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ABSTRACT

Lauri Eneh: Neural networks in household investor behavior prediction
Bachelor’s Thesis
Tampere University
Information Technology
May 2020

Machine learning (ML) has been widely applied to various fields and areas, including the finan-
cial market. In this study, the behavior of active Finnish household investors is being predicted us-
ing three different neural network types: the multi-layer perceptron (MLP), long short-term memory
(LSTM) and convolutional neural network (CNN). The target of the networks is to predict, whether
an investor net-buys, net-sells or keeps their position on the next market day. In essence, the
problem at hand is a three-class classification problem. The aim of this thesis is to find out which
of the aforementioned networks receives the best F1 prediction scores and to get some insight to
which inputs are of most importance. For the latter aim, attention mechanism is used. The data
at hand, received from EuroClear, contains detailed information on all trades executed in Helsinki
stock exchange. Focus is narrowed down to the 100 most active individual household traders of
Nokia stock between the years 2006 and 2009.

First, a short review of the functionality of the stock exchange is made, and most central
behavioral finance findings presented. The review shows, that investors do not act rationally in
the markets. Next, the basic working principles of neural networks is explained, after which the
used data and data preparation processes are brought out. From the data, 13 inputs are created,
which are used to predict future household investor behavior. Finally, the experiment setting is
explained and results presented.

Out of the networks experimented on in this study, the LSTM received the best prediction
scores. However, none of the models falls significantly behind. Insight by the attention mech-
anism suggests, that the most important feature is the previous action of the investors. In the
end, suggestions for receiving more satisfying results in future research are discussed. More
sophisticated and complex models could give more satisfactory results.

Keywords: neural networks, long short-term memory, behavioral finance, empirical finance
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TIIVISTELMÄ

Lauri Eneh: Neuroverkot yksityissijoittajan ostokäyttäytymisen ennustaisessa
Kandidaatin työ
Tampereen yliopisto
Tietotekniikka
Toukokuu 2020

Koneoppimisen tekniikoita on käytetty laajasti monilla eri tieteenaloilla, myös rahoitusdatan
analysoinnissa. Tässä työssä aktiivisten yksityissijoittajien käyttäytymistä pyritään ennustamaan
ja tulkitsemaan kolmella eri neuroverkkotyypillä: monikerroksisella perseptroniverkolla (engl. mul-
tilayer perceptron, MLP), pitkä-lyhytkestomuistilla (engl. long short-term memory) ja konvoluutio-
neuroverkolla (engl. convolutional neural network, CNN). Verkkojen ulostulona ennustetaan sitä,
että myykö, ostaako vai pitääkö sijoittaja osakkeensa seuraavana päivänä. Pohjimmiltaan kysees-
sä on kolmiluokkainen luokitteluongelma. Työn tavoitteena on selvittää mikä mainituista verkoista
saavuttaa parhaan F1 ennustustuloksen, sekä mitkä syötteet vaikuttavat eniten ennustettavuu-
teen. Syötteiden tärkeyden tutkimisessa käytetään huomiomekanismia (engl. attention mecha-
nism). Käytössä oleva EuroClearin tuottama data sisältää yksityiskohtaista tietoa kaikista Helsin-
gin pörssissä käydyistä kaupoista. Työssä keskitytään tarkastelemaan sataa aktiivisimmin Nokia
Oyj:n osakkeella kauppaa käynyttä sijoittajaa vuosien 2006 ja 2009 välillä.

Työssä tehdään aluksi lyhyt katsaus rahoitusmarkkinoiden toimintaan ja esitellään behavio-
raalisen rahoituksen keskeisimmät löydökset. Katsauksessa havaitaan, että sijoittajat käyttäyty-
vät markkinoilla usein epärationaalisesti. Seuraavaksi tarkastellaan käytettyjen neuroverkkojen
toimintaa ja periaatetta, jonka jälkeen tutkimuksessa käytetty data esitellään. Datasta prosessoi-
daan verkoille 13 syötettä, joiden avulla tulevaa ostokäyttäytymistä pyritään ennustamaan. Lopuk-
si selostetaan tutkimusmenetelmät ja esitellään tulokset.

Työssä käytetyistä verkoista LSTM yltää parempiin ennustustuloksiin kuin työssä esitelty ver-
tailumalli. Huomiomekanismin mukaan tärkein käytökseen vaikuttava tekijä on sijoittajien oma
kaupankäyntihistoria. Tutkimuksen perusteella ei voida todeta, että mallit eivät kykene ennusta-
maan sijoittajien käyttäytymistä. Tulokset antavat hyvin suuntaa mahdollisille jatkotutkimuksille.
Jatkossa kiitettävien tuloksien saavuttamiseksi voidaan hyödyntää monimutkaisempia ja edisty-
neempiä malleja.

Avainsanat: neuroverkot, long short-term memory, käyttäytymistaloustiede, empiirinen rahoitus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 INTRODUCTION

We seem to be amidst a revolution, like one only seen a few times in history. Thousands
of years ago, the agricultural revolution changed the way humans live. The Industrial Rev-
olution, a few centuries ago, revolutionised the labor conditions, and just some decades
ago, the technological revolution once again dramatically reshaped our everyday life. The
most recent revolution is that of Artificial Intelligence (AI) and Machine Learning (ML).
(Aoun 2017)

In recent years, many applications have been introduced that programmatically mimicking
intellectual human behavior (referred to as AI). These include self-driving cars, disease
diagnostics and financial market analysis, just to mention a few. Given that many of
these applications make use of ML and have been found extremely utilitarian, it is futile
to stress the potential of ML in handling data originating from complex environments.
Here, ML refers to systems distinguished by their learning property, which allows the
systems to self-adjust their parameters. This experimental study explores the possibility
of ML methods, more specifically neural networks, being deployed to analyze complicated
human decision making in the highly complex financial markets.

Behavioral finance studies human decision making under risk. What makes investors
trade has been analyzed before, but mainly using regression (see Grinblatt and Keloharju
2001, Kaniel et al. 2012). The complicated investor decision-making process might be
better analysed with methods capable of handling the non-linearity, such as ML. To my
best knowledge, investor behavior has not been analyzed using ML techniques before.

It has been argued that ML leads to black-box methods lacking interpretability. In empir-
ical finance, the objective is rather in understanding associations than in pure behavior
prediction. However, recent developments in ML allows for more efficient interpretation of
the models’ "reasoning" without sacrificing on their accuracy. With attention mechanism,
interpretability can be achieved in prediction environments. Interestingly, attention mech-
anisms first proposed for image recognition (Zhou et al. 2016, Xu et al. 2015) have been
successfully applied to interpret financial data (Mäkinen et al. 2019, Tran et al. 2019).

In this study, neural networks are used to predict active household investor buy, hold and
sell decisions. The research questions can be formulated as three separate questions:

1. Can future decisions of active household investors be predicted using neural net-
works based on their past activity and the market state?

2. Which network type produces best out of sample prediction results?
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3. Which input variables influence active household investors’ decision making the
most?

Considering the last question, attention mechanism can be used to gain understanding
about the temporal information relevant for predicting and explaining investor trading be-
havior. All questions are motivated by the fact, that gaining a deeper understanding about
the behavior of investors would allow for the creation of robust models, which could, in
turn, help us predict, examine and prevent, for example, financial crises in the future.

In essence, the problem at hand is a 3 class classification problem: the investor either
net-sells, net-buys or holds their position on the next day. The output data consists of
daily (only market days, excluding weekends and midweek holidays) observations about
the change of the investors’ position. The input data is comprised of both market state
data and the activities of other active household investors. Market inputs will remain
the same for all investors, but investor specific inputs vary. Various neural networks will
be trained, including multi-layer perceptron (MLP), long short-term memory (LSTM) and
convolutional neural networks (CNN). The goal is to develop investor agnostic models,
which can predict future actions of investors never seen by the model before.

To analyze the behavior of active household investors, an interesting data set will be
used, containing information on each transaction made in Helsinki stock exchange from
1996 to 2016. The focus will be on the most liquid stock, that of Nokia Oyj, and on a time
period ranging from the beginning of 2006 to the end of 2009.

The rest of this study is structured as follows: Chapter 2 briefly discusses the basics of
the stock market and continues to introduce the field of behavioral finance. Chapter 3,
defines the concept of neural networks and focused on the different network types used
in this study. Also, the function of attention mask is explained. Filtering of the data and
the selection criteria for the inputs are introduced in chapter 4. Finally, the results will be
presented in chapter 5 followed by the conclusions in chapter 6.
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2 FINANCIAL MARKET AND INVESTOR BEHAVIOR

The financial markets allow the trade of assets among various agents. From a financial
perspective, agents trade dividend-paying or interest yielding assets, such as stocks and
bonds, as well as derivatives. In turn, from an economic perspective, agents trade time,
risk and beliefs. Naturally, those agents are heterogeneous and have a different valuation
of time, risk and beliefs. In classical economics, those beliefs are combined to form a
market equilibrium, represented as the market prices for time, risk and beliefs. (Hens
2010) As stated before, this study will focus solely on stocks.

A stock is a type of equity investment asset representing ownership of a corporation.
The owner of a stock is entitled to the earnings of the corporation paid as a dividend.
Fundamentally, the value of a stock is determined by the net present value of the expected
cash-flow discounted by the yield requirement. Hence, the fundamental price of a stock
varies only with changes in the expected cash-flow or the yield requirement. (Knüpfer
& Puttonen 2018) However, for example, Shiller (1981) shows that volatility cannot be
explained solely by changes in the stock’s fundamentals.

In practice, the market value of a stock is the price it is traded at publicly in an exchange
and it can fluctuate greatly during trading hours (Knüpfer & Puttonen 2018). Today, many
exchanges, including Nasdaq exchanges, function on limit order submissions. Limit or-
ders are submitted to the system including the quantity and price with which the maker is
willing to buy (bid) or sell (ask). A trade is executed, once a bid price is greater or equal to
the ask price. (Mäkinen et al. 2019) Consequently, new bids and asks move the market
price, and the price reflects the collective valuation of individual traders.

2.1 Market efficiency and arbitrage

Market efficiency theory put forward by Fama (1970), defines markets as efficient, mean-
ing that all available information is already incorporated in the prices. The hypothesis is
presented in three levels of efficiency (Fama 1970).

In the weak form, the hypothesis states, that the future stock prices can not be predicted
using price history, as it already is reflected in the price at the moment. In semi-strong
effective markets, no publicly available information can give an upper hand, since it is
already evaluated by the market. Finally, in strong markets, even inside information is
already priced in by the market. (Fama 1970). In spite of the hypothesis, there is no clear
consensus among researchers, on how widely the theory applies.
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The markets are also widely considered to be arbitrage-free. An arbitrage opportunity
is a trading scenario, where an investor could receive positive returns without requiring
any payments or increased risk-bearing. Financial researchers and practitioners agree,
that arbitrage strategies ought to be considered non-existent, due to their rarity. Should
an arbitrage possibility present itself, it would without delay be utilized driving the prices
back to arbitrage freedom. (Hens 2010)

The markets being efficient and arbitrage-free does not imply that there can be no de-
viance from the "correct" price. They rather imply, that these deviations are random.
Moreover, what allows efficient markets are the actors, constantly thriving to maximise
expected gains, striping away potential arbitrage. This is the only way available informa-
tion can be reflected correctly in the market prices. Not all actors in the market need to
behave rationally in order for the market to be efficient. The hypotheses simply suggest,
that the aggregate markets are rational. (Knüpfer & Puttonen 2018)

2.2 Behavioral finance

Many economic theories and models heavily build on the assumption that investors are
rational and try to maximise their expected utility (Hens 2010). According to Shefrin and
Statman (1985), it has been well known for a long time, that investors do not act according
to Expected Utility Theory. As reported by Thaler (2005), they are motivated by greed
and loss aversion, overreaction, overconfidence, heuristics and other biases, and do not
act rationally at all times. Behavioral finance studies deviations of this perfectly rational
behavior (Hens 2010).

Instead of Expected Utility Theory, a better approach to analysing investor decision mak-
ing under risk is Prospect Theory, first presented by Kahneman and Tversky in 1979.
They suggest, that investors react differently on the expected value of losses than on
expected gains. Investors evaluate losses and gains with asymmetric emphasis. (Kah-
neman & Tversky 1979)

Another important finding in behavioral finance, build upon prospect theory, is the Dis-
position Effect, formulated by Shefrin and Statman (1985) and further demonstrated by
other researchers (Dhar & Zhu 2006). Shefrin and Statman found, that investors tend to
hold on to losing investment and to realise gains irrationally (Shefrin & Statman 1985).

Evidence has been presented, that the amplitude of an investors disposition effect is
related to their level of sophistication (Dhar & Zhu 2006). Other studies have found, that
investors in various categories tend to act differently (see e.g. Grinblatt and Keloharju
2001). However, much research has not been published concerning the degree to in
which investing patterns are universal among different categories. On the contrary, in
financial literature, rough categorization is often used, implicitly implying, that investors
within a category are homogeneous (see e.g. Grinblatt and Keloharju 2001, Foucault et
al. 2011). In this study homogeneity among a narrowly defined category, active Finnish
household investors is also assumed.
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As of today, empirical finance literature relies heavily on linear regression for understand-
ing investor behavior (see Grinblatt and Keloharju 2001, Kaniel et al. 2012) However,
decision making of individual investors can be very complex in non-linear environments.
As Hsieh (1991) states, the stock market definitely represents a non-linear phenomenon.
Data-driven models, which neural networks are, could most likely provide a more general
framework for financial time series modelling than their linear parametric predecessor.
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3 NEURAL NETWORKS

Neural networks have emerged as a practical supervised learning technology, having
been successfully applied in many fields, with a majority of these applications being con-
cerned with pattern recognition. Historically, studies in biological networks have inspired
many concepts of neural computing. However, the point of view of statistical pattern
recognition offers a more direct route to the concepts. (Bishop 1995)

The core idea is to model the output with a non-linear combination of features derived
from the normalized inputs. In neural networks, a large number of individual units, neu-
rons, are connected with different weights to others and by linear combinations process
the data. The weights are adjusted in the training phase according to the error of the
output, allowing the system to learn. (Hastie et al. 2017)

3.1 Multi-layer perceptron

Maybe the most common type of neural network, the multi-layer perceptron (MLP), is a
feed-forward network, which consists of consecutive layers of neurons with no feedback
loops between neurons. Starting from the input layer, each neuron gets its inputs from
the neurons in the previous layer and outputs an activation for the neurons in the next
layer. Finally, the last layer produces the outputs of the network, which are interpreted
as probabilities. Layers between the input and the output layer are called hidden layers.
(Bishop 1995) The number of neurons in the input layer depends on the form of the
input data, whereas the output layer size should match the number of output classes.
Choosing the correct number of hidden layers is guided by background knowledge and
trials. (Hastie et al. 2017) A simple MLP with a single hidden layer is shown in figure 3.1.

The activation of the ith hidden neuron can be obtained by applying a non-linear activation
function to the sum of the weighted inputs it receives from the neurons of the previous
layer. Using a non-linear activation function allows for the network to handle non-linear
patterns. The linear combination including the bias term wi0 is

si =

J∑︂
j=1

wjixj + wi0, (3.1)

where J denotes the amount of inputs, xj the jth input, wij the weight for the input j of
neuron i and wi0 the bias term for neuron i. By introducing an extra input variable x0 = 1,
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Figure 3.1. A picture of a simple MLP network structure, with 3 inputs, a hidden layer
with 4 neurons and 2 outputs. Neurons with activations are represented by the S-shaped
curve. Adapted from Graves 2012.

equation 3.1 can be rewritten as

si =

J∑︂
j=0

wijxj . (3.2)

The activation of neuron i can be received with

ai = σi(si), (3.3)

where σi() is the activation function of neuron i. (Bishop 1995) The activation function is
often chosen to be the non-linear differentiable logistic sigmoid function

σ(v) =
1

1− e−v
, (3.4)

which squashes the input value v to a finite range (0,1) (Hastie et al. 2017). The neurons
on the output layer work in the exact same way as the hidden neurons, though a different
activation may be used (Mäkinen et al. 2019). A neuron is presented in figure 3.2.

The calculation of the activation vector of a layer l when l > 0 written in vector form is

a(l) = σl(W
(l)a(l−1) + b(l)), (3.5)

where a is a column vector, which consists of activations aj from the previous layer, W is
a matrix consisting of row vectors wi, each holding a weights wi,j for input al−1

j of neuron
i and l indexes the layer. The activation of the first layer (l = 0) is the input values of the
network.

As mentioned before, the training of the networks consists of adjusting the inner weights
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Figure 3.2. Picture of a neuron with n inputs and a bias. The activation of this particular
neuron is outputted and received as input for subsequent neurons. Should the neuron
be one of the output layer, the output is interpreted as a probability of the original input
belonging to some class. Adapted from Bishop 1995.

in W according to the output’s error. This is done in two phases, forward pass and
backward pass (Bishop 1995).

In the forward pass, weights are stationary, and a prediction is calculated using 3.3. The
networks prediction is compared to the known true class and its error is calculated with
respect to a loss function. For classification, cross-entropy is often used. In multi-class
classification, separate losses for each class of an observation is summed together to
receive the loss

L(W ) = −
K∑︂
k=1

yo,k log ŷo,k, (3.6)

where W refers to weights and biases of the model, K is the number of different classes,
yo,k indicates whether observation o belongs to class k out of all possible classes (the
ground truth) and ŷo,k is the models predicted probability of observation o belonging to
class k. (Hastie et al. 2017)

In backward pass, the goal is to minimize the selected loss function. Algorithms which do
this are called back-propagation algorithms. A common approach to minimizing the cross
entropy is done by gradient decent. Due to the structure of the network and the activation
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functions being differentiable, the gradient can be easily derived and new wights obtained

W ′ = W − λ
∂L
∂W

, (3.7)

where λ denotes the learning rate. (Hastie et al. 2017) Another famous optimization
algorithm, which is used in this study, is ADAM (see Kingma and Ba 2014).

3.2 Recurrent neural networks and long short-term memory

Recurrent neural networks (RNNs) are generalizations of MLPs, in which neurons are
connected within or between any layers forming internal feedback loops. These internal
loops bring about recursive dynamics and allow delayed activation dependencies across
neurons inside the network. (Graves 2012) Typically, in RNNs the inputs of a neuron
consist of activations from previous layers, as well as a delayed input from the neuron
itself. Furthermore, the sum of these weighted inputs is squashed with an activation
function producing the activation of the neuron. RNNs, in which activations from the past
affect future activations, encompass implicit memory. (Marhon et al. 2013) RNNs, due
to their memory properties are appropriate to use for time-series data (Tsantekidis et al.
2017b).

Common learning algorithms used in training of RNNs, back-propagation through time
and real-time recurrent learning, suffer from the error signal, namely the gradient, either
blowing up or vanishing (Hochreiter & Schmidhuber 1997). The vanishing gradient makes
learning distant connections virtually impossible for RNNs (Tsantekidis et al. 2017b). An
improved version of RNNs is long short-term memory (LSTM), originally proposed by
Hochreiter and Schmidhuber (1997), and further improved and popularized by other re-
searchers (see e.g. Gers et al. 2000, Gers and Schmidhuber 2000). LSTM battle the
vanishing or exploding gradient by exploiting both long-term memory, with the weights
being slowly adjusted in training, and short-term memory, represented by the recurrent
self connections. (Hochreiter & Schmidhuber 1997).

By introducing new units called Constant Error Carousel (CEC) neurons, which have a
single fixed recurrent connection (weight 1.0), constant error flow through a unit during
training can be achieved. Furthermore, a multiplicative sigmoid layer called "input gate"
is introduced to safeguard the information stored in a CEC neuron, the cell state, from
irrelevant inputs. Another multiplicative sigmoid layer, the "output gate", is introduced to
ensure no irrelevant information in the cell state could affect other neurons receiving their
inputs from it. The resulting, a more complicated unit is called a memory cell. Moreover,
memory cells being controlled by the same input and output gate form a memory cell
block. (Hochreiter & Schmidhuber 1997)

Gers et al. (2000) further introduced an additional multiplicative sigmoid layer, the "forget
gate". The forger gate decides when the information within a CEC neuron should be
forgotten by replacing the constant weight from the recurrent connection in a CEC neuron
(Gers et al. 2000).
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The training of an LSTM consists of steps including a forwards pass and a backward pass.
In the former, all neurons are updated, while in the latter, error signals for all weights are
computed. (Gers et al. 2000)

In the forward pass, in order to decide on what information should be forgotten in the cell
state, the activation of the forget gate f t at time t is calculated as using information from
the previous activation ht−1, the current input xt and a bias bf

f t = σ(W xfxt +W hfht−1 + bf ). (3.8)

Next, the activation of the input gate

it = σ(W xixt +W hiht−1 + bi) (3.9)

is calculated using the same information as in the previous step. A tanh function creates
a squashed vector representation of the candidate values for the hidden state denoted
as c′t,

c′t = tanh(W xcxt +W hcht−1 + bc), (3.10)

and is multiplied by the activation of the input gate to decide what new information should
be added to the cell state, while the previous cell state ct−1 is multiplied by the forget gate
for let some information be forgotten. This creates the protected cell state denoted as ct

as explained, calculated by
ct = f tct−1 + itc

′
t. (3.11)

To decide what information from the cell state should be outputted from this memory
block, the activation of the output layer ot is calculated by

ot = σ(W occt +W hoht−1 + bo). (3.12)

Finally, the outputted activation ht is received by multiplying the protected state by the
output gates activation

at = otσ(ct). (3.13)

In equations 3.6 to 3.11, the activation function σ is as presented in equation 3.4. (Gers,
Schmidhuber & Cummins 2000; Hochreiter & Schmidhuber 1997; Tsantekidis et al.
2017b)

To further clarify the process, note that the activation of each gate is a vector of values
between 0 and 1, indicating how much of the vector it multiplies element wise should be
preserved. An LSTM memory block is shown in figure 3.3.

The weights in the LSTM are learned by optimising the cross entropy defined in equation
3.6, with W referring to the LSTMs wights and biases, i.e. W xf , W hf , W xi, W hi, W xc,
W hc, W oc, W hc, bf , bi, bc and bo. The loss is summed over each training batch and
minimized. (Tsantekidis et al. 2017b)
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Figure 3.3. LSTM block with a single cell. The model includes three activation gates
with the activation function f. Regular input and output gates have activations g and h.
Element-wise multiplications are portrayed as black cells. The connections between the
cell and the gates are unweighted for solid lines (fixed weight of 1.0), and weighted for
dashed lines. Adapted from Graves 2012.

With LSTMs, a common optimising method is a variant of back-propagation called back-
propagation through time. It is capable of accounting for the information flow of the input
time series. (Graves 2012)

3.3 Convolutional neural networks

Convolutional neural networks (CNNs) are a class of neural networks, that mimic the
way the mammal brain processes visual data. They are regularised versions of the MLP.
Specific neurons can extract specific features from the input data, such as edges and
corners, with emphasis on the feature itself being present in relation to other features,
not their exact position. Small distortions and nonessential parts or background are left



12

Figure 3.4. The classification process of a single image of dimension 64×64. First, 16
differently weighted convolution windows of 8×8 neurons are applied, followed by a 2×2
max-pooling. The max pooling takes each the maximum of each 2×2 window, resulting
in smaller feature maps. The process is repeated with another convolution-pooling pair.
Finally, the last feature map is connected to two fully connected neuron layers, with the
last having 10 neurons representing 10 possible classes.

ignored. Adjacent data points are convolved in order to find certain relations. (LeCun &
Bengio 1995)

In image recognition, normalized, resized and centered images are fed to the CNN input
layer. Activations in the following hidden layers are calculated by multiplying adjacent
activations from previous layers, all with specific weights assigned to them. Convolutional
layers are followed by pooling layers to perform sub-sampling or averaging. This allows
for the resolution to be lowered, while still keeping information of found features. (LeCun
& Bengio 1995) After the last convolutional and pooling layer pair, fully connected layers
are often used to combine the extracted features into a classification (Tsantekidis et al.
2017a). This process is described visually in figure 3.4, which shows an example CNN
structure of an image recognition task.

Although CNNs were originally proposed for image recognition, in which they excel, they
are capable of capturing patterns in time-series, both in feature and time-space. There-
fore, they have been found useful in other domains where the relation of observation
matters, for example in speech recognition or time-series prediction. (LeCun & Bengio
1995) Time series analysis using CNNs works similarly to with images, although the in-
puts dimensionalities are different. A common approach is to format the data in an n× k

matrix, where n is the number of time steps and k is the number of features on each
time step. The convolution is performed with m convolution filter of size (t, k), spanning
one step at a time though the entire feature depth n, capturing the k features over t time
steps. The result of such a convolution layer is a n − t + 1 × m matrix, to which further
convolutions or poolings can be applied. Connecting the extracted features to a fully con-
nected layer allows for prediction based on the features extracted. (Kim 2014) Figure 3.5
shows an example of feature-dimensional convolution.

In a similar manner to the MLP and LSTM, CNN parameters are learned by minimizing
the loss function, for example the categorical cross entropy loss defined in equation 3.6,
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Figure 3.5. m filters of size (t, k) on an n × k matrix. The gray area is the first filter of
m filters. After the convolution, the dimensionalities shrink. Pooling is a max pooling of
2, taking the maximum value of each row on the columns. The resulting matrix can be
further connected. Adapted from Kim 2014.

where W is used to refer to the weights and biases in the CNN. Also with CNN, the most
common minimizing method is gradient decent presented in equation 3.7. Again, ADAM
is used in this study (see Kingma and Ba 2014). (Tsantekidis et al. 2017a)

3.4 Regularisation

The loss function defined on the training set allows for the optimised performance only on
the training set. The real goal, however, is to optimise performance on previously unseen
test data. Over fitting occurs, when the model learns the training data too accurately.
The ability of a model to generalise well on unseen data is referred to as generalisation
(Graves 2012). Regularisation techniques can be applied to improve generalisation.

A common regularisation technique, dropout, proposed by Hinton et al. (2012), refers to
randomly dropping out a proportion of neurons in a neural network, preventing complex
co-adaptations on training data. During the forward pass of each training sample, neurons
have a predefined probability of its activations being "dropped out" from the information
flow. Hinton et al. (2012) proposed the dropout probability to be 0.5, resulting in only
half of the neurons being present at each forward pass. Hence, hidden units can not rely
on presence of other hidden units, and under the circumstances, the network can not
depend on a single passed value, and will be more robust (Mäkinen et al. 2019).

Another popular regularization technique is to penalise the model for large weights. A
penalty term depending on the weight matrix W is added to the loss function to me
minimised, encouraging the use of smaller coefficient. (Hastie et al. 2017)

Using a separate validation data set to assess whether the model is over fitting, is also a
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common approach. Once the performance on the validation data stops improving, while
the performance on training data keeps getting better, it can be deduced, that over fitting
is occurring. (Graves 2012)

3.5 Attention layer

The method used to analyse the importance of different inputs is attention. Attention has
been recently used in generation (Graves 2012), natural language processing (Bahdanau
et al. 2016; Zhou et al. 2016) and stock price jump detection (Mäkinen et al. 2019).
By giving weights, i.e. focusing on different parts of the input sequence, the attention
mechanism generates an output. Hence, it enables observations at specific locations to
have a greater impact in determining the output. (Mäkinen et al. 2019)

Here, the attention layer originally proposed for sentence relation classification by Zhou et
al. (2016) is utilized in the way Mäkinen et al. (2019) used it on LOB data. In the attention
layer, H denotes the layer’s input matrix which consists of the recurrent layer’s output
vectors h1,h2, . . . ,hL, where L is the input length?. The output vector h∗ is calculated
as the weighted sum of several output vectors:

M = tanh(H) (3.14)

α = softmax(wTM) (3.15)

r = HαT, (3.16)

where H ∈ Rdw×L, where dw denotes the dimension of the observation vectors, w is a
parameter vector, which is trained and wT is its transpose and L is the sequence length.
Finally, the output of the attention layer is

h∗ = tanh(r). (3.17)

(Zhou et al. 2016) The softmax in equation 3.15 is a function that squashes the inputs to
a range [1, 0]:

softmax(si) =
esi∑︁
j e

sj
, (3.18)

where i denotes an element and j sums all the elements in the vector. The activation is
calculated element-wise. (Bishop 1995)

Attention is a mechanism allowing for the neural network model to emphasise features
most relevant for a given sample. Inputs with importance will have a high coefficient in
the attention matrix H. (Zhou et al. 2016) In this study, an attention layer is used to
interpret the importance of different features of inputs. The goal is to get insight of the
most relevant inputs which affect the behavior of active household investors.
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4 DATA

The data used in this study is provided by EuroClear Finland. The data consists of tables
with detailed information on transactions executed in Nasdaq Helsinki stock exchange
between years 1996 and 2016. Each transaction, whether done by, for example, a corpo-
ration, a public administration organization, a mutual fund or a household, is present with
information on the asset, transaction type, price, volume and trading date among others.

In addition to the data holding information on the entities partaking in the transaction,
another data set is used, containing information on each trade executed in the Helsinki
stock exchange. The instrument in question, as well as the price, volume currency and
time, presented to the nearest second, are presented. This allows for the inspection of
intra-day changes in the stocks of interest.

4.1 Selected data

To ensure that there are enough data whilst restricting the computational complexity of
this study, the focus will be narrowed to the stock most actively traded by household
investors in Nasdaq Helsinki between 2006 and 2010, that being Nokia Oyj stock. To
further narrow down, only the 100 most active household investors were selected for
inspection in this study.

Furthermore, the data available sets some restrictions on the extent of this study. De-
tailed intra-day stock data is available only from the beginning of the year 2006, whereas
detailed investor data ceases being available in November 2009. Hence, the time frame
chosen is a period from February 2006 to November 2009. The actual prepared data is
914 trading days, due to various inputs needing to be calculated some days prior to the
actual date they are used. Further, the selected data is divided into training and testing
data sets.

Training data is fed to the neural networks in the training phase, and by adjusting the
weights through the optimization algorithm, the networks is able to learn. After training,
the testing set, which until now has been kept separate from the model, is used for as-
sessment of the predictive capabilities of the model developed. (Graves 2012; Hastie
et al. 2017)

Altogether 893 days are selected for training. To better resemble the way these models
can be utilized, they will be evaluated using walk forward validation. First the models are
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trained for over two and a half trading years or 662 days. After this, they are tested with
the next 21 days or a month of trading days. Next, the models are fit with these testing
data, and the resulting model again evaluated with the next 21 days. This process will be
repeated 12 times. In total, there is 252 days or a full trading year of testing data. Table
4.1 shows all the 12 different training and testing periods.

Data set Training period Testing period

1. 0 - 661 662 - 682

2. 0 - 682 683 - 703

3. 0 - 703 704 - 724

4. 0 - 724 725 - 745

5. 0 - 745 746 - 766

6. 0 - 766 767 - 787

7. 0 - 787 788 - 808

8. 0 - 808 809 - 829

9. 0 - 829 830 - 850

10. 0 - 850 851 - 871

11. 0 - 871 872 - 892

12. 0 - 892 893 - 913

Table 4.1. Testing data division in to 12 sets of length 21.

This validation is similar to to the way such models could be used. Over time, more
information on the investors will accumulate, and it can be used to better train the models.
This split it chosen to utilize all the available data. Less emphasis is given to the most
recent data, in order to the models no to overfit on it.

4.2 Investor activity (output data)

The ground truth vector for the neural network models used in this study for day j is
denoted as yj ∈ RA, where A is the amount of active traders being considered. Hence,
the ground truth matrix is Y ∈ NA×T ′

, where T ′ is the amount of trading days in the
period. Consequently, each element yi,j , 1 ≤ i ≤ A, and 1 ≤ j ≤ T ′ holds a value of 1,
0 or -1, indicating, whether the ith investor on day j has net-bought, kept their position
or net-sold, respectively. Later in this study, class 0 refers to a sample belonging to the
stationary class, class 1 to net-selling and class 2 to net-buying class.

All together in the selected 100 active household investors over 914 days, there are 91400
data points of output data. Of them, 90% represent investors holding on to their position,
i.e. class 0, resulting in a high imbalance between the stationary class and the net-buy
and net-sell ones, which both account for roughly 5%. Class imbalance and sparsity in
classification is a common problem in machine learning (Zou et al. 2016). The problem
will be tackled with setting a class weights to the minority classes, giving relatively more
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emphasis on samples belonging to them (Chollet et al. 2015).

4.3 Market and investors state (input data)

Various inputs capturing the state of the market and the past activities of the traders are
fed to the models as inputs. The inputs are enumerated and explained below. The stock
specific, for example the intra-day volatility, is fed to the model as a vector allowing for the
model to receive the intra-day volatility for multiple days prior. All inputs used in this study
are:

1. Log-return vector

2. Realized intra-day volatility vector within 5-minute intervals

3. Total volume vector

4. Euro-volume of the previous transaction day

5. Time passed since previous transaction day

6. The action of the investor on the previous day

7. The proportion of the 100 investors being active on the previous day

The log-return of the stock on day j calculated over days j, . . . , j − k + 1 is

Rj,k = ln
Sj

Sj−k
, (4.1)

where Sj is the closing price of the stock on day j. k denotes from how many days the
value is calculated.

Grinblatt and Keloharju (2001) suggests that returns over intermediate or long-term hori-
zons have no evidence of affecting the propensity to trade. Thus, log-returns for the
underlying stock are calculated over the past 1, 5 and 20 days.

Realized intra-day volatility for day j calculated over days j, . . . , j − k + 1 is

RVj,k =
1

k

k−1∑︂
l=0

1

Nj−l − 1

Nj−l∑︂
h=2

(︃
ln

Sj−l(h)

Sj−l(h− 1)

)︃2

, (4.2)

where Sj(h) is the hth observation on the stock price on day j and Nj is the number of
price observations (here sampled every 5 minutes) on day j.

Total volume vector for day j calculated over days j, . . . , j − k + 1 is

Vj,k =

k−1∑︂
l=0

Vj−l, (4.3)

where Vj is the overall trading volume of the stock on day j. Again, calculated for k =

1, 5, 20.
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In addition to the previous inputs concerning the state of the market, inputs specific to
investors and their behaviour are also included. Euro-volume for the previous day the
investor changed their position is calculated by multiplying the volume with which they
bought by the price of the purchase. Then, it is netted for each day. Another input will
keep track of the number of trading days this last position changing day occurred. As
long as the investor has not changed their position since the beginning of 2006, both the
above-mentioned inputs will stay 0 for that particular investor. Finally, inputs representing
the action of a particular investor and the 100 investors as a group on the previous day,
will be used.

Proper normalization of the inputs of a neural network can highly affect the quality of the
predictions, by mitigating the uneven effect of inputs with different size ranges (Hastie et
al. 2017). Log-return and intra-day volatility are normalized by nature since they measure
relative change. The number of active investors and the time since last trade are nor-
malized by dividing the number of investors in total and the length of the training period,
respectfully. Furthermore, the total volume input is normalized using the z-score in order
to eliminate irrelevances and noise, possibly originating from different starting volumes:

xnorm. =
x− x

σ2
x

, (4.4)

where x is the vector to be normalized, x is the mean and σ2
x the variance (Hastie et al.

2017). The mean and variance are calculated from the past 20 days.

Finally, to mitigate the effect of differences in the order of magnitude, euro-volume of an
investors last transaction is divided by the maximum euro-volume in the training period of
each investor. Due to this, behaviour of investors trading using varying quantities can be
compared and analyzed together.
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5 RESULTS

The neural networks are implemented using various Python libraries. The main library
used, Keras, is an open-source neural network API, allowing for the user-friendly and flex-
ible implementation and testing of neural networks. It, however, only provide the building
interface for neural networks, needing to be used on a back-end with the actual algorithm
implementations. (Chollet et al. 2015) Consequently, Tensorflow, was used as the back-
end. Tensorflow is an open-source platform, with an extensive set of tools allowing for the
implementation of state-of-the-art machine learning applications (Abadi et al. 2015).

Keras provides a Model class, allowing to instantiate neural networks by providing just the
input and the output layers. Connections between consecutive layers can be specified in
a simple manner and all layers required to calculate the activations on the output layer
will be included in the model. (Chollet et al. 2015)

In this study, different neural network topologies will be tested to find out which works
best for the proposed problem. Various widths, meaning number of neurons per layer, and
depths, referring to the number of hidden layers, will be experimented on for each network
type (MLP, LSTM, CNN), and the best topology of each will be selected for attention layer
examination. All the models will be trained on each of the 100 investors’ data on the
training periods, resulting in investor agnostic models being capable of predicting the
actions of investors previously unseen to the models. The performance will be tested
over the 252 day long testing period in 12 sets of length 21. Once the best topology of
each network type is found, their attention layer will be qualitatively analyzed.

5.1 Model evaluation metrics

The main metric used is the mean F1 score. The F1 score for class k is the harmonic
mean of the precision and recall:

F1k =
2

pk−1 + r−1
k

, (5.1)

where pk is the precision, the proportion of samples predicted as k actually belonging to
k, and r is the recall, the proportion of actual samples belonging to k predicted to belong
to k. Precision and recall are calculated by

pk =
tpk

tpk + fpk
(5.2)
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and
rk =

tpk
tpk + fnk

, (5.3)

where tpk is true positives, the number of samples of class k correctly classified as be-
longing to class k, fpk is false positives, the number of samples belonging to a different
class falsely classified as belonging to class k and fnk is false negatives, the number of
sample belonging to class k falsely classified to belong to another class. (Zou et al. 2016)

In the multi-class problem at hand, the chosen metric will be macro F1, also called the per
label F1 or mean F1. It is calculated as the arithmetic mean of each classes individual
F1. Mean precision and mean recall are calculated similarly from the per-class scores
and used to evaluate the models. Since F1 score is a nonlinear, asymmetric measure,
it is commonly used to asses models in cases, where the predicted classes are highly
imbalanced. (Zou et al. 2016) A model with a high F1 score is able to correctly classify
samples to their respective classes, highlighting the importance of performing well on
classes with a small number of samples (Mäkinen et al. 2019).

However, a flaw in the F1 score lies in the fact that it treats the precision and recall
as equal (Hand & Christen 2018). Moreover, Hand and Christen (2018) suggests, that
precision and recall’s relative importance should depend on the problem, for different
errors have different effects and implications. However, in the investor behavior problem
at hand, there is no clear basis as of how to emphasise different error types.

Another metric used to asses the models is the Cohen’s Kappa:

κ =
po − pc
1− pc

, (5.4)

where po is the observed agreement ratio and pc is expected agreement by chance, and
both can be calculated from the confusion matrix (Cohen 1960).

A confusion matrix of a three class problem is presented below.

True class

Class 0 Class 1 Class 2 Total

Class 0 a b c a+ b+ c

Predicted class Class 1 d e f d+ e+ f

Class 2 g h i g + h+ i

Total a+ d+ g b+ e+ h c+ f + i N

From here,
po =

a+ e+ i

N
, (5.5)

and
pc =

a+ d+ g

N

a+ b+ c

N
+

b+ e+ h

N

d+ e+ f

N
+

c+ f + i

N

g + h+ i

N
. (5.6)

Cohen’s kappa was originally used to evaluate the agreement between two independent
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evaluators, but was later adopted to measure classification performance. As such, it
measures the agreement degree between the predicted classes and the true classes.
(Pedregosa et al. 2011) It is often seen as a more robust performance measure, since
it takes into account the possibility of agreement by chance (Mäkinen et al. 2019). A
Cohen’s Kappa of 1 indicates, that the level of agreement is not at all affected by chance,
whereas a value of 0 suggests the agreement is purely caused by chance. A value less
than 0 would indicate a performance worse that randomly guessing.

In addition, to have a reference for capabilities of the implemented networks, their results
are compared to two benchmarks, a stationary strategy and a buy-sell prediction strategy.
In the former, each prediction is just one of the major class 0, whereas in the latter
benchmark, a net-buy day is predicted subsequent to a net-sell day, and vice versa. Here,
no position change is predicted for days preceded by a stationary day. This benchmark
is later referred to as "buy-sell".

5.2 Network implementation and experiment results

To tackle the problem of class imbalance, class weights of 6.3 and 5.3 for both the minority
classes 1 and 2 are used, resulting in the models giving more emphasis for instances of
classes 1 and 2, treating an instance of class 1 or 2 as if receiving 6.3 and 5.3 of those
samples (Chollet et al. 2015). The optimal weight was found by exploring on weights.
The weights are inversely proportional to the number of samples.

Furthermore, dropout layers are added to all the models. The optimal location and
dropout rate is explored. For the MLPs, the optimal rate was found to be 0.4, located
after each hidden layer. For LSTMs, a dropout rate of 0.25 is introduced after the LSTM
layer, and for the CNNs, a dropout of 0.25 after the two consecutive layers is applied.

The attention layer described in chapter 3 is applied straight to the input of all the net-
works. Experiments were conducted with and without attention layer, but it was noticed
that the results did not differ. With only 13 features, the performance betterment received
by the attention layers is not expect to be high. With a large number of input features,
attention layer can better focus down to particular features and improve the prediction
results (Mäkinen et al. 2019).

For the MLP, the input consists of the 13 features introduced in chapter 4 as a vector of
length 13, while the target is a one-hot encoded representation of classes 0, 1 and 2.
Each MLP model uses a batch size of 16. The first, longer training set is shown for 50
epochs to allow for learning of longer trends. When introducing the new 21 day periods,
training is done for only 10 epochs, in order to incorporate the new information but not to
overfit on this new data. In both training settings, the learning rate is set to 0.001.

To find the best MLP topology, various networks are evaluated, with 4 different width and
depth multipliers, ranging from 1 to 4. The number of neurons on a layer is received by
multiplying the base number of neurons by the width multiplier of the network, and the
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number of hidden layers is represented by the network depth multiplier. A base number of
16 neurons will be arbitrarily chosen. Consequently, 16 topologies denoted by the width
and depth are received. For each of the 16 topologies, the experiment is ran 3 times and
the mean of all the used metrics are presented in table 5.1.

Classifier Mean Precision Mean Recall Mean F1 Cohen’s κ

1-1 MLP 0.465 0.475 0.458 0.267

2-1 MLP 0.473 0.488 0.466 0.271

3-1 MLP 0.467 0.492 0.464 0.274

4-1 MLP 0.463 0.497 0.463 0.275

1-2 MLP 0.478 0.478 0.462 0.278

2-2 MLP 0.468 0.487 0.467 0.279

3-2 MLP 0.466 0.494 0.464 0.275

4-2 MLP 0.464 0.498 0.464 0.273

1-3 MLP 0.426 0.451 0.430 0.254

2-3 MLP 0.458 0.487 0.461 0.278

3-3 MLP 0.464 0.486 0.462 0.275

4-3 MLP 0.461 0.495 0.463 0.272

1-4 MLP 0.391 0.422 0.401 0.215

2-4 MLP 0.401 0.454 0.411 0.226

3-4 MLP 0.434 0.478 0.441 0.252

4-4 MLP 0.449 0.496 0.451 0.260

Table 5.1. Metrics for 16 different MLP topologies. In the naming of the classifier, the
first number represents the width multiplier and the second the depth multiplier, i.e., the
number of hidden layers. The best value for each metric is underlined.

It can be seen, that the metrics used to evaluate the models do no differ much. Anyhow,
the 2-2 MLP performs the best with respect to the F1-score. This best performing topol-
ogy considering F1 has 2 hidden layers, both with 32 neurons. It also received the best
Cohen’s κ -score by a slight margin.

Next, different LSTM topologies are experimented on. From initial testing, it was seen,
that the performance of LSTM with more than 2 hidden layers quickly deteriorates. Thus,
networks depths of only 1 and 2 are presented, with networks widths of 1, 2, 3, 4 and
5. Thus, a total of 10 different topologies are tested. The window tells how many time
steps are visible for the network, here chosen to be 20. The inputs consist of sequences
of the window length, with all 13 features presented on all time steps, resulting in inputs
of size 20×13. Again, the models are trained with a batch size of 16 and over 50 epochs.
Testing is done in the same walk forward manner as with the MLP. Mean results of the
chosen metrics over 3 training and testing instances are presented in table 5.2.

It seems as if the LSTM networks are more capable of predicting these data with these
settings. Various widths and depths receive similar scores, and interestingly, the best
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Classifier Mean Precision Mean Recall Mean F1 Cohen’s κ

1-1 LSTM 0.468 0.531 0.469 0.277

2-1 LSTM 0.466 0.540 0.466 0.270

3-1 LSTM 0.455 0.542 0.460 0.259

4-1 LSTM 0.462 0.541 0.467 0.273

5-1 LSTM 0.453 0.542 0.460 0.259

1-2 LSTM 0.461 0.509 0.461 0.275

2-2 LSTM 0.456 0.516 0.461 0.273

3-2 LSTM 0.458 0.531 0.462 0.290

4-2 LSTM 0.452 0.531 0.461 0.273

5-2 LSTM 0.456 0.523 0.468 0.288

Table 5.2. Metrics for 10 different LSTM topologies. In the naming of the classifier, the
first number represents the width multiplier and the second the depth multiplier. Again,
best value for each metric is underlined.

scoring topologies with respect to the Cohen’s κ and F1-score were completely different
topologies, the former having 2 hidden LSTM layers with 48 neurons and the latter 1 layer
with 16 neurons. Nonetheless, 1 hidden 16 neuron layer LSTM received the best mean
macro F1-score.

Finally, different CNN models are trained, with the input being the same 13 features, now
presented over the previous 20 days, resulting in a 20×13 matrix. Again, targets are one-
hot encoded representations of the 3 classes. A batch size of 16 is used, and training
done for 50 epochs with a learning rate of 0.001. Testing is done in the same way as with
the MLP and LSTM.

In the case of CNNs, widths of 1 to 4 and depths 1 and 2 are experimented on. Here,
the widths multiplies the base number of filters used in the convolution layers. A base
of 16 filters is chosen. Moreover, a base layer is chosen to consist of 2 1D convolutions
followed by pooling. Consequently, with depth 2 there are 2 layers of 2 convolutions and
a pooling. The convolution windows are chosen to be of length 3. As explained in chapter
3, when using one dimensional convolutions, height of the input reduces due to the 1D
convolution windows sliding and max-poolings. Thus, in the case of CNN, only 2 network
depths, number of hidden layers, are tested. Altogether, 8 different CNN topologies are
trained and evaluated. The results are presented in table 5.3.

Worst of the 3 networks types tested here was the CNN, receiving high macro recall
scores but trailing with respect to the precision. Due to this, the F1 score did not rise
as high as with the 2 other networks types, neither did the Cohen’s κ. Still, the best F1,
Cohen’s κ and macro Recall was received with a network with 16 filters on each layer
and a total of 4 layers, with 2 layers followed by max-pooling of 2, and further followed by
2 layers and a global average-pooling layer.
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Classifier Mean Precision Mean Recall Mean F1 Cohen’s κ

1-1 CNN 0.437 0.472 0.432 0.231

2-1 CNN 0.414 0.475 0.422 0.215

3-1 CNN 0.426 0.455 0.418 0.208

4-1 CNN 0.430 0.464 0.424 0.203

1-2 CNN 0.440 0.511 0.450 0.252

2-2 CNN 0.441 0.503 0.446 0.228

3-2 CNN 0.429 0.486 0.440 0.228

4-2 CNN 0.419 0.454 0.424 0.200

Table 5.3. Metrics for 9 different CNN topologies. The first number in the name repre-
sents the width multiplier, i.e. the multiplier of the number of filters per convolution layer.
The second number is the depth multiplier, the number of time the base layer is present.
Again, the best scores are underlined

Best of each model type rated by F1-score is presented together and compared to the
thresholds. The mean precision, mean recall, mean F1 and Cohen’s κ are shown in table
5.4

Classifier Mean Precision Mean Recall Mean F1 Cohen’s κ

Zeros 0.309 0.333 0.321 0.000

Buy-Sell 0.483 0.487 0.484 0.289

2-2 MLP 0.468 0.487 0.467 0.279

1-1 LSTM 0.468 0.531 0.469 0.277

1-2 CNN 0.440 0.511 0.450 0.252

Table 5.4. The best performing topology if each model type with respect to the F1 score
being compared with the two thresholds. The attention layers is later examined for the
MLP, LSTM and CNN presented here.

All tested networks types scored higher in all 4 evaluation metrics than the zeros bench-
mark, which constantly predicts stationarity. Compared to the "buy-sell" threshold, LSTM
and CNN were able to receive better macro recall, while the MLPs recall is exactly the
same. With respect to the other metrics, the models perform worse. However, the dif-
ferences are minor. It seems like all the models were able to pick up a similar pattern
from the used data. It might be, that there exists no other pattern to be discovered, but
confidently stating this would require more indepth research. It might just as well be the
case, that better prediction scores could be received with different models and settings.

5.3 Input importance

Attention is examined for the best of each of the model type being considered. The
attention layer is connected right after the input layer, in the same way done in Mäkinen et
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al. (2019). First, a tanh-activation is taken from the input, followed by a dense layers with
softmax activation, giving weight to each feature, further flattened to a single dimension.
In order to apply the attention to the full time frame, dense layer is repeated for each time
steps. Next, the dimensions are permuted to match the original inputs shape. Finally, the
original input is multiplied by the attention layers output, applying the weight of a feature
to that feature in all the time steps. By examining the weights in the attention layer, insight
can be drawn, to which input feature affects the result the most.

Though the attention layer proposed by Zhou et al. (2016) was originally presented to
weight different time steps, it also finds use in highlighting different features (Mäkinen
et al. 2019). As mentioned before, experiments were conducted without and with at
attention layer. When having a large number of inputs, the possibility to focus down on
particular input features can have significant performance improvements (Mäkinen et al.
2019). However, with a low number of input features, the performance improvement
received by the attention layers is not expect to be significant. The main goal in using it
is to gain insight of the relative importance of the inputs.

Turns out, with all 3 model types the highest absolute value was given to the first feature,
which is the previous activities of the investor. Furthermore, with all the models, relatively
high weight was given to the euro-volume of the last transaction. Interestingly, with the
MLP the total trading volume appeared to be important, with the past 5 day trading volume
received also a high weight.

The same was found with LSTM and CNN, with relatively high weight given for the trading
volume, but for them over 20 previous days. Differing from the other two model types, the
LSTM also weighted the log-return on all 3 time frames strongly, while the CNN and MLP
gave them the least weight.

According to this tentative and superficial input importance analysis, the previous actions,
the magnitude of the last action and the total trading volume of the stock are most impor-
tant. It should be noted, that the weights given to different features varied with different
training instances. However, the relation of the importance was most of the time as pre-
sented above. To gain a more exact understanding of the decision making of household
investors, more precise studies need to be carried out.
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6 CONCLUSIONS

This study aimed to answer, which network type, MLP, LSTM, or CNN can best predict
active household investors’ decisions: net-buy, stationary or net-sell. Out of the experi-
mented network topologies and experiment settings, the LSTM, with 16 neurons on the
single hidden layers produced the best prediction results with respect to F1-score, al-
though the difference in performance was marginal. All the tested models were able to
perform similar to the "buy-sell" -benchmark used in this study. The qualitative analysis
on the attention layers suggests, that previous action, the magnitude of it and the trading
volume of the stock are of most importance.

As mentioned in chapter 2, investors are heterogeneous. Due to this property, an investor
agnostic model could find it hard to learn a universal trading pattern for active household
investors. However, based on these experiments, one can not conclude, that such in-
vestor agnostic models are not capable of predicting future investor behavior, only that
the used settings didn’t allow for praiseworthy performances. For future research, models
more sophisticated can be applied to similar data.

Further studies could focus on the behavior of individual investors. Giving ML models
information on the investor and allowing for learning individual trading patterns or strate-
gies, could give more insight to the importance of various features and the predictive
abilities of different model types. Analyzing changes in their strategy, relation of active
and inactive periods and return on other assets traded could bring more insight. Also, so-
cial networks of similarities could further clarify the extent of investor decisions depending
on other particular investors. The possibility of nonstationarity of the trading strategies of
household investors could also be considered when analyzing using ML methods.

The similarity of the prediction results for all the models could also suggest, that the used
data does not have other structure for the models to learn, than the one learned by all of
them. To reliably state this, a more thorough study should be conducted. Using different
features, and data on different stocks or other assets, could give an exhaustive answer
the research questions of this study.
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