

explaining everything that has been used in the process, how it has been

developed and its evaluation.

3.1 Dataset

The dataset which it used for this project has 1-second audio segments from 10

acoustic scenes (some of them are used) having mobile phone interference, in

total 2510 sound files. The equipment used for recording are a binaural

Soundman OKM II Classic/studio A3 electret in-ear microphone and a Zoom F8

audio recorder (48 kHz sampling and 24-bit resolution) [3]. Dataset is split into

training and test sets with 70% data in the training

3.2 Computational requirements

In the previous sections we have introduced which resources are going to be

used in this project. Here, we are going to deal with each of these resources in

detail.

The application has been developed with the Python programming language,

which provides various specific audio libraries. In the code developed, 4

essential libraries have been used, including libraries for the extraction of audio

features and for creating models of neural networks:

o Numpy: It is a scientific numerical calculus library for Python. It is used

in this project to create matrices and operations with them.

o Pandas: It is a library of science and data analysis software based on

Numpy for Python. It is used to read the database of the audio segments

that contain interference by transforming the data in CSV format into

arrays to operate with them.

o Librosa: This is an audio and music analysis library for Python. The

main purpose of using this library is the melspectrogram function that will

be used to extract the characteristics of the audio segment being

analyzed. It is also used to load the data from the audio segments to

process the values and enter them into the mel spectrogram function.

o Keras: A deep learning library used for neural networks in Python. There

are two important functions necessary for the creation of the neural

network.

15

Sequential from Keras: It is a function that creates a neural model of a stack of

layers that can be modified with parameters along with the Dense function.

Dense from Keras: It is a function that comes along with the previous one and

modifies the parameters of each layer such as the number of nodes that will be

used or the activation function that will be applied in each case.

Besides Keras (since the library's own functions are used), TensorFlow and

Anaconda are used. While the first is an extensive open-source library for

machine learning and especially deep neural networks (DL), the other is a well-

known data science research platform in machine learning.

The corresponding versions of these applications that were used for this project

are as follows:

Application Version

Python 3.7.3

Anaconda Navigator 1.9.7

Keras 2.2.4

Tensorflow 1.13.1

Numpy 1.16.4

Pandas 0.24.2

Librosa 0.7.1

Figure 6 Versions of the neccesary applications used in the code

Figure 5 Libraries used in the practical implementation

16

3.3 Experimental setup

In summary, we have a database containing one-second-long ambient audio

segments where several audios contain mobile phone interference and other

ones do not contain interference. The goal is to create a neural model that

automates the process of classifying audio segments between interference and

non-interference. For this purpose, a binary classification will be performed,

being a value of 1 for those cases where there are interferences and a value of

0 for those cases without interferences. The dataset is divided in three subsets:

Train, Test and Evaluate.

• Train: it corresponds to the training data for the neural model which is

trained with the audio files identified as INTERFERENCE or NORMAL so

that this model learns to differentiate them.

• Test: It contains different audios from those of the training set.

• Evaluate: Contains the ground truth for the test set.

Each audio file is represented in feature domain as a matrix with dimensions

40x44, where 40 is the number of the mel energies and 44 is the number of

frames. The number of frames depends on frame length and file length, so it

takes 44 frames for one audio file in our dataset.

First, the next step is obtaining mel energies from spectrogram. It is necessary

loading all audio from TRAIN data to obtain mel energies values. Spectrogram

function needs parameters as the window type, window length, mel filters

numbers and the mel numbers. The window type used is Hanning window

because it is used for better resolution in the frequency domain and for noise

measurements, window length is 40ms because using shorter time it obtains

more spectral information. As for the number of mel filters and number of mel

energies we use 40 to obtain the mel spectrogram.

The previously initialized arrays are simply concatenated and saved in a new

array whether the file contains interference or not.

The neural network includes 2 hidden layers of 50 and 20 neurons respectively

and an output layer of one neuron with the sigmoid activation function as

explained above and that will determine if the result of the model will contain a 1

or a 0.

17

In the training stage, a high number of epochs have been used for learning (200

epochs) and 32 batch size of data for each iteration. A second experiment was

also performed where the number of iterations is 100 and batch size is 64.

The TESTING stage uses the same procedure as for the TRAINING stage only

this time the trained model will test with the data from the TEST set to obtain a

prediction of each time frame of each audio file and determine if the file will be

INTERFERENCE or NORMAL. The criterion for choosing whether an audio is

NORMAL or INTERFERENCE is the majority voting method. At this stage, we

predict file by file and frame by frame. If each file has 44 frame length, the first

frame is evaluated as a sigmoid function. If mel energies value of that frame is

greater than or equal to 0.5, that frame will be considered 1, otherwise it will be

considered 0. This process is performed until 44 frame length is reached. With

the output matrix full of zeros and ones, at the end a count is made of the

number of ones and zeros that the audio file has. If there are more zeros than

ones, the label that the file will have will be 0 or NORMAL, on the contrary, it will

be 1 or INTERFERENCE. This method is replicated for all audio files in the

TEST set.

In the EVALUATION part the results obtained from the TESTING stage of each

audio file will be compared with the ground truth in the EVALUATE set. This

process will generate a result determining the accuracy of the model and the

confusion matrix. As for the confusion matrix, this is a tool used in supervised

learning, where the elements (in our case they are audio files) are divided into

predictions and actual values of each class. The classes, as we know, are

NORMAL and INTERFERENCE.

In order to calculate the percentage of the model's accuracy, the sum of the

NORMAL / NORMAL and INTERFERENCE / INTERFERENCE values of the

predicted and real values is done. The sum of this set is divided by the total

number of audio files and multiplied by 100 to obtain the percentage of

accuracy of the model.

18

For this case where number of epochs are 200, batch size is 32 and number

of mel energies are 40 (Figure 7), the model has 58.58 % accuracy.

To improve this result, the epochs and batch size variables have been changed.

For the second case, number of epochs are 100, batch size equal to 32

(Figure 8), where the model has 60.02 %. Now it has been demonstrated that

by reducing the number of iterations the percentage of accuracy increases due

to an overfitting of the model.

For a third case, only the batch size value was changed to 64 (Figure 9), and

the model has 61.11 % accuracy.

 ACTUAL

PREDICTED

 NORMAL INTERFERENCE

NORMAL 222 158

INTERFERENCE 187 266

Figure 7 Confusion matrix with n_mels=40, epochs = 200 and batch_size = 32

 ACTUAL

PREDICTED

 NORMAL INTERFERENCE

NORMAL 149 231

INTERFERENCE 102 351

Figure 8 Confusion matrix with n_mels=40, epochs = 100 and batch size = 32

 ACTUAL

PREDICTED

 NORMAL INTERFERENCE

NORMAL 231 149

INTERFERENCE 175 278

Figure 9 Confusion matrix with n_mels=40, epochs = 100 and batch size = 64

19

For the next experiment, mel energies number was changed to 128 instead

of 40 and the previous experiments were repeated (Figure 10 and 11).

Actual /
Predicted

n_mels = 40

Epochs=200
Batch=32

 NORMAL INTERFERENCE

NORMAL 222 158

INTERFERENCE 187 266

Epochs=100
Batch=32

 NORMAL INTERFERENCE

NORMAL 149 231

INTERFERENCE 102 351

Epochs=100
Batch=64

 NORMAL INTERFERENCE

NORMAL 231 149

INTERFERENCE 175 278

Figure 10 Confusion matrices using differents variables. n_mels:40, epochs:100 and 200, batch size:32 and 64

Actual /
Predicted

n_mels = 128

Epochs=200
Batch=32

 NORMAL INTERFERENCE

NORMAL 71 309

INTERFERENCE 28 425

Epochs=100
Batch=32

 NORMAL INTERFERENCE

NORMAL 279 101

INTERFERENCE 310 143

Epochs=100
Batch=64

 NORMAL INTERFERENCE

NORMAL 148 232

INTERFERENCE 72 381

Figure 11 Confusion matrices using differents variables. n_mels:128, epochs:100 and 200, batch size:32 and 64

Actual /
Predicted

n_mels = 40 n_mels = 128

Epochs=200
Batch=32

58.58% 59.54 %

Epochs=100
Batch=32

60.02% 50.66%

Epochs=100
Batch=64

61.11% 63.51%

Figure 12 Accuracy of different experiments in percentage

20

If we increase the number of mel energies for the case where epochs = 100

and batch = 32, the model suffers a drop in classification accuracy.

In addition, a few more network architectures were tested to try how the model

works with other variables, so the structure of the neural network was changed.

The original architecture is Network 1, the structure with more layers Network

2 and the network with less layers Network 3. (Figure 12)

It was used for the different structures the values n_mels=128, epochs = 200

and batch = 64.

Initially in Network 1:

• 4 layers.

• In the entry layer, 100 neurons were used.

• 2 hidden layers with 50 and 20 neurons.

Network 2:

• 8 layers.

• In the input layer, 500 neurons were used.

• In the 6 hidden layers, from 250 neurons to 10 neurons decreasing twice

the number of neurons per layer.

Network 3:

• 3 layers.

• In the entry layer, 100 neurons were used.

• In the hidden layer, 50 neurons.

 NETWORK 1 NETWORK 2 NETWORK 3

Actual /
Predicted

NORMAL INTERF. NORMAL INTERF. NORMAL INTERF.

NORMAL 71 309 130 250 284 96

INTERF. 28 425 84 369 304 149

Accuracy % 59.54 % 59.90 % 51.98 %

Figure 13 Accuracy of models using different structures and their confusion matrices

21

4. CONCLUSION

The conclusions to be drawn from this experiment are diverse and varied.

Reviewing all the process that has been done in the experimental setup, the

purpose was to build a neural network that analyzes, detects and classifies

audio files in two output tags: NORMAL or INTERFERENCE.

A 40x44 dimension feature representation was used for each file, being 40 mel

energies and 44 frames, extending the experiment to 128 mel energies to

observe a difference of the model. In addition, for the calculation of the

spectrogram, typical parameters such as the Hanning window and a small

window length were used.

The neural network model should be reviewed and improved using other types

of neural networks such as CNN and using another methodology to classify as

the method used majority vote.

Firstly, the results at first sight determine that the model does not learn the data

well enough (Underfitting). In particular Network 2 (case where there are more

hidden layers), while training the model in the Keras fit function, I have

observed a drop from the parameter accuracy=0.8332 in epoch=175 to a value

accuracy=0.6720 for epoch=176.

This probably means that learning should be stopped at epoch=175, however,

the accuracy on the test data was not improved with this experiment as

expected in theory.

In summary, it has been shown that by varying most of the elements involved in

the neural network such as the number of mel energies and iterations, the

accuracy of this deep learning model varies slightly without obtaining a reliable

result. The results vary between 58% and 64% accuracy.

22

APPENDIX

This appendix includes the code to create a model to detect interferences and
make a classification. The variables used in this code are: epochs=200,
batch_size=32 and n_mels=40.

import numpy as np #number processing

import pandas as pd #load .csv files

import librosa as lr #mel spectogram

from keras.models import Sequential

from keras.layers import Dense

#Reading our dataset

data = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_train.csv", sep

= ';')

test = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_test.csv")

evl = pd.read_csv(r”**PATH**WHERE**IS**THE**FILE**\fold1_evaluate.csv",

sep = ';')

#Variables

t_files = data.values

event_label = data['event_label']

labels = event_label.values

data_dir = './TAU-urban-acoustic-errors-2019_BASEDATOS/audio/'

M = np.empty((1,44))

A = np.empty([40,44])

count = 0

23

#MEL SPECTOGRAM

for file in range (0, len(t_files), 1):

 audio, sfreq = lr.load(data_dir + t_files[file][0])

 D = np.abs(lr.stft(audio))**2

 mels = lr.feature.melspectrogram(S=D, sr=sfreq,

 win_length=0.04,

 power=1,

 window='Hanning',

 n_mels=40)

 #Change Event_label by number (NORMAL = 0 ; INTERFERENCE = 1)

 if event_label[file] == 'NORMAL':

 event_label[file] = 0

 else:

 event_label[file] = 1

 #Create array of zeros or ones (If it is NORMAL = Zeros // INTERFERENCE

= Ones)

 if labels[file] == 0:

 N = np.zeros((1,44))

 else:

 N = np.ones((1,44))

 #Concatenate outputs arrays(ZEROS or ONES)

 if count == 0:

 M = N

 else:

 M = np.concatenate((M,N),1)

24

 #Concatenate inputs arrays (mel energies)

 if count >= 1:

 A = np.concatenate((A,mels), 1)

 else:

 count = count + 1

 A = mels

 print ('\nTRAINING FILE NUMBER: ', file)

############ MODEL & TRAINING ##############

#Define Keras Model

model = Sequential()

model.add(Dense(100, input_dim=40, activation='relu')) #nodes, inputs,

activation function

model.add(Dense(50, activation='relu'))

model.add(Dense(20, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

print (model.summary())

#Compile neural network

model.compile(loss='binary_crossentropy', # Cross-entropy

 optimizer='rmsprop', # Root Mean Square Propagation

 metrics=['accuracy']) # Accuracy performance metric

#Transpose matrixes

M=np.transpose(M)

A=np.transpose(A)

25

#Inputs and outputs

x_train = A #mel energies

y_train = M #labels

#Training neural network

model.fit(x_train, y_train,

 epochs=200, #epochs are iterations

 batch_size=32, #batch are data amount by each iteration

 validation_split=0.3)

########### TESTING #################

#Variables

test_files = test.values

A1=np.empty([44,1])

pred = np.empty([877,44])

B1 = np.empty([833,1])

count_ones= 0

count_zeros= 0

cont = 0

#MEL SPECTROGRAM

for f in range (0, len(test_files), 1):

 #Load audio files

 audio, sfreq = lr.load(data_dir + test_files[f][0])

 D = np.abs(lr.stft(audio))**2

 S1 = lr.feature.melspectrogram(S=D, sr=sfreq,

 win_length=0.04,

 power=1,

 window='Hanning',

 n_mels=40)

26

 S1=np.transpose(S1)

 pred = model.predict(S1) #predict model by each file

 if cont >= 1:

 A1 = np.concatenate((A1,pred), 1)

 else:

 cont = cont + 1

 A1 = pred

 print ('\nTESTING FILE NUMBER: ', f)

A1 = np.transpose(A1)

for f_ile in range (0,len (test_files), 1):

 count_ones = 0

 count_zeros = 0

 for frame in range (0,len(S1),1):

 if A1[f_ile,frame]>=0.5:

 A1[f_ile,frame]=1

 count_ones = count_ones + 1

 else:

 A1[f_ile,frame]=0

 count_zeros = count_zeros + 1

 if count_ones >= count_zeros:

 label = 1

 else:

 label = 0

 B1[f_ile,0] = label

27

########### EVALUATION #################

#Variables

evaluation_files = evl.values

labels = evl['event_label']

true_labels=labels.values

correct = 0

#Count numbers of true zeros and ones in evaluation file

for r in range (0, len(true_labels), 1):

 if true_labels[r] == 'NORMAL':

 true_labels[r] = 0

 else:

 true_labels[r] = 1

 if true_labels[r] == B1[r,0]:

 correct = correct + 1

print ('\nTRUE ZEROS AND ONES: ', correct)

accuracy = correct / len(true_labels) * 100

print ('\nACCURACY = ', accuracy)

B1 = np.transpose(B1)

trues = np.reshape(true_labels,833)

predictions = np.reshape(B1,833)

df_confusion = pd.crosstab(trues, predictions)

print(df_confusion)

REFERENCES

[1] Cakir, E. (2019). Deep Neural Networks for Sound Event Detection. (Tampere
University Dissertations; Vol. 12) Tampere University. Date: 4/10/2019 [Online]. URL:
https://tutcris.tut.fi/portal/files/17626487/cakir_12.pdf

[2] Annamaria Mesaros (2012). Singing Voice Recognition for Music Information Retrieval.
Tampere University. Date: 8/10/2019 [Online]. URL:
https://tutcris.tut.fi/portal/files/5346343/mesaros.pdf

[3] Mesaros, A., Heittola, T., Virtanen, T., “TAU Urban Acoustic Errors 2019”, Tampere
University, 2019.

[4] Maka, Tomasz. (2015). Change Point Determination in Audio Data Using Auditory
Features. International Journal of Electronics and Telecommunications. 61.
10.1515/eletel-2015-0024.

[5] Vázquez Baldovino, Miguel (2018). Creación GUI para detección de eventos sonoros.
Proyecto Fin de Carrera / Trabajo Fin de Grado, E.T.S.I. y Sistemas de
Telecomunicación (UPM), Madrid.

[6] A. M. Turing (1950) Computing Machinery and Intelligence. Mind 49: 433-460.

[7] Charte, David. (2017). Reducción de la dimensionalidad en problemas de clasificación
con Deep Learning: Análisis y propuesta de herramienta en R.
10.13140/RG.2.2.16155.57123/1.

[8] Lee, H., Pham, P., Largman, Y., & Ng, A. Y. (2009). Unsupervised feature learning for

audio classification using convolutional deep belief networks. In Advances in neural
information processing systems (pp. 1096-1104).

[9] Lee, R. (2019). Software Engineering Research, Management and Applications. New

York, Estados Unidos: Springer Publishing. (pp. 175-180).

[10] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Amsterdam, Países
Bajos: Amsterdam University Press. (pp. 95 - 182)

[11] Majeed, S. A., Husain, H., & Samad, S. A. (2015). Mel frequency Cepstral coefficients

(MFCC) feature extraction enhancement in the application of speech recognition: A
comparison study. Journal of Theoretical & Applied Information Technology, 79(1).

[12] J. B. Allen and L. R. Rabiner, ``A unified approach to short-time Fourier transform and

synthesis,'' Proc. IEEE, vol. 65, pp. 1558-1564, Nov. 1977.

[13] Chollet, F. (2017). Deep Learning with Python. Manning. ISBN: 9781617294433

[14] Dot CSV.(2018, march 19). ¿Qué es una Red Neuronal? Parte 1 : La Neurona |
DotCSV [Video file]. Online: https://www.youtube.com/watch?v=MRIv2IwFTPg

https://tutcris.tut.fi/portal/files/17626487/cakir_12.pdf
https://tutcris.tut.fi/portal/files/5346343/mesaros.pdf
http://oa.upm.es/53246/
http://oa.upm.es/view/institution/ETSIS=5FTelecomunicacion/
http://oa.upm.es/view/institution/ETSIS=5FTelecomunicacion/
https://www.youtube.com/watch?v=MRIv2IwFTPg

