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Epilepsy is one of the most common neurological diseases worldwide. It affects around 50 million 
people worldwide. Therefore, it is believed to be one of the most common neurological diseases 
globally. It is defined as a state of recurrent seizures, which induce, in many cases, involuntary 
and abnormal movements . These movements may involve a part of the body (partial seizures) 
or the entire body parts (generalized seizures). This motor manifestation during seizures 
represents a clinical marker of seizure identification and has a significant role in evaluating epilepy 
in addition to the treatment impact on the progression of the disease.The current method of 
epileptic seizures analysis are qualitatively evaluated by professionals with visual inspection. 
Threrefore it is a highly subjective method and susceptible to human errors and bias.  
In this thesis, an automatic tool (i.e. pose estimation) was used to obtain 3D kinematic analysis 
of epileptic seizures from stereo video-recordings. The data samples and the automatic tool used 
in this thesis are provided by Neuroeventlabs Oy. Seizure events belong to a patient with Lennox–
Gastaut syndrome (LGS). They consist of four nocturnal seizure events recorded during sleep at 
home. 3D kinematic analysis of epileptic seizure events was conducted for intensity assessment. 
To provide a qualitative assessment, visual assessment was done on the seizure events as well 
as a seizure-free event during REM sleep to assess their severity on a simple rating scale having 
categorical values (i.e. weighted score) from (0-9).  
The main goal of the thesis is to conduct a comparative experiment between the human visual 
assessment (as the gold standard in the field) and the automatic quantitative approach in a con-
trol-free environment for to demonstrate whether it is possible to use the current computer vision 
and deep learning techniques for conducting motion analysis during seizures.  
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1. INTRODUCTION 

Epilepsy is one of the most common neurological diseases. It affects 50 million people 

worldwide [1]. Almost a tenth of the entire population have at least one epileptic seizure 

during their life span and a third of those develop epilepsy [2]. According to the WHO 

organization, epilepsy is responsible for 1% of the global burden of disease, putting it 

head-to-head with lung cancer in men and breast cancer in women [3]. Epilepsy can 

affect people of all ages and is characterized by a variety of manifestations and causes 

[2]. It has negative impacts on the patients socially, psychologically and physically. 

Therefore, precise diagnosis and regular monitoring of differential epilepsy are neces-

sary to improve the living conditions of the patients and their relatives. 

Epilepsy and seizures have been observed since the rise of history. People with epi-

lepsy were thought to be possessed or seized by supernatural powers during seizures, 

hence the term “seizure”. Epilepsy is currently defined as “a state of recurrent sponta-

neous seizures” [4], since epileptic seizures are considered the main symptoms of epi-

lepsy [5]. However, the difference between epilepsy and seizures can sometimes be a 

source of confusion, because they are not the same; An individual that has one seizure 

does not necessarily mean he/she has epilepsy, since the seizure might have been 

provoked for certain reasons (i.e. non-epileptic seizure) and will not occur again [4]. 

There are different types of epilepsies and each type has its own symptomatology that 

manifests as a special characteristic movement during seizures.  Many epileptic sei-

zures demonstrate motor phenomena, which are abnormal uncoordinated movements 

such as muscle twitches, myoclonic jerks, and muscle stiffening [5], [6]. Analyzing 

those movements can provide significant information that help properly diagnosing and 

assessing the disease prognosis in addition to the treatment efficacy [7].  Seizure semi-

ology is defined as analysis of the clinical manifestations that present during seizures 

and are related to the activation of the symptomatogenic zone [8]. Thus, seizure semi-

ology analysis is necessary in the evaluation of epilepsy patients. It can provide im-

portant information concerning the localizing and lateralizing on the anatomical areas in 

the brain that are responsible for seizure initiation. For instance, dystonic posturing of 

one hand is found to be related to contralateral seizure origin in temporal lobe epilepsy 

[9], while automatisms that are induced in a single side of the body can be assigned to 

ipsilateral origin [10]. The current clinical practice of epilepsy is based significantly on 
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seizure analysis by visual inspection [11]. Movement analyses of seizure-induced 

movements are conducted by visually checking the video recordings in a qualitative 

way using rating scales, which can be sometimes prone to bias [12]. 

Computer vision is a field that develops methods for computers to acquire human-like 

understanding from images and videos recordings. It involves acquiring, processing 

and analyzing visual data to help understand and automate tasks that human visual 

system can do [13]. Recent advancements in deep learning techniques have enabled 

computer vision to achieve remarkable success and better accuracy [14]. Deep learn-

ing is a branch of the machine learning techniques that utilizes multiple layers to pro-

gressively extract features from the input data [14]. Computer vision has recently be-

come more dependent on deep learning techniques because they have shown better 

accuracy, outperforming traditional approaches in many tasks, specially the problem of 

human pose estimation [15]. They have been used to improve the precision of a single 

and multi-human pose estimation by enhancing its accuracy.  

In this thesis, an automatic tool (i.e. pose estimation) was used to obtain 3D kinematic 

analysis of epileptic seizures from stereo video-recordings. The data samples and the 

tool are provided by Neuroeventlabs Oy. Seizure events belong to a patient with Len-

nox–Gastaut syndrome (LGS). They consist of four nocturnal seizure events recorded 

during sleep at home. Quantitative analysis of epileptic seizures  was done for seizure 

intensity assessment. Visual assessment was done on the seizure events as well as a 

seizure-free event during REM sleep to assess their severity on a simple rating scale 

having categorical values (i.e. weighted score) from (0-9).  The main goal of the thesis 

is to conduct a comparative experiment between the human visual assessment (as the 

gold standard in the field) and the automatic quantitative approach in a control-free en-

vironment for to demonstrate whether it is possible to use the current computer vision 

and deep learning techniques for conducting motion analyses during seizures. 

This thesis consists of the following: Chapter 2 consists of three main subchapters: pre-

vious relevant work, biological background and technical background. The first part 

presents a literature review of the methods used for analyzing seizures’ severity. Elab-

orating some of basic principles in neurobiology could give good insight about epilepsy 

and seizures. In order to understand basic mechanisms about how seizures can be ini-

tiated and the development of the state of epilepsy. The second part describes some of 

the fundamental aspects of neurons, action potentials and synaptic transmission. Addi-

tionally, essential terminology about epilepsy and seizures and basic mechanisms un-

derlying them are reviewed.  Finally, the third part discusses the technical background 
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of computer vision techniques and pose estimation that are used in the thesis. It elabo-

rates details in image formation and stereo vision as well as background of the pose 

estimation tool, used in the work. Chapter 3 entails a description of the used approach. 

Chapter 4 presents the results and discussion. Chapter 5 presents the conclusions, 

challenges, and future work.      
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2. THEORITICAL BACKGROUND 

2.1 Relevant work 

The traditional evaluation of the impact of surgical and medical treatments on the pro-

gression of epilepsy has used seizure counts (frequency) as index of efficacy. It has 

been noticed that relying solely on numbers of seizures is not sufficient when measur-

ing the effect of treatment and quantifying the seizure severity. Furthermore, antiepilep-

tic drugs (AED) may cause seizures to become less severe and shorter, which is con-

sidered a marked improvement in treating the disease, even though the number of sei-

zures is still the same, which is an important detail that could be lost if seizure severity 

is not considered [16].  

Early attempts have been made to develop clinical rating scales to help clinicians as-

sess seizure severity qualitatively [7], [16]–[24]. The traditional method followed in 

these protocols is a completion of multiple questionnaires. Part of them are completed 

by the epileptic patient or by his/her family, while others are completed by the medical 

staff [11]. For example, the Liverpool Seizure Severity Scale was used to measure pa-

tients’ subjective impression of changes in the severity of their seizures. It originally 

comprised 16 items, describing two main factors: the first factor is the patient’s ability to 

control his/her seizures, which is influenced by their ability to predict the seizure onset. 

The second factor is the subjective perception of the severity of seizures (including dis-

turbance in consciousness, duration and severity of postictal confusion, falls as results 

of seizures, headache after seizures, sleepiness after seizures, tongue biting, inconti-

nence, etc.) [11]. Each of the 16 items was scored on a (1 to 4) point scale. Later, addi-

tional items were added to make the scale more comprehensive such as: seizures in 

sleep only, timing during the day, and seizure clustering vs random seizures [25]. An-

other example is the Chalfont Seizure Severity Scale, which is observer and patient-

based scale, was designed to measure the intensity of seizures, for different seizure 

types. The questionnaire is completed by patients with epilepsy and their close rela-

tives who observe their seizures. Scoring considers impaired consciousness, automa-

tism, dropping off objects, falling to the ground, incontinence, having an injury, time to 

return to normal, convulsions and duration of the seizure  [16]. Although rating scales 

are valid measures, this method of evaluation is subjective to the expert’s opinion. It is 

difficult to make comparative studies between different measurements made by 

different specialized observers or made by the same observer but in different times.  
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Systems combining video-audio-monitoring with electroencephalography (EEG) are 

considered the most accurate tools for the diagnosis of seizures and differential epi-

lepsy [26], [27]. They become reliable tools due to their ability to provide simultaneous 

behavioral and EEG monitoring [28]. In other sense, the success of diagnosing epi-

lepsy depends especially upon evaluating the relevant EEG data , which led to the use 

of Stereoelectroencephalography (SEEG) (Figure 1).   

 

 A recorded temporal seizure using SEEG. The seizure shows 
as a series of spikes. The electrical discharge is synchronized in 3 ar-
eas: (A) amygdala, (B) anterior hippocampus and (C) posterior hippo-
campus [29]. 

 

Since then, seizure semiology acquired from video-based monitoring beside its rele-

vant electrical events on EEG have become a cornerstone in epilepsy evaluation and 

seizure understanding [5]. This modern approach allows a detailed look at epileptic sei-

zures to investigate new and deeper features for further analyses, which is particularly 

useful in the presurgical assessment [1]. Such advancements have dramatically im-

proved our knowledge of epilepsies and epileptic seizure semiology. However, factors 

such as: short recording times, artificial environments (all V-EEG measurements are 

conducted in Epilepsy Monitoring Units (EMUs)), uncomfortable conditions due to 

wearing electrodes for long times and high cost effect have limited its use [6]. Moreo-

ver, seizure are analyzed qualitatively by specialists’ subjective opinions which makes 

the inter-observer reliability poor for most semiological characteristics [5]. 
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Most seizures present abnormal, but characteristic, movements. Due to its importance, 

researchers have made several attempts to assess seizures that can be characterized 

by motor phenomena. These methods are mainly classified to: video-based methods 

and noncamera approaches [1].  

Noncamera approaches involve using accelerometers (ACMs), gyroscopes [30], mag-

netometers and other sensors to quantify and classify motion among different epilepsy 

types [1], [11], [26], [31]–[34].  For example, Accelerometers can be attached to arms 

or legs to detect changes in velocity and direction during seizures. 

 

 SmartWatch (left). Motion detection and quantification in 3D dur-
ing tonic–clonic seizure using SmartWatch (right) [33]. 

 

 The system used for recording signals consists mainly of a tri-axial motion/accelerom-

eter sensor, a processor unit, and a battery. One of these contributions is a commercial 

product called SmartWatch (Smart-Monitor.com) (Figure 2), which is used as a shake 

detector. When a seizure occurs, the watch sends a wireless signal to electronic device 

such as: a computer, or smart phone. The signal contains the duration of the move-

ments, time, date of the event, and the motion intensity data in 3D, which can be visu-

alised graphically (Figure 2).  

Another example, the work in [34] present visual analysis of signals coming from 3D 

ACMs attached to patients arms to detect epileptic seizures (Figure 3).  

Those 3D accelerometers measure inertial acceleration induced by movements as well 

as the acceleration by gravity (dynamic and static acceleration). The main challenge for 

ACM characterization system is to detect seizures from non-seizure movements [26]. 
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Some researchers used magnetometers for detection and quantification of motor sei-

zures. The magnetometer is a device that generally measures magnetism (i.e. 

strength, direction, or the relative change of a magnetic field at a certain location). 

 

 Examples of a myoclonic seizure that turns to a tonic–clonic sei-
zure. The signal is detected using 3D ACM sensors attached to four 

body extremities [34]. 

 

 It measures the inclination of a body by using a 3D magnetometer to track 3D changes 

in orientation [26], [35]. Some attempts go for the multimodal approach by combining 

magnetic sensors to accelerometers in a measurement system referred to as inertial 

and magnetic sensors (IMS) [36]. In this work [37], three modules, each of them is con-

taining a 3D magnetometer and a 3D ACM and were attached in both wrists and in the 

head and of patients. The system was able to recognize tonic, clonic, hypermotor sei-

zures, and also non-movement events [37]. Although these systems are promising, in-

expensive and their low power consumption enables them to be used in ambulatory 

monitoring, they need consistent maintenance such as calibration and batteries. In ad-

dition, they are susceptible to dislocations during measurements and always the at-

tached devices lead to discomfort to the patients for long term monitoring.  

The problem of human motion analysis during seizures using video-based monitoring 

has been active in the research field of epilepsy for almost 15 years. Several works 

have attempted to prove that vision-based human motion recognition systems could 

provide promising possibilities in the field of epilepsy, where seizures often demon-

strate abnormal motor behavior. Automated and semi-automated approaches can help 
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providing objective, quantitative information about of a patient’s kinematics during sei-

zures, which can help specialists to diagnose epilepsy accurately. Hence, customizing 

appropriate treatment. All contributions in this specific research domain (i.e. vision-

based systems for movement quantification and analyses of epileptic seizures) can be 

categorized into two main groups: 2D and 3D approaches. Each approach used 

marker-based and marker-free systems [38]. Marker-based methods use sen-

sors/markers such as infrared reflective materials attached to the keypoints in the hu-

man body to track motion trajectories and velocity. Conversely, marker-free ap-

proaches use computer vision techniques to calculate the key points positions over 

time [38]. 

Li at his work [39] aimed at conducting analysis of motion trajectories for the human 

body parts using 2D video recordings by a CCD camera. A system of 22 landmark po-

sitions defining the whole body parts was used. Reflective infrared material markers 

are attached to these landmarks and motion tracking is estimated [40]. The feature ex-

tracted is the motion trajectory in two dimensions (Figure 4). Motion trajectory is de-

fined as the path taken by a moving object as a function of time.    

Following this work, several studies have attempted to interpret signs from limbs during 

seizures such as [6], [10]. For instance, this work  [6] used a 2D color-based video sys-

tem to extract features such as displacement and oscillation. 

 

  The estimated motion trajectories of 22 markers attached on 
the human body. The upper graph (a) shows their relevant motion tra-
jectories versus time in x dimension. (b) the lower graph shows their 

relevant motion trajectories versus time in y dimension [40]. 

 

 Although these studies show ambitious results, they depend on manual intervention by 

the user to define the region of interest (ROI). Additionally, the used reflectors/markers 

are sources of discomfort to the patient, especially in the long term monitoring, and 
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susceptible to instabilities due to the dislocation of the them during severe motor sei-

zures. In addition, the features are extracted in 2D and the depth information is lost.  

Latest technological developments in 3D computer vision tracking have made it possi-

ble to transition towards 3D systems. To the best of our knowledge, there are only two 

reported works: [27], [41].  The first work is a marker-based system. It uses a 3D mo-

tion capture system for seizure quantification, consisting of 4 infrared motion-tracking 

SVCams and a set of markers is attached to the keypoints of a patient [41]. The sec-

ond work is a semi-automatic markerless system [42].  

 

It presents a new low-cost system called NeuroKinect. It adopts the popular Microsoft 

Kinect system, which is used initially for gaming applications, to quantify seizures in 3D 

space. This system incorporates RGB-D cameras (color and depth) with the aid of a 3D 

tracking algorithm based on Horn-Schunk optical flow method [27].  

 

  Motion tracking in 3D using NeuroKinect system.  The skeleton 
estimation has not been completely accurate due to misdetection of 

the left arm [27]. 

 

Different metrics are computed in 3D such as motion displacement, velocity, accelera-

tion, jerk, and covered distance. Although this seems promising, the ROI tracking can 

be sometimes inaccurate due to many reasons such as limitations in the used cameras 

and difficult body poses during seizures with respect to the camera (Figure 5) [1]. Addi-

tionally, such systems are still conducted in a full control environment because they are 

based on Video-EEG monitoring systems that are used in hospitals. Moreover, the sys-

tem is semi-automatic, meaning that the observer should intervene to assign the region 

of interests (ROI) that need to be tracked [27]. 
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2.2 Biological background 

2.2.1 Neurons 

To understand the neurobiology of seizures, it is important to look closely at the con-

trols that are exploited by the nervous system to keep balance between inhibition and 

excitation mechanisms. In fact, they entail intricate network of different levels ranging 

from: ions and ion channels, to neurons and synapses, and finally the large neural net-

works.  

The nervous tissue is composed of neurons and glia cells (neuroglia). Neurons play the 

fundamental role that makes the nervous system able to perform the computations and 

communications, while neuroglia mostly serve as supporting cells. Neurons or nerve 

cells are the basis of the nervous system; carrying electrical signals (impulses) that 

hold communication information about sensations of stimuli, motor responses to these 

stimuli and inducing cognition in the brain. Though neurons differ from each other 

structurally, they have common features such as: soma (cell body) and processes (See 

Figure 7). The cell body contains the nucleus besides other organelles like the other 

cells in the body. The major difference is it lacks centrioles. What makes neurons spe-

cial is that they have many extensions rising from the soma called processes. Pro-

cesses that transmit impulses towards the cell body are called dendrites, while those 

which carry electrical messages from the cell body to other cells are called axons. A 

neuron can have multiple number of dendrites but only one axon [42]. The axon, 

emerging from the soma through a special region called axon hillock, is covered along 

its length with white and fatty materials referred to as myelin sheaths. Myelin sheaths 

are separated by gaps called nodes of Ranvier (See Figure 7). Myelin is formed by a 

special type of glia cells called Oligodendrocytes. This Myelin helps protect and insu-

late the neurons besides increasing the transmission rate of the nerve signals. The 

axon forms at its end hundreds to thousands axon terminals. An axon terminal contains 

hundreds of tiny vesicles containing neurotransmitters. Each of the axon terminals are 

separated from the other neuron’s dendrite by a gap called a synaptic cleft. The func-

tional junctions that permit the neuron to transmit nerve signals to other neurons are 

called synapses [43].  

Neurons can be structurally classified based on number of processes, which includes 

both dendrites and axons, into three categories: unipolar, bipolar and multipolar neu-

rons. Unipolar neurons have only one process including the axon on one end and the 
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dendrite in the other end. They always act as sensory neurons where the dendrite is re-

ceiving the sensory information from the stimulus and the axon is transmitting this sen-

sory information to the CNS.  

Second type is the bipolar neurons, and this type has two processes emerging from the 

cell body: the dendrite and an axon. This type is found in the olfactory epithelium and 

the retina [43]. The third type is the multipolar neurons and those have one axon and 

two or more dendrites. They are the most common type of neurons (See Figure 6). 

 

 

 Neuron classification by structure: Unipolar neuron has one pro-
cess including the dendrite and the axon, bipolar neuron has two pro-
cesses emerging from the soma and multipolar neuron has more than 

two processes [43] P.514 

 

2.2.2 Actions potentials 

The functions of the nervous system depend substantially on the functions of the neu-

rons. And to understand how the nervous system can sense, integrate and respond to 

stimuli, it is necessary to understand how neurons can generate and communicate 

nerve signals. It is believed that the action potential is the basis of these processes.  

A neuron is inactive in the resting state. In this state, the neuron is polarized, meaning 

that there are slightly a smaller number of positive ions inside the cell than outside. 

During this state, potassium (K+) ions are found in bigger numbers inside the cell, 

whereas sodium (Na+) ions are found in bigger numbers outside the cell. 
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When a stimulus excites the neuron, it changes the permeability of local patches in the 

plasma membrane, which in turn, opens the way to sodium ions to diffuse inside the 

cell changing its polarity until inside becomes more positive than outside, an event 

called depolarization, and this electrical state is called graded potential. 

 

 Major parts of a multipolar neuron from the central nervous 
system [43]  

If the stimulus is strong enough to surpass the threshold, the neuron is completely acti-

vated, and an electrical signal is produced and transmitted to the next neuron. 

 

 The sodium-potassium pumps [42] 

 

 This signal is called action potential (nerve impulse) or spike [43]. After that, the mem-

brane permeability to sodium ions changes and becomes impermeable, leading to 

blocking sodium ions from entering the cell and becoming permeable the potassium 

ions which diffuse rapidly outside the cell into the interstitial fluid until the polarity is re-

stored again and this even is called repolarization. The repolarization phase goes be-

yond the resting potential reaching the hyperpolarization phase.  
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Eventually, after hyperpolarization, sodium-potassium pumps are activated to restore 

the initial concentrations, by ejecting sodium ions and bringing in potassium ions.  

These pumps use Adenosine triphosphate (ATP) in this process [43] (See Figure 8, 

Figure 9). 

 

 

 A diagram of the voltage measured across the cell membrane 
as versus time, an action potential starts with the depolarization 

phase, followed by the repolarization phase which decreases below 
the resting potential (i.e. the hyperpolarization phase), and eventually 

the transmembrane potential returns to its resting state [43]. 

2.2.3 Synaptic transmission 

There are many types of synapses in the nervous system. However, they all have com-

mon characteristics as follows [43]: 

 presynaptic element 

 postsynaptic element 

 neurotransmitter  

 synaptic cleft 

 receptor proteins 

 neurotransmitter re-uptake or elimination 

 

When an action potential reaches the axon terminal ends, it stimulates voltage-gated 

calcium channels (Ca+2) there to open. The (Ca+2) ion concentration increases which 

helps the tiny vesicles containing neurotransmitters merge with the presynaptic mem-

brane. This in turn releases the neurotransmitters into the gap between the two neu-

rons called a synaptic cleft. Those neurotransmitters bind to specific receptors in the 
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membrane of the target neuron (postsynaptic membrane). If the postsynaptic potential 

is strong enough, it will cause a graded potential in this neuron. If the summation of the 

total postsynaptic potentials at the dendrites of this neuron surpasses a certain thresh-

old, an initiated action potential will be produced in the receiving neuron and the whole 

process repeats again. 

 

 The synapse is a junction that connects between two neurons. 
When action potential reaches the axon terminal, it stimulates Ca2+ 
ions to enter the bulb which causes the fusion of vesicles and the re-

lease of neurotransmitters through the synaptic cleft, then they bind to 
their type-specific receptors in the postsynaptic membrane causing 

the postsynaptic potentials. Finally the neurotransmitters are removed 
either  by enzymatic degradation, glial reuptake or neuronal reuptake 

[43], P.535. 

 

 The released neurotransmitters are soon removed from the synaptic clef either enzy-

matic degradation, glial reuptake or neuronal reuptake [43].  A postsynaptic potential 

(PSP) is defined as the graded voltage potential in the dendrites of the target neuron 

which is receiving action potentials from other neurons. Postsynaptic potentials can be 

either excitatory or inhibitory potentials. Excitatory potentials cause depolarization in a 

postsynaptic potential (EPSP). While inhibitory potentials cause hyperpolarization in a 

postsynaptic potential (IPSP) [43]. These PSP potentials will be summated (temporally 

or spatially or both) in the membrane and the net result will determine whether an ac-

tion potential is initiated if the membrane potential reaches the threshold.   
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2.2.4 Neurotransmitter systems 

 Neurotransmitters, as previously mentioned, are the substances that are released by 

the presynaptic neuron’s end terminal at a synapse and subsequently bind to their spe-

cific postsynaptic receptors in the target cell (or cells) to induce specific response. This 

target can be another neural cell or organs such as: glands and muscles. There are 

also groups that refer to the neurotransmitters, and inside the groups are specific sys-

tems of neurotransmitters. 

The first group is the cholinergic system. This system is based on acetylcholine. It is in-

volved in the regulation of attention and higher cognitive processing [44] as well as 

memory [44]. it includes, for instance, the Neuromuscular junction (NMJ). They are 

found in the autonomic nervous system, and throughout the brain [43]. It has two types 

of receptors: nicotinic and muscarinic receptors.  

Another example is amino acids. It includes glutamate (Glu), GABA (gamma-aminobu-

tyric acid), and glycine (Gly). Their chemical structure has an amino group and a car-

boxyl group. Each amino acid neurotransmitter is part of its own system: Glutamate is 

part of the glutamatergic system, GABA is part of the GABAergic system, and glycine 

(Gly) is part in the glycinergic system. These amino acids are removed from the syn-

apse by re-uptake by a pump in the cell plasma membrane of the presynaptic neuron, 

which removes the amino acid from the synaptic cleft to be recycled and repackaged in 

their vesicles, for future use [43].  

Another example is the biogenic amine. These neurotransmitters are made of amino 

acids. The difference between them and the previous amino acids neurotransmitters is 

that they do not have carboxyl groups such as Serotonin. Other biogenic amines, such 

as dopamine, epinephrine, and norepinephrine, are made from tyrosine. For instance, 

the dopaminergic system has dopamine and dopamine receptors.  

A note worth considering is that the receptor proteins determine the effect of the neuro-

transmitter totally. If there is no receptor protein in the postsynaptic element, the neuro-

transmitter will have no effect. Protein receptors also decide the depolarization and re-

polarization effect. For instance, several variants of the muscarinic receptor when they 

bind to acetylcholine, they can have depolarization or hyperpolarization effects accord-

ingly [43]. Glutamate is considered the main excitatory neurotransmitter in the brain be-

cause the Glu receptors have depolarization effect on the postsynaptic cells. Conse-

quently, it plays an important role in the initiation and spread of seizure activity in addi-

tion to epileptogenesis [45]. Glycine and GABA are considered inhibitory amino acids, 
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because their receptors play inhibitory role in the hyperpolarization of postsynaptic 

cells. This is important to consider when designing drugs for epilepsy.  

2.2.5 Epilepsy Neurobiology of seizures 

Epilepsy is a very complex neurological disorder [4]. It is not a specific disease, nor 

even a single certain syndrome, but rather a wide set of complexes that arise from di-

verse pathologic processes of any number of disordered brain functions that them-

selves might be secondary of another wide variety of pathologic processes [46].  It is 

defined by the International League Against Epilepsy (ILAE) and the International Bu-

reau for Epilepsy (IBE) as: “a disorder of the brain characterized by an enduring predis-

position to generate epileptic seizures and by the neurobiologic, cognitive, psychologi-

cal, and social consequences of this condition. The definition of epilepsy requires the 

occurrence of at least one epileptic seizure.” [47].  

Some epilepsies show mixed seizure types such as Lennox-Gastaut Syndrome (LGS) 

in which tonic seizure and myoclonic jerks are the major components [48], [49]. Pa-

tients with this type of epilepsy typically have extremely frequent seizures. Those sei-

zures can take the form of tonic, tonic-clonic, myoclonic, atypical absences [48].  

There are diverse mechanisms that can induce seizures. The fact that they are multiple 

is logical given that the different ways the nervous system normally use to control the 

firing mechanisms. The nervous system has controls that prevent neurons from exces-

sive discharging, and also it has controls that facilitate neuronal action potential dis-

charges so that the nervous system could function flawlessly. Normally, there is bal-

ance between both types of mechanisms. The main principle of seizures is the disrup-

tion in the balance between excitation and inhibition mechanisms. Disturbing inhibition 

mechanisms and stimulating excitation mechanisms could lead to seizures and in con-

trast, promoting inhibition mechanisms and disturbing excitation mechanisms can con-

trol seizures. 

On the cellular and the subcellular levels, there are many factors that can disturb this 

balance. As previously discussed in section 2.2.2, one of the ways to control the excita-

bility is maintaining certain concentrations of the ionic ingredients. For example, in nor-

mal conditions, potassium (K+) ions are found in bigger numbers inside the cell, 

whereas sodium (Na+) ions are found in bigger numbers outside the cell. This leads to 

a net transmembrane potential = -70 mV (Figure 9). If this balance is perturbed (i.e. Po-

tassium ions concentration is increased in the extracellular space), this can lead to a 

vicious cycle of excessive discharges which induce seizures [50]. Sodium-potassium 
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pumps have the major responsibility to restore ion concentrations to initial state after 

the action potential. Abnormalities in theses pumps could raise the possibility to induce 

seizures [51].  Glia cells have also important role in controlling ion concentrations and 

maintaining normal transmembrane potentials. They play important role in regulating 

the synaptic transmission. Any disruption to those cells could lead to seizures [52].  So-

dium channels and potassium channels play a significant role in regulating action po-

tentials (see section 2.2.2). Defects in sodium channels for instance, can decrease the 

threshold at which a neuron produces action potentials. Therefore, malfunctioning in 

these channels can suggest mechanisms of seizures. It has been shown that genetic 

mutations in some genes which are responsible for regulating the subunits of voltage-

dependent sodium channel have impact on seizure initiation [53].  Synaptic transmis-

sion has been shown to play important role in maintaining the balance between excita-

tion and inhibition and thus, defects in every component in the synaptic transmission 

system could lead to seizures [4]. 

It is important to notice that excessive discharge in neurons does not alone cause sei-

zures. Synchronization in the networks which involve those neurons is pivotal in induc-

ing seizures [4]. There are multiple factors that can cause synchronization which is not 

found (i.e. synchronization between neurons) in normal neuronal activity. For instance, 

research has shown that glutamatergic interconnections mechanisms can lead to sei-

zures. Since gap junctions provide low resistance current between the coupled neu-

rons, defects in gap functions can also facilitate synchronicity between the discharged 

neurons [54]. Since the brain with epilepsy is structurally different from a normal brain, 

it has also been shown that the altered brain of epileptic patients is susceptible to syn-

chronizations more than a normal healthy brain [4]. 

2.2.6 Epileptic seizures and epileptic seizure types 

Epileptic seizures represent the major symptomatology of epileptic patients. Hence, the 

aim of any treatment for epilepsy is to control them. They can be characterized by sev-

eral symptoms. The proper identification of these symptoms serves well the improve-

ment of seizure syndromes classification. In addition, seizure semiology (i.e. types of 

seizures) can help distinction between epileptic seizures and non-epileptic seizures [5]. 

It is useful to consider some definitions that relate to seizures before diving in epileptic 

seizure types. The word “seizure” comes from the Greek language meaning to take 

hold [47]. A seizure is defined as a period of abnormal excitations in nerve cells that 

happen synchronously. It typically takes seconds to several minutes and can be pro-

longed in special cases [4].  
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The word “semiology” refers to the branch of linguistics that is concerned with signs 

and symptoms [55]. Seizure semiology is defined as “the manifestation of the activation 

of the symptomatogenic zone that might indicate that it is a result of ictal spread from a 

more distant epileptogenic zone”. In other sense, seizures initiated from different epi-

leptogenic zones can activate the same zone. Additionally, seizure arising from the 

same epileptogenic zone can activate different symptomatogenic zones, which in turn, 

produce different seizure semiologies [8].  

An epileptogenic lesion is defined as an area of damaged tissue in the brain that in-

duces epileptic seizures [56]. The lesion itself might not contain active neural tissues 

[46].  Epilepsy may arise from diverse brain lesions—for example, head injuries and 

brain tumors [56].  

The epileptogenic zone is defined as the area located adjacent to the lesion and sub-

stantial for seizure genesis and removing it is generally considered essential for im-

proving seizure control [57]. 

The time period during the seizure is called the ictus or ictal period. The time period 

which occurs immediately after a seizure is the postictal period. The intervals between 

seizures are the interictal periods [58]. Focal seizures (also called partial seizures and 

localized seizures) begin in one area of the brain, they can be partial or complex sei-

zures [58]. The crucial difference between simple and complex focal seizures is that 

consciousness is disturbed in the complex seizures but not in the simple seizures [58]. 

Four main categories are involved in the ictal phenomena of the seizure in general. 

They are: motor sphere, consciousness sphere, sensorial sphere and autonomic 

sphere [5]. These spheres are involved in most of the seizures simultaneously [5]. Sei-

zure semiology can be categorized into auras, autonomic seizures, dialeptic seizures, 

motor seizures, special seizures and paroxysmal events [5]. In this thesis we focus on 

the seizures that manifest motor behavior following the classification mentioned in this 

work [5]. Motor seizures are divided into two main categories: simplex and complex 

motor seizures.  

Simple motor seizures are simple movements. They can be divided into: tonic seizures, 

tonic–clonic seizures, myoclonic seizures, clonic seizures, versive seizures, epileptic 

spasms.  

Myoclonic seizures consist of irregular shock-like movements. They occur in a non-

rhythmical way. They often are brief jerks (small duration). There can show in both par-

tial and generalized seizures. In partial seizures, jerks affect one side. In generalized 

seizures, jerk movements affect shoulders, and arms [5].  Lennox–Gastaut Syndrome 
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(LGS) also shows more often generalized myoclonic seizures [59]. The primary motor 

cortex is the area involved in inducing these seizures [5]. 

Tonic seizures are mainly characterized by muscle stiffening. In normal humans, the 

muscle tone is the muscle normal tension at rest. In tonic seizures, the tone increases 

greatly, and it takes 3 seconds in average. Tonic seizures can affect the whole body, 

arms and legs. They often show contralaterally producing asymmetric posture [5]. Gen-

eralized tonic seizures involving disturbance in awareness  are commonly involved  in 

Lennox–Gastaut syndrome [59]. Motor cortical areas in the brain are most involved in 

inducing these type of seizures [5].  

Clonic seizures are short, rhythmical and repeated jerks of different muscle groups. 

They affect the whole body or parts such as hands, legs and the face. The primary mo-

tor cortex epileptic activation is the main driver of these seizures. Clonic seizures can 

be unilateral seizures, which are present in the focal epilepsy. They are also present in 

frontal lobe epilepsy in the early stage of the seizure evolution [5].  

Epileptic spasms are relatively age specific epileptic seizures that may occur in the pe-

riod between 3 to 12 months age. They involve sudden flexions, extensions or mixed 

flexion-extension of truncal  and proximal muscles and last  between 1-2 seconds 

(longer than myoclonic jerks) [60].  

Versive seizures are mainly characterized by the movement of the eyes and the head 

to one direction. They can involve clonic jerks as well [5]. 

Tonic-clonic seizures are mainly characterized by generalized tonic phase followed by 

clonic phase. These seizures evolve as follows: they start occurring with a typical tonic 

pose. This phase takes several seconds and then evolves into a the clonic phase [5]. 

The clonic phase is myoclonic jerks in the joints. The whole seizure might take 1 to 2 

minutes [5]. These types of seizures involve always impairment in consciousness in the 

onset of the tonic phase. Generalized tonic-clonic seizures are also followed, in most of 

cases by a prolonged postictal coma [5]. 

Hypermotor seizures Hypermotor seizures are complex movements such as the in-

volvement of the body axis or proximal limb segments (such as bicycling or kicking) 

and result in large amplitudes that appear violent when they are performed rapidly [5], 

[61]. They last for less than a minute and found frequently in patients have epilepsies 

affecting the supplementary sensorimotor area and the mesial frontal such as the 

frontal lobe epilepsy [5], [61]. 
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Automotor seizures are complex motor seizures in which oral and manual automatisms 

are manifested. These automatisms include the hands and feet while the oral automa-

tisms include the mouth and tongue. Typical examples are: chewing, lips smacking, 

swallowing and hand automatisms. They are most related to temporal lobe epilepsy.  

Gelastic seizures are seizures mainly characterized with “laughing’’ [62], hence the 

name. They are commonly found in patients with hypothalamic hamartoma [62]. 

In summary, motor seizures consist of simple seizures (involve simple movements) and 

complex seizures (involve complex patterns of movements).  Simple seizures are dif-

ferent types such as: tonic seizures, tonic–clonic seizures, myoclonic seizures, clonic 

seizures, versive seizures and epileptic spasms. While complex motor seizures are:  

hypermotor seizures, automotor seizures and gelastic seizures.  
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2.3 Technical background  

2.3.1 Image formation and perspective transform 

The process of image formation in a camera consists of a projection of an object in the 

3-dimensional world on a 2-dimensional plane. Therefore, the depth information is lost, 

and there is no means to tell if this object is big and distant or small and close. This 

transformation from 3D to 2D dimensions is called perspective projection. In computer 

vision, it is common to use the central projection model shown in Figure 11. In this 

model, the rays are coming out of the origin of the camera frame {C}, the object’s im-

age is projected onto the camera plane in front of the camera frame (non-inverted im-

age). For a point P= (X, Y, Z) and its projection p= (𝓍, 𝓎) from the (Figure 11) we can 

deduce the following [63]: 

  

 
𝓍 = 𝑓

𝑋

𝑍
  , 𝓎 = 𝑓

𝑌

𝑍
 

(1) 

 Where  𝑓  is the focal length of the camera.                                                                                                 

 

 A diagram of the central projection model [63] P. 252. 

 In a digital camera has the image plane described by a grid with dimensions Width × 

Height photosites that directly correspond to pixels. A pixel coordinate can be repre-

sented as a 2-element vector (𝓊, 𝓋) 

 𝑢 =
𝑥

𝜌𝑤
+ 𝑥𝑝 , 𝑣 =

𝑦

𝜌ℎ
+ 𝑦𝑝 (2) 

Where 𝜌𝑤, 𝜌ℎ are width and height of each pixel respectively. (𝑥𝑝, 𝑦𝑝) is the coordinates 

of the principal point (the principal point is the point where the optical axis of the cam-

era intersects with the image plane) [63]. 
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2.3.2 Stereo vision 

Stereo vision is the acquisition of 3D information from 2D digital images taken by a pair 

of cameras. By comparing information about some scene from two known points, the 

3D information can be estimated by investigating the corresponding positions of objects 

in the two perspectives. This approach is similar to the biological process of the human 

eyes (stereopsis) [64].  

A simple model of stereo imaging is shown in (Figure 12) is called epipolar geometry. 

At any point in the scene, visible to the pair of cameras 𝑐0  and 𝑐1 , will be projected to 

a pair of image points on the two image planes, called a conjugate pair. The displace-

ment between the positions of the two corresponding points (i.e. conjugate pair) is 

called the disparity d. The whole plane comprising the point p and the two camera 

centers 𝑐0 and 𝑐1 is called the epipolar plane [64]. The line 𝑒1𝑥1 , which is the intersec-

tion between the image plane of the camera 𝑐1  and the epipolar plane, is called epipo-

lar line. The distance between the two camera centers is called baseline b.  

 

 

 A simple model of Epipolar geometry: (a) a projection of point 
P on the left camera plane as a point 𝑥0 and the corresponding epipo-

lar line on the right camera plane. (b) Epipolar lines and epipolar 
plane [64] P.471 

In stereo matching, the relative position of the two cameras and the calibration data for 

the cameras can be known. Therefore, a projected point on one of the image planes 

must have its correspondent in the relative epipolar line of the other image plane, and 

this constraint is called epipolar constraint.  Although this dramatically reduces the 

possibility of matching the correspondent points from a whole two-dimensional image 

plane to a one-dimensional epipolar line, there is still large number of potential corre-

spondences.   
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One way of making the matching process easier, is to rectify the images taken by the 

pair imagers. Rectification means ”applying a pair of two-dimensional projective trans-

forms, to a  pair of images of a known epipolar geometry so that epipolar lines in the 

original images map to horizontally aligned lines in the transformed images” [65]. 

The resulting rectified geometry helps hugely simplifying the problem of stereo match-

ing, and leads to a simplified inverse relationship between depths 𝑍 and disparities d as 

follows: 

 
𝑑 = 𝑓

𝑏

𝑍
 

(3) 

  𝑥′ = 𝑥 + 𝑑 , 𝑦′ = 𝑦 (4) 

 
𝑋 = (𝑥 + 𝑥𝑝)

𝑍

𝑓
, 𝑌 = (𝑦 + 𝑦𝑝)

𝑍

𝑓
 

 (5) 

 

Where 𝑑 is the disparity, 𝑓 is the focal length of the camera (measured in pixels), 𝑏 is 

the baseline between the pair imagers, the point (𝑥, 𝑦) is the original projected point in 

the first image plane (in pixels), the point (𝑥′, 𝑦′) is the estimated correspondent point in 

the second image plane (in pixels) [64], (𝑥𝑝, 𝑦𝑝) is the principal point and (𝑋, 𝑌, 𝑍) is the 

coordinates of the point in the real word . The method of determining the depth based 

on the disparity is called triangulation. After rectification, the similarities of pixels at 

corresponding locations can be computed and stored as disparity space image (DSI) 

for further processing.  

The main problem now is how to detect the mutual pairs in stereo images. This is 

called the correspondence problem. To solve the correspondence problem, two main 

approaches are used: sparse and dense stereo. Sparse stereo algorithms are feature- 

based algorithms, they recover the 3D world coordinates (𝑋, 𝑌, 𝑍)  for each correspond-

ing point pair. On the other hand, dense stereo recovers the 3D world coordinates 

(𝑋, 𝑌, 𝑍) for every pixel in the image [63]. Discussing each approach in detail is out of 

this thesis scope. However, basics underlying the stereo matching will be present.  

Although there are a large set of stereo algorithms, they all follow common steps. 

These steps are mentioned as follows [64]: 

 Matching cost computation 

 Cost aggregation 

 Disparity computation and optimization 
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 Disparity refinement  

 

All stereo matching algorithms compute a cost criterion to quantitively measure the de-

gree of matching between two pixels. In the matching cost computation stage, it is de-

termined whether the values of two pixels in the two images are related to the same 

point in the scene. The matching cost is computed at each pixel for all considered dis-

parities [66]. In case rectification has been done, the matching cost can be calculated 

horizontally in one dimension.  

Cost aggregation: in this stage the matching costs over local regions are aggregated 

[67]. The disparity map is initialized using one of the local or global algorithms. Then 

the map is refined in the disparity refinement stage. 

Stereo matching algorithms consists of global and local algorithms.  The local approach 

applies restrictions over a small number of pixels around the pixel under study. Con-

versely, the global approach makes smoothness assumptions about the scene’s depth 

of field, and then solve a global optimization problem [64]. 
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2.3.3 Pose Estimation 

In the field of Computer Vision, human pose estimation is the task of estimating the lo-

cation of human skeleton, typically consisting of joints, arms, hands knees, shoulders, 

elbows and ankles, in an image or a video.  

This topic has become of a great importance due to its enormous applications in vari-

ous fields. Many works have been done to tackle the problem of human pose estima-

tion. They can be divided into three main categories:  generative, discriminative and hy-

brid models.  

 

 An example of how body parts are partitioned into smaller 
parts using the pictorial structure method [68]. 

 

Generative approaches (also referred to as model-based and top-down approaches) 

are mainly based on building a model of human body using annotated images. This 

model inherits certain degrees of freedom (parameters) which can model different con-

figurations of the human body the way it is viewed by the camera.  Then, the generated 

model is compared to the given image. The best match is inferred through continuous 

update of minimizing the error between the instance model and the image.  

Generative methods can be divided into holistic models and part-based methods. Ho-

listic methods model the human body as a whole while part-based methods model the 

human body through its body parts. One of the most important contributions that is con-

sidered part-based methods is the models based on the pictorial structures [68]. It is 

worth considering that pictorial structures were first introduced in 1973 as a way to rep-

resent objects in images taken by cameras by identifying the parts of the object in the 

image and their connections with their neighbors [69]. Pictorial structures’ main idea is 

to describe the human body as a set of rigid templates, each of them describes certain 
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part in the human body taking the form of tree structures and undirected graphical 

models (Figure 13).  

Discriminative models (model-free methods) are contrary to the generative methods 

in a sense that they start defining the human pose from the image and learn a direct 

mapping function between the image features and the human pose. The learning pro-

cedure is done in a supervised manner using annotate data and the mapping phase 

can be either by a classification or regression problem. Examples of regression-based 

methods can be found in this work [70] and [70]. Classification-based methods learn 

mapping function by maximizing the score of the classification [71].   

Hybrid models combine between both approaches. For example, the likelihood which 

some object is present at a given location and appearing in a specific appearance can 

be acquired using a generative approach, and then refined by a discriminative ap-

proach using a learning process. An example of this approach is the work proposed by 

Salzmann and Urtasun [72]. In this work, a combination of ideas from the two ap-

proaches are utilized to introduce distance constraints to the human pose estimated by 

the discriminative methods.  

Recent advancements in deep learning have revolutionized the field of computer vi-

sion. The incorporation of the latest and efficient state-of- art computing techniques 

such as Convolutional Neural Networks (CNNs)  in solving computer vision problems 

was natural, human pose was certainly one of these problems. Human pose estimation 

using deep learning algorithms can be categorized under discriminative approaches, 

since they learn a feature representation to directly infer the body pose joints. Although, 

researchers have attempted to distinguish between discriminative methods and deep 

learning approaches due to the significant impact of the latter in the field.  

The pose estimation tool used in this work is based on Cascaded Pyramid Network 

(CPN) [15]. It was developed to estimate multiple human poses. Generally, there are 

two main approaches for multiple human pose estimation: top-down and bottom-up ap-

proaches. Bottom-up models aim at directly estimating the keypoints in the image, and 

then attribute them to their full poses. One example that follows this approach is 

DeepCut [73]. It deals with the problem of distinguishing different human poses in an 

image as an Integer Linear Program (ILP) problem and partition part detection into per-

son clusters. The final estimation of poses is obtained by combining person clusters 

with labeled body parts. DeeperCut [74] is the improved version of DeepCut and it uti-

lizes deeper ResNet [75] which consists of tens or even hundreds of stacked Residual 

Modules. The OpenPose [76] uses part affinity fields (PAFs) to map the relationship 
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between different keypoints and then combine them into full human poses. Another ex-

ample is [77], where the problem is solved by producing score maps and associative 

embedding to assign different keypoints to their relevant human bodies in the image. In 

contrast, top-down approaches aim at locating and cropping all the persons in the im-

age first in bounding boxes, then applying pose estimation techniques to solve the sin-

gle pose estimation problem on each of the cropped persons [78] [79] [80]. This ap-

proach (i.e. top-down approach) consists of two parts: a human detector and a single 

pose estimator. The human detector is used to locate different humans in an image 

while a single person pose estimation is used to locate keypoints of each human body. 

We review in more detail some of the previous attempts to solve the two problems indi-

vidually. 

 

 Output samples of the pose estimation. It constructs heatmaps 
to define features of the keypoints. (Images from left to right are: the 
estimated final pose, a heatmap of neck, a heatmap of left elbow, a 

heatmap of left wrist and a heatmap of right knee) [81]. 

 

Single pose estimation: one of the first contributions in solving the single pose esti-

mation problem using CNNs is made by Toshev by introducing DeepPose [82]. Deep-

Pose is simply a deep network using a cascade of CNNs of pose regressors. In other 

sense, this approach is based on solving a regression problem, and the learning pro-

cess is done through a cascade of CNNs. Following that, Tompson attempts to solve 

the problem by replacing the regression problem with the prediction of heatmaps using 

Convolutional Networks (ConvNets) and graphical models and graphical models [83]. A 

heatmap is a 2D map in which each position represents a score. This score represents 

the likelihood of the spatial location of a certain keypoint (Figure 14). In fact, each 

heatmap represents a gaussian distribution of the possibility that a certain keypoint to 

be located in a specific location, instead of trying to estimate the exact position of a 

keypoint. Subsequent work done by Newell, Yang, and Deng introduced a new term 

called “Hourglass” network [81].  
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A hourglass network consists of blocks of convolutional and max pooling layers that 

downsample the input image to very low resolution and then the network begins up-

sampling and combination of features across all different scales [81]. This bottom-up 

and top-down processes is repeated several times to build up a “stacked hourglass” 

network to generate the prediction. Wei proposes another approach by using a multi-

stage architecture; first generate coarse results, and then refine the results in the fol-

lowing stages continuously [84]. Other approach minimizes the error to get the pose 

estimation and then gradually enhance the pose estimation [85].   

 

 The R-CNN network architecture. (1) The RCNN takes an in-
put image, (2) then extracts 2K region proposals , (3) after that, it 
computes features for each of the regions by using a large (CNN),  
and in the final stage (4) it classifies each region using linear SVMs 

[86]. 

 

Human detector: human detection algorithms sort of object detection algorithms, and 

they are mainly based on the R-CNN family [78], [86], [87]. Instead of trying to classify 

a huge number of regions in the image, Girshick proposed, in his work, a method for 

selecting 2000 regions in the image (called region proposals) by using the selective 

search algorithm, and computing features for each region proposal using a large (CNN) 

[86] (Figure 15). 

Recent up-to-date object detectors such as [88] and [78] are composed of two stages: 

the first step is to generate box proposals and the second step is to crop from the fea-

ture map and use the R-CNN network to refine the box proposals to get  the final 

boxes.  
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The tool used in this thesis belongs to the top-down approaches [15]. This means 

that the system uses a human detector to generate bounding-boxes around persons in 

the image and then estimation of  location of the keypoints for each person using a sin-

gle-human pose estimator. For the human detector, the tool adopts the approach of 

Feature Pyramid Network (FPN) for object detection [88].  

 
 Estimated poses using the CPN-based pose estimation tool 

 

In order to train the human detector, all eighty categories from COCO dataset [89] are 

used for only human category. Concerning the single human pose estimation, a new 

approach called Cascaded Pyramid Network (CPN) is used. CPN involves two stages: 

GlobalNet and RefineNet [15]. GlobalNet is a feature pyramid network that can locate 

simple keypoints such as eyes and hands. On the other hand, RefineNet tries to locate 

the hard keypoints that are difficult to localize in the first stage. Figure 16 shows some 

results of images where CPN-based pose estimation tool is used [15].  
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3. MATERIALS AND METHODS 

3.1 Dataset collection 

This thesis relied on video recordings from a database collected by Neuroeventlabs 

Oy. There were some constraints that dictated the selected videos for movement anal-

ysis. First of all, the data were licensed to be used in academic research. Second, the 

video recordings were selected so that the events were blanket-free (i.e. the patient 

was not covered with blanket when he had seizures). The reason for that was to mini-

mize external occlusion as much as possible. In addition, recordings must be stereo-

scopic. One single patient with epilepsy (specifically LGS) has fulfilled these conditions. 

He has undergone nocturnal home monitoring. 4 events were randomly selected to be 

processed. They are myoclonic seizures. One event representing the patient condition 

during REM sleep is added (i.e. non-movement event). The four seizure events are 

named according to their chronological appearance as: E1, E2, E3 and E4. The REM 

sleep event is named “REM”. 

3.2 Stereo system and data preprocessing  

A special camera was used to obtain videos with in-depth information. For the meas-

urements, we have used (Intel Real Sense D435) (Figure 17). 

 
 The stereoscopic camera Intel RealSense D435 [90].  

 

 The stereoscopic camera consists of left and right camera, looking at the same object 

from different perspectives similar to the human eyes. Each of them produce an image 

with the resolution of 1280x720 pixels at frame rate of 30 FPS which is sufficient for 

capturing fast oscillations [90]. The stereoscopic image is stored in a top/bottom frame 

packing. The baseline of the camera after calibration, which describes the distance be-

tween the two imagers, is 0.0499433 cm. The focal length is 643.154 pixels.  
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The recorded data are rectified in the camera, in its Vision Processor D4. The rectified 

data are then passed through USB cable to the host for further processing. After that, 

videos were then pre-processed using FFMPEG framework [91] for contrast and 

gamma enhancement and cropping. The pre-processed videos were further processed 

by pose estimation to extract the skeleton keypoints. To extract the depth information, 

StereoSGBM algorithm was for stereo matching from OpenCV [92]. The depth dimen-

sion is then estimated for each keypoint per frame. Data cleaning procedure was ap-

plied on the output json files of the pose estimation using the library: “Pandas” in Py-

thon. The depth dimension, accompanied with the co-ordinates of each keypoints pro-

duced by the pose estimation, are then used to extract the real dimensions (𝑋, 𝑌, 𝑍).  

 

The displacement sequences, extracted from json files, were then used for computing 

the first and second derivatives to calculate keypoints’ velocities and accelerations. 

Since the data are noisy, we use an automatic algorithm for smoothing and estimation 

of the signals and their derivatives [93].  The signal is modelled as “a stationary double-

integrated Wiener process” and derivatives are smoothed using Kalman smoother [93], 

[94]. The algorithm is implemented in MATLAB and freely available [93].  For further 

smoothing and emphases of strong and long movements, a moving average filter is 

used. The window size = 8 is used on the final results for further smoothing the output 

results (equation 6). 

 
𝑂[𝑖] =

1

𝑀
∑ 𝐼[𝑖 + 𝑗]

𝑀−1

𝑗=0

 
(7) 

Where 𝐼[], 𝑂[] are the input signal from the pose estimation and the output signal re-

spectively. 𝑀 is the window size of the filter.  Figure 18 summarizes the proposed sys-

tem in this work.  

 

 
 Schematic drawing of the framework for the thesis 
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3.3 Pose estimation  

A modified version of a multi-person human pose estimation was used for conducting 

the patient’s pose estimation during each seizure event. It is open source computer vi-

sion software that uses deep convolutional neural network (CNN) architecture to pre-

dict the location of the keypoints [15]. It uses a tensorflow implementation of human 

pose estimation based on Cascaded Pyramid Network (CPN).  

{ 
   "version": 1.1, 
   "people":[ 
      { 
         "pose_key-
points":[760.9,22.1,0.678,698.1,47.2,0.564,679.3,22.1,0.600,688.7,12
5.7,0.594,751.5,125.7,0.394,717.0,72.3,0.528,760.9,160.3,0.472,792.3
,72.3,0.556,541.2,147.7,0.621,660.5,311.0,0.690,560.0,499.5,0.766,62
2.8,160.3,0.454,710.7,311.0,0.348,578.9,512.0,0.293,751.5,19.0,0.614
,760.9,22.1,0.624,713.8,12.7,0.602,726.4,37.8,0.51] 
      } 
   ] 
} 

Program 1. A sample of data logs output from the pose estimation representing 18 
key points, number of detected people=1, for each keypoint 3 values are produced. 
They represent, in order,  x-coordinate, y-coordinate and a number indicating reliabil-
ity values > 0.5 are reliably estimated values while values < 0.5 are not reliable due 
to occlusions and invisibility.  

 

The human pose estimation is done in two phases. The first phase uses Tensorflow im-

plementation of Faster R-CNN to locate the bounding boxes of human body in a pic-

ture. The second phase, 18 key points are located from the detected human body per 

frame in json files (see Program 1).  
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Keypoints are markers of the human joints locations this system can predict 18 key-

points (Figure 19).   

 

We divided those 18 keypoints into two categories: primary and secondary keypoints. 

Primary keypoints are directly involved in the seizure movement and they are: right 

wrist, left wrist, right ankle and left ankle. Secondary keypoints are the rest. We have 

analyzed the 4 primary keypoints, representing the upper and lower extremities, leav-

ing the rest for future research.  

 

3.4 Visual video assessments 

As previously mentioned in 2.1, the current evaluation of epilepsies that impair the mo-

tor function is basically relying on the visual observation of the patient's motor behavior, 

directly or through video monitoring. This approach could enhance the disease assess-

ment by the automatic acquisition 3D information. Additionally, it also allows to find the 

keypoints of the patient for further motion analysis and more features extraction based 

on the acquired 3D data. A comparative study has been made in this work. Four events 

belonging to a patient with epilepsy have been studied, processed and analyzed. There 

are two main streams for this study. The seizure events were re-assessed by two epi-

leptologists (PO, SP) to provide a clinical benchmarking for this comparative work. 

They were asked separately to evaluate the intensity of each seizure on a rating scale 

from 0-9. The events were assessed based on the motor behavior in addition to dis-

turbance in consciousness.  They assessed the events individually to avoid any source 

 

  Pose estimation skeletonizes the human body into 18 key 
[95].  
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of bias). The goal is to compare between the automatic quantitative approach and the 

qualitative approach.  

 

3.5 Features extraction for motion analysis  

Features can generally be defined as the measurable properties of the observed phe-

nomenon. Since the studied phenomenon here is the motor activity during epileptic sei-

zures, the selected features for each keypoint are obtained in 3D and they are: the  

motion trajectory (position over time) , velocity, acceleration, displacement travelled 

(Euclidean distance in 3D space), spike count SC (number of spikes above certain 

threshold), spike intensity SI (number of spikes per seconds), weighted spike ratio 

WSR (proportion of number of spikes for a keypoint to the total number of spikes of the 

4 keypoints). A note worth considering is that the features extracted in this thesis are 

basically in the time domain, other features can be extracted in further studies.  

 The programming languages used for this work are: Python for data wrangling and 

cleaning using Pandas library, C++ for computer vision algorithms using OpenCV li-

brary and MATLAB (MathWorks, Inc.) for signal processing and data visualization. 



35 

 

4. RESULTS AND DISCUSSION  

4.1 Signal processing of seizure and REM events 

The stereo matching algorithm, used for depth estimation, produces uncertainty in the 

depth map. Additionally, the pose estimation tool processes each frame separately, 

therefore the estimated keypoint locations are unstable. In addition, occlusion and in-

visibility of the keypoints, affects the accuracy of keypoint detection, which can be 

sometimes even impossible if the selected keypoint is not clear. All these factors com-

bined introduces noise to the signals. Therefore, the applied signal processing tech-

nique discussed in section helps to a great extent minimize the noise (see Figure 20, 

Figure 21).  

 

 Left wrist position in x-dimension in meters with time in sec-
onds in E1 before and after filtration. 

Figure 20 shows the left wrist keypoint position over time in x-dimension before and af-

ter filtering during E1. Additionally, differentiation amplifies catastrophically the noise  

specially when the sampling frequency is high.  
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Figure 21 shows velocities and accelerations of the epileptic seizure: E1. We notice 

that with higher order of differentiation, the lower signal to noise ratio is. 

 

  Velocities and acceleration of E1 before and after filtering. 

 

In order to assess the inter-rater reliability in this work. The four events were visually 

assessed to provide a clinical benchmarking. Table 1 shows intensity ranking using a 

rating scale seizure intensity evaluation on a scale from 0-9.  

 

 
E1 E2 E3 E4 

PO 
4 5 8 5 

SP 
4 5 7 5 

 

As we notice in Table 1, there is no consensus on all the four seizures; E3 has two dif-

ferent values relative to the observer’s opinion. On the other hand, they agreed that E1 

has the least intensity and E3 has the highest intensity. E2 and E4 are equally rated, 

while other seizures took different values. There was agreement on the ranking of the 

four seizures in terms of intensity. The descending order is as follows: E3 

E2,E4E1.  

 

Table 1. Visual assessments of the four seizure events with a rating scale from 0-9. 
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4.2 Motion quantification of seizure events 

In this thesis, a novel 3D method of motion quantification is present to study move-

ments during myoclonic epileptic seizures of a patient with LGS using video recordings. 

The videos recordings represent four seizure events and a REM sleep event, which 

represents a seizure-free event. In the time domain, metrics such as the  motion trajec-

tory (position over time) , velocity, acceleration, displacement travelled (Euclidean dis-

tance in 3D space) are computed.  

 

 Positions of the four keypoints over time in x, y, z coordinates 
in E1. Horizontal axes represent time and vertical axes represent the 

position with respect to the camera in meters.  

 

Moreover, metrics that can estimate the oscillatory feature of seizures are calculated 

such as: spike count SC (number of spikes above certain threshold), spike intensity SI 

(number of spikes per seconds), weighted spike ratio WSR (proportion of number of 

spikes for a keypoint to the total number of spikes of the 4 keypoints). Figure 22 shows 

keypoints’ positions in 3D for E1.  
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 Velocity of Keypoints (ms-1) 

         Right wrist  Left wrist 

 Mean  Standard deviation  Mean  Standard deviation  

E1 
 

0.3278 0.4448 0.1686 0.1616 

E2 
 

0.2090 0.1573 0.1452 0.1728 

E3 
 

0.3356 0.3866 0.3856 0.4130 

E4 
 

0.1558 0.1443 0.0819 0.0944 

REM 
 

0.0715 0.0489 0.0460 0.0438 

 

Table 2 and Table 3 show the magnitude of velocities (mean and standard deviation) of 

the keypoints in the five events. It is noticeable that the keypoints have asymmetric mo-

tion quantities, which indicates the asymmetric nature of myoclonic seizures. In other 

sense. body extremities do not quantitatively follow the same pattern of movement.  

   

 Velocity of Keypoints (ms-1) 

         Right ankle  Left ankle 

 Mean  Standard deviation  Mean  Standard deviation  

E1 
 

0.2102 0.1857 0.1704 0.1399 

E2 
 

0.1437 0.1442 0.1576 0.1761 

E3 
 

0.1643 0.2142 0.1194 0.1532 

E4 
 

0.1342 0.1317 0.1036 0.1230 

REM 0.0612 
 

0.0439 0.0324 0.0325 

 

Table 2. Right and left wrists velocities in the 4 seizures and REM. 

Table 3. Right and left ankles velocities in the 4 events and REM. 
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 Acceleration of Keypoints (ms-2) 

      Right wrist  Left wrist 

 Mean  Standard deviation  Mean  Standard deviation  

E1 
 

3.1043 4.2360 0.7217 0.6719 

E2 
 

1.0247 0.7250 0.9444 0.9764 

E3 
 

2.5767 2.6820 3.4311 3.2910 

E4 
 

0.3982 0.3758 0.1915 0.1913 

REM 
 

0.3663 0.2705 0.1729 0.1288 

 

Table 4  and Table 5 show the magnitude of accelerations of the keypoints in the five 

events. It is also noticeable that keypoints, for each event, differ quantitatively. Which 

also indicates asymmetric nature of myoclonic seizures.  

 

 Acceleration of Keypoints (ms-2) 

         Right ankle  Left ankle 

 Mean  Standard deviation  Mean  Standard deviation  

E1 
 

1.8355 1.5960 1.2740 0.9857 

E2 
 

0.5989 0.5254 1.0714 0.8868 

E3 
 

1.6916 1.8832 0.3856 0.4406 

E4 
 

0.4792 0.4747 0.4075 0.4075 

REM 
 

0.295 0.148 0.1545 0.1001 

 

 

Table 4. Right and left wrists Accelerations in the 4 events and REM. 

Table 5. Right and left ankles accelerations in the 4 events and REM. 
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Velocity  (m/sec) Acceleration (m/sec2) 

 Mean St Mean St 

E1 
 

0.1468 0.1165 0.7068 0.4340 

E2 
 

0.1189 0.0857 0.7068 0.4340 

E3 
 

0.1387 0.1636 1.2564 1.2592 

E4 
 

0.0971 0.0759 0.2270 0.2260 

REM 
 

0.0503 0.0278 0.137 0.139 

 

A way to fuse all the parameters of the 4 keypoints in one single parameter to repre-

sent the whole event is to take the median of the keypoints per each event. In other 

sense, we took the median of the magnitude of velocities for all keypoints to represent 

the fused velocity of the event. Additionally, we took the median of the magnitude ac-

celeration for all keypoints to represent the fused acceleration of the event.  

 

 Box plots of the fused velocity for the 4 events and REM: 1, 2, 
3, 4, 5 represent  E1, E2, E3, E4 and REM respectively. 

 

Table 6  shows fused velocity and accelerations of each event. It is noticeable that the 

descending order of seizures’ fused velocities and accelerations  is: E3E1E2E4. 

This is different from the ratings of the visual assessment. Figure 23 shows box plots of 

the fused velocity for the 4 events and REM.  

 

Table 6. Fused velocity and acceleration of E1,E2, E3, E4 and REM. 
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 Total number of spikes(TS) 
 

Duration (sec) Spike Intensity (spike/seconds) 

E1 
 

50 29.5 1.74 

E2 
 

113 49.9 2.26 

E3 
 

278 31.1 8.96 

E4 
 

242 112.8 2.16 

REM 
 

5 20 0.25 

 

In order to estimate the oscillatory feature of a seizure, is to count spikes during sei-

zures with respect to threshold. The threshold in our measurements is arbitrarily de-

fined as the value that is higher than 98% of the fused  REM velocity values.  Table 7 

shows total spikes for each event. It also shows the spike intensity of the five events. 

The descending order of spike intensity for the five events according to Table 7 is: 

E3E2E4E1REM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Total spikes, duration and spike intensity of the 4 events and REM using threshold 
value= 0.25 m/s 
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E1 E2 E3 E4 REM 

 
SC WSR 

(%) 
SC WSR 

(%) 
SC WSR(%) SC WSR 

(%) 
SC WSR 

(%) 

Right 
wrist 

33 66 12 10.6 104 37.41 124 51.23 4 80 

Left 
wrist 

10 20 38 33.6 138 49.64 94 38.8 1 20 

Right 
ankle 

3 6 24 21.39 20 7.2 14 5.78 0 0 

Left an-
kle 

4 8 26 23 16 5.755 10 4.132 0 0 

Total  
50  100 113 100 278 100 242 100 5 100 

 

Table 8 shows spike counts for the 4 keypoints per each event. It also shows that each 

keypoint has different motion intensity. For instance, in E3, left wrist has the highest in-

tensity while left ankle has the lowest value.  

 

  3D model of E4 at 2 instances: (A) at time = 1 second, (B) at 
time=3 seconds 

 

A 3D model (the real dimensions) of the skeletonized body can be fully extracted for 

each of the four seizures. Figure 24 shows the skeleton of the test subject before the 

seizure at (t=1 Second) and during the seizure at (t=3 seconds).  

 

Table 8. Number of spikes, weighted spike ratio in the four seizures and REM. 
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5. CONCLUSION 

In this thesis, a state-of-art automatic video-based method was used to conduct 3D 

quantification for the motoric aspects of myoclonic epileptic seizures. Based on the 

conducted literature review, this is the first time to use a deep learning-based human 

pose estimation tool to estimate seizure intensity in 3D space from home monitoring 

video recordings. The data used in the study are 4 myoclonic seizure events recorded 

during sleep. They belong to a patient with LGS. In addition, a non-movement event 

recorded during REM sleep was used as the ground truth of the experiment.  

The seizure events were visually evaluated by two epileptologists. A comparative study 

was conducted between the two approaches. The comparative results show low level 

of inter-rater agreement with the clinical evaluation concerning the features: velocity 

and acceleration. On the other hand, features that represent the oscillatory characteris-

tics of the seizures, such as: spike intensity, have better inter-rater agreement. which 

makes automatic detection a potential tool for motion quantification of seizures using 

video-based methods. 

This method can be used for seizure detection and seizure quantification. It does not 

require markers nor sensors to be attached to the patient, which makes it comfortable 

and portable, not only for seizure recording, but also for other motor impairment dis-

eases and sport medicine. Moreover, it provides an automatic way for motion capture 

in 3 dimensions, which gives more information about the motor behavior than the other 

traditional 2D methods.   

On the other hand, challenging cases to pose estimation still exist such as keypoints 

occlusion (i.e. clothing and blanket, etc.), complex erratic motions, which cannot be ac-

curately tracked and can dramatically affect the results. Additionally, the pose estima-

tion tool, localizes the keypoints frame by frame which introduces effective noise to the 

system. Other factors such as: the videos quality and the other used estimation tech-

niques in this thesis introduced additional noise. Furthermore, the pose estimation tool, 

the computer vision algorithms and the signal processing tools require high computa-

tional resources.  

Future work should be done to enhance the detection accuracy of the pose estimation. 

Further studies need to be conducted to further validate this approach. Larger datasets 

representing different seizure events and different patients should be used to further 

extract better defining features of seizure intensity. Other techniques can be combined 
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for better development of the overall quality of movement assessment of epileptic sei-

zures, in specific, and other applications that involve motor assessment in general.    
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