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Autism is a growing health issue and the last decade has seen its prevalence double. The
prognosis of those affected is better with early intervention. This could be enabled by detecting
the condition in younger children, but currently no medical test exists for the diagnosis of autism.
Thus, the need for biomarkers that reliably detect autism is urgent. The etiology of autism is
not well understood due to the heterogeneity and complexity of the condition. The aim of
this thesis was to determine a method to study different datatypes measured from the same
individuals to obtain a more holistic view of the genetic phenomena occurring in autism. A
model was constructed with data from epigenomic, transcriptomic and genomic measurements
by selecting the features that best correlate between the datasets and also contribute to the
autism spectrum phenotype. Such feature selection from combined suitable data could also
be used in biomarker research. In order to find the best fit for the model, estimates of the
optimal number of components and features to select were determined using unsupervised
approaches. The resultant model was validated with unseen data.
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Autismikirjo on yleistyvä keskushermoston kehityshäiriö jonka esiintyvyys on kaksinkertais-
tunut viimeisten kymmenen vuoden aikana. Autismikirjon henkilön ennuste on sitä parempi,
mitä aiemmin hoito aloitetaan. Tämä edellyttää varhaisempaa diagnoosia, mutta toistaiseksi
ei ole olemassa lääketieteellistä testiä mikä mahdollistaisi taudinmäärityksen aikaisemmin. Au-
tismikirjon etiologia on huonosti tunnettu mm. taudin heterogeenisyyden ja monimuotoisuuden
vuoksi. Tämän tutkielman tavoitteena oli pyrkiä muodostamaan kokonaisvaltaisempi kuva au-
tismikirjon geneettisestä taustasta tutkimalla samoilta henkilöiltä mitattuja eri datatyyppejä yh-
dessä. Datan integraatio tehtiin muodostamalla malli epigeneettistä, transkriptomista sekä ge-
nomista mittausdataa käyttäen ja valitsemalla näistä eniten toistensa kanssa korreloivat sekä
fenotyyppiin vaikuttavat piirteet. Optimaali pääkomponenttien sekä valittavien piirteiden luku-
määrä estimoitiin käyttäen datalähtöisiä menetelmiä. Malli validoitiin erillisillä näytteillä.

Avainsanat: multiomiikka, genomiikka, transkriptomi, epigenomi, kopioluvun variaatio, autismi

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck -ohjelmalla.
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1 Introduction

The increase of individuals diagnosed with autism has more than doubled in the past

decade. There is no cure for autism and those affected often need a lifetime of support.

The current trend in prevalence rates is alarming and distinguishing the causes behind

this is imperative in order to reverse the present trajectory. Autism is a heterogenous

disorder and its etiology is not well understood, although the presence of environmental

factors accompanied by a genetic susceptibility seem to be evident. Studies have

mostly been conducted on one or two genomic layers and have revealed a plethora

of genes and genomic loci associated with autism. Several environmental triggers

have also been suggested to contribute to the manifestation of autism. A reasonable

deduction from the current state of research would be to combine data from several

biological layers to better understand the complex molecular phenomena that underlies

the pathophysiology of autism.

Recent developments in the technologies have yielded better availability of high-throughput

measurements from different omics data. The aim of this thesis was to utilize publicly

available data from different omics measurements in an integrative approach for a bet-

ter perspective on autism pathophysiology. The structure of the thesis is as follows:

the next part is dedicated to explaining the biological and methodological background

essential in the study. The main objectives of the study are further described in the

chapter 3. Chapter 4 provides the information on the materials along with the detailed

demonstration of the workflow of the experimental processes conducted in the study.

In chapter 5 the results obtained from the individual data analysis along with the inte-

gration model are presented. Chapter 6 resolves to discuss these further with some

insight as to why some of the challenges in the analyses may have arisen. Chapter 7

concludes this thesis and addresses the future prospects of integrative analysis in the

field of autism research.



2

2 Literature review

2.1 Autism

Autism Spectrum Disorder (ASD) is an umbrella term for a range of early onset devel-

opmental disorders, all of which are defined by varying levels of impairment in commu-

nication and social interactions and are often accompanied by repetitive behavior and

restricted areas of interest (American Psychiatric Association 2013). The symptoms

generally rank from mild (Level 1 autism) to severe (Level 3 Autism) (American Psy-

chiatric Association 2013), but because the categorization of this broad phenomenon

is difficult, usually the affected individuals are recognized as being “on the spectrum”.

ASD was first widely acknowledged after the 1943 publication by psychiatrist Leo Kan-

ner, which was based on his study of 11 children in his clinic, all of whom had no ambi-

tion toward social interaction but instead targeted the majority of their focus on objects.

These children had been described as “self-sufficient”, “like in a shell” and “happiest

when left alone” when intermitted to the clinic by their parents (Kanner 1944). Autistic

disturbances of affective contact, as initially referred to by Kanner, is now known as

autism spectrum disorder.

2.1.1 Comorbidities

Alike so many other psychiatric phenomena, ASD rarely occurs alone. In fact, over 70%

of those affected also suffer from concurrent conditions (Lai et al. 2014). Neuropsy-

chiatric conditions that often accompany ASD include intellectual delays, depression,

anxiety and attention-defict hyperactivity disorder (ADHD). Other neurological disor-

ders, such as tics or seizures are often present in ASD. Other common comorbidities

among ASD individuals are gastrointestinal (GI) problems, such as Chron’s disease
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(CD) or irritable bowel syndrome (IBS). The effect of comorbidities in many cases sur-

passes that of core ASD symptoms.

2.1.2 Treatment and diagnostics

There is no cure for ASD, and treatments include behavioral therapy and medicine,

either one of these or both combined. Treatment depends heavily on the symptoms,

and the commonly used medications generally combat comorbidities. Such medica-

tions often include antidepressants, anti-anxiety medications and ADHD-medication.

Therapy can consist of applying alternative methods for learning communication skills

and developing techniques for alleviating challenging behaviors. ASD is usually diag-

nosed by the age of three depending on the severity, and it has been established, that

early intervention leads to better results (Lai et al. 2014). Diagnosing ASD relies on

psychological tests, which are in most countries a part of the general healthcare and in-

tegrated into children’s routine pediatrician visits at ages 18 and 24 months (Myers and

C. P. Johnson 2007). There is currently no medical detection for autism, thus the race

for alternative screening methods has sparked a number of studies in many scientific

fields such as molecular biology, bioinformatics as well as computer vision (Glessner

et al. 2009; Shen et al. 2016; J. Liu et al. 2019).

2.1.3 Epidemiology

The rate of children diagnosed with ASD has been on a steady rise in recent years,

reaching a 1 – 2% globally – an increase of over two-fold in the past two decades (Isak-

sen et al. 2013). The geographic fluctuation in the prevalence of ASD has prompted

studies to identify environmental factors that may contribute to its manifestation (Hertz-

Picciotto et al. 2018). There is a substantial gender bias in ASD and around 80% of

those diagnosed are boys. Protective properties of having a duplicate X-chromosome

and prenatal hormones have been suggested as explanatory of the gender ratio (Skuse

2000). In addition, a recent review highlighted how ASD could be incited in boys se-

lectively via male sex hormones that regulate the gut microbiota, to induce a more

vehement immune response that leads to neuroinflammation (Kopec et al. 2018).
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2.1.4 Etiology

Although the etiology of ASD is still widely obscure, a genetic aspect accompanied by

epigenetic modifications and certain environmental triggers appear to be at the root of

developing the condition. A reasonable deduction as to where to go from the current

state of affairs would be to find robust methods to combine data from different types

of experiments to gain a more comprehensive and holistic view of the phenomena that

lead to the ASD phenotype.

Autism genes

A plethora of candidate genes have been associated with ASD and the diversity of the

resulting list of genes has led to studies on their functional role (Gazestani et al. n.d.). A

number of genomic structural variants have also been identified among ASD individuals

and twin studies have linked both heritability and the presence of shared environmental

factors as contributing to the development of the disorder (Tick et al. 2016a). One

challenge in the study of etiology of ASD is that there are no noninvasive methods to

study the molecular biology of the brain, and the majority of the transcriptomic and

genetic data is obtained from blood samples.

Heritability

In the pursuit of unraveling the heritability of ASD, twin studies have provided insight

into the matter and a meta-analysis estimated it to range between 64% and 91% (Tick

et al. 2016b). The relative risk for a child to develop the ASD has been estimated to

be 8.4-fold if they already have a sibling diagnosed (Hansen et al. 2019). The high

heritability of ASD has given rise to studies involved with germline mutations, leading

to the discovery of a plethora of risk genes and dozens of liable loci (Satterstrom et al.

2020; Levy et al. 2011). Alterations in the identified genomic regions account for around

10 – 20% of diagnosis and an aberration in any single one of these is responsible for

as little as 1 – 2% of the cases (Abrahams and Geschwind 2008). For the majority of

idiopathic ASD cases there is no clear genetic evidence, hence there is still much to be

uncovered in the search for the genotypes accountable for ASD.
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Simons Simplex Collection

In the pursuit to reveal de novo genetic alterations, the Simons Simplex Collection

(SSC) was set up, and consists of samples from families with one child on the spectrum

whose parents and siblings remain unaffected (Fischbach and Lord 2010). The most

common structure in the family is as follows: the proband in these families is always

high functioning and most commonly male, whilst the number of siblings is usually one

and they are most often female (Fischbach and Lord 2010).

The Simons Foundation Autism Research Initiative (SFARI), which is part of the same

Simons Foundation as SSC, maintains a curated database of genomic features associ-

ated with ASD. Their archive acommodates over 1000 genes and 2000 Copy Number

Variations (CNVs).

Environmental triggers

Physiological differences between the autistic and normal phenotypes have been es-

tablished via neuroimaging, but the underlying phenomena associated with the mani-

festation of ASD can be difficult to detect as the tissue-specific studies are sparse (Lai

et al. 2014). Genetic and epigenetic factors, prenatal exposures (hormonal, maternal

viruses and toxins) and paternal age have also been suggested as causative.

The involvement of the bidirectional communication of the gut microbiota and the cen-

tral nervous system (CNS) via the gut-brain-axis at the onset of ASD has gained much

attention recently (Hsiao et al. 2013; F. Liu et al. 2019; Matta et al. 2019). Microbiota is

a key player in the development of the immune system during the first three years of life.

The suggested mechanism leading to ASD involves the recruitment of the microglia to

participate in the immune response induced by the microbiota. In this activated state,

the microglia do not administer their normal role in the maintenance and pruning of the

neurons, and the situation, when prolonged, likely has detrimental effects the neuronal

development (Matta et al. 2019).
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2.2 Genomics

2.2.1 Copy number variation

Although all individual human genomes are astonishingly similar (99.94%) (Auton et

al. 2015), no two genomes are identical. Even monozygotic twins, whom develop from

the same zygote and share 100% of their genetic material, have differences in their

genomes (Bruder et al. 2008). These genomic variations take many forms and their

size can range from single nucleotide changes (SNPs) to large, microscopically visible

chromosome aberrations.

Copy number variation (CNV), a form of structural variation, refers to a deviation from

the normal diploid copy number of two. These occur in segments that can span from

50bp up to megabases (Mb) in size (Zarrei et al. 2015). A duplication event occurs

when these segments contain one or more additional copies and can be classified as

a gain or an amplification, depending on the number of copies. A deletion event is the

result of either the homozygous loss of two copies or the hemizygous loss of one copy

of these genomic segments. The latter is also termed as loss of heterozygosity (LOH).

Copy-neutral loss of heterozygosity (cnLOH) occurs when the overall copy number re-

mains unaltered, but the loss of one sister chromatid is compensated with a duplication

of the other.

Alterations in the diploid copy number can arise from incorrect non-homologous end

joining (NEHJ) and non-allelic homologous recombination (NAHR) following double

stranded breaks (DSB) in DNA. Alteration may also result from the incorrect formation

of Holliday junctions during meiosis. The number and loci of CNVs differ between

individuals and CNVs are a major contributor to the differences identified between the

genomes of monozygotic twins (Bruder et al. 2008).

In the general population, CNVs account for an estimate of 4.8 – 9.7% of the genome

and may contain entire genes along with their regulatory regions (Zarrei et al. 2015).

Variation in such functional loci may impose an effect on gene dosage, although over

100 genes have been identified, whose entire removal poses no implicit phenotypical

consequence (Zarrei et al. 2015). Most CNVs overlap with the redundant non-coding
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sequences that cover 98.5% of the genome (Auton et al. 2015). These, previously

labeled “junk DNA” regions, have more recently been shown to play, for example, a

regulatory role amongst others.

Differentiating between the pathogenic and benign copy number alterations involves

comparing the genomic structure of cases and healthy controls, whom often consist

of immediate family members (Levy et al. 2011; Zarrei et al. 2015). As opposed to

copy number alteration, copy number aberration is a term for the amplifications in can-

cer tissue, where the copy number may be significantly more than doubled. Some

ambiguity remains with the nomenclature, but generally copy number variation refers

to the germline events and alteration/aberration to the changes that occur during the

individual’s lifetime in the somatic cells.

2.2.2 Methylation

Methylation refers to the biological process, where a methyl group is transferred to a

DNA cytosine base. This small modification can have direct consequences on tran-

scription. The addition occurs at the fifth carbon of the pyrimidine ring of the cytosine

resulting in a 5-methylcytosine and to take place, it usually requires that the follow-

ing base is guanine. The covalent modification is reversable and the methylated cy-

tosines can be demethylated. Both processes are highly controlled and involve two

groups of enzymes called DNA methyltransferases (DNMTs) that handle methylation

and ten-eleven translocation (TET) family of methylcytosine deoxygenases, which are

key instruments in active demethylation (Moore et al. 2013). Passive demethylation

occurs during DNA synthesis, where the methylation step is simply left out. Altering

the methylation status allows for swift responses to environmental exposures. Methy-

lation patterns are tissue specific and enable the same genetic material to be utilized

accordingly to the needs of different cell types. Methylation has been shown to be

trans-generationally heritable and is thought to be the most stable form of epigenetic

regulation (Rizzardi and Hickey 2019).
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CpG islands and shores

CpG sites, where cytosine is followed by guanine, are scattered along the human

genome. Areas with a high density of these dinucleotides are referred to as GpC

islands. These are mainly located near transcription start sites and promoters, and be-

cause methylation prevents transcription factors from binding, hypermethylation in CpG

islands generally has a downregulatory effect on gene expression. CpG sites up to 2kb

from CpG islands are titled CpG shores and are likewise associated with reduced gene

activity (Ciernia and LaSalle 2016).

Non-CpG methylation

Methylated cytosines can also be followed by other than guanine and are named CpH,

where H stands for any nucleotide but G. CpH methylation occurs in different cell types

but is particularly abundant in embryonic stem cells, neuronal precursors and neu-

rons (Ciernia and LaSalle 2016). Neuronal CpH methylation has been shown to occur

solely postnatally and its levels increase over time, unlike those of CpG methylation

(Jang et al. 2017). Accumulation of CpH methylation is particularly dramatic in the

frontal cortex during later life (Jang et al. 2017). Although CpH methylation spatially

correlates with that of CpG’s, it may have independent functions in the brain (Rizzardi

and Hickey 2019). Differential methylation of CpH’s embedded within gene bodies have

been shown to maintain strong associations with differential gene expression (Ciernia

and LaSalle 2016).

Methylation in gene bodies and intergenic regions

To make matters less straightforward, intergenic regions that contain CpG- or CpH-

sites generally have the opposite effect when methylated compared to the promoter

regions: instead of suppressing gene expression, methylation in intergenic sites in-

creases it (Jang et al. 2017). Likewise, hypermethylation within gene bodies increases

the expression of nearby genes (Jang et al. 2017). Curiously, methylation in intergenic

regions and gene bodies seems to affect lowly expressed genes most and appears to

have a function in the fine tuning of gene expression (Rizzardi and Hickey 2019).
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2.3 Methods used in this study

2.3.1 Microarrays

Microarrays are, as their name implies, small arrays with oligonucleotide probes at-

tached either to the array surface or to microscopic beads that are randomly inter-

spersed over it. The probes are subjected to the genetic material extracted from

the samples and hybridization of complementary sequences takes place (Jaksik et

al. 2015). A fluorescent dye attached to the probe and/or target is activated upon

hybridization and the resulting signal intensity can be measured. Answers to many

types of experimental questions can be sought with microarray technology. The array

format depends on the experiment and can be entirely customized to target specific se-

quences. Disease specific arrays are also readily available for many common diseases

such as cancer or psychiatric disorders. Despite the recent developments in sequenc-

ing technology, microarrays are still used due to their efficacy and the relatively low

cost. The following section focuses on the three microarray types used in this study.

Expression array

In order to measure the gene expression in a cell, the mRNA is extracted and usually

converted to the more stable cDNA. The amount of mRNA approximates the genes

that are being expressed and proteins being translated and thus, ultimately represents

the current functionality of the cell. Because the target mRNA is spliced, the probes

correspond to genes exons. Probes are labeled with a fluorescent dye and subjected to

sample cDNA and complementary sequences get hybridized. Hybridized probes emit

a fluorescent signal, which is recorded. The intensity of the signal represents the level

of mRNA in the samples. Some limitations have to be taken to account when designing

expression profiling experiments: different cells express different genes, and the cells

from the tissue of interest should be used whenever possible. Also, many of the genes

that get transcribed belong to a group called “housekeeping” and are essential for the

cell to survive and whose production levels are consistent among samples. The levels

of mRNA are only indicative of the actual production of proteins as there are regulatory

steps that can’t be directly measured on expression array, such as mRNA degradation.
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This should be kept in mind when deriving conclusions from the array experiments.

Methylation array

To determine the methylated sequences, the methylated cytosines must be first iden-

tified. This is handled with bisulfite conversion where the fragmented DNA of interest

is subjected to bisulfite treatment. This will render the unmethylated cytosines into

uracil which get further amplified as thymines while the methylated cytosines remain

unaltered (Maksimovic et al. 2012). Illumina Infinum HumanRef 27k array design com-

prises of two types of probes: ones that will hybridize to the methylated sequences with

C converted to T and others that hybridize to the original sequence (Maksimovic et al.

2012). The probes terminate at the 3’ end with thymine and cytosine, respectively. The

hybridization is followed by a single base extension by means of adding a fluorescently

labelled nucleotide, either A or G depending on the terminating base downstream of

the target of C or T (Maksimovic et al. 2012). The methylation status of the CpG site

is measured as the proportion of the signal intensities of the similarly labelled bead

types:

β =
M

U+M+α
(2.1)

where β is the proportional methylation status, M is the methylated signal, U is the

unmethylated signal and α a small offset to prevent big changes due to small estima-

tion errors (Maksimovic et al. 2012). Often in downstream analysis the more robust M

-values are used, which are the log2 ratios for intensities of methylated and unmethy-

lated probes and are obtained with:

M = log2(
M

U
) (2.2)

The 27k array was first introduced in 2008 and targets CpG sites located at proximity to

gene promoter regions (Maksimovic et al. 2012). The most recent Illumina methylation

array, EPIC, utilizes two types of beads and different fluorescent dyes to keep track

of methylated and unmethylated sequences and comprises of 850k probes which also

targets CpG’s outside of CpG islands as well as CpH’s (Pidsley et al. 2016).
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aCGH

Array Comparative Genomic Hybridization (aCGH) is a method for detecting copy num-

ber changes in sample DNA. The idea is derived from that of the comparative genomic

hybridization, in which single stranded sample and reference DNA are tagged with

different color fluorophores and with 1:1 ratio competitively hybridize to metaphase

chromosomes (Bejjani and Shaffer 2006). The labelled DNA from both sample and

reference will bind to their corresponding loci, and signal intensities of these can be

measured and compared in order to detect chromosomal differences between the two.

aCGH technique offers better resolution and more efficiency than genomic hybridiza-

tion. The experiment takes place on array with selected oligonucleotide probes that

correspond to known regions in the genome. The array is then exposed, similarly as

in the CGH experiment, to the sample and the reference mixture with 1:1 ratio. The

reference and sample are differentially labelled, and the copy number status can be

interpreted as the ratio of their signal intensities. The probes with significantly higher

sample intensities compared to the reference indicate a gain whereas probes with rel-

atively low sample intensities correspond to a loss.

In cancer studies, the reference DNA usually comes from normal tissue of the same

individual as the cancer sample. Another study format is where a “universal” diploid

DNA is used as a reference (Bejjani and Shaffer 2006). This is often the case in any

non-cancer research, such as the studies of psychiatric disorders. There are several

steps to take before any downstream analysis can take place, such as normalization,

segmentation and the calling of integer copy number for the segment ratio data. These

methods will be further explored in the following sections.

2.3.2 Microarray preprocessing

Preprocessing is required for all raw biological data in order to obtain the true biologi-

cal signal. This consists of removing the bias and noise that results from the technical

artefacts and processes and ensuring the quality of the samples. Preprocessing mi-

croarrays often consists of filtering the poorly performing probes or samples from the

experiment and removing the background noise that is incessantly present in image
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analysis (Jaksik et al. 2015). Any normalization aims to preserve the true biological

signal whilst correcting for the unwanted experimental artefacts.

After background correction, two different normalizations may take place: the within-

and between-array normalization (Ritchie, J. Silver et al. 2007). The within-array nor-

malization is used in order to make the intensities of the samples within the array

consistent. Between-array normalization aims to make the different arrays comparable

with one another. The latter is typically not used for two color arrays, such as aCGH due

to the presence of natural biological variation in signal intensities between the different

samples (Ritchie, J. Silver et al. 2007).

After normalization, data is usually transformed to logarithmic scale as the intensity ef-

fects are often multiplicative ratios, which the logarithm turns into additive differences.

Logarithmic scale offers a more robust distribution for downstream analysis and mod-

elling as the indifference between two conditions centers to zero. The M -values in

equation (2.2) are an example of the logarithmic transformation for better statistical

qualities. This section will briefly introduce the preprocessing methods used in this

study. More detailed explanations and the derivations of the formulas can be found in

the references stated for each of the methods.

Background correction

Microarray signal intensities are first background corrected to remove any signal from

other sources than the sample-probe hybridizations. Background can be measured us-

ing negative controls, which are surface areas or beads with no probes attached and no

hybridizations take place. The normal-exponential convolution background correction

model uses a Bayesian model to borrow information across probes and is robust for

gene expression experiments where there are many variables and considerably less

samples. The signal is considered to have an exponential distribution exp(λ) and the

background noise to have a normal distribution N(µ,σ2). Estimate of the true signal,

given the observed background subtracted intensities, is the conditional expectation:

E(S |X = x) = µS·X +
σ2ϕ(s; µS·X, σ

2)

1−Φ(0; µS·X, σ2)
(2.3)
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Where S is the true signal, X is the background subtracted observed signal and Φ the

standardized normal distribution (J. D. Silver et al. 2008).

Loess normalization

Within-array normalization is recommended for two-color aCGH data, which can be

represented as the log2 -ratio of the signal intensities from both color channels. These

are termed M-values (not to be confused with the M -value in the methylation data)

and get centered around zero, which in the case of aCGH data stands for the baseline

that corresponds to a normal diploid copy number. The copy number channels are

converted to M- and A -values as follows:

M = log2(
R
G
) and A =

1
2

log2(R×G) (2.4)

Where R is the red channel and G is the green channel (Ritchie, J. Silver et al. 2007).

The M- and A -values can be plotted against one another in a M A-plot, which often re-

sults in a curved figure. With median normalization, the weighted median is subtracted

from the M-value, in order to perform the zero-centering. Lowess (locally weighted

scatter plot smoothing) normalization is a more sophisticated method, and was inspired

by Taylor’s Theorem, which states that any continuous function f (x) is essentially a line

at a close enough observation. The idea is to fit a curve to the M A-plot and correct the

values to output zero-centered M-values so that the curved plot becomes straight.

Quantile normalization

Quantile normalization is a between-array method and forces the distribution of probe

intensities for each sample to be the same across the arrays. This method is sufficient

for one-color experiments, such as the methylation and expression datasets in this

study. The concept is based on the idea in quantile-quantile plots, where the plot is a

straight diagonal if the distribution of the two data vectors is the same (Bolstad et al.

2003). In practice, the columns (each sample) of the matrix X are sorted in ascending

order, resulting in matrix Xsort . The average of each row in the Xsort is then calculated

and this mean value is assigned to each element in the row resulting in matrix X′
sort .
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The normalized matrix is achieved by rearranging each column of X′
sort to the original

ordering of matrix X. This way the quantiles across the samples are forced to be equal

thus making the samples comparable with one another for downstream analysis.

Batch correction

Batch effect describes the systematic bias present in samples that is due to the han-

dling of the samples in groups or batches. For example, not all processed in one go,

but instead in batches: the samples may be collected at different sites, sent to the pro-

cessing lab under different conditions and also processed with some variation in the

method and reagents. Even the time of the day may affect the batch of samples in any

of these steps. In location and scale (L/S) adjustment, the model for location (mean)

and scale (variance) of the batches can be adjusted by standardizing their means and

variances (W. E. Johnson et al. 2006). Using the Bayesian method to estimate pa-

rameters, information is borrowed across genes in each batch and the batch effect

parameter estimates shrunk toward the overall mean of the batch.

GC-correction

GC-bias is a significant technical artifact that manifests as a wavy profile instead of

a straight one when plotting copy number segments. This phenomenon occurs re-

gardless of the platform used and no single explanation has been pinpointed, although

the correlation with the genomic GC-content is evident. The cause is, thus, likely multi-

faceted, and DNA purity, DNA isolation protocols as well as PCR and dye labeling have

been suggested as contributing factors (Leo et al. 2012). The GC bias is unimodal, as

both GC- and AT- rich regions appear underrepresented in the results. When such

regions are represented on the array with multiple consecutive probes, variation in

their hybridization intensity does not reflect the true biological signal. This will pose

an effect on the downstream analysis results, as the data from these regions will be

skewed away from the expected values (Benjamini and T. P. Speed 2012). Moreover,

an increased risk of false-positive as well as false-negative calls is present in these

genomic neighborhoods due to the higher asymmetry of the probe signal (Leo et al.

2012). Thus, de-waving by GC-correction is often recommended for aCGH data.
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Although GC -content is generally accounted for in the initial probe design, the GC rich

areas in the DNA library are nevertheless likely to hybridize to probes with some GC

sequences. There are several methods developed for GC-correction, including linear

regression, the use of calibration data and mean or lowess centering of windows whose

optimal size can be determined (Leo et al. 2012). In the latter the optimal window is

selected based on “total variation distance” (TV) -score , which is estimated on GC

stratified sample x ∈ Sgc based on the GC content of the reference gc = GC(x + a,l)

where x is the position, x + a the beginning of the window, l the width of the window

and Sgc the strata (Benjamini and T. P. Speed 2012),. The number of fragments or

hybridizations, Fgc, in Sgc is counted for each gc and the rate λgc is estimated. Choice

of GC window estimates Wa,l can be used to model predicted counts compared to one

another by maximizing the TV distance score:

TV(Wa,l,U) =
1
2λ̂

l∑︂
gc=0

Ngc

n
|λ̂gc − λ̂ | (2.5)

where estimates Wa,l stand for the stratified rate and U for the uniform global mean

rate in the sample (Benjamini and T. P. Speed 2012). Output of the equation (2.5) is

the distance between the distribution of the window and the uniform global distribution

and essentially translates to the proportion of hybridizations that were influenced by the

stratification. Thus, the higher the TV score, the more dependent the hybridization is on

the GC content, and the better the model is to correct for this dependence (Benjamini

and T. P. Speed 2012). These windows are centered on the start position of each

probe for microarray design and the GC correction is performed using the mean signal

intensity of all probes that share the same GC fraction.

Segmenting copy number data

After preprocessing, in order to determine the copy number status in the samples,

two further steps are to be taken: segmentation and calling of the integer copy num-

ber state. In the segmentation step, consecutive chromosomally ordered probes are

considered to belong to the same segment if their log2 intensities agree. Segments

are separated by breakpoints: if the log2 values differ above a threshold then a copy

number transition occurs. Circular Binary Segmentation (CBS) and the use of Hidden
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Markov Models (HMM) are the two most common methods used in segmenting CNV

data. The latter is a probabilistic model that is used to determine a hidden sequence of

states based on a sequence of observations (Fridlyand et al. 2004). The aim is to de-

tect the total number of states in the data as well as the optimal state at each probe with

a forward-backward algorithm, which involves three steps: first it computes the forward

probabilities, then backward probabilities using the Bayes’ rule and thirdly combines the

first two steps to calculate a smoothed more accurate result using a K-state HMM with

continuous output (Fridlyand et al. 2004). Optimal parameters for HMM are estimated

with Baum-Welch method or the EM algorithm. A potential drawback is the exhaustive

use of memory especially when working with large datasets. CBS, which provides a

faster segmentation approach, is based on a change-point method and applies statis-

tical testing to identify the breakpoints. Each segment is assigned the copy number

derived from the average value of all the probes residing within that segment. The

change point is estimated using a maximum likelihood test statistic T = max1≤ j≤mTi j ,

and Ti j is obtained with the two-sample t-test that compares the mean of the observa-

tions at indexes i+1 to j with markers m that correspond to the data X1, . . . ,Xm and the

mean of the total number of observations:

Ti j =
Ŷ i j − Ẑ i j

[si j( j − i)−1+ (m− j + i)−1]
1
2

(2.6)

where Ŷ i j = (Xi+1+ · · ·+ X j)/( j − i), Ẑ i j = (x1+ · · ·+ Xi + X j+1+ · · ·+ Xm)/(m− j + i), and s2
i j

is the mean squared error (Venkatraman and Olshen 2007). In other words, each seg-

ment can be conceptualized as a circle by connecting it’s endpoints and the likelihood

test is used for evaluating whether this circle consists of two complementary arcs with

unequal mean values. Statistically significant changes are selected based on p-values

smaller than the chosen threshold level α and changepoints i and j that maximize the

test statistic (Venkatraman and Olshen 2007).

Copy number calling

The log2 ratios of copy number segments are commonly assigned integer copy number

states. These may be inferred using thresholds or simply by rounding exponential of
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the log2 ratios to the nearest integer. The diploid copy number for a given segment is

2×2n (2.7)

where n is the log2 ratio of the segment. This method is well suited for assigning copy

number to germline samples (Talevich et al. 2016). The thresholds are commonly used

in somatic samples in cancer studies where the purity of the sample also needs to be

accounted for.

2.3.3 Statistical analysis

Statistical analysis consists of a number of tests to answer different biological ques-

tions. In microarray experiments common statistical tests include deriving the differ-

ential expression or methylation between two or more groups or conditions of interest.

Confounding variables such as age and sex may contribute to the outcome, and their

effect can be adjusted for by using a regression model in order to unveil the behavior

of the variable of interest. Microarray studies generally consist of thousands of genes

and a substantially smaller number of samples, which can lead to the multiple testing

problem. This is sometimes also referred to as the curse of multidimensionality. Thus,

corrections need to be made to identify the genes that are truly significant: the true

positives. Next section briefly explains two fundamentals of statistical data analysis:

the linear model and the multiple testing problem.

Linear models

Linear regression is a commonly used statistical method to model the relationship be-

tween a response variable and one or more explanatory variables. The response and

explanatory variables are also called independent and dependent variables, respec-

tively. The case of one independent and one dependent variable is referred to as uni-

variate analysis. When multiple independent variables describe dependent variables,

the term used is multivariate analysis (MVA). In the case of MVA the linear model for
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Y1, . . . ,YK outputs and X0, . . . ,Xp predictors can be written as:

Yk = β0k +

p∑︂
i=1

Xiβik + ϵk (2.8)

where ϵ denotes the error term that is assumed to be i.i.d. (Hastie et al. 2016). β0k is

the intercept and βik stands for the unknown coefficients that determine the slope of the

linear model and parametrize the average expression in the design (Ritchie, Phipson

et al. 2015). In matrix form the equation is simply:

Y = XB+E (2.9)

For N samples, Y is the N ×K response matrix, X is the N × (p+ 1) input matrix with

rank N, B is (p+ 1) × K matrix with the parameters and E the N ×G matrix of errors

(Hastie et al. 2016). Linear regression essentially fits a line through the datapoints in

order to approximate the function E(X |Y ) (Hastie et al. 2016). The unknown coefficients

β can be estimated for each independent variable. A commonly used method is the

least squares fitting and the best fit can be found by minimizing the Sum of Squared

Residuals (SSR). Least squares estimates often contain low bias, but this comes at the

cost of high variance (Hastie et al. 2016).

Identifying significant genes

The significance of the coefficients β in the linear model can be evaluated with a t-test.

A zero coefficient denotes no dependency between the independent and dependent

variables, whereas a large deviation from it means that there is a significant depen-

dency between them (Ritchie, Phipson et al. 2015). In statistical analysis involving

microarray or sequencing results, the same linear model is fitted to each gene – often

thousands of times over, which can lead to the multiple testing problem. This setting,

however, allows for pooling information from the entire dataset to enhance the robust-

ness of the model. This way the variances can be shrunk towards the common mean

and a specific moderated t-test can be used to obtain a more statistically robust result

(Ritchie, Phipson et al. 2015).
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Multiple testing problem and the false discovery rate

The statistically significant results from the analysis rely on the test statistic and de-

pend on the chosen threshold α. When the obtained p-value is smaller than α the null

hypothesis H0 is rejected. A common value for α is 0.05, which can be interpreted

as accepting that 5% the rejected H0’s are false positives, i.e. cases where the null

hypothesis holds. This in many cases is acceptable, however, with a large number

of tests for small set of subjects, the rate of false positives becomes very high. In the

case of gene measurements where the number of genes runs in tens of thousands and

number of samples is hundreds at best, the amount of falsely significant genes would

be unacceptably high. This is a case of multiple testing problem.

The false discovery rate (FDR) controls the proportion of the false positives. A popular

method for FDR proposed by Benjamini and Hochberg (1995) is based on ordering the

p-values and using a threshold to correct for the rate of false positives. For m ordered

p-values P1, . . . ,Pm from H1, . . . ,Hm hypothesis tested , the threshold can be identified by

finding the largest k so that

Pk ≤
k
m
α (2.10)

and reject the H0 for those Hi where i = 1, . . . ,k (Benjamini and Hochberg 1995).

2.3.4 Data integration

The aim in systems biology is to understand the complex interplay of biological func-

tions and gain a more detailed description of the structural architecture of the cell (Sub-

ramanian et al. 2020). This is plausible by studying the cells processes that span sev-

eral biological layers together. Important features can be missed when studying a sin-

gle source of information in isolation. Integrating multiple types of measurements from

the same set of individuals in a meaningful manner provides a better approach and is

referred to as multi-omics data analysis. It has been a promising method for disease

subtyping, understanding disease biology and aiding biomarker discovery (Subrama-

nian et al. 2020).

Multi-omic approaches have been successful in cancer studies and paved way for per-
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sonalized medicine and contributed to developing novel therapies (Karczewski and

Snyder 2018). Integration of different genomic data has also been promising in the

study of ASD, which as a highly heterogenous disease has been notoriously difficult to

reduce to a set of features predictive of the phenotype using a single source of data

(Betancur 2011). Common sources to study the molecular processes and interactions

include the genomic, transcriptomic, epigenomic and proteomic measurements. In re-

cent years the study of the microbiota using metatranscriptomics and metagenomics

has been added to this growing list. Genetic data can be attained from numerous dif-

ferent types of microarrays and sequencing platforms. For metabolites and proteins,

NMR or mass spectrometry are commonly used, to name a few technologies. The

output from any of these experiments is a multidimensional data matrix and the com-

bination of different omics datasets results in large amounts of data, often with various

statistical properties (Subramanian et al. 2020).

Two main courses for data integration can be followed:

1. A multistage method where data is first analyzed individually, followed by evalua-

tion of the associations of the statistically significant features.

2. A meta-dimensional method, where the appropriately preprocessed and normal-

ized data are simultaneously integrated and the significant features identified.

(Vlahou et al. 2017). A draw-back of the multistage method is that its results may not

be conclusive and different datatypes analyzed in isolation can be difficult to integrate.

The second option, multidimensional methods, can further be divided into:

1. Early-stage integration using concatenation-based method where the different

omics data matrices are merged into one

2. Intermediate-stage integration, which comprises of constructing a joint model of

the different omics dataset

3. Late-stage integration, where each dataset is modeled individually and fitted val-

ues of each model are weighted for inference

(Vlahou et al. 2017). The main obstacle in the first method is the different distributions

and scales of different omics data when merging them into one. This would require

large scale operations for normalization and potentially lead to loss of information. The
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third method involves several separate models and inference is based on choice be-

tween Bayesian classification, Random Forest and ensemble classifiers and is only

recommended when the first or second methods are not available (Vlahou et al. 2017).

Thus, in this study the second method of obtaining a joint model for the datasets us-

ing matrix factorization was explored for supervised analysis of the different genomics

data. Such model can further be used for classification and prediction purposes.

Supervised and unsupervised methods

For multidimensional data obtained from different omics platforms, one central task

is to reduce the dimensions and find key features with as little loss of information as

possible. A few methods have been developed to achieve this. Supervised methods

take into account prior knowledge about the data, such as the phenotype of interest.

In machine learning methods this is often presented as a vector of class labels that

separate e.g. cases from controls. Class labels can also depict different cell types,

disease subtypes or experimental conditions. In the linear model in (2.9) this can be

information used to form the design matrix X. In unsupervised techniques no prior

knowledge is given to the algorithm and instead any patterns that emerge from data

are explored.

Dimensionality reduction

For illustrations purposes the object in data reduction is to find a way to present the data

in 2 – 3 dimensions that are as descriptive of the data as possible. Principal compo-

nent analysis (PCA) is an unsupervised method and performs a linear transformation

to a lower dimensional space. In PCA, eigenvectors and -values of the covariance

matrix C for mean centered data matrix X are computed using orthogonal projection.

Alternatively, the eigenvectors and -values can be obtained with Singular Value Decom-

position (SVD). The eigenvalues are ordered decreasingly, and the largest eigenvalue

corresponds to the vector denoting the direction of the highest variance in the data.

The principal components are obtained by:

T = XP+E (2.11)



22

Where P holds the eigenvectors of C, E is the error matrix and T has the reduced di-

mensions, the principal components of data in X (De Bie et al. 2005). The process is

iterative, and each subsequent component is constructed by minimizing the error term.

In other words, PCA works by preserving the variance from the original data. However,

the PCA does not take into account the response Y , and although the principal com-

ponents in T can be used as regressors of Y , selecting the subset of features that best

describe Y is not feasible (De Bie et al. 2005).

Partial Least Squares (PLS) is a family of methods similar to PCA. A key difference is

that PLS takes data from both X and Y and projects them onto a new space. In Par-

tial Least Squares Discriminant Analysis (PLS-DA) the dependent variable Y denotes

categorical data such as class labels for data in X. The addition of response Y in the

formula makes PLS a supervised method for multivariate dimensionality reduction. The

decomposition of X and Y using a covariance matrix C of X and Y can be written as:

X = TPT +E

Y =UQT +F
(2.12)

Here T and U hold the component vectors and P and Q have the loadings of the

covariance matrix C of X and Y , respectively (De Bie et al. 2005). The loadings are

the coefficients that define the component. PLS components, or latent vectors, are

identified via a simultaneous decomposition of X and Y using the covariance matrix

and hence, in PLS the covariance between X and Y is maximized (Ruiz-Perez et al.

2018). Similar to PCA, the decomposition in PLS can be done with SVD, and now,

because the resulting decomposition is obtained using information on Y , performing

feature selection from the reduced dimensions can be accomplished (Vlahou et al.

2017).

Shrinkage

Feature selection has two distinct advantages: it regularizes the model to avoid over-

fitting and identifies the key effectors in the data. This can be achieved by imposing

a penalty on the size of the regression coefficients. Particularly when the regression

model contains many correlated variables, their coefficients can have both high bias
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and variance (Hastie et al. 2016). A large positive coefficient may get entirely can-

celled by a countercorrelated large negative coefficient. To alleviate this behavior lasso

regression uses the size penalty. Penalized SSR are minimized with a complexity pa-

rameter λ, which determines the amount of shrinkage. By increasing λ the shrinkage

is likewise increased. Following this, the coefficients are shrunk towards zero. In the

format of PCA or PLS, this essentially shrinks the last components with the minimal

variance/covariance to zero. The formula for lasso estimates is:

β̂
lasso
=

argmin
β

{
1
2

N∑︂
i=1

(yi − β0 −

p∑︂
j=1

xi j β j)
2+λ

p∑︂
j=1

|β j |} (2.13)

Thus, with a larger lambda many of the coefficients will be set to zero and can be

discarded. The resultant model, which includes a subset of key features is called the

sparse model.

Sparse Canonical Correlation Analysis

To integrate different datasets, also termed blocks, measured from the same set of in-

dividuals, Generalized Canonical Correlation Analysis (GCCA) provides a useful tool

(Tenenhaus et al. 2014). Contrary to what its name implies, GCCA generalizes the

Partial Least Squares (PLS) method for the integration of two or more datasets. PLS is

based on preserving the covariance of the original data when projecting it onto lower

dimensional space. GCCA does this by maximizing the correlation. Instead of uti-

lizing the covariance matrix for calculating the eigenvectors and -values, the correla-

tion matrix is used to find the direction of the maximum correlation between the vari-

ables in the different blocks. To obtain a sparse model, the correlated variables are

selected using l1 -penalization and for Q (normalized, centered and scaled) datasets

X (1)(N×P1), . . . ,X (Q)(N×PQ) that measure the P1, . . . ,PQ variables from the same N sam-

ples, sGCCA works by solving the optimization problem for each of the dimensions

h = 1, . . . ,H:

max

a(1)h , . . . ,a
(Q)

h

Q∑︂
i,j=1,j≠1

ci,jcov(X (i)
h a(i)h ,X

j
ha( j)

h ),

s.t ∥a(q)h ∥2 = 1 and ∥a(q)h ∥1 < λ
(q) for all 1 ≤ q ≤ Q

(2.14)
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where ci,j denotes the Q design matrix to indicate whether to maximize the covariance

between the blocks Xi and X j : ci,j = 0 indicates no relationship between the datasets

and ci,j = 1 denotes strong relationship and a(q)h is the coefficient vector of the residual

matrix X (q)
h from block X (q). Here λ(q) is the complexity parameter presented in (2.13),

which controls the shrinkage so that a subset of the variables with non-zero coefficients

that define each component score t(q)h = X (q)
h a(q)h can be selected. These are the vari-

ables that correlate most between and within the blocks. Shown in (2.14) is the sGCCA

model for attaining the first dimension, and after obtaining coefficients a(1)1 , . . . ,a
Q
1 for

h = 1, the coefficients for the subsequent n components h = 2, . . . ,n to maximize (2.14)

are calculated iteratively using the residual matrices X (q)
n = X (q)

n−1˘t(q)n−1a(q)n−1, 1 ≤ q ≤ Q

until the predefined number of components has been reached. The assumption here

is that most of the biological variation can be attained from the component scores

t(q)1 , . . . ,t
(Q)

h so that the statistical model is not impacted by the unwanted variation that

is due to the heterogeneity in the datasets X (q) (Singh et al. 2019).

Discriminant analysis

The aim of discriminant analysis is to partition the data into subsets that best predict the

phenotype of interest. For example, in linear discriminant analysis (LDA) the intention

is to find the projection which best separates the sample classes and is referred to as

the decision boundary (Hastie et al. 2016). PLS-DA can also be utilized to identify

the decision boundary. In the case of variable selection, the decision boundary can

be determined from the selected variables. The model obtained with the selected

variables can be validated on how well it is able to discriminate between classes. This

involves a set of training data with known class labels for the construction of the model.

By introducing new, previously unseen data to the model, predictions can be made

on its class. Such validation data can be used to assess the predictive power of the

model. For validation data, the class labels are known but not shown to the model.

The accuracy of the predictions can be evaluated based on the proportion of correct

predictions from the all predictions. Sensitivity and specificity of the model can be

plotted against one another in a ROC -curve and the area under the curve (AUC) is

often used as a measure of performance.
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Pathway analysis

To further explore the biological function of the obtained list of features from the different

data measurements, their enrichment in known biological pathways can be evaluated.

The features are first annotated, usually to denote genes, and can be compared to

pathway databases, such as Kyoto Encyclopedia of Genes and Genomes (KEGG) and

reactome. The idea is to find whether the selected genes appear in a pathway more

than would be expected by chance, i.e. they are over-represented in any known path-

way. A popular method to obtain the significance of a pathway P is the hypergeometric

and is denoted as:

P =
K∑︂

j=x
S

(︁K−m
KS− j

)︁ (︁m
j

)︁(︁ K
KS

)︁ (2.15)

where KS is the length of the list of genes that are tested, x the number of these genes

that appear in the pathway and m the total number of genes in the pathway (Evangelou

et al. 2012).
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3 Objectives

The main objective in this study is to apply a multi-omics approach to the study of ASD

and develop a pipeline for the preprocessing and integration of different omics mea-

surements from the same individuals. The omics data need not have identical features

measured i.e. the rownames of the data matrices may differ. The pipeline can, with

some adjustments, be applied to other data that satisfy these requirements. The raw

data is preprocessed and normalized accordingly before converting to suitable matrix

format that can be used in the integration. Key features will be selected that best de-

scribe the phenotype and also correlate between the different genomics data in an

attempt to distinguish if biomarkers could be retrieved by using multiple omics mea-

surements. The feature selection is performed using a supervised analysis technique.

Interactions of the key features are further explored in enrichment analysis.
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4 Materials and methods

4.1 Overview of the data

The samples used in the experiment were from the Simons Simplex Foundation (SSC),

which includes families where a single child is diagnosed with ASD. The foundation

was originally established in order to study de novo mutations in ASD (Fischbach and

Lord 2010). The three datasets used in the analysis were obtained from NCBI GEO

database under the ID’s GSE23682, GSE27044 and GSE37772 and include CGH,

methylation and expression arrays, respectively. The accompanying information along

with the familial ties and the phenotype (ASD or control) included the gender and age

at the time of the sample collection. ASD samples are to be referred to as probands

and the healthy samples as siblings. All samples were derived from peripheral blood

lymphoblasts. Common samples between the three datasets were identified after pre-

liminary preprocessing and quality control (QC) of the raw data, to include only the

samples that are both present and sustained good performance in all of the three ex-

periments. This yielded 98 samples from 62 different families. The core of the analysis

was done on 72 samples that were discordant siblings from 36 families. The remaining

26 unrelated samples were kept for validation purposes. All the subjects were male

and the age distribution for both of the study groups is presented in 4.1.

4.2 Expression data

The expression dataset (GSE37772) included 439 samples from 224 families in the

SSC collection and was derived with platform GPL6883 (Illumina HumanRef-8 v3 ex-

pression 27k BeadChip) which holds 27 000 probes located in the exons and are thus

complementary to the cDNA made from mRNA.
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Group Min. Median Mean Max
ASDsiblings 5.1 9.6 9.9 16.8
CTRLsiblings 4.5 9.9 10.9 20.3
ASDunrelated 4.3 9.0 9.3 17.7
CTRLunrelated 5.7 10.9 11.6 20.1

Table 4.1. Age distribution in years of both of the sample groups shows that the age
range of the subjects is quite wide. Majority of the subjects were 9 – 10 years of age,
and the ASD probands are more often the younger sibling. In the unrelated subjects
similarly, the ASD proband is often younger

4.2.1 Preprocessing expression array

The data was background corrected with normal-exponential convolution model using

a Bayesian model as described in section 2.3.2. Negative controls were inferred from

the detection p-value assigned to each probe (Ritchie, J. Silver et al. 2007). Detection

p-values measure how likely it is that the probe signal differs from the background

and a large value denotes no significant difference. Quantile normalization was used,

as suggested suitable for a homogenous dataset (Ritchie, Phipson et al. 2015). The

quantile normalization effect was visualized with boxplots of the log2 normalized data.

Quality control included removing probes that had a high detection p-value (> 0.05) in

more than half of the samples. This resulted in 11130 expressed probes corresponding

to 9498 different genes. The data was then corrected for batch using ComBat which

utilizes Bayesian modeling as described in section 2.3.2. Correction was made for the

batches in which the samples had been handled and mailed to the processing lab as

well as the array processing of batches. The coordinates of the probes were updated

to match those in the latest genome (hg38) from the original (hg18) using illumina nuID

system, which transforms the probe sequence into a unique identifier via a lossless

compression that is reversable, so that the identifier can at any time be converted back

into the sequence (Du et al. 2007). Finally, the data was filtered so that it only included

the shared samples between the methylation and copy number datasets.
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4.2.2 Statistical tests for differential expression

The samples were split into paired data with the siblings (n=72) for the core of the anal-

ysis and the remaining unrelated samples (n=26) were analyzed separately. In order to

evaluate whether the expression levels between the probands and siblings differ in any

specific genes, a linear model (equation 2.8) was fitted to the data and a paired moder-

ated t-test was performed for each of the sibling pairs using R-package limma (Ritchie,

Phipson et al. 2015). The t-statistic in the paired t-test evaluates the difference of the

coefficients βik between the siblings. The effect of age was tested both as categori-

cal and continuous variable, and the latter was selected because of the nature of the

paired t-test in order to keep more information in the model. The unpaired data under-

went a moderated t-test with the age covariate as a categorical variable sectioned into

four age groups: toddler, elementary- and secondary -schools and young adults. The

p-values were FDR corrected using the BH method as presented in 2.3.3.

4.3 Methylation data

The methylation profiling dataset (GSE27044) originally included 1128 samples from

four different cohorts and had been acquired with GPL8490 platform (Illumina Human-

Methylation27k BeadChip) which includes 27 000 probes located in gene promoters.

The reasoning for this is that methylation in the promoter region directly affects the

expression of genes.

4.3.1 Preprocessing methylation array

Quality control included keeping only the samples with median log2 signal intensity

taken from both methylated and unmethylated probes exceeding 10.5, as implemented

in Bioconductor package minfi (Aryee et al. 2014). This is slightly less stringent than

the method used in the original article, where the samples with the two channels aver-

age signal intensity under 2000 were discarded (Alisch et al. 2012). The data was then

background corrected and quantile normalized using R package minfi, which normal-

izes the methylated and unmethylated signal intensities separately (Aryee et al. 2014).
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98 poorly performing probes with high detection p-values (> 0.01) were removed. After

these steps 17013 probes remained corresponding to 12127 different gene promoter

regions. Batch correction steps were taken in the following order to correct for:

1. Position of the array

2. Batch in which the arrays were processed

3. Delivery group indicating the batches in which samples were delivered to the

research lab for processing

as was suggested by Price and Robinson (2018). The coordinates of the probes were

updated to the latest genome (hg38) using a chain file from University of California

Santa Cruz (UCSC) genome browser (https://genome.ucsc.edu 18.3.2020). After pre-

processing the data was filtered to include the common samples between the datasets.

4.3.2 Statistical tests for differentially methylated

genes

The analysis for differential methylation was performed for paired and unpaired sam-

ples separately. For statistical testing the M -values of the methylation intensity signals

obtained with equation 2.2. For the data matrix with unique genes as rows, the average

value of multiple probes mapping to the same gene was used. Statistical analysis in-

cluded fitting a linear model similar to the expression data 2.8 and DE genes identified

using the paired moderated t-statistic for the siblings and unpaired for the unrelated

samples. The age was adjusted for as a continuous variable for the siblings and cat-

egorical for the unrelated samples as in expression data. The p-values were FDR

corrected with the BH method as described in 2.3.3.

4.3.3 Differentially methylated regions

In search for differentially methylated regions (DMRs) the data matrix with M -values

and all the probes from the dataset was used. The R-package Bumphunter accepted

data from a 27k array. Different settings for the gap allowed in the clustering of probe

regions were tried, but the algorithm found no significant regions.
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4.4 Copy number data

Copy number data included 3852 samples from SSC families that had been obtained

with GPL10815 platform (NimbleGen Human 2.1M array) with over 2M 60bp probes

that correspond to loci interspersed along the genome excluding the highly repetitive

regions such as centromeres and telomeres. Due to the volume of the data, the com-

mon samples were filtered before the preprocessing steps.

4.4.1 aCGH preprocessing

The Nimblegen copy number array was a two-color array with separate channels for

the competitive hybridization signal for the reference and the sample. The signal from

the two channels was first converted to M and A -values using the equations in 2.4

and background correction and loess normalization was performed on with the default

settings in R package limma -function normalizeWithinArrays (Ritchie, Phipson et al.

2015; Smyth and T. Speed 2003). The normalized intensity values were then GC -

corrected using ArrayTV R-package with window size 60bp. The optimal window was

first measured from five random samples using the TV -score (equation 2.5) for 3 dif-

ferent window sizes (60, 600 and 6000) and performed best at the size of the probe

fragment as suggested in the literature (Benjamini and T. P. Speed 2012). Points with

values > 4 standard deviations (SD) from the neighbouring regions were considered

outliers and were shrunk to these neighbouring values with R-package DNAcopy. Us-

ing the same package, segmentation of the smoothed data was attained with CBS with

equation 2.6. Any change point with SD < 3 were removed. The integer copy number

for each segment was then called with Python package CNVkit using the options to

median center the segments and derive the copy number by rounding the result from

equation 2.7 to the nearest integer (Talevich et al. 2016). The segments with < 10

probes were removed as not having strong enough evidence of the copy number sta-

tus. Also, regions where the copy number for all the samples was normal were not

considered informative and were thus removed from downstream analysis.
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4.4.2 Copy number differences between the groups

The frequencies of copy number gains and losses for both cases and controls were

visualized and the genomic regions of these annotated, in order to distinguish any

difference between the copy number status between the groups. Common regions of

gains and losses were determined for the ASD probands and their siblings separately

using R-package CNVRanger, which uses the method described in Mei et al. 2010 for

identifying the recurrent regions.

4.4.3 Data integration

Multistage approach

The expression and methylation arrays had altogether 5905 common genes. In order

to identify any common ground between the individual analyses, results from these

were visualized together. This included finding the intersection of the genes identified

from expression and methylation datasets as most differential between the probands

and siblings. These were further separated to hypo- and hypermethylated genes for

the methylation data and over- and underexpressed in the expression data according

to the log fold change between the sample groups. The intersections were visualized

to see whether the hypomethylated genes would be over expressed or hypermethy-

lated underexpressed in the probands. The total number of most differential genes

between the groups were also intersected with a curated list of 1079 ASD -related

genes from the SFARI -archive (https://gene-archive.sfari.org/database/human-gene/,

read 12.4.2020).

For copy number data, a permutation test (n=1000) was made to evaluate whether the

recurrent copy number alterations occurred in the regions identified as most variable

in the methylation and expression data more often than would by chance alone. This

was implemented in the R-package regioneR and the regions were randomized in a

per chromosome basis.



33

Metadimensional approach

To proceed with the metadimensional data integration, the expression and methylation

data were filtered to include the most variable genes as suggested in literature (Singh

et al. 2018). The variances were visualized in a histogram, and the thresholds for the

proportion of the genes to include was decided upon these. The conclusion was to

attain the top 25% most variable genes resulting in 3032 genes in the methylation data

and 2375 in the expression data.

Copy number data existed as a list of segments for each sample and these regions

differed for each of the samples. To form a matrix with uniform rownames, the genome

was split into windows of 50kb. These windows were set as the rows of the matrix and

the samples as columns, as was the setup in the expression and methylation data. The

values of the sample segments overlapping a window by more than 5kb were added to

the corresponding row. In the case of multiple segments overlapping a row region, the

weighted average of the log2 values of these segments was assigned. The lengths of

the corresponding overlapping segments were used as the weights for calculating the

average. This resulted in 4195 rows corresponding to 50kb size genomic regions.

Rationale behind the 50kb window was that after filtering out segments with evidence

of less than 10 probes, the segments were all likely longer than 10kb because the

average probe distance was about 1000kb. For 50kb windows, the shortest segments

would not become too long when constructing the matrix, while keeping the matrix

still at a reasonable size (number of rows < 10 000) for the data integration part as

suggested in literature (Singh et al. 2018).

Metadimensional integration of the data was done using R-package mixOmics, which

utilizes sGCCA algorithm (2.14) for feature selection. First the number of components

to use for the model were chosen by performing PCA on the separate datasets and

the variance explained by each principal component was visualized to aid the decision.

Correlation between the datasets was evaluated using GCCA before proceeding to

variable selection to construct the design matrix ci,j as described in section 2.3.4. In

the design, the correlation to the phenotype was set to maximum (=1) to emphasize the

features that contribute to the phenotype. The number of features to select from each of
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the components was assessed using cross validation. The samples were split into 10

subsets and in an iterative process each of these was used as validation data once and

the model constructed with the rest. Several sparse models were tried using differing

number of components and features, and the best performing model was finally chosen

based on its accuracy when using the data from the unrelated samples for validation.

To take the analysis further, and to find the functionality behind the selected features,

enrichment analysis provides a useful tool. The copy number regions were annotated,

and the corresponding genes added to the list with genes selected from the expression

and methylation blocks. The enrichment analysis was performed using the hypergeo-

metric implemented in the R-package reactomePA to identify whether the number of

selected genes belonged to pathways in two databases – KEGG and Reactome, more

than would be expected by chance alone.
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4.5 Overview of the workflow

Figure 4.1. The workflow of the experiment from top to bottom begins with preprocess-
ing the raw data, coordinate liftover to the most recent genomic build and the identifi-
cation of the common samples between the datasets followed by individual statistical
analysis and finally the metadimensional data integration.
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5 Results

5.1 Expression dataset

The dataset showed no statistically significant DE genes. After FDR the adjusted p-

values were above 0.67. The log fold change between the sibling pairs was small,

which is a reasonable explanation for the negative results. The visualization of the

genes using a heatmap in figure 5.1a shows that the probands and siblings do not sep-

arate to their own clusters. Similarly, the unpaired data did not include any significant

DE -genes, but the clustering in figure 5.1b does set most of the subject groups into

their own cluster.

5.2 Methylation dataset

The paired methylation data, similarily to the expression data, yielded no significant

results when testing for differentially methylated genes, and after adjustment even the

smallest p-values were as high as 0.999. The log fold change between the study

groups was also very small, which could have been one reason why no significant

difference in the methylation status was detected. The genes closest to being DM were

visualized in a heatmap which clustered the two groups quite nicely in both paired and

unpaired data as figures 5.2a and b show.

5.3 Copy number data

The copy number data from the siblings was visualized using frequency plots to deter-

mine any difference between the two groups. The plots in figures 5.3a and 5.3b were

very similar, although one of the control samples displayed Kleinfelter syndrome. The
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Figure 5.1. Heatmaps visualizing the genes closest to being DE in siblings (a) and un-
related samples (b) shows that the siblings do not form distinct clusters. The number of
genes visualized was based on attaining the clearest result with hierarchical clustering
using average linkage with Pearson correlation as the distance function.
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Figure 5.2. Heatmaps of the closest to DM genes from both the siblings and the
unrelated samples show that some difference exists between the groups. The number
of genes in to visualize was based on the clearest result with hierarchical clustering
using average linkage and Pearson correlation.
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Figure 5.3. Frequency plots of the healthy siblings (a) and probands (b) from the
paired data shows some recurring gains (pictured red) in chromosomes 12 and 15.
One sibling in (a) has Kleinerfelter syndrome.

condition had also been identified in the original article (Levy et al. 2011), and had not

been a reason to exclude the family from the study. Therefore, the sibling pair was kept

for the remaining analysis.

Both figures 5.3a and figure 5.3b show recurring gains in chromosomes 12 and 15.

The loci in chromosome 15 has been well established as a risk loci for ASD, and the

SFARI database (https://gene.sfari.org/database/cnv/15q11.2, read 11.4.2020) had 83

articles that associated it with ASD.
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5.4 Step-wise data integration

Common ground between the data was investigated from the individual analysis of the

methylation and expression datasets. Intersections between the closest to DE and DM

genes are shown in the Venn -diagrams in figure 5.4.

Because there were no significant genes, the genes with a significant p-value before

FDR were selected. The selection included 441 genes from the methylation data and

456 from the expression data, but only 9 were shared in these as can be seen in

reffig:venna.

The separation of most differential genes between the groups into hypo and hyperme-

thylated and under and overexpressed subgroups are shown in the venn diagram in

5.4b.

(a) (b)

Figure 5.4. Venn diagrams showing the overlapping genes from the statistical analysis
of the methylation and expression datasets. Figure 5.11a shows the hyper/hypomethy-
lated and over/underexpressed genes. Figure 5.11b shows the intersection of genes
identified as significant before FDR and the curated list of ASD associated genes from
the SFARI database.

A permutation test between the recurrent regions in the copy number data and the

results from the differential expression and methylation data showed that the ASD pop-

ulation had slightly more recurring copy number alterations in these regions as figures

5.5a,b,c and d show.
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(a) (b)

(c) (d)

Figure 5.5. Overlap analysis of the most variable genes from expression (a, b)
and methylation (c, d) data with the recurring copy number regions between the asd
probands (a, c) and siblings (b, d) shows that not many overlaps occurred in these re-
gions. However, there is slight difference between the sample groups in the methylation
data (c, d).

5.5 Metadimensional data integration

The decisions to be made for constructing the integration model include the number of

components to use and the number of features to select. PCA was used to evaluate

the amount of variance in the data components and visualized in figures 5.6a,b and c.

Most of the variance in expression and methylation data appeared to be explained by

the first component (figures 5.6a and 5.6c), whereas in copy number data this figure

was just above 50
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(a) Copynumber (b) Expression

(c) Methylation

Figure 5.6. The variance explained by each of the datasets principal components as
histogram shows that only the first component is informative in the methylation (b) and
expression (c) datasets. In copy number data the first component explains less than
half of the variance.

The second step was to choose the number of features to select from the two compo-

nents chosen for constructing the model. The number of features to select from each

component in each dataset was evaluated using cross validation and the result was vi-

sualized in figure 5.7. Overall, 210 features were selected with 80 from the expression

data (70 from first and 10 from second component), 100 from the methylation data (90

from the first and 10 from the second), and 30 from the copy number data (20 from the

first and 10 from the second). The results from cross validation and the optimal number

of features to select is visualized in figures 4.10a-c.
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(a) Copy number (b) Expression

(c) Methylation

Figure 5.7. The optimal number of variable to select from each component (1=blue,
2=orange) of each dataset (a-c) with x-axis denoting the number of variables and y-axis
the resulting balanced error rate.

Accuracy of the model was evaluated using the unrelated samples. It was not high and

at best the model performed little better than a random classifier. The receiver operator

curve (ROC) for each dataset shows that the first component from the expression data

in the model separated the samples slightly better (AUC= 0.52) than those of copy

number (AUC = 0.38) and methylation (AUC = 0.50). It appears from table 5.1 that

most of the samples get predicted as siblings.
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Ground truth Predicted as CTRL Predicted as ASD
CTRL 5 8
ASD 1 12

Table 5.1. Confusion matrix with the predicted and ground truth values

(a) Copy number (b) Expression

(c) Methylation

Figure 5.8. The ROC curves show specificity (x-axis) and sensitivity (y-axis) for first
components of the three datasets in the model. Expression data (b) performed better
than copy number (a) and methylation (c).
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Figure 5.9. Heatmap of the most discriminant features selected by sGCCA for the
model shows that the samples (left) didn’t cluster into distinct groups.

Figure 5.10 shows the negative and positive correlation identified in the selected fea-

tures by the sGCCA algorithm. The selected features were further visualized in a

heatmap in figure 5.9 with complete hierarchical clustering using Euclidean distance.

To take the data integration further, pathway enrichment analysis can reveal the func-

tionality of the features identified in the sGGCA algorithm. Indeed, the selected genes

seemed to be enriched in pathways involved in digestion and immunity as seen in

figures 5.11a and b.
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Figure 5.10. The lines connecting the selected features denote correlation. Positive
and negative correlation are shown in red and blue, respectively. Surrounding the circle
is relative expression of the selected features between the sample groups (ASD shown
in orange and CTRL in blue).
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(a) KEGG

(b) Reactome

Figure 5.11. The results from hypergeometric tests for pathways from KEGG (a) and
Reactome (b) both include immune related pathways.
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6 Discussion

This study supports the notion that studying ASD is not always straightforward (Betan-

cur 2011). The differences between the sample groups in this data were minor, and

perhaps more detailed knowledge of the sample groups, particularly the probands,

could have yielded more accurate results. This information could include the severity

level of ASD and details of the possible comorbidities. Also, due to the limited coverage

of the expression and methylation datasets, some relevant information may have been

missed.

Obtaining negative results from the individual analysis of the different datasets was not

surprising, as the original articles accompanying the data had been focused on very

different type of analysis. There were three articles on the aCGH data, two of which

were involved with studying ASD, but concentrated on identifying de novo mutations in

individual families (Levy et al. 2011; Gilman et al. 2011). The article on the expression

data was determining the effect of copy number alterations from a separate aCGH

study on the gene expression patterns (Luo et al. 2012). Their approach of obtaining

DE genes was based on Z -statistic from the scale function in R, but in this study the

paired t-test used due to its robustness and the paired nature of this study (Stevens

et al. 2018). The article published on the methylation data was not about ASD at all,

and instead focused on the age-related methylation patterns during the childhood and

adolescence (Alisch et al. 2012). There were no existing studies on the integration of

these three datasets.

Determining the transcriptomic profile in the brain from the blood samples is not feasi-

ble, however, studying the gene expression in the lymphocytes of autists can give vital

information on the neuroinflammation process that has been shown to occur during the

manifestation of ASD (Matta et al. 2019). This occurs during the development of ASD,
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although the persistence of a low-grade inflammation into the adulthood has also been

reported (Estes and McAllister 2015). Indeed, the gene set enrichment analysis per-

formed on the expression dataset (supplementary table 3) did involve many immune

related pathways, and such were also present in the pathway enrichment analysis of

the integrated data.

The process of constructing a model with the sGCCA algorithm involves selecting the

number of features to be extracted from each dataset, and this can have a large impact

on the performance of the model. Too many features may lead to overfitting and too

few may not be informative enough. In this study, the cross-validation process for

optimizing the number of features to select gave strikingly different results on each

run, perhaps due to the low variation in the data between the probands and healthy

siblings. Each dataset was very homogenous indeed, and perhaps for the expression

and methylation arrays different normalization methods could be tested instead of the

quantile normalization, which forced the samples to have the same distribution and

could potentially involve large adjustments to the data (Bolstad et al. 2003).

Classification accuracy of the model was not good, and this could be due to the small

differences observed between the sample groups, but also the small number of valida-

tion data. Although the model constructed with this data did not discriminate between

the sample classes, the developed pipeline can be easily accommodated for other

studies where different measurements from the same individuals are to be integrated.

Indeed, in the GEMMA project, which this thesis study was a part of, multiple mea-

surements will be made from ASD siblings and the pipeline is applicable with some

adjustments (https://www.gemma-project.eu, read 29.4.2020).
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7 Conclusions

In this study the main aim was to integrate different omics datasets for a more holistic

understanding ASD and to develop a pipeline for this process. Although the model

constructed with the available data did not predict the sample classes using the vali-

dation data, the integration method did seem promising in that the sGCCA algorithm

was able to find correlation between the datasets and select features that likely con-

tribute to the phenotype. The problem with the accuracy likely lies in the fact that no

large differences existed between the study groups as was evident from the individual

analysis.

Although this study did not find features that discriminate the ASD phenotype from the

samples, the developed pipeline is applicable to further studies with multiple measure-

ments from the same set of individuals. More information on the phenotypes would be

useful, such as severity of ASD symptoms and details of possible comorbidities, partic-

ularly the gastrointestinal symptoms that elevate the peripheral inflammation levels in

the subjects. Other data types could be added to the study, particularly the metatran-

scriptomic and metabolomic, and these directions, amongst others, will be explored in

the GEMMA -project that this thesis study was a preliminary part of.
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8 Appendices

Gene Symbol logFC AveExpr t P.Value adj.P.Val
ATPAF2 -0.2378 6.5587 -4.1535 0.0002 0.6742

HIST2H2BE 0.3102 7.1717 4.1131 0.0002 0.6742
ZNF696 -0.2079 7.3158 -4.0878 0.0002 0.6742
C2orf63 -0.2673 6.7322 -3.9317 0.0003 0.7369

SLC25A13 0.3071 10.2186 3.6856 0.0007 0.9999
DENND5A -0.2378 6.5587 -3.6114 0.0019 0.9999

OXTR -0.3284 8.4793 -3.3273 0.0023 0.9999
VAPA 0.1933 6.5359 3.2688 0.0026 0.9999

BBS10 0.1242 6.4370 3.2250 0.0026 0.9999
KDM5B 0.3109 8.4759 3.2151 0.0028 0.9999

Table 8.1. Small set of the top results from the differential expression analysis shows
that there were no significant genes after adjusting for FDR.

Gene Symbol logFC AveExpr t P.Value adj.P.Val
MIR3153 0.1721 0.4033 3.8780 0.0004 0.9988
MYL6B 0.1874 -3.9189 3.6941 0.0006 0. 9988

CDC42BPA 0.1540 -4.2193 3.5629 0.0009 0. 9988
RBBP5 0.1432 -0.7356 3.5433 0.0010 0. 9988
C6orf15 -0.1341 -4.1323 -3.5306 0.0010 0. 9988
TMEM9 0.1288 -2.8403 3.5248 0.0010 0. 9988
WNT8A 0.1695 -4.3070 3.5151 0.0011 0.9998

RIN1 -0.1894 -4.4084 -3.5137 0.0011 0.9998
SNX22 0.3755 -2.3682 -3.4465 0.0013 0.9998
PNOC 0.1943 -1.4969 3.4439 0.0013 0.9998

Table 8.2. Small set of the top results from the differential methylation analysis shows
that there were no significant genes after adjusting for FDR.



56

hsa04514 Cell adhesion molecules (CAMs)
hsa04640 Hematopoietic cell lineage
hsa04672 Intestinal immune network for IgA production
hsa04512 ECM-receptor interaction
hsa00980 Metabolism of xenobiotics by cytochrome P450
hsa00260 Glycine, serine and threonine metabolism
hsa04610 Complement and coagulation cascades
hsa04970 Salivary secretion
hsa04010 MAPK signaling pathway
hsa04630 Jak-STAT signaling pathway
hsa00564 Glycerophospholipid metabolism
hsa00601 Glycerosphingolipid biosyhhesis – lacto and neolacto series
hsa04974 Protein digestion and absorption
hsa04972 Pancreatic secretion
hsa04380 Osteoclast differentiation
hsa04976 Bile secretion
hsa00380 Tryptophan metabolism
hsa00512 Mucin type O-Glycan biosynthesis hsa04070 Phosphatidylinositol signaling system
hsa04062 Chemokine signaling pathway
hsa00830 Retinol metabolism
hsa02010 ABC transporters
hsa00561 Glycerolipid metabolism
hsa00562 Inositol phosphate metabolism
hsa00565 Ether lipid metabolism
hsa00500 Starch and sucrose metabolism
hsa04975 Fat digestion and absorption

Table 8.3. Gene set enrichment analysis from paired expression data
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Description Package Version
Data import GEOquery 2.52.0
Batch correction SVA (ComBat) 3.32.1
Preprocessing, analysis Limma 3.40.6
Preprocessing Minfi 1.30.0
GC-correction ArrayTV 1.22.0
Segmenting DNAcopy 1.58.0
Copy Number Call CNVkit (Python) 0.9.6
Liftover Rtracklayer 1.44.4
Annotation annotatr 1.10.0
CNV summary CNVRanger 1.0.3
Venn diagram VennDiagram 1.6.2
CNV visualization GenVisR 1.16.1
Data integration MixOmics 6.8.5
Pathway analysis ReactomePA 1.28.0
Gene set enrichment gage 2.34.0

Table 8.4. Package dependancies
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