
Shayan Gharib

UNSUPERVISED DOMAIN ADAPTATION
FOR AUDIO CLASSIFICATION

Master of Science Thesis
Faculty of Information Technology and Communication Sciences (ITC)

Examiners: Prof. Tuomas Virtanen
Dr. Konstantinos Drossos

May 2020

i

ABSTRACT

Shayan Gharib: Unsupervised Domain Adaptation for Audio Classification
Master of Science Thesis
Tampere University
Audio-Visual Signal Processing
May 2020

Machine learning algorithms have achieved the state-of-the-art results by utilizing deep neural
networks (DNNs) across different tasks in recent years. However, the performance of DNNs
suffers from mismatched conditions between training and test datasets. This is a general machine
learning problem in all applications such as machine vision, natural language processing, and
audio processing. For instance, the usage of different recording devices and ambient noises can
be referred to as some of the causing factors for mismatched conditions between training and
test datasets in audio classification tasks. Due to mismatched conditions, a well-performed DNN
model in training phase encounters a decrease in performance when evaluated on unseen data.
To compensate the reduction of performance caused by this issue, domain adaptation methods
have been employed to adapt DNNs to conditions in test dataset.

The objective of this thesis is to study unsupervised domain adaptation using adversarial train-
ing for acoustic scene classification. We first pre-train a model using data from one set of con-
ditions. subsequently, we retrain the model using data with another set of conditions in order to
adapt the model such that the output of the model is condition-invariant representations of inputs.
More specifically, we place a discriminator against the model. The aim of the discriminator is
to distinguish between data coming from different conditions, while the goal of the model is to
confuse the discriminator such that it is not able to differentiate between data with different con-
ditions. The data that we use to optimize our models on, e.g. training data, have been recorded
using different recording devices than the ones utilized in the dataset used to evaluate the model,
e.g. test dataset. The training data is recorded using a high quality recording device, while the
audio recordings in the test set have been collected using two handheld consumer devices with
mediocre quality. This introduces a mismatched condition which negatively affects the perfor-
mance of optimized DNN. In this thesis, we simulate a scenario in which we do not have access
to the annotations of the dataset that we try to adapt our model to. Therefore, our method can be
used as an unsupervised domain adaptation technique. In addition, we present our results using
two different DNN architectures, namely Kaggle and DCASE models, to show that our method
is model agnostic, and works regardless of the used models. The results show a significant im-
provement for the adapted Kaggle and DCASE models compared to the non-adapted ones by an
approximate increase of 11% and 6% respectively in the performance for unseen test data while
maintaining the same performance on unseen samples from training data.

Keywords: domain adaptation, acoustic scene classification, unsupervised domain adaptation,
adversarial training, audio classification

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

PREFACE

The implementation of this thesis was undertaken in 2018 at the Audio Research Group
(ARG) of Tampere University (previously known as Tampere University of Technology
(TUT)).

First and foremost, I would like to express my sincere gratitude to Professor Tuomas Virta-
nen as my first supervisor in this thesis who believed in me, and gave me the opportunity
to work as a research assistant at ARG. I would like to thank him for giving me encour-
agement and freedom to explore my research aspirations, and for always finding time to
meet and dedicate effort during the course of this thesis despite his very busy schedule.

I would like to greatly appreciate Dr. Konstantinos Drossos as my second supervisor for
his kindness in welcoming and guiding me by holding regular meetings with me to discuss
the obstacles in the implementation of this thesis. I would like to thank him for his intuition
on directing the work to the right path, and for his advice and tireless supervision in this
endeavor.

I would like to thank Dr. Emre Cakir who helped me to quickly integrate into the group,
and to become familiar with each and every group member. I would like to extend my
thanks to all members of ARG for creating a positive and friendly working environment
during this journey.

Last but not least, I would like to give my most special thanks to my family. To my fa-
ther and my mother who have been my most influential teachers throughout my life and
wholeheartedly supported me from the first steps in my education with the very best of
their ability.

Tampere, 13th May 2020

Shayan Gharib

iii

CONTENTS

1 Introduction . 1

2 Background . 3

2.1 Acoustic Scene Classification . 3
2.1.1 Audio Signal Processing . 4
2.1.2 Machine Learning for Acoustic Scene Classification 7

2.2 Artificial Neural Networks . 8
2.2.1 Training Process of ANNs . 11
2.2.2 Deep Neural Networks . 18
2.2.3 Feedforward Neural Networks . 20
2.2.4 Convolutional Neural Networks . 20

2.3 Domain Discrepancy . 24
2.3.1 Dataset Shift . 25
2.3.2 Domain Adaptation Methods . 27

3 Method . 31

3.1 System Overview . 31
3.1.1 Pre-training Step . 31
3.1.2 Adversarial Adaptation Step . 32
3.1.3 Testing Step . 34

3.2 DNN Architectures . 34

4 Evaluation . 38

4.1 Dataset . 38

4.2 Experiments . 40

4.3 Results . 40

5 Conclusion . 43

References . 44

iv

LIST OF FIGURES

2.1 A schematic of acoustic scene classification system. A segment of audio
signal is used as an input to the system and an output is predicted as a
semantic label for the corresponding audio signal. The figure is adopted
from [12]. 3

2.2 The component of a typical acoustic scene classification system. The fig-
ure is adopted from [2]. 4

2.3 The illustration of 20 mel filters (i.e. filter bank) to convert linear frequencies
(Hz) to mel scale. The figure is plotted using [22]. 6

2.4 Time and time-frequency domain representations of a 3-second audio record-
ing of a horse walking. 7

2.5 The structure of one perceptron. 9
2.6 The topology of an ANN with one hidden layer. 10
2.7 Illustration of sigmoid (blue), TanH (green), and ReLU (red) activation func-

tions. It is clearly visible that the sigmoid and TanH saturate for large neg-
ative and positive values. However, ReLU is linearly increasing for positive
values in an unbounded fashion. 11

2.8 The block diagram of training process for ANNs. 12
2.9 The illustration for the backpropagation of error g with respect to parameter

w1
11. The bias terms are omitted for simplicity. 13

2.10 An exemplar of gradient descent algorithm depicting how the algorithm
utilizes the first derivative of the cost function to move towards the minimum
cost. 15

2.11 the left side image shows a complex model which perfectly separates two
classes of data in training set, while the right side model is much simpler in
terms of complexity and shows misclassification of few points in a training
set. However, the right side model may generalize better for unseen data.
The figure is adopted from [55]. 18

2.12 An illustration of dropout technique applied to a simple ANN shown in the
Figure 2.6. The marked perceptrons with "X" are the eliminated percep-
trons, and they are disconnected from the perceptrons in preceding and
succeeding layers. 19

2.13 The left table (grey color) shows an input feature map of size (5 × 5), and
the right table presents the values of a (3× 3) kernel. 22

2.14 Computing the output values of a discrete convolution between the input
and the kernel presented in Figure 2.13 . 22

v

2.15 An example of two popular variants of pooling operations, i.e. max and
average pooling, with input size of (4×4), kernel size of (2×2), and strides
of size 2 on both width and height axes. 24

2.16 A convolutional neural network followed by fully connected layers for image
classification task. 24

3.1 An overview of the proposed method. 31
3.2 The scheme used in the pre-training step. 32
3.3 The generic sceheme used in GANs. 33
3.4 The scheme used in the adversarial adaptation step. This is the main step

of our method where adapted model is adapted to data from the target
domain. 33

3.5 The scheme used in the test step. 34
3.6 The architecture of the DCASE model alongside with the used classifier

and discriminator when the DCASE model is employed in our work. The
model can be used as the source and adapted model dependent on the
step of the method. The dashed arrows are to only show that the output of
the model goes as input to the classifier and discriminator. 35

3.7 The architecture of Kaggle model alongside with the used classifier and
discriminator when the Kaggle model is employed in our work. The model
can be used as the source and adapted model dependent on the step of
the method. The dashed arrows are to only show that the output of the
model goes as the input to the classifier and discriminator. 36

4.1 The setup of training, validation, and test splits used in our work. The
numbers present the number of 10-second segments for each split and
recording device. 39

4.2 The results of evaluation for Kaggle and DCASE models on the test set
from the source domain. Grey color shows the source models in both
experiments, while the green color represents the adapted ones. 41

4.3 The results of evaluation for the Kaggle and DCASE models on the test
data from the target domain. Grey color shows the source models in both
experiments, while the green color represents the adapted ones. 41

4.4 Confusion matrices of the source (a) and the adapted (b) versions of the
Kaggle model for the target domain. The values are normalized according
to the amount of examples in each class. Brighter colors denote higher
values. The figure is adopted from [115]. 42

vi

LIST OF TABLES

2.1 Connection between the settings used in conventional machine learning
versus domain adaptation. The table is adopted from [69]. 25

4.1 There are 10 acoustic scenes in TUT urban acoustic scenes 2018 mo-
bile, development dataset. The variety of these acoustic scenes includes
indoor, outdoor, and traveling while inside vehicle which is called trans-
portation. 39

vii

LIST OF ALGORITHMS

1 The Adam algorithm. The algorithm is adopted from [1]. 17

viii

LIST OF SYMBOLS AND ABBREVIATIONS

AI Artificial intelligence

ANN Artificial neural network

ASC Acoustic scene classification

ASR Automatic speech recognition

CPU Central processing unit

CQT Constant-Q transform

DCASE Detection and classification of acoustic scenes and events

DCT Discrete cosine transform

DFT Discrete Fourier transform

DNN Deep neural network

GAN Generative adversarial training

GMM Gaussian mixture model

GPU Graphics processing unit

GRL Gradient reversal layer

HMM Hidden Markov model

Hz Hertz

MFCC Mel-frequency cepstrum

MLP Multilayer perceptron

ML Machine learning

ms Milliseconds

NMF Non-negative matrix factorization

RBF Radial basis function

ReLU Rectified linear unit

SED Sound event detection

SGD Stochastic gradient descent

STFT Short-time Fourier transform

SVM Support vector machine

TanH Hyperbolic tangent

TAU Tampere University

ix

TUNI Tampere Universities

URL Uniform Resource Locator

1

1 INTRODUCTION

Sounds carry information by which it is possible to recognize and perceive environments
and the events happening in them [2, 3]. Unique characteristics of each event and en-
vironment making them distinguishable for humans’ auditory system [2]. As a result, we
are easily able to recognize the sound events such as footsteps, bird singing, speech,
and music when we listen to our surrounding environment on a daily basis routine. On
top of that, we are capable of understanding and classifying the environment and back-
ground of a sound only by listening to an audio file, and without being present. Although
this task may seem trivial in the everyday life of humans, it has been a complex task
to mathematically formulate how the auditory system of humans works. Computational
acoustic scene analysis (CASA) has emerged in the audio community to find solutions
that can help machines to understand and recognize the source of acoustic scenes and
events [2].

One of the research fields that has been derived from CASA community is acoustic scene
classification (ASC). The goal of ASC is to train machines that are able to classify audio
recordings according to the environment – e.g. office, restaurant, street, etc – that they
have been recorded in [4]. As the number of wearable and handheld consumer devices is
extensively growing, it is of great significance to provide users of these devices with more
environment-related information in order to enable devices to operate more efficiently
and naturally in interactions with humans [5]. For example, a cellphone, as an handheld
consumer device, can automatically adjust its mode based on surrounding environments,
more specifically, it can automatically reject a call when its user is in a meeting, or provide
local information from the immediate environment [6]. The first set of methods used for
ASC were Gaussian mixture models (GMMs), hidden Markov models (HMMs), support
vector machine (SVM), and Non-negative matrix factorization (NMF) [7, 8, 9]. Thanks to
the recent advent of large-scaled dataset, the recent state-of-the-art results have been
achieved by the employment of deep neural networks (DNNs) [10, 11].

In spite of this flourishing results, DNN approaches do not work properly when it comes
to real-life applications [12]. There are different reasons that cause the current methods
deficient in validity of their performance. All causing factors normally affect the condi-
tions in which data have been collected [13]. In general, conventional machine learning
algorithms presume that the conditions in which training and test data have been col-
lected are similar, more formally, the marginal distribution of training and test data are
similar [14]. This rarely occurs in a more realistic scenario where the possibility of data

2

collection for the development and evaluation at the same time is very low. Therefore,
different conditions such as various recording devices and recorder positions reduce the
performance of learning algorithms in the evaluation phase [12]. This problem is referred
to as dataset shift in various literature [13]. Domain adaptation addresses the problem
of dataset shift in the context of machine learning [14]. Using domain adaptation meth-
ods, we try to compensate the reduction of performance in the evaluation phase and
adapt DNNs to the conditions in test data in order to perform as similar as possible to the
obtained results in the development phase.

The structure of this thesis is organized as follows. Chapter 2 describes the ASC task and
introduce common acoustic features that are used in this task. This chapter also review
the background theory of artificial neural networks used in this thesis. Lastly, it presents
the theory behind learning from different dataset and reviews recent domain adaptation
works in order to address this problem. Chapter 3 contains the actual methodology used
to implement the work in this thesis. In Chapter 4, we discuss our experimental setup
and evaluation results during the implementation of our method. Eventually, Chapter 5
contains our conclusions, comments regarding our observations of the methods, and pos-
sible research that can lead to improvements over the results acquired using the method
introduced in this thesis.

A part of the research and obtained results leading to the fulfilment of this thesis have
been published in the Workshop on Detection and Classification of Acoustic Scenes and
Events 2018 (DCASE 2018).

3

2 BACKGROUND

2.1 Acoustic Scene Classification

Information about our environment is transported through sound to our auditory system.
Sound contains information of sound events and sound scenes. A sound event is a
description that is used to identify and distinguish various auditory events originated from
physical objects within an environment such as the sound of a car passing by, a bird
singing, a car horn, etc [15]. On the other hand, sound scenes are descriptors of the
environment from which a sound is originated, e.g. park, street, home, etc. [2].

Computational analysis of sound events and scenes aims at employing computational
methods to learn a higher representation of sounds in order to address a task in different
applications. These tasks are categorized into classification and detection [2]. In audio,
detection refers to the process of locating the temporal position for active sound events.
However, classification refers to the process in which an input data (e.g. audio) is catego-
rized into one or multiple classes (i.e. single-label or multi-label classification). The focus
of this thesis is on the classification of acoustic scenes (Figure 2.1).

Acoustic Scene Classification System

Train

Park

Office

Street

In
pu

t
O

ut
pu

t

Figure 2.1. A schematic of acoustic scene classification system. A segment of audio
signal is used as an input to the system and an output is predicted as a semantic label
for the corresponding audio signal. The figure is adopted from [12].

An ASC system consists of 3 main steps: audio signal processing, learning, and recog-
nition [2]. Audio signal processing step is typically implemented through two phases.
First phase is the preprocessing of audio data in which audio segments are unified to
contain the same properties such as sampling rate. In addition, audio segments are
one-dimensional representation of sounds, and do not provide distinctive information for

4

Audio signal
processing

Recognition

Learning

Acoustic model

Reference
annotation

Input audio

Predicted
class

Acoustic
features

Figure 2.2. The component of a typical acoustic scene classification system. The figure
is adopted from [2].

classification purposes. Therefore, the feature extraction phase prepares the audio seg-
ments in order to be used as inputs for learning and recognition steps (discussed in
section 2.1.1). In learning step, we aim at developing an acoustic model for ASC. Sub-
sequently, in the recognition step, we employ the acoustic model to make predictions for
each unseen audio segment in an evaluation process.

2.1.1 Audio Signal Processing

Audio signal processing is the first step of an ASC system. It is usually organized in two
phases: preprocessing and feature extraction. In this subsection, we explain the reason
for using this two stages before applying machine learning algorithms on audio data.

Preprocessing

Datasets often contain samples collected from different sources resulting in inconsis-
tent properties of audio segments [2]. For example, audio segments are recorded us-
ing various recording devices and microphones may contain different number of chan-
nels, noises, and sampling rates. Preprocessing is done prior to the feature extraction
phase in order to unify the characteristic of audio segments and to amplify certain target
sounds [2]. In other words, it allows to fix the number of channels by down-mixing, and to
adopt a uniform sampling rate for all available audio segments. Additionally, we may sup-
press some ambient noises using noise suppression techniques in order to improve the
performance, and remove some overlapping sounds using source separation techniques
to reduce interference of sounds [2].

Feature Extraction

In contrast to image classification in which an image is directly employed as an input to
a classification system [16], in audio, there is a need to extract acoustic features from
raw audio. Acoustic features are used to reduce redundancy and achieve a compact and
expressive representation of audio data which are efficient in terms of memory usage
and the required computational power of classification systems [2]. Moreover, feature

5

extraction can lead to the improvement on the performance of classification systems by
boosting the intra-class similarity, and simultaneously increase the inter-class variability
in extracted acoustic features [2].

Characteristics (e.g. amplitude) of a sound in its temporal waveform does not provide
adequate information for computational analysis of an audio signal in tasks such as ASC.
In the presence of additive noise, this representation is easily distorted resulting in an al-
tered waveform. In addition, the representation of audio signals in time domain introduces
redundancy to classification systems. To avoid this problem, spectral (i.e. frequency-
based) representation – that is a higher representation – of audio signals have shown
to be more robust features for audio classification and detection tasks[2]. Frequency do-
main representation, obtained by Fourier transform, contains the magnitude and phase
of each frequency (in audio the phase is discarded). In spite of that, the sheer repre-
sentation of signals in frequency domain lacks to depict a time-varying representation of
the frequencies spectrum. Since environmental sounds generally vary based on time,
the time-frequency representation, namely spectrogram, of an audio signal has been
adopted in the most recent state-of-the-art methods for ASC [10, 11]. To obtain the fre-
quency domain representation of an audio signal, we use short time Fourier transform
(STFT) in order to determine the constituent sinusoidal frequencies of short segments of
audio signals. In addition to frequency domain representation, this transformation allows
us to align the frequency information with time as the audio signals vary constantly [17].
Below, we describe some of the recent and common feature extraction techniques that
are utilized for the purpose of audio classification:

Short-time Fourier transform (STFT): The most prevalent method to transform a signal
into a sum of sinusoidal waveforms is the Fourier transform. In other words, the Fourier
transform decomposes a signal into its constituent frequencies (in Hertz). The discrete
Fourier transform (DFT) is one of the variations of Fourier transform used in many prac-
tical applications for finite and discrete signals. According to [18] for a discrete signal x
with the length of N , the DFT is formally defined as below:

X(k) =

N−1∑︂
n=0

x[n]e
−j2πkn

N (2.1)

Where X(k) is the calculated DFT at frequency k. In general, audio signals vary over time
and therefore are non-stationary. To apply the DFT on digital audio signals, we consider
only a short frame of an audio in which the audio signal is assumed to be stationary [2].
To do so, we first segment the audio into successive short frames – in the range of tens of
milliseconds. Subsequently, a windowing function , e.g. Hamming window, is applied to
each frame, and finally, the DFT is applied to each windowed frame. This process is called
short-time Fourier transform (STFT). In practice, the successive frames overlap with each
other in order to avoid drastic changes at the edges of each frame, and to prevent losing
information. In addition, there is an opposite relation for time and frequency resolution in
the STFT. More specifically, a wide window results in losing fast changes in time, but it

6

creates a high resolution in frequency. In contrast, a narrow window is able to detect fast
changes in time at the cost of an inferior resolution in frequency [19].

Log mel energies: Psychoacoustic studies [20] proved that humans perceive the fre-
quency on a nonlinear scale. Inspired by this, mel – a logarithmic and subjective – scale
was introduced to convert linear frequencies into a different scale in which various fre-
quencies of sounds, that are perceived the same by humans, are placed in one band. In
other words, all frequencies are perceptually equal in one mel band. This is to simulate
the fact that the auditory system of humans is not capable of discerning any difference
between adjacent frequencies, and this effect becomes more noticeable as frequencies
increase [21]. The simulation of this effect can be seen in Figure 2.3.

Figure 2.3. The illustration of 20 mel filters (i.e. filter bank) to convert linear frequencies
(Hz) to mel scale. The figure is plotted using [22].

To obtain mel energies of an audio signal, we first compute the magnitude of the DFT
for each windowed frame (i.e. STFT) of the audio. This results in a time-frequency
representation in which each windowed frame contains the magnitude of the computed
frequencies. In addition, a linear frequency f (in Hertz) can be converted to mel scale
using following formula [23]:

m = 2595 log10

(︃
1 +

f

700

)︃
(2.2)

Then each coefficient in the magnitude of STFT is multiplied by the corresponding gain in
the mel filters. The results are accumulated to obtain the value of each bin in the calcu-
lated mel energies. The number of mel band in the spectrogram is equal to the number
of used mel filters. Finally, an element-wise logarithm operation is applied resulting in
log mel energies. This simulates the way humans react to changes in the loudness of a
sound. In other words, the auditory system of humans does not perceive the energies of
a sound on a linear scale.

Mel-frequency cepstral coefficients (MFCCs): One of the most popular acoustic fea-
tures for the automatic speech recognition (ASR) task is mel-frequency cepstral coef-
ficients (MFCCs) which represent the spectral envelop of a signal [24]. To obtain the
MFCCs, it is required to decorrelate the log mel energies. Since adjacent mel filters are

7

0 0.5 1 1.5 2 2.5
Time

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Audio waveform

(a) Audio waveform

0 0.5 1 1.5 2 2.5 3
Time

0

64

128

256

512

1024

2048

4096

8192

Hz

Short-time Fourier transform (STFT)

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

(b) STFT spectrogram

0 0.5 1 1.5 2 2.5 3
Time

0

512

1024

2048

4096

8192

Hz

Mel-frequency spectrogram

-40 dB

-35 dB

-30 dB

-25 dB

-20 dB

-15 dB

-10 dB

-5 dB

+0 dB

(c) Mel spectrogram

Figure 2.4. Time and time-frequency domain representations of a 3-second audio record-
ing of a horse walking.

overlapping, the log mel spectral vectors of each frame are highly correlated with one an-
other. Therefore, after computing the log mel spectrum, a transformation which is called
the discrete cosine transform (DCT) is used to decorrelate the components of log mel
spectral vectors [25]. In addition, this results in reduced number of coefficients, since
the higher coefficients are discarded. More specifically, higher coefficients of MFCCs are
indicators of finer spectral details – e.g. pitch – which do not provide discriminative infor-
mation for ASR [26]. This has been shown to benefit simpler classifiers such as HMMs
and GMMs [24, 27].

2.1.2 Machine Learning for Acoustic Scene Classification

The ASC task investigates the computational analysis of sound scenes. Sound scenes
refer to the acoustic environments in which audio segments are captured such as home,
office, and street, to name but a few. The goal in ASC is to assign one of the prede-
fined class descriptors to each audio segment which correctly describes the environment
where the audio is recorded.

According to [28], machine learning algorithms learn from examples through experience.
In various applications, there are challenging tasks for which making a human-engineered
indicator cannot be efficiently implemented. On the other hand, machine learning algo-
rithms are to automatically build a mathematical model in order to find a solution for a
given task. Similarly in ASC, It is difficult, if not infeasible, to engineer a model by con-
ventional algorithms. However, machine learning methods have been shown as potential
algorithms to map the acoustic features into target class labels without being explicitly
programmed [29]. In other words, the goal of machine learning algorithms for ASC is
to learn a parametric model that maps a given acoustic feature into mutually exclusive
categories.

Developing of acoustic models using machine learning algorithms for ASC heavily rely on
data [2]. In practice, given the variability of acoustic scenes in real-life, there is a need for
extensive amount of audio to be used for training an acoustic model. For the ASC task,
each audio segment is accompanied by a reference annotation which refers to the envi-
ronment in which the corresponding audio is recorded. As mentioned in Section 2.1.1, in

8

order to employ audio recordings in an machine learning algorithm, acoustic features are
extracted from raw audio segment. More specifically, in the learning step of an acoustic
model (Figure 2.2), the acoustic features are given as X ∈ RF×T where F represents the
number of acoustic features in each frame and T represents the number of frames used
in the STFT computation (explained in Section 2.1.1). In addition, the corresponding ref-
erence annotation y for each X (i.e. audio segment) is shown by a binary vector where
the length of the vector C is equivalent to the number of target classes, i.e. y ∈ {0, 1}C ,
in which only relevant class is represented by 1, while the rest of classes are represented
by 0. In this step, the pairs of X and y are used to train the acoustic model in which for
each X, model predicts an estimated output vector ŷ ∈ [0, 1]C which represents proba-
bility values for each target class. The class with highest probability value is considered
as the predicted class label. Lastly, an error is measured between y and ŷ in order to
adjust the parameters of the acoustic model. Once the learning step is completed, the
learned acoustic model is deployed in the recognition step (Figure 2.2) to be evaluated
for its performance on unseen X [29].

In general, any machine learning algorithm can be implemented in three different ways of
learning: Supervised, semi-supervised, and unsupervised. In supervised learning, each
sample of training data (i.e. data used in the learning step) contains a corresponding
reference annotation. On the other hand, in semi-supervised learning some and in unsu-
pervised learning none of the training data comes with reference annotations, or rather
the reference annotations of training data are not used. Although semi-supervised and
unsupervised learning can be applied as a way of learning for acoustic models in ASC,
as explained above and according to [2], ASC is generally considered to be performed
in supervised manner. In addition, most of the advances in ASC are made in supervised
learning.

The earlier machine learning algorithm applied to ASC involved the usage of HMMs and
GMMs which were inspired by the intensive usage of them in ASR. In [4], the authors de-
veloped a GMM model for each target acoustic scene with 32 components. This acoustic
model was trained using expectation–maximization algorithm, and it extracted MFCCs
from raw audio segments. In [30], the acoustic model is a SVM classifier using a radial
basis function (RBF) as the kernel. In addition, Bisot et al. in [8] employ an NMF as
the ASC system to reduce the cost in ASC. However, most of the recent approaches in
addition to state-of-the-art results are based on the usage of artificial neural networks,
specifically convolutional neural networks [10, 11].

2.2 Artificial Neural Networks

This section reviews artificial neural network (ANN) and its various architectures with a
focus on convolutional neural networks and deep learning.

Recognition of a face or detection of a sound is an intuitive and routine task for most
of the human beings, however, these tasks had not been successful for machines until

9

Figure 2.5. The structure of one perceptron.

recent years by progress in ANNs [15, 31, 32]. For many years, scientists searched for
ways to make intelligent computers to think and predict instead of being hard-coded [33].
The first attempt which paved the way for the current state of ANNs was implemented
by Warren McCulloch and Walter Pitts [34]. They published a paper in which they intro-
duced a mathematical model of neural networks. In 1958, Inspired by biological neural
networks, Frank Rosenblatt created perceptron (i.e. artificial neuron) with mathematical
notations [35]. ANNs have been defined as a system of interconnected computing nodes
by which they process the information using their dynamic state response to external
inputs [36]. The architecture of a simple perceptron (Figure 2.5) is made up of a node, in-
puts, weights, and an output which simulate biological neuron components: cell nucleus,
dendrites, synapse, and axon respectively [37]. A perceptron is formally defined as:

z = (
N∑︂
i=1

wixi) + b , and (2.3a)

y = f(z) (2.3b)

where for N number of inputs, the contribution of each input xi to the output y is deter-
mined by a weight wi. b is a bias term, and f is a function applied to the output of the
Equation 2.3a. In ANNs, perceptrons are divided into separate groups called layer. The
perceptrons of each layer receive the input form all perceptrons in the preceding layer,
and their output is connected to all perceptrons in the succeeding layer. Figure 2.6 de-
picts a simple ANN consists of one input layer, one hidden layer, and one output layer
[38]. The size of ANNs can be extended by augmenting the number of hidden layers or
the number of perceptrons.

Equation 2.3a illustrates a linear operation for the computation of z. Most of real-world
problems are not linearly separable, and without nonlinear functionality, ANNs are not
able to solve real-world problems. Therefore, ANNs typically consist of nonlinear opera-
tions which are implemented using nonlinear functions at the output of perceptrons (i.e.
f in Equation 2.3b). These nonlinear functions are usually called activation functions
which enable ANNs with the capability of untangling and representing the existed nonlin-
earity patterns inside a dataset. They also provide ANNs with the potential for creating
nonlinear decision boundaries. Below, commonly used activation functions are reviewed:

10

Figure 2.6. The topology of an ANN with one hidden layer.

Logistic function:

σ(z) =
1

1 + e−z
(2.4)

This activation function takes real-valued inputs and outputs values in the range of (0, 1).
Apart from non-linear characteristic of the logistic function (S–shaped curve in Figure
2.7), this function is monotonic and continuously differentiable. However, there are draw-
backs which cause this function fall out of interest in recent ANN models. For example,
the output of this function is not zero centered which makes the optimization of ANNs
harder. More importantly, logistic function saturates in large negative or positive values
meaning it responds very little to changes in large positive or negative inputs, resulting in
a very slow optimization process. Logistic function is also called sigmoid function.

Hyperbolic tangent (TanH):

tanh(z) =
ez − e−z

ez + e−z
(2.5)

Tanh function is nonlinear, and it is similar to sigmoid function. It can be counted as a
rescaled version of the sigmoid function, tanh(z) = 2σ(2z) − 1. It squashes any real-
valued number in the range of (−1, 1), and in contrast to sigmoid, its output is centered
at zero (tanh(0) = 0) which makes the optimization of an ANN model easier.

Rectified linear unit (ReLU):

ReLU(z) = max(0, z) =

⎧⎨⎩0 for z ≤ 0

z for z ≥ 0
(2.6)

ReLU has been the most popular nonlinear activation function in recent ANN models [39].
For negative values, ReLU outputs zero which inactivates its perceptron and increases

11

the sparse representation inside an ANN model. Whenever z (input) is positive, it acts as
a linear unit meaning it outputs the value itself.

Softmax:

softmax(z)i =
ezi∑︁K
j=1 e

zj
, for i = 1, . . . ,K (2.7)

Softmax is generally used at the output layer of ANNs, specially for classification tasks.
The above formula shows the calculation of softmax value for class i out of K target
classes for vector z [40]. It normalizes the value for each class between 0 and 1 such
that the sum of values for all classes is 1. In other words, the output of this function is
interpreted as the probability distribution over all target classes [1].

Figure 2.7. Illustration of sigmoid (blue), TanH (green), and ReLU (red) activation func-
tions. It is clearly visible that the sigmoid and TanH saturate for large negative and positive
values. However, ReLU is linearly increasing for positive values in an unbounded fashion.

2.2.1 Training Process of ANNs

Thus far, we have reviewed the basic architecture of ANNs and the means of expanding
them. In this section, we study the way ANNs are trained in a supervised classification
task.

The first step in training an ANN model is the initialization of its parameters (i.e. θ in
Equation 2.8). This is done either by random values or using initialization methods such
as He [41] and Xavier [42]. In addition, any classification task in supervised learning
needs annotated dataset where each and every data sample is accompanied with one
corresponding target annotation in case of single-label or multiple target annotations in
case of multi-label classification tasks. The components of a sample of data are applied
as the input layer (i.e. the first layer) of an ANN, and it is passed to the next layers as it is
processed – meaning the output of each perceptron is computed as shown in Equation
2.3. Therefore, output and hidden layers of the ANN receive the data from their preceding
layer in the network. The aim of this phase is to calculate the output values, i.e. prediction

12

probabilities, of each target class. This procedure of traversing the information from input
to output in an ANN model is called forward pass [43].

Once the forward pass is completed, an error is computed using a comparison between
reference annotations and predicted outputs by the ANN model. In other words, the error
measures how far the predicted outputs are from the corresponding target annotations.
The error function is usually addressed as objective function, loss function, or cost func-
tion [1]. A general formulation of a cost function is illustrated in Equation 2.8:

g (θ) =
N∑︂
i=1

L(f(xi; θ), yi) (2.8)

where L is per-example cost function, f(xi; θ) is the predicted output (i.e. ŷi) of the model
for the input xi, yi is the corresponding target annotation for input xi, and N is the number
of samples used in the computation of the cost function g. Assuming the total number
of training samples is M , the computation of g can be implemented using one sample
(i.e. N = 1), a mini-batch of samples (i.e. N < M), or based on entire training data (i.e.
N = M).

Annotated dataset

Artificial neural network

Error calculation

Perfornace
Evaluation

Predicted
outputs

Data samples

Annotations

Figure 2.8. The block diagram of training process for ANNs.

One of the most commonly used cost functions for classification tasks is cross entropy
[38]. It is a similarity measure of two probability distributions. In other words, cross
entropy measures on average how many bits are needed to encode an event from an
estimated distribution q by a model (e.g. ANN) instead of using the true distribution p [1].

H(p, q) = −
∑︂
i

pi log(qi) (2.9)

In the context of ANNs, p can be replaced with target annotations, i.e. y, and q can be
replaced with the predicted outputs of a model, i.e. ŷ. For example, in a one-hot encoded
setting for a single-label multi-class classification task (with K number of target classes)
where the output layer of an ANN involves a softmax activation function, the value of p is
one for a single target class o, and zero for other classes. Therefore, the cross entropy

13

cost function for a single sample can be translated into

H = − log(
eŷo∑︁K
j=1 e

ŷj
). (2.10)

In order to improve the prediction power (i.e. performance) of an ANN model, it is required
to minimize the error calculated by the cost function. To do so, the gradient of the cost
function is calculated with respect to each parameter and propagated backwards using
chain rule algorithm [44]. This phase is called backward pass. The backward pass in
Figure 2.8 is indicated with yellow color. The completion of one forward and backward
pass in called one iteration.

Input	layer Output	layerHidden	layer

Figure 2.9. The illustration for the backpropagation of error g with respect to parameter
w1
11. The bias terms are omitted for simplicity.

Figure 2.9 is an example to present the computation of the error, i.e. g, backpropagation
with respect to parameter w1

11 in a simple ANN using chain rule algorithm. The param-
eters are denoted by wl

ij formation where each w connects the ith node (or perceptron)
of layer l to the jth perceptron of layer l + 1. Considering Equation 2.3b, we define the
output of activation function f for perceptron k from layer l as:

f(zlk) = olk (2.11)

As it is shown by Figure 2.9, the irrelevant paths from output to any point other than X1

through the perceptron shown by the blue color in the hidden layer is inactive because
they do not contribute to the backwards propagated value of the error with respect to
parameter w1

11. The value of this error backpropagation is associated with the error com-
ing from two paths in the ANN. Each path is originated from one of the perceptrons in
the output layer. Considering output o31 and discarding the bias terms for simplicity, we
calculate the chain rule algorithm backwards as:

φ1 =
∂g

∂o31

∂o31
∂z31

∂z31
∂o21

∂o21
∂z21

∂z21
∂w1

11

. (2.12)

14

Doing the same for the path originated from output o32 backwards to w1
11, we obtain:

φ2 =
∂g

∂o32

∂o32
∂z32

∂z32
∂o21

∂o21
∂z21

∂z21
∂w1

11

. (2.13)

Now that the backwards propagated error from both paths are calculated, we can derive
the total error backpropagation of g with respect to parameter w1

11 as:

∂g

∂w1
11

= φ1 + φ2. (2.14)

The calculation of error propagation in backwards for other parameters in ANN shown
in Figure 2.9 is calculated using the same concept presented by chain rule. The only
difference is the paths involved for computation of each parameter differ from other pa-
rameters. In general, the same computational algorithm is used even for more complex
ANNs regardless of the number of layers and perceptrons.

Once the gradients are estimated, the value of each parameter is updated using an op-
timization method in order to decrease the value of the error. In contrast to conventional
optimization approaches, optimization is performed indirectly for ANNs. This means that
in order to increase the performance of ANN models, it is required to reduce the value
of cost function during the training process. In other words, we pay attention to the min-
imization of cost function with respect to indirectly maximizing the performance of the
model [1]. In addition, due to the importance of the generalization performance in ANNs,
the convergence criteria of an ANN model cannot be solely based upon the training set.
Instead, early stopping technique is used to cease the training process whenever the per-
formance of the model cannot be improved any further over a validation set of data[45]. In
general, the problem of optimization for ANN models is unconstrained problem and non-
convex unless some regularization techniques have been applied to the cost function as
constraints [1].

One of the most utilized optimization algorithms for ANN models is gradient descent.
This algorithm is an iterative and first-order optimization method meaning it updates the
parameters of a model using only their first derivative. The three main variants of the
gradient descent algorithm are batch, stochastic, and mini-batch [1].

Batch gradient descent computes the gradient of a cost function with respect to the pa-
rameters of the model based on entire training set. Although it computes the exact gradi-
ents, however, it can be very expensive and slow. It needs to fit all the training samples
to a memory which is not always possible. In addition, it does not allow an online update
of parameters when a new example added to the training set. In contrast, stochastic
gradient descent (SGD) computes the gradient of a cost function based on each sample
in the training set. Updating the parameters based on one sample, SGD allows us to
update in an online manner. However, this method suffers from high variance for param-
eters update leading to a noisy cost function and keeps overshooting and making the

15

Initial
weights

Minimum
cost

Learning
steps

Gradient

Figure 2.10. An exemplar of gradient descent algorithm depicting how the algorithm
utilizes the first derivative of the cost function to move towards the minimum cost.

convergence to the exact minimum point very difficult. Therefore, stability is an issue of
this gradient descent variant.

Minibatch gradient descent uses the best of two previous techniques and updates the
parameters based on small batches of training samples (i.e. minibatch) each time. By
doing so, it increases the stability of convergence due to the less variance of parameter
updates. However, the computed gradient of cost function g using this technique is an
estimation of the exact gradient calculated with batch gradient descent. This is because,
in minibatch gradient descent, the gradient of cost function g is computed using a small
number of samples (i.e. a minibatch) instead of entire training dataset. This integrates a
noise into the optimization process which is present even at the resulted local minimum
[1]. Moreover, the samples in each minibatch should be selected randomly and indepen-
dently from each other to prevent the aggravation of integrated noise – by sampling only
from a few target classes instead of all – in the estimated gradient value [1]. Considering
the cost function g(θ) introduced in Equation 2.8, minibatch gradient descent updates the
parameters (i.e. θ) of ANNs by the following formula:

θ ← θ − ηk∇θg (2.15)

where ∇θg is the gradient of cost function g with respect to parameters θ, and ηk is a
learning rate at iteration k.

As it is shown in the Equation 2.15, learning rate η is a hyperparameter and a function of
the iteration variable k. The adopted value of this parameter plays an important role in the
optimization of ANNs. If it is set too high (e.g. > 1.0), we may diverge and overshoot the
optimum value (desired local minimum). However, if it is too low (e.g. < 1e−6), the time of
convergence will unnecessarily take long, and it may not converge to a local minimum [1].
We practically call for decaying the learning rate over time in minibatch gradient descent,
and it is why we consider learning rate at iteration k despite the possibility for retaining a
fixed learning rate in batch gradient descent. According to [1], choosing the right value for
the learning rate should be based on try and error, and it is common practice to decrease

16

initial learning rate η0 until some iteration τ (ητ is the value of learning rate at iteration τ),
and after that fix it to a constant value:

ηk = (1− α)η0 + αητ , and (2.16)

α =
k

τ
(2.17)

As mentioned above, calculation of gradient based on a mini-batch of data (and not all
training samples) is an approximate of the exact gradient and, therefore, noisy [1, 46].
This slows down the optimization process. Momentum is an enhancing term integrated
into the basic minibatch gradient descent algorithm in order to help the problem of slow-
moving pace in optimization procedure [44]. Momentum accelerates the optimization
process of ANNs by steering the gradient in the right direction and alleviating oscillations
in irrelevant directions. In other words, it leads to faster and stable convergence and
reduces the oscillations of gradient descent algorithm due to noises in the data. To do so,
momentum uses an exponentially moving average of past gradients to keep track of their
directions [47]. Doing so, more number of training samples are involved in the calculation
of momentum and subsequently updating parameters. In comparison to the update rule
of minibatch gradient descent in Equation 2.15, There is one extra step for updating the
momentum [1]:

υ ←− αυ − η∇θ

(︂ 1

N

N∑︂
i=1

L(f(xi; θ), yi)
)︂
, and (2.18)

θ ←− θ + υ (2.19)

Where υ is the velocity vector (i.e. momentum) that keeps track of previous gradients and
α is a hyperparameter (α ∈ [0, 1)) which shows the degree of impact of previous gradients
on the direction of the current one. In contrast to physics which defines the momentum
as a multiplication of mass and velocity, in learning algorithms, mass is considered to be
unit. Therefore, momentum is equivalent to velocity [1].

Optimization Algorithms with Adaptive Learning Rates

Finding the optimal value for the learning rate is not a simple task. The value of this
hyperparameter can considerably affect the performance of ANN models. In addition,
the cost of optimization is not equally sensitive for all directions in the parameter space.
Therefore, it reasonably suggests to update each parameter with a different learning rate.
Despite the fact that momentum reduces the oscillation of gradient towards irrelevant
directions to a certain degree, it introduces another hyperparameter to the optimization
algorithm. The advent of optimization algorithms with adaptive learning rates is to solve
this issue [1].

Adam optimizer: This algorithm [48] is one of the most popular optimization methods
with adaptive learning rate. This method employs the moving average of past gradients

17

and squared gradients. They can be referred to as the first and second order moments
of past gradients which indicate the emergence of the name Adam which is derived from
adaptive moments. Adam also solves the issue of initialization bias in an earlier version of
optimization methods with adaptive learning rates [49]. As shown in Algorithm 1, the first
and second moment variables are initialized by vectors of zero. In addition, initial values
of decay rates (i.e. ρ1 and ρ2) are close to 1 for the moment estimates in the initial steps of
optimization process which lead to biased estimates of moment variables towards zero,
and force for larger initial steps in optimization [47, 48]. This is resolved in Adam by cor-
recting the bias in the values of moment estimates before updating them (Algorithm 1).

Algorithm 1 The Adam algorithm. The algorithm is adopted from [1].

Require: Learning rate η
Require: Initialize ρ1 and ρ2 in [0, 1).
Require: Small constant δ used for numerical stabilization.
Require: Initialize:

Parameters θ
1st and 2nd moment variables: s = 0, r = 0
Time step t = 0
while stopping criterion not met do
{(x1, y1), (x2, y2), . . . , (xN , yN)} ▷ Sample a minibatch from the training set

g′ ←− 1

N
∇θΣiL(f(xi; θ), yi) ▷ Compute gradient estimate

t←− t+ 1
s←− ρ1s+ (1− ρ1)g

′ ▷ Update biased first moment
r ←− ρ2r + (1− ρ2)g

′ ⊙ g′ ▷ Update biased second moment
ŝ←− s

1−ρt1
▷ Correct bias in first moment

r̂ ←− r
1−ρt2

▷ Correct bias in second moment

θ ←− θ − η ŝ√
r̂+δ

▷ Update parameters
end while

Challenges in the optimization of ANNs

The optimization of ANNs is a very challenging task regardless of the used optimization
algorithm. An objective function which is a convex function of ANN parameters provides a
global minimum since the local minimum of the function is considered the global minimum
[1]. However, a non-convex function of ANN parameters can contain a large number of
local minima with large values, and settling in these points may prevent the optimization
process from further reduction of the error which results in an underfitted ANN model.
Despite this issue, Goodfellow et al. in [1] state that for adequately large ANNs, prag-
matically there are many local minima with low cost, Therefore, this cannot be a practical
problem in the optimization of ANNs. However, settling in saddle points can hinder the op-
timization algorithms from further reduction of the error. Saddle points are critical points
placed on the surface of a function where its derivative is zero but it is counted neither
a local minimum nor a local maximum [50]. Goodfellow et al. express that saddle points
are more problematic for optimization algorithms since these points are extensively ubiq-
uitous in higher dimensional spaces compared to local minima. Lastly, the problem of

18

exploding gradients is another challenge in the optimization of ANNs. This issue occurs
when the update value for parameters changes drastically and becomes very large. This
can be a result of multiple multiplications of parameters with large values. This issue can
be solved using gradient clipping such that any large gradient update which leads to the
update of parameters with large amount is diminished to a predefined value [1].

2.2.2 Deep Neural Networks

Frank Rosenblatt created the perceptron decades ago [35], however, ANNs would not
gain as the popularity of current time for many years thereafter [51]. One of the break-
throughs which can be counted as a milestone for the popularity of ANNs is the de-
ployment of backpropagation method for adjusting the parameters of ANN models [51].
Although the concept of backpropagation was first introduced in control theory [52], it was
employed for the usage in training ANN models in 1986 by Rumelhart et al. [44]. Apart
from this advancement, There was a need for faster processors than central processing
units (CPUs). Therefore, the utilization of graphics processing units (GPUs) played an
important role in the progress of ANNs as well [1]. In addition, ANNs are data-driven
models which heavily rely on data to learn the true representation of their inputs. The
lack of annotated data in many tasks as well as hardware limitations, i.e. low capacity
memories, hindered the progress of ANNs [1, 16]. Solving these issues opened a new era
in the field of artificial intelligence (AI). Since then ANN models have solved previously
impossible tasks for machines such as image classification and speech recognition. The
more complicated a task has been, the more complex ANN models have become [1].
This has been achieved by increasing the number of hidden layers, and the number of
perceptrons in each layer. These complex models have been referred to as deep neural
network (DNN) or deep learning.

As the number of hidden layers increases in DNNs, their potentiality to outperform pre-
vious shallow networks escalates as well. However, this causes DNNs susceptible to
overfitting to the training data [53, 54]. As a result of overfitting, DNNs perfectly perform
on the training set, however, they are not able to generalize well for unseen data, hence
it raises the generalization error. This is due to the large number of parameters in DNNs
and their exceptional ability to perfectly fit to a set of data.

Figure 2.11. the left side image shows a complex model which perfectly separates two
classes of data in training set, while the right side model is much simpler in terms of
complexity and shows misclassification of few points in a training set. However, the right
side model may generalize better for unseen data. The figure is adopted from [55].

19

Regularization plays an important key in the training of DNNs to prevent this issue [1].
Regularization is a technique applied to learning algorithms in order to decrease the
generalization error. To compensate for overfitting, some regularization techniques have
been introduced to cope with the overfitting problem, and to assist DNNs in training phase
to capture more generalized features of data in order to motivate the performance of
DNNs for unseen data as well.

In large neural networks where all their parameters are learned together, it is common
for the parameters of DNNs to present an asymmetric pattern in terms of predictive ca-
pability. This means that some of the parameters have more predictive power compared
to other ones. After training DNNs for large number of iterations, this phenomenon be-
comes more prominent such that only a small number of parameters are trained and the
rest are disregarded and left with less predictive power. This problem, which is called Co-
adaptation, limits the predictive capability of DNNs. One of the well-studied techniques
to prevent this problem is dropout [56]. Dropout randomly eliminates perceptrons and
their connections which results in various lighter networks for each iteration. This pre-
vents training only with a fraction of parameters, and stimulates the usage of all available
parameters in DNNs in order to boost the predictive capacity of DNNs.

Figure 2.12. An illustration of dropout technique applied to a simple ANN shown in the
Figure 2.6. The marked perceptrons with "X" are the eliminated perceptrons, and they
are disconnected from the perceptrons in preceding and succeeding layers.

Another method that assists DNNs in easier and faster optimization is batch normaliza-
tion [57]. It is a common practice in machine learning to normalize the input data if the
values of different features are at contrasting scales, because it increases the speed of
convergence in optimization algorithms for DNNs during training process [58]. The batch
normalization addresses the same issue inside DNNs which is called internal covariate
shift (covariate shift will be discussed in details in Section 2.3.1). After each iteration and
updating the parameters of a DNN, its parameters change accordingly. The change in the
parameters of an internal layer causes the distribution of inputs to the next layer changes
as well. This results in a slower optimization and significantly harder training process. To

20

solve this issue, batch normalization introduces the concept of normalization to inputs of
each internal layer. To do so, instead of hardcoding the normalization so that the values
are normalized between [0, 1], it inserts two normalization parameters, i.e. γ and β, into
the set of original parameters of DNNs to scale and shift the normalized output values
for each mini-batch of data. Doing so, it allows the parameters to be learned by back-
propagation process. It has been shown to speed up the training process much faster. In
addition, it allows for the choice of higher learning rates during optimization process [57].

2.2.3 Feedforward Neural Networks

Feedforward neural network (FNN) is a network of perceptrons in which there is no in-
ternal feedback, and the flow of the information signal is headed from perceptrons in the
input to perceptrons in the output layer [59, 60]. Similar to other ANNs architecture the
goal of the FNNs is to estimate a function that maps inputs to an desirable output using
a set of parameters (θ).

The simplest version of FNNs is single-layer perceptron where the input and output layers
are the same. The early design of these versions used a linear threshold unit as the
activation function. In 1969, Minsky and Papert [61] showed that a single-layer perceptron
is not capable of learning XOR function. However, they did not deny this possibility for a
multi-layer perceptron network.

The more recent version of FNNs is the multi-layer perceptron (MLP) (illustrated in Figure
2.6). In contrast to a single-layer perceptron, an MLP with a hidden layer is capable of
approximating any bounded measurable function to any arbitrary degree [62]. In practice,
not one perceptron, but the stacked version of them in different number of layers shapes
the final MLPs. Except from the input and output layers, the number of hidden layers can
be from one to as many as desired [62]. Any given perceptron in a layer is connected to
all perceptrons of the next layer. The number of perceptrons in the output layer depends
on the number of categories of interest in the classification task. In general, the number of
hidden layers in ANNs can be an indicator of capability of the network to model complex
representations [62]. The more number of hidden layers is equivalent to greater ability
of the network in expressing higher representation of input data [54]. This ability of the
network for extracting higher and more complex representation of input data eases the
need for preprocessing and feature engineering techniques, and allows the network to
use lower-level representation of data as inputs.

2.2.4 Convolutional Neural Networks

Convolutional neural network (CNN) has been one of the significant milestones in the
development and deployment of DNNs in different applications. Having been introduced
decades ago to the field of machine learning [63, 64], CNN is still a constituent element of
the networks used in recent state-of-the-art results for challenging tasks specially image

21

classification [16, 54]. The topology of CNNs allow for receiving inputs of 1D to 3D di-
mensions [1]. As it can be denoted by the name of these networks, the main operation of
CNNs is a linear transformation, namely convolution. Multiple characteristics of CNNs
have made them a better practical solution compared to MLP networks:

• The output of CNNs is dependent on the input size, kernel size, zero padding, and
strides. Whereas, the output of MLPs is independent of the input size [65].

• In contrast to MLPs, CNNs leverage the ability of utilizing spatially correlated fea-
tures of small regions in inputs, this means that every point in the output of a CNN
is affected by a small region of the input called receptive field.

• Due to the shared parameters of a kernel that slide on input, CNNs are capable of
cutting down many unnecessary parameters while keeping the relevant information
for the task of interest. This also reduces the memory usage due to the storage of
less number of parameters. Subsequently, pooling layers (will be discussed later in
this section) are advantageous to reduction in the number of linear transformations
in convolutional layers by shrinking the size of the data.

• In contrast to the restriction in MLPs in which inputs are shuffled, flattened, and the
order of input shape has to be changed, CNNs are able to receive inputs in their
original shape and dimension.

The discrete convolutional operation of 2D CNNs consisting of Ko kernels K ∈ RKc×Kh×Kw

– where Kc is the number of input channels, and subscripts h and w respectively refer to
the height and width – for an input I ∈ RKc×Ih×Iw , and with unit stride and zero padding
(will be discussed later in this section) computes output O ∈ RKo×Oh×Ow for each kernel
K as:

Oko,oh−Kh,ow−Kw =

Kc∑︂
kc=1

Kh∑︂
kh=1

Kw∑︂
kw=1

Ikc,ih−kh,iw−kwKko,kh,kw (2.20)

In CNNs, channel refers to a third dimension in inputs which corresponds to depth, and
due to the popularity of CNNs in computer vision applications, the term channels has
been adopted by the majority in this field. For example, a black and white image consists
of one channel. Whereas, the pixels of an RGB image contain values for three channels
of red, green, and blue.

According to Equation 2.20, the points (i.e. pixels) of a small and localized region of
the input feature map (i.e. I) are multiplied by the points of the kernel (i.e. K), also
known as filter. The size of kernel is typically smaller than the input size. Therefore, we
slide the kernel over the input in order to calculate the dot products of the kernel and the
receptive field of the input which is covered by the kernel. To clarify the calculation in
convolutional layers, we provide an example of convolutional operation in CNNs. Figure
2.13 demonstrates the values of an input feature map and kernel. In this example, since
the number of channels is assumed to be one, the input feature map and the kernel are

22

of 2D dimensional shape.

0 1 2

0 2 0

1 1 0

1 0 2 0 1

1 3 0 1 0

2 0 1 2 0

2 0 2 1 1

3 2 0 2 0

Figure 2.13. The left table (grey color) shows an input feature map of size (5 × 5), and
the right table presents the values of a (3× 3) kernel.

In Figure 2.14, the green highlighted region shows the elements of receptive field on the
input feature map which are multiplied element-wise by the kernel values. In order to
compute the output feature map (i.e. O) of convolution, the results of multiplications are
summed up to compute the final value in the output feature map at each location which is
illustrated with red color. In practice, after summation, a bias value will be added to find
the final output value which is omitted in this example for simplicity.

12 3 7

5 6 8

7 11 6

12 3 7

5 6 8

7 11 6

12 3 7

5 6 8

7 11 6

1 00 21 02 1

1 30 02 10 0

2 01 11 20 0

2 0 2 1 1

3 2 0 2 0

12 3 7

5 6 8

7 11 6

12 3 7

5 6 8

7 11 6

1 0 2 0 1

1 30 01 12 0

2 00 12 20 0

2 01 21 10 1

3 2 0 2 0

12 3 7

5 6 8

7 11 6

1 0 2 0 1

1 3 0 1 0

2 00 11 22 0

2 00 22 10 1

3 21 01 20 0

12 3 7

5 6 8

7 11 6

12 3 7

5 6 8

7 11 6

12 3 7

5 6 8

7 11 6

10 01 22 0 1

10 32 00 1 0

21 01 10 2 0

2 0 2 1 1

3 2 0 2 0

1 0 2 0 1

10 31 02 1 0

20 02 10 2 0

21 01 20 1 1

3 2 0 2 0

1 0 2 0 1

1 3 0 1 0

20 01 12 2 0

20 02 20 1 1

31 21 00 2 0

1 0 20 01 12
1 3 00 12 00
2 0 11 21 00
2 0 2 1 1

3 2 0 2 0

1 0 2 0 1

1 3 00 11 02
2 0 10 22 00
2 0 21 11 10
3 2 0 2 0

1 0 2 0 1

1 3 0 1 0

2 0 10 21 02
2 0 20 12 10
3 2 01 21 00

Figure 2.14. Computing the output values of a discrete convolution between the input
and the kernel presented in Figure 2.13

In practice, The number of output feature maps of one convolutional layer is equivalent to
the number of used kernels. In addition, the number of channels of each kernel equals
to the number of channels in input feature maps. Therefore, in Figure 2.14, using one
kernel results in one output feature map (i.e. yellow window).

Strides can be viewed as a method of subsampling in convolutional layers. Strides refer
to the distance between two consecutive positions of a kernel along each axis [65]. We
can skip some of the positions of input feature maps when performing convolution using
strides greater than one. This shrinks the number of performed computations, at the
expense of loosing some details at the representation of output feature maps. Figure
2.14 illustrates 1× 1 strides in convolutional operation.

23

Zero padding is the process of adding zeros at the boundaries of an input feature map
along an axis before convolutional operation. As depicted in Figure 2.14, convolutional
operation without any zero padding shrink the size of output feature map. This shrinkage
occurs at each convolutional layer put a constraint over the demonstrative ability of CNNs.
In other words, the number of convolutional layers, which could be utilized in an CNN,
is automatically limited. This occurs because adding convolutional layers shrinks the
dimension of output feature maps, and at some point, it will be of dimension 1 × 1 on
which convolutional operation is not considered logical. In addition, zero padding can
prevent losing information in the boundaries of input feature maps. Mathematically, each
convolutional layer without zero padding as well as unit stride shrinks the dimension of
output feature maps by:

WO = WI −WK + 1 (2.21)

where WO, WI , and WK refers to the width of an output, input, and kernel respectively.
Equation 2.21 implies that this limitation in capacity of CNNs is more perceptible as the
size of kernels gets larger. This type of convolution without zero padding is well-known
as valid convolution. To solve this problem, another method for implementation of con-
volutional layer is used in which the input feature map is padded with a number of zeros
in each axis in order to obtain an output size of the same size as in the input feature map.
This convolution is referred to as same convolution. However, in this convolution, the
points (i.e. pixels) near to the edges of inputs are underrepresented in the output feature
map compared to the central points in the input feature map. The third form is called
full convolution. This type of convolution addresses the problem noted in same convolu-
tion. In full convolution, each point in the input feature map is visited by kernel the same
number of times to represent the same potency of points irrespective to their position in
the input feature map [1, 65]. A downside to this method is that learning a kernel which
perfectly extracts meaningful features at all positions of the input is not trivial [2].

Pooling is a practical technique used as a building block in CNN to make the output of
convolutional layers robust to small changes in inputs [66]. A pooling layer is typically
placed between two consecutive convolutional layers. Similar to a convolutional layer, it
employs a small window to slide over a localized rectangular neighbourhood of its input,
but instead of using a linear combination to compute the output value in each window
[67], it calculates either the average or max value of that rectangular region. Average and
max pooling are the most common used methods in the implementation of pooling layers.
In some tasks, the pooling layer performs only on one axis due to the necessity of trans-
ferring the information on one axis of feature maps to the output [68]. An example of this
can be found in sound event detection task (SED) in which pooling cannot be performed
on time axis of input feature maps otherwise the information regarding onset and offset of
sound events happening in a sound clip is discarded. The main leverage of using pooling
layer is to make the output of convolutional layers invariant to small changes (e.g. noises)
in input [1]. In other words, pooling layers pay attention to extracting certain features

24

and ignoring the exact position of them in feature maps. As a consequence of pooling
operation, the size of output feature maps are shrunk each time causing the number of
computations needed in the following layers of a CNN less cumbersome resulting in the
enhancement of efficiency in memory usage for storing parameters of the network.

1 3 2 0

2 3 1 1

2 0 1 5

4 0 2 0

Max
pooling

Average
pooling 3 2

4 5

2.25 1

1.5 2

Figure 2.15. An example of two popular variants of pooling operations, i.e. max and
average pooling, with input size of (4 × 4), kernel size of (2 × 2), and strides of size 2 on
both width and height axes.

A deep CNN is typically built of stacking blocks of simple operational layers. The simplest
convolutional block is mainly comprised of three operational layers: convolution, non-
linearity, pooling layers.

Pooling PoolingConvolution

Dog

Fully	connected	layers

Convolution Flatten

Figure 2.16. A convolutional neural network followed by fully connected layers for image
classification task.

Figure 2.16 presents an example of a straightforward CNN. The output of a convolutional
layer is typically passed through a non-linearity function such as ReLU in hidden layers
and softmax in the output layer (This stage is skipped in Figure 2.16 for simplicity). It is
also possible to use less number of pooling layers compared to the number of convolu-
tional layers in a network. In practice for a general classification task, we usually add fully
connected layers at the end of convolutional blocks to calculate the probability involved
with each class given the input data.

2.3 Domain Discrepancy

Domain discrepancy is one of the main concerns of machine learning algorithms. This
section first introduces the causing factors for domain discrepancy, i.e. dataset shift.
Then, it presents the domain adaptation methods to cope with the dataset shift problem
by reviewing main recent works in this field.

25

2.3.1 Dataset Shift

Having learned a representation for a set of data samples, a model is able to automat-
ically predict desirable variables in a given task. Considering the performance of the
model in the development phase, we expect the model to perform relatively similar in the
evaluation phase. This is the presumption in designing conventional machine learning
algorithms. Although it could be correct when the training and test datasets are sam-
pled from the same underlying distribution, it does not examine a more quintessential
scenario of a real-world problem where there is no guarantee for such assumptions [14].
In a real-case application of ASC, we generally deal with situations in which there is a
large variability in the acoustic environments, recording devices, position of recorders,
etc. These various conditions affect the data that we access to in the training stage and
the data we encounter in the testing stage. In addition, this problem is not limited to
the ASC task, and it influences the performance of machine learning algorithms in dif-
ferent applications. For example, in image classification task, different camera angles
and lightening intensities can be counted as the variable conditions causing reduction of
performance in this application. Consequently, this problem results in a performance gap
between training and test stages so that the evaluation performance of a model on a test
set is substantially lower than that in the training stage. It is not often possible to know
all the various conditions which might be faced with during the testing phase. In addition,
annotating enough samples from the distribution of test set can be too costly. Domain
adaptation refers to the methods by which we try to propose a systematic solution for
this problem. According to [14], a domain is formally defined as a pair of distribution D,
from which input data X are sampled, as well as a labeling function f [14]. In fact, do-
main adaptation focuses more on two domains of data, and on boosting the predictive
performance of a model in one domain given the data in another one [13]. In the context
of domain adaptation, the data which is originally used to optimize the model is called
source domain which is equivalent to training data, while the data used in order for the
model to adapt to is called target domain, and is analogous to test data.

Table 2.1. Connection between the settings used in conventional machine learning ver-
sus domain adaptation. The table is adopted from [69].

Learning Paradigms
Source and Target

Domains

Source and Target

Tasks

Conventional machine learning The same The same

Domain adaptation Different but related The same

As mentioned above, dataset shift refers to the situation when the joint distributions of
inputs and outputs for training and test sets differ. Formally, for any given sample x ∈ X

and the corresponding class label f(x) = y:

ptr(y, x) ̸= pte(y, x) (2.22)

26

However, this change can be categorized differently based on the type of shift among
datasets. Followings are three of the most common types of dataset shift in machine
learning problems:

Covariate shift has been first defined as the case in which only the distribution of input
attributes x in training and test sets are different, i.e. ptr(x) ̸= pte(x) [70]. Despite the fact
that this definition has been also reiterated in different works such as in [71, 72, 73, 74],
other works such as [75] define covariate shift problem as a change of the distribution of
class labels between training and test datasets. Therefore, machine learning community
has yet to find a consensus and a general agreement on the standard definition used for
this problem.

Prior probability shift is the inverse problem of covariate shift where the distribution of
class label variables p(y) changes, rather than p(x), between training and test datasets
[74, 75, 76]. In other words, there is a change in the prevalence of class labels distribution
between training and test sets [77].

Concept shift is a more complex problem compared to the above two problems. Concept
shift is also referred to as concept drift in literature [78]. As a by-product of non-stationary
and dynamically changing environments, this phenomenon happens when the relation-
ship between input and output variables changes over time [79]. One common example
of this problem can be seen in non-stationary time series analysis where the relationship
between inputs and predicted variables changes according to time. In other words, train-
ing and test data have been collected in different time. According to [73], this problem is
formally defined as:

if x→ y, ptr(y | x) ̸= pte(y | x) (2.23)

if y → x, ptr(x | y) ̸= pte(x | y) (2.24)

Aforementioned types of dataset shift occur due to various factors. There are multiple
causing factors of such variability among datasets, but the most two common factors
are: sample selection bias and non-stationary environments. Sample selection bias is
one of the most prevalent factors causing the dataset shift problem. It can be created in
data collection phase where various reasons can involve to prevent an uniform sampling
of a population for training samples. As a result of that, a model, trained by a biased
dataset, does not fairly model all different involved categories existed in the population.
A survey can be a simple instance to show this issue where accessibility to some of the
people is easier than others, and ending in the over-representation of those people in
the result of survey, while the opinions of other peoples have been under-represented
in the result [73, 80]. Moreover, non-stationary environments can also lead to different
types of dataset shift problem. In real-world applications, this problem causes the advent
of new operating conditions or shift in the process of data generation which results in
temporal or spatial shift of data between the development and evaluation stages of a

27

model. As a result, models, which are trained under the assumption of stationary property
of environment and fixed probabilistic properties of data, will become obsolete and are
not able to optimally perform for new captured data [81, 82].

2.3.2 Domain Adaptation Methods

This section presents the advantages of using domain adaptation techniques. Then, it
provides the formula for upper boundary generalization error in the presence of dataset
shift. Lastly, it reviews different types of domain adaptation techniques in addition to main
recent works.

As a result of dataset shift, conventional learning algorithms optimised on source domain
data, are not able to perform well on the target domain. Consequently, there is a gap
between the evaluation results of these two domains. In order to alleviate this issue
and reduce the gap in evaluation results, domain adaptation methods employ different
techniques to adapt the already optimized model on source domain to data from target
domain. Furthermore, as the size of datasets collected in the real world is extensively
increasing, annotating such datasets is time-consuming and expensive work, and in some
applications impossible to do. However, creating synthetic data for most of applications
not only is easier, but also the annotation of such data can be done automatically with
far less amount of efforts and dedication of time in comparison to a real-world dataset.
Learning algorithms can benefit from synthetic data in order to learn the inherent patterns
inside the data for a specific task. Despite that, synthetic data often lack diversity and
noises that a real-world sample may represent. Therefore, this causes a dataset shift if a
learned model by synthetic data is tested on real-world datasets. One of the significance
of domain adaptation is to solve this problem to make the usage of synthetic data possible
as a leverage in learning process.

Ben-david et al. formalized the problem of domain adaptation using the following upper
boundary generalization error on target domain [14]. For a binary classification task with
a source domain < DS , fS > and target domain < DT , fT > – where D refers to the
distribution of data and f to a labeling function – the upper boundary generalization error
is defined as:

εT (h) ≤ εS(h) + d(DS , DT) +min{EDS
[| fS − fT |],EDT

[| fS − fT |]} (2.25)

According to the equation 2.25, for a hypothesis h, the error on the target domain εT (h)

is bounded with the sum of three terms. the first term is the risk of h on the source
domain data, i.e. εS(h). The second term signifies the distance between the marginal
distributions of the source and target domain data. Lastly, the third term measures the
difference between the labeling functions of the source and target domains. There has
been a common belief in domain adaptation community that given a minimal labeling
function differences between the source and target domain, minimizing the risk on the

28

source domain together with the minimization of distance between marginal distributions
by a learnt invariant representation is sufficient to guarantee adaptation performance on
the target domain, however, Zhao et al. in [83] showed the insufficiency of this assumption
by an counterexample, and exhibited that we need to take into consideration the change
of the conditional distributions between the source and target domains.

The settings adopted for domain adaptation methods mainly depend on the application of
interest and availability of various data sources. In general, we usually have large number
of labeled samples from the source domain, while there is no or few labeled samples
from the target domain. In this regard, domain adaptation approaches are considered
either semi-supervised or unsupervised. Unsupervised domain adaptation addresses the
problem of dataset shift when no labeled data from target domain is available [84, 85].
On the other hand, in semi-supervised domain adaptation, few labeled data is available
from target domain [86, 87]. Domain adaptation can be also performed when the source
domain is comprised of multiple datasets, named multi-source domain adaptation. In
this setting, the aim is to combine the learned hypotheses for each source to obtain a
hypothesis with small error on target domain [88, 89].

Although the domain adaptation techniques have been categorized with different names
in recent works [90, 91, 92, 93], we review the most well-known categories including three
general forms of discrepancy-based, adversarial-based, and reconstruction-based
approaches in this thesis.

Discrepancy-based approaches focus on fine tuning of DNNs using the data from the
source or the target domain in order to reduce the dataset shift. This can be implemented
in various ways. One is done using a pre-trained DNN and only training some layers of
the network while freezing the first n layers. The second set of approaches assigns
pseudo-label targets to samples of target domain in order to incorporate these samples
in the learning process alongside the data from source domain. However, more works
in this category focus on finding an invariant-domain representation of data by reducing
the discrepancy between source and target distributions [94, 95, 96]. In this regards,
maximum mean discrepancy (MMD) and Kullback–Leibler (KL) divergence have been
extensively used as a measure of discrepancy. For example, Tzeng et al. [97] incorporate
the MMD as a domain confusion cost function into the optimization process of DNNs
to investigate the effect of MMD on latent space representations produced by DNNs.
Formally, the MMD distance with respect to the DNNs higher representations, i.e. the
latent representations of preceding output layer ϕ(.), is defined as

dMMD(X
S , XT) =

⃦⃦⃦⃦
⃦ 1

M

M∑︂
m=1

ϕ(xSm)− 1

N

N∑︂
n=1

ϕ(xTn)

⃦⃦⃦⃦
⃦ , (2.26)

where xS belongs to the source and xT belongs to the target domain. They employ
two CNN-based architectures with shared parameters. One is fed by the source domain
data (XS , Y S), and the input to the other one is the data from the target domain. The

29

former network is optimized in a supervised manner using the data and corresponding
annotations from the source domain. They use an adaptation bottleneck layer before the
final layer of the classifier in order to regularize the output of this layer using domain-
invariant loss function. In addition, to make the latent features of DNNs semantically
separable for actual classification task, the network features a classification loss, i.e. LC .
Therefore, the optimization is done based on the final error calculated using Equation
2.27 to improve the performance of image classification task over the target domain data:

L = LC + λ d2MMD (2.27)

Inspired by generative adversarial nets (GANs) [98], the aim of adversarial-based meth-
ods is to maximize the domain confusion (i.e. source and target) for a domain discrimina-
tor by achieving an invariant representation of the source and target domain data [84, 99,
100]. In general, different adversarial-based methods vary in terms of three components.
First, the implementation of the base model can be done in generative or discriminative
manner. Secondly, adversarial loss function is a minimax function in which the previous
methods tried to reduce its value by optimizing the discriminator while maximize it by op-
timizing the generator (or a model in discriminative problem). The direct implementation
of this loss function creates vanishing gradient problems in early stages of optimization
as the discriminator tends to converge far quicker than the generator, and this damages
the learning process. To overcome this issue, recent works tried to implement the opti-
mization using two different loss functions. One of them is dedicated to the optimization
of discriminator, while the other one is to optimize the generator. The third difference
is the usage of shared, unshared, or partially shared weights for models producing fea-
ture mappings from the source and target domains during learning process. Ganin et
al. proposed one of the first domain adaptation methods using adversarial-based training
[84]. In this work which is called domain-adversarial neural network (DANN), they use a
common feature extractor together with two classifiers. One classifier is to do the actual
classification task based upon the latent representations of the source domain data pro-
vided by a feature extractor. The other classifier plays a role similar to the discriminator in
GANs. In other words, this classifier classifies whether the data comes from the source or
target domain. The aim of the classifier is to minimize the domain confusion, while there
is a gradient reversal layer (GRL) which is responsible for the alignment of latent feature
mappings of feature extractor, hence the alignment for the distributions of the source and
target domains.

In reconstruction-based approaches, the invariant feature space is obtained by recon-
structing the features of the source and target datasets. This method has been usually
implemented using an adversarial or encoder-decoder training process. In adversarial
approach, the aim is to create mappings using a generator to produce an indistinguish-
able representation of a domain compared to another one using an adversarial loss and
discriminator [101, 102]. In addition, the framework of encoding and decoding of repre-
sentations for domain adaptation is inspired by autoencoders [103, 104]. This approach

30

adds a supplementary task to the main task in order to assure a shared subspace be-
tween the source and target domain. The encoding part tries to obtain an robust and
invariant higher-level representation of both source and target domains from which it is
possible to reconstruct the original input data using a decoder network [105]. This can
be done by one step or two-level reconstruction. Chen et al. achieved a robust recon-
struction of input data in a closed form solution and without the need to gradient descent
optimization [106]. Bousmalis et al. proposed an encoding-decoding based solution us-
ing DNNs [107]. This method consists of one shared encoder between domains, two
domain exclusive encoders, one shared decoder, and one classifier. The shared en-
coder learns an invariant representations for the samples of both domains, while domain
exclusive encoders are to capture the unique representations for data of each domain.
The shared decoder learns to reconstruct a sample using the representation of both
shared and domain-specific encoders. The aim is to enhance the similarity of the feature
mappings of shared encoder for the source and target domains, while stimulate a or-
thogonality between the feature mappings coming from the shared and domain-exclusive
encoders. At the same time, the classifier implements the classification task on data from
the source domain coming from the shared encoder to ensure that the representations
are also useful for the main classification task as well.

31

3 METHOD

In this chapter, we propose a method to address domain adaptation problem for ASC. We
first glance over the method before discussing each part of the method in details. Lastly,
we introduce the architecture of the models used in this project.

3.1 System Overview

Inspired by [99], our method is an adversarial-based adaptation approach to deal with
mismatch conditions. The method in adaptation process does not need the reference
annotations of target domain for the classification task. Therefore, this method is appli-
cable to the problems in which no class labels are available from target domain. Figure
3.1 shows an overview of our method. It is comprised of three main steps: pre-training,
adversarial adaptation, and testing.

Figure 3.1. An overview of the proposed method.

3.1.1 Pre-training Step

Pre-training step is the first step of our method in which we try to implement an ASC task
in supervised learning. In fact, this step simulates the development phase for a network
that is optimized only for a specific domain of data: source domain. To clarify each part
of the used network, from now on in this work, We use model for the first part of our
network, and represent it using M . The second part is called classifier which is shown
using C. In this step, since our model is optimized only on data from the source domain,
we call it source model, and it is represented by MS . We train the network using the
data from the source domain XS = {XS

1 , X
S
2 , . . . , XS

NS
} together with its corresponding

ground truth labels of acoustic scenes YS = {yS
1 ,y

S
2 , . . . ,yS

NS
} where the number of

32

data from the source domain is denoted by NS . In order to optimize the network, the
error LS is minimized with respect to MS and C:

LS = −
NS∑︂
n=1

yS
n(log(C(MS(X

S
n)))) (3.1)

MS is responsible to extract high-level representations of input data and classifier, as it
can be indicated by its name, is to classify the feature mappings of MS (i.e. the outputs
of MS) into pre-defined classes.

Acoustic
scene
labels

Figure 3.2. The scheme used in the pre-training step.

3.1.2 Adversarial Adaptation Step

Once the pre-training is completed, the second step is adversarial adaptation which is the
main core of our method where the pre-trained model (i.e. MS) is adapted to the target
domain data. As denoted by its name, adversarial adaptation uses an adversarial training
scheme to implement the adaptation process.

To the best of our knowledge, in the context of machine learning, The term adversary
was introduced by Dalvi et al. [108] in order to show the fragility of linear classifiers
encountering with inputs designed to fool the classifiers [109]. However, Szegedy et al.
later defined adversarial examples as the imperceptibly perturbed examples which are
able to affect the stability of neural networks [110]. Later, Goodfellow et al. introduced
the employment of adversarial process to estimate generative models, i.e. GANs, [98].
One of the GANs capabilities is generating realistic data –e.g. images– of real and virtual
objects such as human faces, and human poses, to name a few [111, 112]. In general, to
create similar images to samples of a real image dataset, as shown in Figure 3.3, GANs
pits a generator and a discriminator against each other. Generator tries to create images
similar to samples in real dataset in order to fool the discriminator that these samples are
drawn from the real dataset, while the discriminator is to distinguish between data coming
from real dataset and fake data, i.e. produced by the generator.

Similarly, we employ the adversarial training method in this work. However, we implement
this method in an discriminative manner. To do so, instead of using a generator to produce
the fake data, we use data from the target domain in the place of fake samples and data
from the source domain as the real samples. In our work, two main tasks are performed:
domain classification, ASC. The origin of each sample of data is known in this step,
meaning the data are annotated for the domain they come from. However, the ASC task
is performed only using the data from the source domain because the data from target

33

Figure 3.3. The generic sceheme used in GANs.

domain is considered to be non-annotated for acoustic scenes.

In addition to the MS and the C from previous step, we introduce two new neural networks
to complete adversarial adaptation scheme of our work: adapted model (MA) and domain
discriminator (D). Figure 3.4 depicts the structural implementation of this step. The solid
lines used in the illustration of D and MA denote that optimization is done only on these
two networks, while dashed lines used in the representation of C and MS is to show
that these two networks are used in the evaluation mode meaning their parameters are
not optimized during adaptation process. The architecture of MA is exactly the same
as the one used in MS . Additionally, the parameters of MA are initialized by the values
of parameters in MS . MS receives the samples of source domain as inputs, while the
input to MA is data from the both domains, i.e. source and target. Since data from
target domain is considered to be non-annotated, the output of MA only for the data from
the source domain is fed to C to do ASC. Moreover, the output of MA for data from the
target domain together with the output of MS is given as inputs to D to perform domain
classification task(Figure 3.4).

Acoustic
scene
labels

Domain
labels

+

Figure 3.4. The scheme used in the adversarial adaptation step. This is the main step of
our method where adapted model is adapted to data from the target domain.

The goal of this step is to learn a set of parameters for MA that enables it to pro-
duce invariant latent representations of the data from the source and target domains
in order to fool domain discriminator D which tries to distinguish between the domain
of latent representations. The input data from the target domain is defined as XT =

{XT
1 , X

T
1 , . . . , XT

NT
} where NT is the total number of samples from the target domain,

34

and this data is considered without acoustic scene labels. In addition, D performs a
binary classification as an auxiliary task in our method to classify the domains of data.
We use the ground truth labels for the domain of data, i.e. domain labels, and predicted
labels produced by D to minimize the error LD with respect to D, which is given as

LD = −
NS∑︂
n=1

(log(D(MS(X
S
n))) + log(1−D(MA(X

T
n)))). (3.2)

On the other hand, in order to impose similarity between the distribution of MA(X
T) and

MS(X
S), D and MA are optimized jointly. In this regard, the error LMA

given as

LMA
= −

NS∑︂
n=1

(log(D(MA(X
T
n))) + yS

n log(C(MA(X
S
n)))) (3.3)

is minimized with respect to MA.

In a nutshell, the adversarial adaptation targets to boost the performance of MA com-
pared to the results achieved by MS for the ASC task on the data from the target domain.

3.1.3 Testing Step

After the adversarial adaptation step, we need to evaluate the performance of MA for
unseen samples from target domain, and compare it to that of MS to find if there is any
achieved improvement over the results for target domain. To do so, we use the optimized
MA from the previous step as well as C which was optimized in the pre-training step. As
shown in Figure 3.5, both of the networks are illustrated using dashed line to emphasize
that they are used only in a forward pass, i.e. evaluation mode, to output predicted labels
for unseen data from the target domain. In the test phase, the evaluation criterion is
prediction accuracy: the number of correctly classified samples to the total number of
available samples [4].

Acoustic
scene
labels

Figure 3.5. The scheme used in the test step.

3.2 DNN Architectures

In this section, we introduce the architecture of the DNNs employed in this work. For
each network (i.e. model, classifier, and discriminator), we use two different sets of archi-
tecture, and each set has been utilized as a separate experiment. Figure 3.6 shows the
first set of used DNNs architecture. The architecture of the model and classifier in this set

35

has been adopted from the baseline system of DCASE challenge 2018, and the first task
of this challenge named acoustic scene classification [12]. We refer to this model as the
DCASE model. The original proposed model by DCASE challenge organizers includes
two convolutional layers with 32 and 64 filters respectively. Both layers employ a kernel
size of (7, 7) and are followed by batch normalization, ReLU activation, and max pooling
layers. The pooling layers use a kernel size of {(5, 5), (4, 100)}. This model has a slight
difference with the architecture that we use as the DCASE model in our work. Since
we use higher number of log-mel band energies in our input acoustic features compared
to that in the development of the DCASE baseline model, we had to alter the first max
pooling layer as well as the padding of the second convolutional layer in order to fully
match the shape of our model output with the one of the DCASE baseline model. More
specifically, we use the pooling layer with a kernel of size (8, 4). In addition, the sec-
ond convolutional layer utilizes a padding of size (3, 0). When we use this model, it is
employed together with a discriminator and a classifier. The discriminator first flattens
the output of the model, and uses one linear layer to classify samples as the source or
target domain. The classifier also uses two linear layers. The first layer is followed by a
ReLU non-linearity and a dropout of 30%. Finally, the output of the second linear layer is
followed by a softmax non-linearity to output the probability for each class.

Input

Source/Target
Model

Classifier

Class	LabelsDomain	Labels

Softmax

Fully	Connected

Flatten

Discriminator

Dropout

Batch	Normalization

CNN

Max	Pooling

ReLU

Softmax

Fully	Connected

Flatten

Dropout

ReLU

Fully	Connected

Dropout

Batch	Normalization

CNN

Max	Pooling

ReLU

Figure 3.6. The architecture of the DCASE model alongside with the used classifier and
discriminator when the DCASE model is employed in our work. The model can be used
as the source and adapted model dependent on the step of the method. The dashed
arrows are to only show that the output of the model goes as input to the classifier and
discriminator.

The second set of DNNs employed in our work is shown in Figure 3.7. The architecture
of the model and classifier are adopted from the winner of an ASC contest on Kaggle
platform [113] which is inspired by AlexNet [16]. We refer to the model as the Kaggle

36

model. This model is a CNN-based architecture with 5 convolutional layers. The layers
feature the kernels of size {(11, 11), (5, 5), (3, 3), (3, 3), (3, 3)} together with {48, 128,
192, 192, 128} as the number of used filters. In the first two convolutional layers, we
use the strides of size (2, 3) while the rest use the strides of size (1, 1). The first two
convolutional layers as well as the last one are CNN blocks in which each convolutional
layer is followed by ReLU as the non-linearity, max pooling layer, and a batch normal-
ization layer. However, the rest of convolutional layers are followed only by ReLU. In the
experiment that we use the Kaggle model, it is always employed together with a specific
discriminator and classifier as well. The discriminator is also a CNN-based architecture,
and it consists of three convolutional layers with a kernel of size (3, 3) and {64, 32, 16}
as the number of filters. All the layers are followed by ReLU as non-linearity, and a batch
normalization layer. Then, it uses a flatten layer to make a vector of latent representations
in order to input it to the final layer which is a fully connected layer to distinguish samples
coming from source or target. The classifier, on the other hand, first flattens the output
of the model. Then, it feeds this vector into two blocks of fully connected layers where
each layer is followed by a ReLU and dropout of 25%. The final layer is a fully connected
layer together with a Softmax non-linearity to predict the probability of each sample over
different target classes.

CNN,	ReLU

Batch	Normalization

Max	Pooling

CNN,	ReLU

Flatten

Dropout

ReLU

Fully	connected

Softmax

Fully	connected

Input

Source/Target
Model

Classifier

Class	Labels

Batch	Normalization

CNN,	ReLU

Domain	Labels

Batch	Normalization

CNN,	ReLU

Softmax

Fully	Connected

Flatten

Discriminator

Dropout

ReLU

Fully	connected

Batch	Normalization

CNN,	ReLU

Batch	Normalization

Max	Pooling

CNN,	ReLU

Batch	Normalization

Max	Pooling

CNN,	ReLU

CNN,	ReLU

Figure 3.7. The architecture of Kaggle model alongside with the used classifier and
discriminator when the Kaggle model is employed in our work. The model can be used
as the source and adapted model dependent on the step of the method. The dashed
arrows are to only show that the output of the model goes as the input to the classifier
and discriminator.

37

We choose two different architecture sets, i.e. DCASE and Kaggle models, in order to
show that the performance of the adaptation method is not tied to a specific network. In
other words, the adaptation method is model agnostic.

38

4 EVALUATION

This chapter introduces the used dataset in this work, and details the experimental se-
tups. Subsequently, it presents the achieved results by the adapted model, and compare
it with the results obtained by the source model.

4.1 Dataset

One of the advantages that detection and classification of acoustic scenes and events
(DCASE) challenge has brought to the audio community is the availability of large-scale
datasets in different classification (e.g. ASC), detection (e.g. SED), and audio tagging
tasks. The dataset used in this work has been first published in the DCASE challenge
for the ASC task, subtask B, in 2018 which is called TUT urban acoustic scenes 2018
mobile, development dataset [12]. We use only the development set of this dataset since
the evaluation set was not publicly published at the time of implementation of this work.
In addition, according to the rules of the challenge, the annotations of the evaluation set
cannot be published.

This dataset has been collected for ASC. More specifically, this dataset has been assem-
bled to simulate a scenario in which the collected data for the training set is recorded
with a different recording device than that used for the test set. The usage of different
recording devices introduces audio recording with different quality to the dataset. As a
result, This arises a mismatch condition which leads to the reduction of performance of
learning algorithms when optimized using audio samples from one recorder and evalu-
ated with audio samples recorded using devices other than the ones used in training set.
Therefore, it motivates to study the methods, e.g. domain adaptation, that bridge the gap
between the performance of the ASC systems for training and test sets.

As presented in details in Table 4.1, the development set of TUT urban acoustic scenes
2018 mobile dataset contains 10 different acoustic scenes from three different environ-
ments: indoor, outdoor, and transportation. The audio samples are recorded in different
locations inside 6 different European cities. The samples of this dataset are recorded
using three different devices. The main recording device, which accounts for the majority
of audio recordings in this dataset, comprised of a Zoom F8 audio recorder together with
an electret binaural microphone: Soundman OKM II Klassik/studio A3. To capture the
audio analogous to the auditory system of humans, the microphones are made similar to
headphones so they can be worn. The audio recorder uses 48 kHz sampling rate and

39

24-bit resolution. We refer to this recorder as device A in this work. In addition, the
development set of this dataset features two other recording devices which are handheld
consumer devices such as smartphones, namely Samsung Galaxy S7 and IPhone SE.
We are referred to them as device B and device C respectively.

Table 4.1. There are 10 acoustic scenes in TUT urban acoustic scenes 2018 mobile,
development dataset. The variety of these acoustic scenes includes indoor, outdoor, and
traveling while inside vehicle which is called transportation.

Categories Indoor Outdoor Transportation

Acoustic scenes
Airport

Metro station

Indoor shopping mall

Urban park

Public square

Pedestrian street

Street with medium level of traffic

Travelling by a bus

Travelling by a tram

Travelling by an underground metro

The audio recordings are provided in 10-second segments. The number of available
segments are 8640, 720, and 720 from device A, B, and C out of which each acoustic
scene accounts for 864, 72, and 72 segments from device A, B, and C respectively. In
total, this is equivalent to having 24, 2, and 2 hours of audio recorded using device A, B,
and C respectively.

The original development set is published by the organizers of the DCASE challenge
suggests a proposed training and test split. There are 6122, 540, and 540 segments from
device A, B, and C in training while the test set contains 2518, 180, and 180 segments
from device A, B, and C respectively. However, since the necessity of a validation set is
of great significance, in order to assure the validity of the training process as well as to
avoid overfitting, we partition the training split into new training and validation sets. We
also hold the proposed test split intact to use as the evaluation set for our work. Figure
4.1 illustrates the details of the partitioning setup used in this work.

2518

Training	
Set

Validation
Set

Test
Set

180

180

Device	A

Device	B

Device	C

5510

486

486

54

54

612

540

6122

540

Figure 4.1. The setup of training, validation, and test splits used in our work. The num-
bers present the number of 10-second segments for each split and recording device.

40

4.2 Experiments

In all experiments, we use the data recorded using device A as the source domain
data while the data recorded using device B and C are served as the target domain
data. In addition, we use 64 log Mel-band energies as acoustic features extracted us-
ing Hamming windows of size 2048 samples (equivalent to 46 ms), and the successive
windows are overlapped 50%. Acoustic feature extraction part is implemented using
Librosa package [22]. The amount of available data from the source domain (i.e. data
from device A) are much higher than the amount of data from the target domain (i.e. data
from device B and C), therefore, we oversampled the data from the target domain, ap-
proximately 5.6 times, to achieve the same amount of data as in the source domain for
the training process of the adaptation step.

The used DNNs in all experiments are trained using the cross entropy loss function and
Adam optimizer with the learning rate of 1e− 4. In the pre-training step, the size of mini-
batches includes 38 samples which are selected only from the source domain. In the
adaptation process, the number of samples in each minibatch is 16 out of which 10 are
selected from the source domain, while the other 6 are selected from the target domain
data: 3 samples are selected from each of B and C devices. In pre-training step, the
update of parameters using backpropagation of loss is done after each iteration, while
in the adaptation step and based on our observations during the training process, we
found that the best results are achieved by updating the model MA after each iteration
while updating the discriminator D after 10 iterations. The reason is that the discriminator
tends to converge very quickly and this leads to a gradient vanishing problem when up-
dating the parameters of the model MA. In addition, the model MA is updated using the
backpropagation of the sum of two losses calculated at the output of the Discriminator
D and the classifier C. Since the value of the two losses are not at the same scale, we
used a constant coefficient to bring the both values to the same scale. This is done by
multiplying the classification loss value by 10 before adding to the calculated loss at the
output of D. We stopped the optimization process after 350 epochs in the pre-training
and 300 epochs in the domain adaptation step.

The implementation of the system is done using Pytorch package [114]. In addition, all
the DNNs are trained using Tesla P100 GPUs on the Taito super cluster platform of CSC
– IT Center for Science Ltd.

4.3 Results

This section presents the result achieved by the proposed domain adaptation method in
this work. All the representative values in this section are calculated using prediction ac-
curacy as the evaluation criterion. Prediction accuracy measures the number of corrected
predictions samples to the total number of predictions. We report the results on the test
set of data from both source and target domains using the source and adapted model to

41

show that the method is being able to improve under mismatch conditions.

Figure 4.2 illustrates the results for the test data from the source domain using the source
and adapted models (i.e. MS and MA). In both experiments using Kaggle and DCASE
models, the results show that the adapted models (i.e. green color) perform the same
on the source domain data after adaptation. This means that regardless of adapting to
a new domain of data, adapted models do not forget the transferred knowledge from the
source models. This is the result of integrating the classifier C into the adaptation step.

Figure 4.2. The results of evaluation for Kaggle and DCASE models on the test set from
the source domain. Grey color shows the source models in both experiments, while the
green color represents the adapted ones.

Figure 4.3 demonstrates the improvements of the results on the test data from the target
domain using adapted model compared to the results achieved by the source model. In
the experiment using the Kaggle model, the source model shows 20.28% correct predic-
tions on the target domain, while the adapted model surpasses this results, and presents
the accuracy of 31.67%. Similarly, the experiment on the DCASE model gives the same
pattern of results where the source model shows an accuracy of 19.17%, and the adapted
model outperforms the source model by achieving the accuracy of 25.28%.

Figure 4.3. The results of evaluation for the Kaggle and DCASE models on the test data
from the target domain. Grey color shows the source models in both experiments, while
the green color represents the adapted ones.

To obtain a better understanding of how the mismatch conditions, caused by different

42

recording devices in the source and target domain, lead to the failure of a model in the
evaluation of unseen data from a new domain, we present the confusion matrices of the
source and adapted versions of the Kaggle model obtained in the evaluation of the test
data from the target domain. under ideal circumstances, we expect to see the brightest
colors to appear on the main diagonal of the confusion matrix. According to Figure 4.4,
the source model is unable of correct classification of most of the classes from the target
domain data (the left image). However, the partiality of the source model to only two of
the target classes, i.e. metro and metro stations, is diminished in the confusion matrix
of the adapted model (the right image) presenting a more diagonal representation of the
brighter colors.

(a) Confusion matrix for the source model (b) Confusion matrix for the adapted model

Figure 4.4. Confusion matrices of the source (a) and the adapted (b) versions of the
Kaggle model for the target domain. The values are normalized according to the amount
of examples in each class. Brighter colors denote higher values. The figure is adopted
from [115].

43

5 CONCLUSION

This thesis presented an unsupervised domain adaptation method using adversarial
training as a solution to the problem of mismatch recording devices for ASC. This method
employs an discriminator in an adversarial-based framework together with source and
adapted models to achieve an invariant representation for the data coming from source
and target domains. In addition, we presented two different architectures of DNNs in
order to show that the method is model agnostic. We have evaluated our method us-
ing TUT urban acoustic scenes 2018 mobile dataset, development dataset. This dataset
consists of samples recorded using different recording devices so that it creates mis-
match conditions. Our method not only shows an improvement of results for the data
from target domain by 11% and 6% on the adapted Kaggle and DCASE model respec-
tively, but also it is capable of retaining the same performance on data from the source
domain thanks to the employment of the pre-trained classifier to perform the ASC task
for the source domain data alongside adapting the two domains in the adversarial adap-
tation step. Therefore, the results indicate that our adversarial-based domain adaptation
method can be successfully adopted in order to address the mismatch conditions for the
ASC task. Last but not least, we also noticed that it is difficult for the adapted model to
converge in the adversarial adaptation step in our experiments. Therefore, we motivate
the usage of a different GAN loss in future research works in order to examine the stability
issue in the convergence of the adapted model in this step. As an example, One recent
approach which investigated this problem can be found in [116].

44

REFERENCES

[1] Goodfellow, I., Bengio, Y. and Courville, A. Deep Learning. MIT Press, 2016. URL:
http://www.deeplearningbook.org.

[2] Virtanen, T., Plumbley, M. D. and Ellis, D. Computational Analysis of Sound Scenes
and Events. Springer, 2018.

[3] Drossos, K., Floros, A., Giannakoulopoulos, A. and Kanellopoulos, N. Investigat-
ing the Impact of Sound Angular Position on the Listener Affective State. IEEE
Transactions on Affective Computing 6.1 (2015), 27–42.

[4] Mesaros, A., Heittola, T. and Virtanen, T. TUT Database for Acoustic Scene Clas-
sification and Sound Event Detection. 2016 24th European Signal Processing
Conference (EUSIPCO). IEEE. 2016, 1128–1132.

[5] Mantyjarvi, J., Huuskonen, P. and Himberg, J. Collaborative Context Determina-
tion to Support Mobile Terminal Applications. IEEE Wireless Communications 9.5
(Oct. 2002), 39–45. ISSN: 1558-0687. DOI: 10.1109/MWC.2002.1043852.

[6] Eronen, A. J., Peltonen, V. T., Tuomi, J. T., Klapuri, A. P., Fagerlund, S., Sorsa, T.,
Lorho, G. and Huopaniemi, J. Audio-based Context Recognition. IEEE Transac-
tions on Audio, Speech, and Language Processing 14.1 (2006), 321–329.

[7] Nogueira, W., Roma, G. and Herrera, P. Sound Scene Identification Based on
MFCC, Binaural Features and a Support Vector Machine Classifier. IEEE AASP
Challenge on Detection and Classification of Acoustic Scenes and Events (2013).

[8] Bisot, V., Serizel, R., Essid, S. and Richard, G. Supervised nonnegative matrix
factorization for acoustic scene classification. IEEE AASP Challenge on Detection
and Classification of Acoustic Scenes and Events (DCASE) (2016), 62–69.

[9] Yun, S., Kim, S., Moon, S., Cho, J. and Kim, T. Discriminative training of GMM pa-
rameters for audio scene classification and audio tagging. IEEE AASP Challenge
Detect. Classification Acoust. Scenes Events (2016).

[10] Sakashita, Y. and Aono, M. Acoustic Scene Classification by Ensemble of Spectro-
grams Based on Adaptive Temporal Divisions. Tech. rep. DCASE2018 Challenge,
Sept. 2018.

[11] Chen, H., Liu, Z., Liu, Z., Zhang, P. and Yan, Y. Integrating the Data Augmen-
tation Scheme with Various Classifiers for Acoustic Scene Modeling. Tech. rep.
DCASE2019 Challenge, June 2019.

[12] Mesaros, A., Heittola, T. and Virtanen, T. A Multi-device Dataset for Urban Acous-
tic Scene Classification. Proceedings of the Detection and Classification of Acous-
tic Scenes and Events 2018 Workshop (DCASE2018). Nov. 2018, 9–13. URL:
https://arxiv.org/abs/1807.09840.

[13] Quionero-Candela, J., Sugiyama, M., Schwaighofer, A. and Lawrence, N. D. Dataset
Shift in Machine Learning. The MIT Press, 2009. ISBN: 0262170051.

http://www.deeplearningbook.org
https://doi.org/10.1109/MWC.2002.1043852
https://arxiv.org/abs/1807.09840

45

[14] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F. and Vaughan, J. W.
A Theory of Learning from Different Domains. Machine Learning 79.1-2 (2010),
151–175.

[15] Heittola, T., Mesaros, A., Eronen, A. and Virtanen, T. Context-dependent Sound
Event Detection. EURASIP Journal on Audio, Speech, and Music Processing
2013.1 (2013), 1.

[16] Krizhevsky, A., Sutskever, I. and Hinton, G. E. ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural Information Processing Sys-
tems 25. Ed. by F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger. Curran
Associates, Inc., 2012, 1097–1105. URL: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-networks.pdf.

[17] Kehtarnavaz, N. CHAPTER 7 - Frequency Domain Processing. Digital Signal Pro-
cessing System Design (Second Edition). Ed. by N. Kehtarnavaz. Second Edition.
Burlington: Academic Press, 2008, 175–196. DOI: https://doi.org/10.1016/
B978-0-12-374490-6.00007-6.

[18] Oppenheim, A. V. and Schafer, R. W. Discrete-Time Signal Processing. 3rd. USA:
Prentice Hall Press, 2009. ISBN: 0131988425.

[19] Stankovic, L., Stankovic, S. and Dakovic, M. From the STFT to the Wigner Distri-
bution [Lecture Notes]. IEEE Signal Processing Magazine 31.3 (2014), 163–174.

[20] Stevens, S. S., Volkmann, J. and Newman, E. B. A Scale for the Measurement
of the Psychological Magnitude Pitch. The Journal of the Acoustical Society of
America 8.3 (1937), 185–190. URL: https://doi.org/10.1121/1.1915893.

[21] Gelfand, S. Essentials of Audiology (Fourth). New York: Thieme Medical Publish-
ers, Inc, 2016.

[22] McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E. and Nieto,
O. librosa: Audio and Music Signal Analysis in Python. Proceedings of the 14th
Python in Science Conference. Ed. by K. Huff and J. Bergstra. 2015, 18–24. DOI:
10.25080/Majora-7b98e3ed-003.

[23] Gin-Der Wu and Chin-Teng Lin. Word Boundary Detection With Mel-scale Fre-
quency Bank in Noisy Environment. IEEE Transactions on Speech and Audio
Processing 8.5 (2000), 541–554.

[24] Mitrović, D., Zeppelzauer, M. and Breiteneder, C. Features for Content-based Au-
dio Retrieval. Advances in computers. Vol. 78. Elsevier, 2010, 71–150.

[25] Molau, S., Pitz, M., Schluter, R. and Ney, H. Computing Mel-frequency Cepstral
Coefficients on the Power Spectrum. 2001 IEEE International Conference on Acous-
tics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221). Vol. 1.
IEEE. 2001, 73–76.

[26] Huang, X., Acero, A., Hon, H.-W. and Reddy, R. Spoken Language Processing:
A Guide to Theory, Algorithm, and System Development. 1st. USA: Prentice Hall
PTR, 2001. ISBN: 0130226165.

[27] Logan, B. et al. Mel Frequency Cepstral Coefficients for Music Modeling. Ismir.
Vol. 270. 2000, 1–11.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/https://doi.org/10.1016/B978-0-12-374490-6.00007-6
https://doi.org/https://doi.org/10.1016/B978-0-12-374490-6.00007-6
https://doi.org/10.1121/1.1915893
https://doi.org/10.25080/Majora-7b98e3ed-003

46

[28] Mitchell, T. M. Machine Learning. 1st ed. USA: McGraw-Hill, Inc., 1997. ISBN:
0070428077.

[29] Cakir, E. Deep Neural Networks for Sound Event Detection. Tampere University
Dissertations 12 (2019).

[30] Roma, G., Nogueira, W., Herrera, P. and Boronat, R. de. Recurrence Quantifica-
tion Analysis Features for Auditory Scene Classification. IEEE AASP Challenge
on Detection and Classification of Acoustic Scenes and Events 2 (2013).

[31] Zhao, W., Chellappa, R., Phillips, P. J. and Rosenfeld, A. Face Recognition: A
Literature Survey. ACM Comput. Surv. 35.4 (Dec. 2003), 399–458. URL: https:
//doi.org/10.1145/954339.954342.

[32] Chellappa, R., Sinha, P. and Phillips, P. J. Face recognition by Computers and
Humans. Computer 43.2 (2010), 46–55.

[33] Smith, C., McGuire, B., Huang, T. and Yang, G. The History of Artificial Intelli-
gence. University of Washington 27 (2006).

[34] McCulloch, W. S. and Pitts, W. A Logical Calculus of the Ideas Immanent in Ner-
vous Activity. The Bulletin of Mathematical Biophysics 5.4 (1943), 115–133. URL:
https://doi.org/10.1007/BF02478259.

[35] Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and
Organization in The Brain. Psychological Review (1958), 65–386.

[36] Caudill, M. Neural Networks Primer, Part I. AI Expert 2.12 (Dec. 1987), 46–52.
ISSN: 0888-3785.

[37] Gurney, K. An Introduction to Neural Networks. USA: Taylor & Francis, Inc., 1997.
ISBN: 1857286731.

[38] Bishop, C. M. Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006. ISBN: 0387310738.

[39] Glorot, X., Bordes, A. and Bengio, Y. Deep Sparse Rectifier Neural Networks.
Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. Ed. by G. Gordon, D. Dunson and M. Dudík. Vol. 15. Proceedings of
Machine Learning Research. Fort Lauderdale, FL, USA: PMLR, Nov. 2011, 315–
323. URL: http://proceedings.mlr.press/v15/glorot11a.html.

[40] Bridle, J. S. Training Stochastic Model Recognition Algorithms as Networks can
Lead to Maximum Mutual Information Estimation of Parameters. Advances in Neu-
ral Information Processing Systems 2. Ed. by D. S. Touretzky. Morgan-Kaufmann,
1990, 211–217. URL: http://papers.nips.cc/paper/195-training-stochastic-
model-recognition-algorithms-as-networks-can-lead-to-maximum-mutual-

information-estimation-of-parameters.pdf.
[41] He, K., Zhang, X., Ren, S. and Sun, J. Delving Deep into Rectifiers: Surpassing

Human-Level Performance on ImageNet Classification. Proceedings of the 2015
IEEE International Conference on Computer Vision (ICCV). ICCV ’15. USA: IEEE
Computer Society, 2015, 1026–1034. URL: https://doi.org/10.1109/ICCV.
2015.123.

https://doi.org/10.1145/954339.954342
https://doi.org/10.1145/954339.954342
https://doi.org/10.1007/BF02478259
http://proceedings.mlr.press/v15/glorot11a.html
http://papers.nips.cc/paper/195-training-stochastic-model-recognition-algorithms-as-networks-can-lead-to-maximum-mutual-information-estimation-of-parameters.pdf
http://papers.nips.cc/paper/195-training-stochastic-model-recognition-algorithms-as-networks-can-lead-to-maximum-mutual-information-estimation-of-parameters.pdf
http://papers.nips.cc/paper/195-training-stochastic-model-recognition-algorithms-as-networks-can-lead-to-maximum-mutual-information-estimation-of-parameters.pdf
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123

47

[42] Glorot, X. and Bengio, Y. Understanding the Difficulty of Training Deep Feedfor-
ward Neural Networks. Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. Ed. by Y. W. Teh and M. Titterington. Vol. 9.
Proceedings of Machine Learning Research. Chia Laguna Resort, Sardinia, Italy:
PMLR, 13–15 May 2010, 249–256. URL: http://proceedings.mlr.press/v9/
glorot10a.html.

[43] McClelland, J. L. and Rumelhart, D. E. Explorations in Parallel Distributed Pro-
cessing: A Handbook of Models, Programs, and Exercises. MIT press, 1989, pp.
130–131.

[44] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning Representations by
Back-propagating Errors. Nature 323.6088 (Oct. 1986), 533–536. DOI: 10.1038/
323533a0.

[45] Prechelt, L. Early Stopping — But When?: Neural Networks: Tricks of the Trade:
Second Edition. Ed. by G. Montavon, G. B. Orr and K.-R. Müller. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2012, 53–67. URL: https://doi.org/10.1007/
978-3-642-35289-8_5.

[46] Polyak, B. T. Some Methods of Speeding Up the Convergence of Iteration Meth-
ods. USSR Computational Mathematics and Mathematical Physics 4.5 (1964), 1–
17.

[47] Ruder, S. An Overview of Gradient Descent Optimization Algorithms. ArXiv preprint
arXiv:1609.04747 (2016).

[48] Kingma, D. P. and Ba, J. Adam: A Method for Stochastic Optimization. 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun.
2015. URL: http://arxiv.org/abs/1412.6980.

[49] Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a run-
ning average of its recent magnitude. COURSERA: Neural Networks for Machine
Learning 4.2 (2012), 26–31.

[50] Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S. and Bengio, Y.
Identifying and Attacking the Saddle Point Problem in High-dimensional Non-
convex Optimization. Advances in Neural Information Processing Systems. 2014,
2933–2941.

[51] Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Net-
works 61 (2015), 85–117. DOI: https://doi.org/10.1016/j.neunet.2014.09.
003.

[52] KELLEY, H. J. Gradient Theory of Optimal Flight Paths. ARS Journal 30.10 (1960),
947–954. URL: https://doi.org/10.2514/8.5282.

[53] Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2.1
(Jan. 2009), 1–127. URL: https://doi.org/10.1561/2200000006.

[54] Simonyan, K. and Zisserman, A. Very Deep Convolutional Networks for Large-
Scale Image Recognition. International Conference on Learning Representations.
2015.

http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/978-3-642-35289-8_5
https://doi.org/10.1007/978-3-642-35289-8_5
http://arxiv.org/abs/1412.6980
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.2514/8.5282
https://doi.org/10.1561/2200000006

48

[55] Mohri, M., Rostamizadeh, A. and Talwalkar, A. Foundations of Machine Learning.
Mit Press, 2018, pp. 1–8. ISBN: 9780262018258.

[56] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.
Dropout: A Simple Way to Prevent Neural Networks from Overfitting. Journal of
Machine Learning Research 15.56 (2014), 1929–1958. URL: http://jmlr.org/
papers/v15/srivastava14a.html.

[57] Ioffe, S. and Szegedy, C. Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. Proceedings of the 32nd International
Conference on Machine Learning. Ed. by F. Bach and D. Blei. Vol. 37. Proceed-
ings of Machine Learning Research. Lille, France: PMLR, July 2015, 448–456.
URL: http://proceedings.mlr.press/v37/ioffe15.html.

[58] Bishop, C. M. et al. Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[59] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE 86.11 (1998), 2278–2324.

[60] Jansson, P. A. Neural Networks: An Overview. Analytical Chemistry 63.6 (1991),
357A–362A.

[61] Minsky, M. and Papert, S. Perceptrons: An Introduction to Computational Geom-
etry. Cambridge, MA, USA: MIT Press, 1969.

[62] Hornik, K., Stinchcombe, M. and White, H. Multilayer Feedforward Networks Are
Universal Approximators. Neural Netw. 2.5 (July 1989), 359–366. ISSN: 0893-
6080.

[63] LeCun, Y. and Bengio, Y. Convolutional Networks for Images, Speech, and Time
Series. The Handbook of Brain Theory and Neural Networks. Cambridge, MA,
USA: MIT Press, 1998, 255–258. ISBN: 0262511029.

[64] Yann Le Cun, Bottou, L. and Bengio, Y. Reading Checks with Multilayer Graph
Transformer Networks. 1997 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 1. Apr. 1997, 151–154 vol.1. DOI: 10.1109/ICASSP.
1997.599580.

[65] Dumoulin, V. and Visin, F. A guide to Convolution Arithmetic for Deep Learning.
ArXiv e-prints (Mar. 2016). eprint: 1603.07285.

[66] Zhou, Y. T. and Chellappa, R. Computation of Optical Flow Using a Neural Net-
work. IEEE 1988 International Conference on Neural Networks (1988), 71–78
vol.2.

[67] Nagi, J., Ducatelle, F., Di Caro, G. A., Cireşan, D., Meier, U., Giusti, A., Nagi, F.,
Schmidhuber, J. and Gambardella, L. M. Max-pooling convolutional neural net-
works for vision-based hand gesture recognition. 2011 IEEE International Confer-
ence on Signal and Image Processing Applications (ICSIPA). 2011, 342–347.

[68] Sainath, T., Vinyals, O., Senior, A. and Sak, H. Convolutional, Long Short-Term
Memory, Fully Connected Deep Neural Networks. ICASSP. 2015.

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1109/ICASSP.1997.599580
https://doi.org/10.1109/ICASSP.1997.599580
1603.07285

49

[69] Pan, S. J. and Yang, Q. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering 22.10 (Oct. 2010), 1345–1359. ISSN: 2326-
3865. DOI: 10.1109/TKDE.2009.191.

[70] Shimodaira, H. Improving Predictive Inference under Covariate Shift by Weight-
ing the Log-likelihood Function. Journal of Statistical Planning and Inference 90.2
(2000), 227–244. ISSN: 0378-3758. DOI: https://doi.org/10.1016/S0378-
3758(00)00115-4.

[71] Yamazaki, K., Kawanabe, M., Watanabe, S., Sugiyama, M. and Müller, K.-R. Asymp-
totic Bayesian Generalization Error When Training and Test Distributions Are Dif-
ferent. Proceedings of the 24th International Conference on Machine Learning.
ICML ’07. Corvalis, Oregon, USA: Association for Computing Machinery, 2007,
1079–1086. URL: https://doi.org/10.1145/1273496.1273632.

[72] Bickel, S., Brückner, M. and Scheffer, T. Discriminative Learning for Differing Train-
ing and Test Distributions. Proceedings of the 24th International Conference on
Machine Learning. ICML ’07. Corvalis, Oregon, USA: Association for Computing
Machinery, 2007, 81–88. URL: https://doi.org/10.1145/1273496.1273507.

[73] Moreno-Torres, J. G., Raeder, T., Alaiz-RodrıéGuez, R., Chawla, N. V. and Her-
rera, F. A Unifying View on Dataset Shift in Classification. Pattern Recogn. 45.1
(Jan. 2012), 521–530. URL: https://doi.org/10.1016/j.patcog.2011.06.019.

[74] Alaiz-Rodrıéguez, R. and Japkowicz, N. Assessing the Impact of Changing En-
vironments on Classifier Performance. Conference of the Canadian Society for
Computational Studies of Intelligence. Springer. 2008, 13–24.

[75] Cieslak, D. A. and Chawla, N. V. A Framework for Monitoring Classifiers’ Perfor-
mance: When and Why Failure Occurs?: Knowledge and Information Systems
18.1 (2009), 83–108.

[76] Webb, G. I. and Ting, K. M. On the Application of ROC Analysis to Predict Clas-
sification Performance under Varying Class Distributions. Machine learning 58.1
(2005), 25–32.

[77] Tasche, D. Fisher Consistency for Prior Probability Shift. The Journal of Machine
Learning Research 18.1 (2017), 3338–3369.

[78] Schlimmer, J. C. and Granger, R. H. Beyond Incremental Processing: Tracking
Concept Drift. AAAI. 1986, 502–507.

[79] Gama, J., Žliobaitundefined, I., Bifet, A., Pechenizkiy, M. and Bouchachia, A. A
Survey on Concept Drift Adaptation. ACM Comput. Surv. 46.4 (Mar. 2014). URL:
https://doi.org/10.1145/2523813.

[80] Zadrozny, B. Learning and Evaluating Classifiers under Sample Selection Bias.
Proceedings of the Twenty-First International Conference on Machine Learning.
ICML ’04. Banff, Alberta, Canada: Association for Computing Machinery, 2004,
114. URL: https://doi.org/10.1145/1015330.1015425.

[81] Ditzler, G., Roveri, M., Alippi, C. and Polikar, R. Learning in Nonstationary Envi-
ronments: A Survey. IEEE Computational Intelligence Magazine 10.4 (2015), 12–
25.

https://doi.org/10.1109/TKDE.2009.191
https://doi.org/https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/https://doi.org/10.1016/S0378-3758(00)00115-4
https://doi.org/10.1145/1273496.1273632
https://doi.org/10.1145/1273496.1273507
https://doi.org/10.1016/j.patcog.2011.06.019
https://doi.org/10.1145/2523813
https://doi.org/10.1145/1015330.1015425

50

[82] Minku, L. L. Transfer Learning in Non-stationary Environments. Learning from
Data Streams in Evolving Environments. Springer, 2019, 13–37.

[83] Zhao, H., Combes, R. T. d., Zhang, K. and Gordon, G. J. On Learning Invariant
Representation for Domain Adaptation. ArXiv preprint arXiv:1901.09453 (2019).

[84] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F.,
March, M. and Lempitsky, V. Domain-Adversarial Training of Neural Networks.
Journal of Machine Learning Research 17.59 (2016), 1–35. URL: http://jmlr.
org/papers/v17/15-239.html.

[85] Gong, B., Shi, Y., Sha, F. and Grauman, K. Geodesic Flow Kernel for Unsuper-
vised Domain Adaptation. 2012 IEEE Conference on Computer Vision and Pattern
Recognition. June 2012, 2066–2073. DOI: 10.1109/CVPR.2012.6247911.

[86] Donahue, J., Hoffman, J., Rodner, E., Saenko, K. and Darrell, T. Semi-supervised
Domain Adaptation with Instance Constraints. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2013.

[87] Yao, T., Pan, Y., Ngo, C.-W., Li, H. and Mei, T. Semi-Supervised Domain Adap-
tation With Subspace Learning for Visual Recognition. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). June 2015.

[88] Hoffman, J., Mohri, M. and Zhang, N. Algorithms and Theory for Multiple-source
Adaptation. Advances in Neural Information Processing Systems. 2018, 8246–
8256.

[89] Mansour, Y., Mohri, M. and Rostamizadeh, A. Domain Adaptation With Multiple
Sources. Advances in Neural Information Processing Systems. 2009, 1041–1048.

[90] Wang, M. and Deng, W. Deep Visual Domain Adaptation: A Survey. Neurocom-
puting 312 (2018), 135–153. URL: http://www.sciencedirect.com/science/
article/pii/S0925231218306684.

[91] Zhang, L. Transfer Adaptation Learning: A Decade Survey. ArXiv abs/1903.04687
(2019).

[92] Csurka, G. A Comprehensive Survey on Domain Adaptation for Visual Applica-
tions. Ed. by G. Csurka. Cham: Springer International Publishing, 2017, 1–35.
URL: https://doi.org/10.1007/978-3-319-58347-1_1.

[93] Wilson, G. and Cook, D. J. A Survey of Unsupervised Deep Domain Adaptation.
ArXiv preprint arXiv:1812.02849 (2018).

[94] Gebru, T., Hoffman, J. and Fei-Fei, L. Fine-Grained Recognition in the Wild: A
Multi-task Domain Adaptation Approach. 2017 IEEE International Conference on
Computer Vision (ICCV) (2017), 1358–1367.

[95] Borgwardt, K. M., Gretton, A., Rasch, M. J., Kriegel, H. P., Schölkopf, B. and
Smola, A. J. Integrating Structured Biological Data by Kernel Maximum Mean
Discrepancy. Proc. of Intelligent Systems in Molecular Biology (ISMB). Fortaleza,
Brazil, 2006, e49–e57.

[96] Saito, K., Ushiku, Y. and Harada, T. Asymmetric Tri-Training for Unsupervised Do-
main Adaptation. Proceedings of the 34th International Conference on Machine

http://jmlr.org/papers/v17/15-239.html
http://jmlr.org/papers/v17/15-239.html
https://doi.org/10.1109/CVPR.2012.6247911
http://www.sciencedirect.com/science/article/pii/S0925231218306684
http://www.sciencedirect.com/science/article/pii/S0925231218306684
https://doi.org/10.1007/978-3-319-58347-1_1

51

Learning - Volume 70. ICML’17. Sydney, NSW, Australia: JMLR.org, 2017, 2988–
2997.

[97] Tzeng, E., Hoffman, J., Zhang, N., Saenko, K. and Darrell, T. Deep Domain Con-
fusion: Maximizing for Domain Invariance. CoRR abs/1412.3474 (2014). arXiv:
1412.3474. URL: http://arxiv.org/abs/1412.3474.

[98] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A. and Bengio, Y. Generative Adversarial Nets. Advances in Neural In-
formation Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence and K. Q. Weinberger. Curran Associates, Inc., 2014, 2672–2680.
URL: http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf.

[99] Tzeng, E., Hoffman, J., Saenko, K. and Darrell, T. Adversarial Discriminative Do-
main Adaptation. 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). July 2017, 2962–2971. DOI: 10.1109/CVPR.2017.316.

[100] Liu, M.-Y. and Tuzel, O. Coupled Generative Adversarial Networks. Advances in
Neural Information Processing Systems 29. Ed. by D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon and R. Garnett. Curran Associates, Inc., 2016, 469–477. URL:
http://papers.nips.cc/paper/6544- coupled- generative- adversarial-

networks.pdf.
[101] Zhu, J.-Y., Park, T., Isola, P. and Efros, A. A. Unpaired Image-to-Image Transla-

tion using Cycle-Consistent Adversarial Networks. Computer Vision (ICCV), 2017
IEEE International Conference on. 2017.

[102] Kim, T., Cha, M., Kim, H., Lee, J. K. and Kim, J. Learning to Discover Cross-
Domain Relations with Generative Adversarial Networks. Proceedings of the 34th
International Conference on Machine Learning. Ed. by D. Precup and Y. W. Teh.
Vol. 70. Proceedings of Machine Learning Research. International Convention
Centre, Sydney, Australia: PMLR, June 2017, 1857–1865.

[103] Bengio, Y., Lamblin, P., Popovici, D. and Larochelle, H. Greedy Layer-wise Training
of Deep Networks. Advances in Neural Information Processing Systems. 2007,
153–160.

[104] Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. Extracting and Com-
posing Robust Features with Denoising Autoencoders. Proceedings of the 25th
International Conference on Machine Learning. 2008, 1096–1103.

[105] Glorot, X., Bordes, A. and Bengio, Y. Domain Adaptation for Large-Scale Senti-
ment Classification: A Deep Learning Approach. Proceedings of the 28th Inter-
national Conference on International Conference on Machine Learning. ICML’11.
Bellevue, Washington, USA: Omnipress, 2011, 513–520. ISBN: 9781450306195.

[106] Chen, M., Xu, Z., Weinberger, K. Q. and Sha, F. Marginalized Denoising Autoen-
coders for Domain Adaptation. Proceedings of the 29th International Conference
on Machine Learning. ICML’12. Edinburgh, Scotland: Omnipress, 2012, 1627–
1634. ISBN: 9781450312851.

[107] Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D. and Erhan, D. Domain
Separation Networks. Advances in Neural Information Processing Systems 29.

https://arxiv.org/abs/1412.3474
http://arxiv.org/abs/1412.3474
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://doi.org/10.1109/CVPR.2017.316
http://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks.pdf
http://papers.nips.cc/paper/6544-coupled-generative-adversarial-networks.pdf

52

Ed. by D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon and R. Garnett. Curran
Associates, Inc., 2016, 343–351. URL: http://papers.nips.cc/paper/6254-
domain-separation-networks.pdf.

[108] Dalvi, N., Domingos, P., Mausam, Sanghai, S. and Verma, D. Adversarial Clas-
sification. Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’04. Seattle, WA, USA: Associa-
tion for Computing Machinery, 2004, 99–108. ISBN: 1581138881. DOI: 10.1145/
1014052.1014066. URL: https://doi.org/10.1145/1014052.1014066.

[109] Biggio, B. and Roli, F. Wild Patterns: Ten Years After the Rise of Adversarial
Machine Learning. Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security. CCS ’18. Toronto, Canada: Association for
Computing Machinery, 2018, 2154–2156. ISBN: 9781450356930. DOI: 10.1145/
3243734.3264418. URL: https://doi.org/10.1145/3243734.3264418.

[110] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. and
Fergus, R. Intriguing Properties of Neural Networks. International Conference on
Learning Representations. 2014. URL: http://arxiv.org/abs/1312.6199.

[111] Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T. and Van Gool, L. Pose Guided
Person Image Generation. Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan and R. Garnett. Curran Associates, Inc., 2017, 406–416. URL: http:
//papers.nips.cc/paper/6644-pose-guided-person-image-generation.pdf.

[112] Radford, A., Metz, L. and Chintala, S. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks. 4th International Confer-
ence on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings. Ed. by Y. Bengio and Y. LeCun. 2016. URL:
http://arxiv.org/abs/1511.06434.

[113] Gharib, S., Derrar, H., Niizumi, D., Senttula, T., Tommola, J., Heittola, T., Virtanen,
T. and Huttunen, H. ACOUSTIC SCENE CLASSIFICATION: A COMPETITION
REVIEW. 2018 IEEE 28th International Workshop on Machine Learning for Signal
Processing (MLSP). Sept. 2018, 1–6. DOI: 10.1109/MLSP.2018.8517000.

[114] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and Chin-
tala, S. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox and R. Garnett. Curran Asso-
ciates, Inc., 2019, 8024–8035. URL: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.
[115] Gharib, S., Drossos, K., Cakir, E., Serdyuk, D. and Virtanen, T. Unsupervised

Adversarial Domain Adaptation for Acoustic Scene Classification. Proceedings of

http://papers.nips.cc/paper/6254-domain-separation-networks.pdf
http://papers.nips.cc/paper/6254-domain-separation-networks.pdf
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/1014052.1014066
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.1145/3243734.3264418
https://doi.org/10.1145/3243734.3264418
http://arxiv.org/abs/1312.6199
http://papers.nips.cc/paper/6644-pose-guided-person-image-generation.pdf
http://papers.nips.cc/paper/6644-pose-guided-person-image-generation.pdf
http://arxiv.org/abs/1511.06434
https://doi.org/10.1109/MLSP.2018.8517000
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

53

the Detection and Classification of Acoustic Scenes and Events 2018 Workshop
(DCASE2018). Nov. 2018, 138–142.

[116] Drossos, K., Magron, P. and Virtanen, T. Unsupervised Adversarial Domain Adap-
tation Based on the Wasserstein Distance for Acoustic Scene Classification. 2019
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA). IEEE. 2019, 259–263.

	Introduction
	Background
	Acoustic Scene Classification
	Audio Signal Processing
	Machine Learning for Acoustic Scene Classification

	Artificial Neural Networks
	Training Process of ANNs
	Deep Neural Networks
	Feedforward Neural Networks
	Convolutional Neural Networks

	Domain Discrepancy
	Dataset Shift
	Domain Adaptation Methods

	Method
	System Overview
	Pre-training Step
	Adversarial Adaptation Step
	Testing Step

	DNN Architectures

	Evaluation
	Dataset
	Experiments
	Results

	Conclusion
	References

