
On the process aspect in mathematics 
through genuine problem-solving 

Jaska Poranen

The process aspect of mathematics is important to school teachers 
on the basis of subject didactic research. Through it, we can achieve 
better commitment to studies at school, more applied skills, and 
deeper learning, for example. However, in the conventional subject 
studies at the university level this approach may remain vague. Also, 
the concept as such needs some clarification. Th e au thor of  th is 
chapter sets himself a genuine problem through which he wants to 
achieve a clearer picture of the process aspect. GeoGebra software 
is quite a central tool here. Many experimental features then come 
along; many conjectures and hypotheses arise and very often they 
turn out wrong, too. So, in a sense, the process aspect seems to be a 
chain or a network of conjectures and refutations; it may also include 
some qualitative reasoning needed for a better understanding. Such 
features are common in other sciences, and also in everyday life. At the 
same time, however, something promising may appear, demanding 
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validation: here, at the latest, the system aspect of mathematics, 
together with the toolbox view, comes naturally into play. One can 
also apply Polya’s terminology and say that demonstrative reasoning 
and plausible reasoning meet in the process aspect. In the end, the 
author also creates some more general connections of this writing 
process to certain themes in the subject didactics, i.e. in the contents 
of his teaching as a university instructor. 

Introduction

The didactic triangle is one of the first things to be studied in the 
subject teacher’s pedagogical education. The two vertices of the 
didactic triangle are always labeled as teacher and learner. The third 
vertex is labeled according to the subject in the focus of teaching. In 
this chapter, this third vertex is mathematics. It is also a common 
practice to draw two-headed arrows between the vertices to express 
the mutual interactions there.  The “classic” didactic triangle is quite 
simple as a model of the dynamic teaching and learning process at 
school. Even so, it creates a frame of many essential questions. For 
example, Schoenfeld (2012) has listed a few of them. The next three 
especially interesting ones in this context are gathered from that list:

•	 What is mathematics, and which version of it is the focus of 
classroom activities?

•	 What is the teacher’s understanding (in a broad sense) of 
mathematics?

•	 How does the teacher mediate between the learner and 
mathematics, shaping the learner’s developing understanding 
of mathematics?

A great deal of research has been published on the perspectives to 
mathematics by the professors of mathematics, teacher educators, 
and teachers of mathematics at school (e.g. Pehkonen 1999; Mura 
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1993; Törner & Pehkonen 1999; Viholainen et al. 2014; Tossavainen 
et al. 2017). The following classification of the dominant views seems 
to be the most typical one:

•	 Mathematics is a formal system, in which you have to write 
rigorous proofs with a precise and clear language (in short: 
“mathematics as a system”, or plain S).

•	 Mathematics is a collection of calculation rules and routines, 
which will be applied along the circumstances (“mathematics 
as a toolbox”, T).

•	 Mathematics is a dynamical process where everyone creates 
his or her own mathematics according to needs and abilities 
(“mathematics as a process”, P).

The classification above has been reached by applying qualitative 
data analysis to the answers to the question “what is mathematics?” 
(Pehkonen 1999; Mura 1993). In an alternative approach, this 
classification has been used as a starting point for the analysis of data 
(Törner & Pehkonen 1999). It also has to be noticed that the S, T and 
P categories above do not mean that everyone is a member of just one 
class - quite on the contrary. Typically, everyone belongs to all classes, 
but in different magnitudes. Surprisingly, the P perspective was the 
least dominant among the professors; one could have expected the 
opposite because professors, in particular, produce something new in 
mathematics (Pehkonen 1999).

The S category above is well-known to everyone who has studied 
mathematics to some extent at the university level. For example, 
every student majoring in mathematics studies at least elementary 
mathematical analysis. Behind it is the axiomatic system of real 
numbers defined as the complete ordered field. Every proposition, say 
the fundamental theorem of analysis, has to be proved in this field 
(see, e.g., Poranen 2000, 20). The elementary mathematical analysis is 
already a huge and complicated system; studying it demands a lot of 
work and probably nearly everyone finds it a “finished system”, which 
one just has to learn.
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Respectively, “mathematics as a toolbox” (T) is familiar to every 
student of mathematics. The above-mentioned mathematical analysis 
has a never-ending number of applications in science, engineering, 
economics, geometry, etc. The same applies to other domains of 
mathematics which the prospective teacher usually studies. The 
applications may be familiar or not so well-known (see, e.g., Poranen 
& Haukkanen 2012; Abramovich & Brouwer 2003).

However, mathematics as a process (P), from the viewpoint of 
the prospective teachers, is surely much more difficult to describe. 
Especially the part “everyone creates his or her own mathematics…” 
can raise many questions, simply because the things are not usually 
studied in that way. We could also say that the ordinary tradition 
in teaching and learning mathematics at the university level is more 
educational than developmental – to use the terminology from 
Haapasalo & Kadijevich (2000).

Here, the author will not just content himself with some general 
level argument for the P perspective (however, never at the expense of 
the S and T perspectives in the subject teacher education); instead, he 
sets himself a genuine problem through which he wants to make the P 
perspective more accessible and understandable in teacher education, 
especially with consideration to the didactic triangle.

The following is a summary of quite a multidimensional problem-
solving process with a few remarks and more general reflection.  

Problem Q and its background

The father figure of the rich tradition of mathematical problem 
solving G. Polya (1887–1985) presents in his book (1973, 122 - 123) the 
question (q1): 

Given two points and a straight line, all in the same plane, both 
points on the same side of the line. On the given straight line, find 
a point from which the segment joining the two given points is 
seen under the greatest possible angle.
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After a few quite qualitative considerations Polya says that we have 
to draw a circle passing through the given points A, B, and which 
touches line L: the vertex of the maximum angle is the touching point 
K (cf. Fig. 1). However, he does not reveal how all this can be done as 
a genuine classic geometric construction (i.e. with compass and ruler 
without a scale (see, e.g., Lehtinen, Merikoski & Tossavainen 2007, 
79–84, 125–129). Nor does he give any proof for his proposition. He 
also seems to leave aside the fundamental question concerning the 
existence of the geometric solution. All these questions proved to be 
difficult to the author, although the entire essence of the problem (Q, 
below) is not yet here. One reason for the difficulties was that Polya’s 
original figure contained just the segment AB, line L, the circle Γ, and 
the touching point K – without any further explanations. Our figure 
(Fig. 1) contains more essential elements, and their crucial role will be 
discussed further on in this chapter. 

Later in his book, Polya (1973, 142–144) introduces another 
question (q2), which is likely to be much better known:

Given two points and a straight line, all in the same plane, both 
points on the same side of the line. On a given straight line, find a 
point such that the sum of its distances from the two given points 
be minimum.

 Figure 1. Question q1: How to find point K from line L so that the 
segment AB is seen from it under the greatest possible angle.
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A widely known and elegant solution to this problem is visible in 
Figure 2:

One geometric solution to question q2 is quite simple: We first 
construct the mirror image A’ of point A with respect to line L; then 
the solution is the point X intersection of segment A’B and line L. 
The solution (path AXB) is easy to prove to be true by using some 
elementary geometry (see Fig. 2). Respectively, it is easy to show that 
angles AXX’ (“the angle of incidence”) and BXX’’ (“the angle of 
reflection”) are equal. The paths AX’B, and AX’’B are two arbitrary 
routes from point A to point B through line L. By using the mirroring 
with respect to line L, we see that AX’ = A’X’ (AX’’ = A’X’’), and that 
AX’ + X’B (AX’’ + X’’B) > AX + XB = A’X + XB because segment A’B 
gives the shortest distance between the two points A’ and B. 

It may also be interesting to see that we can draw an ellipse with 
the focal points A, and B, so that it touches line L at point X, i.e. we 
adjust the sum AX + XB to give the constant distance of the points of 
that ellipse from its focal points A and B (Fig. 2).  We could generally 
deduce some central properties for all ellipses on the grounds of this 
observation. However, now we have to omit this line of inquiry.

Question q2 is not at all as boring as it may seem at first sight. For 
example, there are many connections to geometric optics in it (see, 

Figure 2. Question q2: How to find point X from line L so that 
the polygonal line AXB is as short as possible. 
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e.g., Young & Freedman 2000, 1055–1063; also Polya 1973, 143–147). 
However, these and many other interesting features linked to it are 
not our focus now. Instead, we are presented with a chance to set 
a genuine problem (at least to the author): Is there some relation 
between questions q1 and q2? Let us call this question or problem 
Q. We can set problem Q more precisely also: Is there some relation 
between points K and X (cf. Fig. 1. and Fig. 2)? Of course, in this 
context, we are looking for some possible interesting mathematical 
connections between points K and X. As far as the author has been 
able to assure, Polya himself has not posed question Q. He merely 
writes (1973, 143):

In fact, both problems have exactly the same data, and even 
the unknown is of the same nature: Here, as there, we seek 
the position of a point on a given line for which a certain 
extremum is attained. The two problems differ only in the 
nature of this extremum: Here we seek to minimize the 
sum of two lines; there we sought to maximize the angle 
included by those two lines.

In the following we will assume that segment AB lies entirely above 
line L; further we assume that the distance of point B from line L is 
greater than the distance of point A from it (see Fig. 1 and Fig. 2). The 
case AB || L will be investigated separately (see The AB II L case in this 
chapter) as will the case AB ┴ L (see The general case). So from now 
on 0̊ < α < 90̊  where α is the angle between the segment AB and line 
L, and the cases α = 0̊ , α = 90̊  will be discussed separately. Here, we 
also prefer classic geometric reasoning to differential calculus, etc., to 
keep things as simple and observable as possible. 
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Some preliminary conjectures 
concerning question Q

Certainly, let us learn proving, but also let us learn guessing. (Polya 
1973, Preface.)

In what follows, we will rely on GeoGebra (version 5.0); its correct 
functioning in measuring angles, for example, is unquestionable. 

The first conjecture or hypothesis (c1) about Q could be quite 
straightforward. Point K, which defines the vertex of the maximum 
angle = point X which defines the shortest path (see Fig. 1 and Fig. 
2). Some experiments by GeoGebra, however, show that c1 cannot be 
true. However, there may be a special case where c1 holds (see section 
The AB II L case), and perhaps, something else of interest may also 
emerge. One possibility in that direction could lie in the following 
consideration (Fig. 3):

Let point Y be the intersection of the perpendicular bisector N 
of segment AB and line L (Fig. 3). Now we can construct circle Γ1 
through points A, B and Y, and then prove that the circle also goes 
through point X (see Fig. 2). The details of the proof are omitted here, 
but the author thinks he succeeded in it by constructing another 
circle Γ2 passing through points A, B, B’ and A’, where A’ and B’ are 

Figure 3. Angle AXB = angle AYB; angle BAY = angle AXC (angle BXC’). 
These observations provide two new methods to construct point X.



On the process aspect in mathematics through genuine problem-solving

211Subject teacher education in transition

the mirror images of points A and B with respect to line L (Fig. 3). 
Aided by this circle he could prove that angle AXB = angle AYB, so 
points X and Y must lie on the same circle Γ1.  He also reached the 
conclusion that angle AXC = angle BAY (=angle BXC’), where point 
C is the intersection of segment AA’ and line L. 

By means of circle Γ1 we can construct point X (see Fig. 2) as the 
intersection of circle Γ1, and line L. We can also construct point X on 
the grounds of the observation that angle AXC = angle BAY, because 
triangle AXC is right-angled. Both of these methods are new to the 
author, and they developed as a sort of side effect by investigating 
hypothesis c1.

By observing circle Γ1 and its points X and Y (Fig. 3), we can state 
the second hypothesis (c2) concerning problem Q: the midpoint 
between X and Y is K (see Fig. 1 and Fig. 3). But GeoGebra is again 
ruthless… However, that midpoint may lie very near to point K. 
Furthermore, we can propose something a little bit weaker: point K 
always lies between points X and Y (c3). Using GeoGebra, the author 
has not succeeded to prove c3 wrong; yet, of course, it may not hold. 
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The AB || L case

It is quite natural to try to get a clear view of the special case where 
segment AB is parallel to line L (Fig. 4):

Let MF be the perpendicular bisector of AB and let point Y be the 
intersection of MF and L. Further, let points Y’ and Y’’ lie at MF so 
that MY < MY’ < MY’’. The supplementary adjacent angle of an angle 
in any triangle is always greater than the other two angles of that 
triangle. Thus angle BY’Y < angle BYM, and from this follows that 
angle BY’A < angle BYA. Respectively, we conclude that angle BY’’A 
< angle BY’A (Fig. 4). 

We can draw the circle through points A, Y’ and B and name as 
P one of its two intersections with line L (Fig. 4). Now the vertices of 
angles BPA and BY’A are on the same circle opposing the same chord 
AB, so angle BPA = angle BY’A; further, especially, angle BPA < angle 
BYA. We also see that angle BP’A < angle BPA, and this is equivalent 
with YP < YP’ (Fig. 4). 

Figure 4. AB || L.
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To sum up, angle BYA is the maximum angle in the case of AB || 
L, where Y is the intersection of the perpendicular bisector of AB and 
L; the greater the distance of point P from point Y along line L, the 
smaller angle BPA is. Equivalently, the greater the distance of point 
Y’ along MF from point M (below AB), the smaller angle BY’A is. 
Also, clearly, BYA is the shortest path from B to A through L (Fig. 4). 
So now, point K = point X (see Fig. 1 and Fig. 2). We see that the new 
methods (see Some preliminary conjectures concerning question Q) to 
find point X also works in this special case; then, of course, point X 
= point Y.

The general case

First, we have to go back to Figure1 and question q1. Polya’s basic idea 
there seems to be correct: let point K be the touching point of line L 
and the circle passing through points A and B. Further, let K’ be an 
arbitrary point (≠ K) on line L and let point H be the intersection of 
segment AK’ and circle Γ; in triangle HK’B, angle K’ is smaller than 
the supplementary adjacent angle AHB (= angle K) of angle BHK’. 
Thus, angle K’ < angle K, i.e. segment AB is seen from point K under 
the greatest possible angle. We may further define the intersection of 
the lines AB and L, and name it P; then PK’ is a tangent line of circle 
Γ, and point K on it is the common point of this tangent and the circle. 
(Fig. 1)

Polya himself did not give an exact explanation (or proof) for 
the existence of point K, like that above. Now we know that point K 
exists, but is there a genuine geometric construction to it? To try to 
find it, we should first recall the principle of analysis and synthesis 
from the mathematical problem solving tradition (see, e.g., Haapasalo 
2012). By analyzing the Figure 1, we may come to a construction idea 
(synthesis) with the help of the Secant Theorem (Fig. 5): 
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Triangles PA’B, and PAB’ have angle A’PA in common. Further, angle 
A’B’A = angle ABA’ (corresponding to the same arc, A’A), so these 
triangles are similar. Thus PA’/PB = PA/PB’, i.e. PA ∙ PB = PA’ ∙ PB’ 
(Fig. 5). Let, then, secant PB’ rotate around point P so that it goes 
closer and closer to the tangent PK (cf. also Fig. 1). We see that then

	 PA ∙ PB → PK ∙ PK = (PK)2

Thus PK = the geometric mean of PA and PB, i.e. PK/PB = PA/PK. 
The geometric mean here (and more generally) is constructible, but 
we now omit the details of its proof (see, e.g., Väisälä 1965). 

In other words, to solve the question q1 geometrically, we have to 
construct the circle with that geometric mean as a radius and P as the 
centre. The intersection of this circle and line L gives the vertex point 
K of the maximum angle. It is interesting to note that the method 
works in the AB ┴ L case, too (see Fig. 7). We may also observe that 
triangles PKB and PAK are similar. Then, for example, KA/KB = PA/
PK. Obviously, we have found a solution to the next construction 
problem, too, i.e. given two points A, B above line L; construct a circle 
passing through the given points, and touching the given line L.

The author has to admit (with a little embarrassment) that he 
faced great troubles here. He had some private correspondence with 
J. Merikoski, the emeritus professor of mathematics (University 
of Tampere). Merikoski offered an idea on how to prove Polya’s 
proposition about the existence of vertex K of the maximum angle. 

Figure 5. The Secant Theorem: PA ∙ PB = PA’ ∙ PB’
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He also showed the role of the Secant Theorem in the geometric 
construction of that point. So, now we know how to construct both 
points K, and X, separately. However, the main question, Q, still does 
not have a solution.  

Even before the correspondence with professor Merikoski, the 
author had found by himself quite a promising procedure to define 
vertex K of the maximum angle, and there and then a conjecture (c4) 
concerning the main question Q, also (Fig. 6).

Again we have to first find point X, minimizing the length of the path 
from A to B, through line L (see Fig. 2). Of course, then we also see 
segment AB in an angle AXB. Next, we construct through point X 
an ellipse E(M) with the focal points A and B. Let the intersection go 
closer to L of E(M) and the perpendicular bisector MY be C. Then, we 
draw line T through point C, parallel to AB, and mark the intersection 
of it, and line L with K. (Fig. 6)

On the grounds of the observations (by GeoGebra), point 
K constructed in this way is the vertex of the maximum angle. 
Naturally, it also seems to be the same point that we get by using the 
equation PA ∙ PB = (PK)2 (of course, in the contrary case we should 

Figure 6. Conjecture c4: Points X and K are connected through a multiphase 
minimization-maximization-decreasing-maximization process starting from point X. 
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reject conjecture c4). Through minor calculation, we can easily show 
our conjecture c4 to be true in the special AB ┴ L case (Fig. 7).

In this case (Fig. 7), the length of the shortest path AXB (see Fig. 2) is 
clearly = AP + PA + AB = 2AP + AB, and P = X. Thus, AC (= BC) = AP 
+ AB/2, and (MC)2 = (AC)2 – (AB/2)2, i.e. (MC)2 = AP(AP + AB), i.e. 
MC = the geometric mean of the segments PA, and PB, i.e. MC = PK. 
Further, clearly MC || PK, therefore, line T through point C, parallel 
to AB, intersects line L at point K (Fig. 7). It may be interesting to note 
that now angle AXB = angle AYB = 0̊  also, if we consider that point 
Y is the “intersection” of lines L and MC at infinity. Respectively, then 
the second result that we found in section 3 also holds true (cf. Fig. 3).  

In the general case (Fig. 6), we content ourselves with plausible 
reasoning – instead of demonstrative reasoning, i.e. we leave the 
(possible) true proof for another time; both these terms of reasoning 
come from Polya (1973).

Figure 7. The AB ┴ L case
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So, let us choose a “moving point” X’ from the ellipse E(M) (Fig. 6). 
Then always AX’ + X’B = AX + XB, and angle AX’B increases as we 
move closer to MY along the ellipse E(M). We reach the maximum 
size of this angle at point C.

Now we have an isosceles triangle ACB, the base of which is AB 
and sides AC = BC = (AX + XB)/2. Next, we construct a line T parallel 
to AB through the vertex C of this triangle. At this point, at the latest, 
it could also be a good idea to take a glance at Figure 4 and recall the 
considerations there. 

We will move again, but now along line T to the left using point K’ 
(see Fig. 6). Then angle AK’B < angle ACB, and angle AK’B decreases 
all the time as point K’ moves to the left. But there is a point where 
line T meets line L. We stop the moving there and conjecture that this 
point is the vertex of the maximum angle AKB.

In addition, the (plausible or “qualitative”) reasoning above 
not only includes the fact that the area of triangle AKB = the area 
of triangle ACB, it also gives us some evidence for conjecture c3. If 
we are right here, we have found a genuine constructive connection 
between points X, and K. We may have to exclude the ellipses from 
the set of allowable geometric constructions, but the role of the ellipse 
E(M) is not crucial in the reasoning: clearly, we can also get point C 
(see Fig. 6) without it (starting from point X).  

In our figures (Fig. 2, Fig. 6, Fig. 7), we have generated the ellipses 
by GeoGebra. If we allow such use and drawing of the ellipses, we 
may, perhaps, also start from point K. Angle CKY = α (see Fig. 6), and 
therefore we can find point C starting from point K. We should then 
prove  that an ellipse through this point and with the focal points A, 
B, touches line L and that this touching point = X.
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Some remarks on the Q process

The author had not encountered question q1 earlier. Therefore, 
it (as part of the main question Q) served well as a starting point 
for examining the process aspect (P). In the beginning, the author 
thought that it could not be very hard to find a geometric (constructive) 
solution to it – if it only happened to exist. He also thought that in case 
of possible difficulties, analytic geometry or some differential calculus 
would quickly help. However, question q1 remained difficult (for 
the author), and it was sometimes quite frustrating, too. The author 
learned, little by little, a lot of things about the possible constructive 
solution of q1, but it did not help. He found out, for example, that the 
centre O of that circle Γ(O), which passes through point K, must lie on 
the perpendicular bisector MY, so KO = OA (= OB); angle KOY must 
be equal to angle KPA (Fig. 6), etc. In practice, the author executed 
many experiments using GeoGebra; it took, however, a lot of time 
before reaching something promising (cf. Fig. 6). 

The author abstained from online help. He had to be on his own 
so to speak; i.e. he had to use just his existing knowledge structures 
(hoping that there is something) to achieve a true understanding 
and experience of the process aspect. Still, some standard textbooks 
used in his teaching at school and university were “allowed” (see 
References).

The author did not, however, find or invent anything directly 
useable from his knowledge structure, or from the “allowable 
textbooks”. Afterwards, it is easy to say that he should have been able 
to find something. For example, the legendary Finnish textbook of 
Geometry (Väisälä 1965, 120) contains the Secant Theorem, and some 
exercises that could have been helpful (there was, however, not a word 
about some possible connections to question q1); the author has used 
the Secant Theorem in his own teaching and has even applied it to a 
geometric interpretation of division (cf. the S and T perspectives), etc. 
So, The Secant Theorem must have been somewhere in the author’s 
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mind. However, he was unable to connect it to question q1. Therefore, 
we have here an example of the classic transfer problem also (see, e.g., 
Ropo 1999, 158; Greeno, Collins, & Resnick 1996, 21). 

The author had set his mind too rigorously on looking for a 
solution to q1 otherwise – not through point P (cf. Fig. 1, Fig. 5 and 
Fig. 6). Anyway, it was a bit difficult to deal with limited ability already 
with the problem q1. But the invention of the rather complicated 
hypothesis c4 (see Fig. 6, Fig. 7) gives him some consolation. The 
author is quite convinced that the (partly qualitative) reasoning there 
is correct, or at least very fascinating. He may still be wrong.

Question q2 (as the second part of the main question Q) was 
already quite familiar to the author. He has utilized it in his teaching 
of subject didactics, for example, by considering some functional 
working methods, and also in his teaching of geometry. Still, during 
this writing process he learned much more about it (see, for example 
Fig. 3). In many games, such as ice hockey, a player may pass the puck 
to another player via a wall; question q2 gives the interesting geometry 
behind that. As a standard extreme value task, say, by handling root 
functions in differential calculus, it is not hard; however, in manual 
computing it demands quite a lot of work. 

To many students in teacher education it seems to be important to 
realize that some extreme value tasks (such as q2) can be viewed in 
many different ways – also concretely without using, say, the typical 
arsenal of abstract differential calculus. We could present question 
q1 in the context of differential calculus, too. By applying our pure 
geometric solution we could also deduce an analytic expression to 
point K, and this could be of some use there. But, even then, q1 would 
probably be quite difficult in the context of differential calculus. 
Respectively, we could find (easily) an analytic expression for point X.  
Thus, it could be possible to investigate the main question Q through 
these analytic expressions for K, and X, too. However, in this chapter 
we have had to omit that possibility. 
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The main problem Q was difficult (for the author). This was not a 
surprise, at least not after those preliminary conjectures c1, c2, and 
many others which, one by one, proved incorrect. One reason for the 
difficulty was certainly question q1 (as part of it), which bothered the 
author for a long time. However, perhaps because question Q was the 
author’s “own”, it always remained motivating and interesting; well, 
at times it was frustrating, too. All in all, though, Q was an excellent 
companion with whom the author could “talk” almost any time.

There still remains at least one crucial question we should consider. 
Does the narrative of the problem solving process above – let us call 
it the Q Process – shed some light on the general process aspect (P)? 
“Everyone creates his or her own mathematics…” Did something like 
that happen? Yes, a little. At the beginning, the author made many 
observations through GeoGebra. However, it was not at all clear how 
to utilize or interpret them, because they did not give any hints to 
straightforward inductive generalizations. So, in a way, the author 
had no concepts through which he could have created some order 
in the observations (yet, naturally, there were some starting points). 
Furthermore, we must remember, of course, that the whole question 
Q was genuinely new to the author.

For example, the new methods (to the author) to find point X 
on line L (see Fig. 3) were one of the attempts to create some order 
in the observations (they may also have a role when investigating 
conjecture c4). The same applies to the considerations in Fig. 4. The 
reasoning there was simple; however, it was also new to the author, 
and, as a matter of fact, it proved to be important in the (plausible) 
reasoning concerning conjecture c4 (Fig. 6, Fig. 7). Conjecture c4 
remains unproven, but the whole complex thinking process there was 
certainly new to the author; we may also say that it was his own. So, 
to get some true understanding and experience of the P aspect, the 
genuine problem solving seems useful.

During the Q Process, conjectures turned up many times, and it 
was natural query about their proof (or falsifications). Therefore, in 
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this way for example, the S aspect was present in the Q Process, too. 
If we think about some possible appliances, the maximum angle in 
games or lightning, for instance, we must be sure about the theory 
being applied – and so we have a natural motivation for proof in the 
S context. 

The T aspect was also present in the Q Process. For example, the 
use of the Supplementary Adjacent Angle Theorem can also be seen 
from that perspective, and why not the Secant Theorem, as well. Thus, 
even these quite trivial remarks show that in the Q Process the S and 
T aspects were present, too.

As far as the author can tell, mathematics, more generally, 
affords endless possibilities to find such a good companion as 
the Q Process above. But it is not always necessary to try to solve 
a suitable or meaningful “problem of one’s own”.  Any concept or 
structure from the “finished mathematics” may work as a starting 
point. Then, however, it could be a good idea to think about things, 
so to say, developmentally rather than educationally (cf. Haapasalo & 
Kadijevich 2000; Haapasalo 2004). 

All in all, a good guideline could be found from Polya’s treatise 
(1973) on the features of plausible reasoning, such as generalization, 
specialization, analogy and induction. Also, the article (Yrjänäinen 
& Ropo 2013) is a good presentation concerning the general 
characteristics of meaningful learning. One application of the ideas 
in that article is the paper by Poranen & Yrjänäinen (2015). There, the 
starting point was the consideration of the geometry of a car jack, as 
a (dynamical) rhombus.

The uncertainty and roughness which runs throughout this text is 
usually absent from the textbooks and basic studies of mathematics. 
This state of affairs has certainly many good and practical grounds. 
However, the system (S) and toolbox (T) views can then be given too 
much focus without giving the students enough possibilities to real 
or deeper understanding of the ideas. The most important reason 
to study mathematics is to learn to think; forgetting or hiding the 
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process view (P) may be quite a poor solution in this regard. The 
textbooks could perhaps contain some of the author’s narratives on 
their genuine problem solving, and not always just “success stories”. 

The prospective teachers of mathematics should write their own 
“meaning narratives” or stories about their own genuine problem 
solving. That could be part of their standard studies during their 
subject didactic (pedagogical) studies at the latest. Otherwise, they 
will not have enough means to get the learners to participate in and 
commit to their studies at school. This includes, naturally, that the 
learners are required to do something similar. Without any genuine 
experience of their own, the teachers cannot offer the learners the 
possibilities to do that. Also, without such experience, the prospective 
teachers cannot understand what Schoenfield (2012) means by his 
three questions presented at the beginning of this chapter.

Discussion

The author works as a university instructor in three basic domains in 
the Faculty of Education at the University of Tampere: in the subject 
teacher education teaching didactics of mathematical sciences, in 
primary school teacher education as well as a teacher of didactic 
mathematics (this is not to be confused with didactics of mathematics, 
see, e.g., Poranen & Silfverberg 2011). Before working at the university 
(since 2004), the author worked as a school teacher for about a quarter 
of a century. He taught there, among other things, mathematics and 
philosophy. 

It takes one academic year to complete the didactical/pedagogical 
studies (60 ECTS) in subject teacher education. During that year, the 
students study general education, subject didactics, conduct subject 
didactic research, and do the teaching practice at school. Before 
starting the proper pedagogical studies, including the teaching 
practice at school, students must have completed a minimum of 50–
60 ECTS of studies in mathematics if it is their major. 
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Classroom mathematics is something quite different compared 
to university mathematics. For example, Sorvali (2004), a Finnish 
mathematician, has written about some considerable differences 
between school and university mathematics where he questions the 
traditional thinking based on the idea that the best know-how in 
school mathematics is achieved only through studying mathematics 
as an axiomatic-deductive system (cf. S perspective). Instead, Sorvali 
proposes a kind of “observational mathematics” to be part of the 
prospective mathematics teachers’ subject studies (cf. Q Process & P 
perspective). Klisinska (2009) deals with the complicated relationship 
between academic and classroom mathematics using the notion 
of didactic transposition of mathematical knowledge as a central 
theoretical instrument (cf. also Schoenfeld 2012). Much research 
pertaining to functional pedagogic knowledge of mathematics exists 
(e.g. Stylianides & Stylianides 2010).

As a consequence, one of the first natural steps in subject didactic 
studies is elaborating on each student’s conceptions and perspectives 
of mathematics as a starting point in discussion on classroom 
mathematics. Then, usually, the S and T perspectives introduced 
at the beginning of this chapter emerge. On the other hand, school 
mathematics also comprises aims whereby the S and T perspectives 
may not be enough to teach successfully. For example, the students 
in grades 7–9 should be encouraged to find and utilize mathematics 
in their own lives; they should also have abilities to model and 
solve problems mathematically (POPS 2014, 374). There are similar 
emphases in the national [Finnish] curriculum for upper secondary 
school, too (cf. LOPS 2015, 129).

Respectively, since the 1980s, concepts related to the didactics 
of mathematics have considered mathematical proficiency quite 
broadly. At that time, concepts such as strategic competence, adaptive 
reasoning, and productive disposition were emphasized. By strategic 
competence we refer to the ability to formulate, represent and solve 
mathematical problems. Adaptive reasoning refers to the capacity 
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for logical thought, reflection, explanation and justification, while 
productive disposition points to the habitual inclination to see 
mathematics as worthwhile, sensible and useful, a connection to a 
belief in hard work and one’s own efficacy. In addition to those three 
features, conceptual understanding (i.e. comprehension of concepts, 
relations and operations) and procedural fluency (i.e. know-how in 
when and how to use different standard procedures) are also usually 
mentioned. The author thinks that the first three characteristics are 
not far from our P perspective here, and, respectively, that the last 
two features are close to the S and T perspectives.

In the literature of the didactics of mathematics, researchers have 
always emphasized that all of the five components are interwoven 
and interdependent on each individual’s development of proficiency 
in mathematics (see, e.g., Kilpatrick et al. 2001; Joutsenlahti 2005). 
We have also seen above, in a concrete way, that the perspectives S, T, 
and P in our Q Process were interwoven, although the focus was on 
the P perspective.

Our Q Process and questions q1 and q2 as such are quite 
good examples, if we think, for example, about those emphases 
mentioned in our national curricula and the didactical emphases in 
mathematical proficiency. Or, to say it more clearly, the prospective 
teachers of mathematics should have some similar training and 
experiences, as this author had in his Q Process, to better meet the 
demands set forth in the curricula and to better understand the more 
general and significant P perspective (including, for example, the 
strategic competence in mathematical proficiency). Of course, they 
still have to possess a good know-how of many basic things in the 
traditional sense, i.e. in the senses of the S and T perspectives. And, of 
course, they are much cleverer in problem solving than this author, a 
senior instructor who, however, still wants eagerly to become a better 
teacher. 
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